Systems and methods for enhanced implantation of electrode leads between tissue layers

Information

  • Patent Grant
  • 11937847
  • Patent Number
    11,937,847
  • Date Filed
    Monday, August 1, 2022
    a year ago
  • Date Issued
    Tuesday, March 26, 2024
    a month ago
Abstract
Systems and methods for enhanced implantation of an electrode lead for neuromuscular electrical stimulation of tissue associated with control of the lumbar spine for treatment of back pain, in a midline-to-lateral manner are provided. The implanted lead may be secured within the patient and used to restore muscle function of local segmental muscles associated with the lumbar spine stabilization system without disruption of the electrode lead post-implantation due to anatomical structures.
Description
II. FIELD OF THE INVENTION

This application generally relates to systems and methods for implanting electrode leads for neuromuscular electrical stimulation, including stimulation of tissue associated with control of the lumbar spine for treatment of back pain.


III. BACKGROUND OF THE INVENTION

The human back is a complicated structure including bones, muscles, ligaments, tendons, nerves and other structures. The spinal column has interleaved vertebral bodies and intervertebral discs, and permits motion in several planes including flexion-extension, lateral bending, axial rotation, longitudinal axial distraction-compression, anterior-posterior sagittal translation, and left-right horizontal translation. The spine provides connection points for a complex collection of muscles that are subject to both voluntary and involuntary control.


Back pain in the lower or lumbar region of the back is common. In many cases, the cause of back pain is unknown. It is believed that some cases of back pain are caused by abnormal mechanics of the spinal column. Degenerative changes, injury of the ligaments, acute trauma, or repetitive microtrauma may lead to back pain via inflammation, biochemical and nutritional changes, immunological factors, changes in the structure or material of the endplates or discs, and pathology of neural structures.


The spinal stabilization system may be conceptualized to include three subsystems: 1) the spinal column, which provides intrinsic mechanical stability; 2) the spinal muscles, which surround the spinal column and provide dynamic stability; and 3) the neuromotor control unit, which evaluates and determines requirements for stability via a coordinated muscle response. In patients with a functional stabilization system, these three subsystems work together to provide mechanical stability. It is applicant's realization that low back pain results from dysfunction of these subsystems.


The spinal column consists of vertebrae and ligaments, e.g. spinal ligaments, disc annulus, and facet capsules. There has been an abundance of in-vitro work in explanted cadaver spines and models evaluating the relative contribution of various spinal column structures to stability, and how compromise of a specific column structure will lead to changes in the range of motion of spinal motion segments.


The spinal column also has a transducer function, to generate signals describing spinal posture, motions, and loads via mechanoreceptors present in the ligaments, facet capsules, disc annulus, and other connective tissues. These mechanoreceptors provide information to the neuromuscular control unit, which generates muscle response patterns to activate and coordinate the spinal muscles to provide muscle mechanical stability. Ligament injury, fatigue, and viscoelastic creep may corrupt signal transduction. If spinal column structure is compromised, due to injury, degeneration, or viscoelastic creep, then muscular stability must be increased to compensate and maintain stability.


Muscles provide mechanical stability to the spinal column. This is apparent by viewing cross section images of the spine, as the total area of the cross sections of the muscles surrounding the spinal column is larger than the spinal column itself. Additionally, the muscles have much larger lever arms than those of the intervertebral disc and ligaments.


Under normal circumstances, the mechanoreceptors exchange signals with the neuromuscular control unit for interpretation and action. The neuromuscular control unit produces a muscle response pattern based upon several factors, including the need for spinal stability, postural control, balance, and stress reduction on various spinal components.


It is believed that in some patients with back pain, the spinal stabilization system is dysfunctional. With soft tissue injury, mechanoreceptors may produce corrupted signals about vertebral position, motion, or loads, leading to an inappropriate muscle response. In addition, muscles themselves may be injured, fatigued, atrophied, or lose their strength, thus aggravating dysfunction of the spinal stabilization system. Conversely, muscles can disrupt the spinal stabilization system by going into spasm, contracting when they should remain inactive, or contracting out of sequence with other muscles. As muscles participate in the feedback loop via mechanoreceptors in the form of muscle spindles and golgi tendon organs, muscle dysfunction may further compromise normal muscle activation patterns via the feedback loops.


Trunk muscles may be categorized into local and global muscles. The local muscle system includes deep muscles, and portions of some muscles that have their origin or insertion on the vertebrae. These local muscles control the stiffness and intervertebral relationship of the spinal segments. They provide an efficient mechanism to fine-tune the control of intervertebral motion. The lumbar multifidus, with its vertebra-to-vertebra attachments is an example of a muscle of the local system. Another example is the transverse abdominus, with its direct attachments to the lumbar vertebrae through the thoracolumbar fascia. The thoracolumbar fascia is a deep investing membrane which covers the deep muscles of the back of the trunk. The thoracolumbar fascia includes superficial fascia and deep fascia. The superficial fascia is traditionally regarded as a layer of areolar connective or adipose tissue immediately beneath the skin, whereas deep fascia is a tougher, dense connective tissue continuous with it. Deep fascia is commonly arranged as sheets and typically forms a stocking around the muscles and tendons beneath it. Superficial fascia fibers run in the transverse direction, whereas deep fascia fibers run in a cranial-caudal direction.


The multifidus is the largest and most medial of the lumbar back muscles. It has a repeating series of fascicles which stem from the laminae and spinous processes of the vertebrae, and exhibit a constant pattern of attachments caudally. These fascicles are arranged in five overlapping groups such that each of the five lumbar vertebrae gives rise to one of these groups. At each segmental level, a fascicle arises from the base and caudolateral edge of the spinous process, and several fascicles arise, by way of a common tendon, from the caudal tip of the spinous process. Although confluent with one another at their origin, the fascicles in each group diverge caudally to assume separate attachments to the mamillary processes, the iliac crest, and the sacrum. Some of the deep fibers of the fascicles that attach to the mamillary processes attach to the capsules of the facet joints next to the mamillary processes. The fascicles arriving from the spinous process of a given vertebra are innervated by the medial branch of the dorsal ramus that issues from below that vertebra. The dorsal ramus is part of spinal nerve roots formed by the union of dorsal root fibers distal to the dorsal root ganglion and ventral root fibers. The dorsal root ganglion is a collection of sensory neurons that relay sensory information from the body to the central nervous system.


The global muscle system encompasses the large, superficial muscles of the trunk that cross multiple motion segments, and do not have direct attachment to the vertebrae. These muscles are the torque generators for spinal motion, and control spinal orientation, balance the external loads applied to the trunk, and transfer load from the thorax to the pelvis. Global muscles include the oblique internus abdominus, the obliquus externus abdmonimus, the rectus abdominus, the lateral fibers of the quadratus lumborum, and portions of the erector spinae.


Normally, load transmission is painless. Over time, dysfunction of the spinal stabilization system is believed to lead to instability, resulting in overloading of structures when the spine moves beyond its neutral zone. The neutral zone is a range of intervertebral motion, measured from a neutral position, within which the spinal motion is produced with a minimal internal resistance. High loads can lead to inflammation, disc degeneration, facet joint degeneration, and muscle fatigue. Since the endplates and annulus have a rich nerve supply, it is believed that abnormally high loads may be a cause of pain. Load transmission to the facets also may change with degenerative disc disease, leading to facet arthritis and facet pain.


For patients believed to have back pain due to instability, clinicians offer treatments intended to reduce intervertebral motion. Common methods of attempting to improve muscle strength and control include core abdominal exercises, use of a stability ball, and Pilates. Spinal fusion is the standard surgical treatment for chronic back pain. Following fusion, motion is reduced across the vertebral motion segment. Dynamic stabilization implants are intended to reduce abnormal motion and load transmission of a spinal motion segment, without fusion. Categories of dynamic stabilizers include interspinous process devices, interspinous ligament devices, and pedicle screw-based structures. Total disc replacement and artificial nucleus prostheses also aim to improve spine stability and load transmission while preserving motion.


There are a number of problems associated with current implants that aim to restore spine stabilization. First, it is difficult to achieve uniform load sharing during the entire range of motion if the location of the optimum instant axis of rotation is not close to that of the motion segment during the entire range of motion. Second, cyclic loading of dynamic stabilization implants may cause fatigue failure of the implant, or the implant-bone junction, e.g. screw loosening. Third, implantation of these systems requires surgery, which may cause new pain from adhesions, or neuroma formation. Moreover, surgery typically involves cutting or stripping ligaments, capsules, muscles, and nerve loops, which may interfere with the spinal stabilization system.


Functional electrical stimulation (FES) is the application of electrical stimulation to cause muscle contraction to re-animate limbs following damage to the nervous system such as with stroke or spine injury. FES has been the subject of much prior art and scientific publications. In FES, the goal generally is to bypass the damaged nervous system and provide electrical stimulation to nerves or muscles directly which simulates the action of the nervous system. One lofty goal of FES is to enable paralyzed people to walk again, and that requires the coordinated action of several muscles activating several joints. The challenges of FES relate to graduation of force generated by the stimulated muscles, and the control system for each muscle as well as the system as a whole to produce the desired action such as standing and walking.


With normal physiology, sensors in the muscle, ligaments, tendons and other anatomical structures provide information such as the force a muscle is exerting or the position of a joint, and that information may be used in the normal physiological control system for limb position and muscle force. This sense is referred to as proprioception. In patients with spinal cord injury, the sensory nervous system is usually damaged as well as the motor system, and thus the afflicted person loses proprioception of what the muscle and limbs are doing. FES systems often seek to reproduce or simulate the damaged proprioceptive system with other sensors attached to a joint or muscle.


For example, in U.S. Pat. No. 6,839,594 to Cohen, a plurality of electrodes are used to activate selected groups of axons in a motor nerve supplying a skeletal muscle in a spinal cord patient (thereby achieving graduated control of muscle force) and one or more sensors such as an accelerometer are used to sense the position of limbs along with electrodes attached to muscles to generate an electromyogram (EMG) signal indicative of muscle activity. In another example, U.S. Pat. No. 6,119,516 to Hock, describes a biofeedback system, optionally including a piezoelectric element, which measures the motions of joints in the body. Similarly a piezoelectric crystal may be used as a muscle activity sensor as described by U.S. Pat. No. 5,069,680 to Grandjean.


FES has also been used to treat spasticity, characterized by continuous increased muscle tone, involuntary muscle contractions, and altered spinal reflexes which leads to muscle tightness, awkward movements, and is often accompanied by muscle weakness. Spasticity results from many causes including cerebral palsy, spinal cord injury, trauma, and neurodegenerative diseases. U.S. Pat. No. 7,324,853 to Ayal describes apparatus and method for electrically stimulating nerves that supply muscles to modify the muscle contractions that lead to spasticity. The apparatus includes a control system configured to analyze electrical activity of one or more muscles, limb motion and position, and mechanical strain in an anatomical structure.


Neuromuscular Electrical Stimulation (NMES) is a subset of the general field of electrical stimulation for muscle contraction, as it is generally applied to nerves and muscles which are anatomically intact, but malfunctioning in a different way. NMES may be delivered via an external system or, in some applications, via an implanted system.


NMES via externally applied skin electrodes has been used to rehabilitate skeletal muscles after injury or surgery in the associated joint. This approach is commonly used to aid in the rehabilitation of the quadriceps muscle of the leg after knee surgery. Electrical stimulation is known to not only improve the strength and endurance of the muscle, but also to restore malfunctioning motor control to a muscle. See, e.g., Gondin et al., “Electromyostimulation Training Effects on Neural Drive and Muscle Architecture”, Medicine & Science in Sports & Exercise 37, No. 8, pp. 1291-99 (August 2005).


An implanted NMES system has been used to treat incontinence by stimulating nerves that supply the urinary or anal sphincter muscles. For example, U.S. Pat. No. 5,199,430 to Fang describes implantable electronic apparatus for assisting the urinary sphincter to relax.


The goals and challenges of rehabilitation of anatomically intact (i.e., non-pathological) neuromuscular systems are fundamentally different from the goals and challenges of FES for treating spinal injury patients or people suffering from spasticity. In muscle rehabilitation, the primary goal is to restore normal functioning of the anatomically intact neuromuscular system, whereas in spinal injury and spasticity, the primary goal is to simulate normal activity of a pathologically damaged neuromuscular system.


U.S. Pat. Nos. 8,428,728 and 8,606,358 to Sachs, both assigned to the assignee of the present disclosure, and both incorporated herein in their entireties by reference, describe implanted electrical stimulation devices that are designed to restore neural drive and rehabilitate the multifidus muscle to improve stability of the spine. Rather than masking pain signals while the patient's spinal stability potentially undergoes further deterioration, the stimulator systems described in those applications are designed to reactivate the motor control system and/or strengthen the muscles that stabilize the spinal column, which in turn is expected to reduce persistent or recurrent pain.


While the stimulator systems described in the Sachs patents seek to rehabilitate the multifidus and restore neural drive, use of those systems necessitates the implantation of one or more electrode leads in the vicinity of a predetermined anatomical site, such as the medial branch of the dorsal ramus of the spinal nerve to elicit contraction of the lumbar multifidus muscle. For lead implantation using the Seldinger technique, it has been proposed to insert a needle in the patient's back, insert a guidewire through a lumen in the needle, remove the needle, insert a sheath over the guidewire, remove the guidewire, insert the electrode lead through a lumen of the sheath, and remove the sheath. Such a process can result in complications depending on the insertion site due to anatomical structures surrounding the target implantation site, impeding the insertion path. For example, as discussed above, the deep back muscles are covered by the thoracolumbar fascia which comprises superficial fascia running in the transverse direction and deep fascia running in a cranial-caudal direction. There is a risk that electrode lead conductors may experience a tight bend near the location where the lead enters the thoracolumbar fascia when the lead is inserted within the body near the lateral edge of the spine. Such a tight bend may lead to dislodgement of the electrode lead and/or fracture, thereby preventing proper therapy delivery. The difference in directions of the superficial and deep fascia near the insertion site at the lateral edge of the spine may increase the risk of a high stress location on the lead.


It would therefore be desirable to provide systems and methods for implanting an electrode lead to rehabilitate muscle associated with control of the lumbar spine to treat back pain with reduced risk of a high stress location on the lead and dislodgement of the electrode lead by surrounding anatomical structures.


IV. SUMMARY OF THE INVENTION

The present disclosure describes systems and methods for enhanced implantation of an electrode lead between tissue layers to reduce the risks of a high stress location on the lead or dislodgement. The lead may be configured to emit electrical energy from one or more electrodes disposed on the lead to stimulate target tissue to restore muscle function to the lumbar spine and treat, for example, low back pain. The systems and methods are expected to provide efficient implantation of the lead in a midline-to-lateral manner such that the implanted lead may be secured within the patient and used to restore muscle function of local segmental muscles associated with the lumbar spine stabilization system without disruption of the electrode lead post-implantation due to surrounding anatomical structures.


In accordance with one aspect of the present disclosure, a method for restoring muscle function to a lumbar spine is provided. The method includes selecting a guide needle having a longitudinal axis and a distal tip, a delivery needle having a distal tip, a lumen and a longitudinal axis, and a lead having a distal region including one or more electrodes.


First, a target vertebrae of the lumbar spine is located. For example, the target vertebrae may be the L3 vertebrae. Next, the distal tip of the guide needle is inserted percutaneously at a first insertion site a lateral distance from a midline of the target vertebrae to a depth. The first insertion site may be located at a cranial edge of a transverse process of the target vertebrae, proximately lateral to a base of a superior articular process of the target vertebrae. The method may also include measuring the depth attained by the distal tip of the guide needle.


A second insertion site along the midline of the target vertebrae is then located based on the depth. Accordingly, the second insertion site may be located along the midline of the target vertebrae at a distance from the first insertion site approximately equal to the depth measured. As such, the second insertion site may be located above an L4 spinous process.


Next, the method may include inserting the distal tip of a delivery needle percutaneously at the second insertion site such that the longitudinal axis of the delivery needle is angled relative to the longitudinal axis of the guide needle, e.g., about 45 degrees, so as to traverse naturally occurring fascicle planes. The method may also include visualizing the distal tip of the delivery needle within an outline of a neural foramen of the target vertebrae to confirm proper placement. The distal tip of the delivery needle may be advanced approximately 3-5 mm beyond the distal tip of the guide needle, thereby penetrating tissue for lead anchoring, e.g., muscle such as the intertransversarii.


Next, a guidewire is advanced through the lumen of the delivery needle. The guide needle may be removed after the distal tip of the delivery needle is inserted percutaneously at the second insertion site.


Next, the delivery needle is removed and an introducer assembly is advanced over the guidewire. The introducer assembly may include a dilator having a lumen extending therethrough configured to receive the guidewire, and an introducer sheath having a lumen extending therethrough configured to receive the dilator. The distal tip of the introducer assembly may be visualized within an outline of a neural foramen of the target vertebrae to confirm placement of the introducer assembly within a plane of the lead anchor site, e.g., a plane of muscle such as the intertransversarii. The guidewire is then removed, and if a dilator is used, the dilator may be removed after the guidewire is removed.


The lead is then advanced through the introducer assembly so that the one or more electrodes are disposed in or adjacent to the tissue associated with control of the lumbar spine, e.g., nervous tissue such as the dorsal ramus nerve or fascicles thereof. The lead may include one or more fixation elements disposed in proximity to at least one of the one or more electrodes. The one or more fixation elements may be configured to transition from a delivery state, wherein the one or more fixation elements are positioned adjacent to at least one of the one or more electrodes, to a deployed state, wherein the one or more fixation elements are spaced apart from at least one of the one or more electrodes and positioned to anchor the lead to the anchor site e.g., muscle such as the intertransversarii.


Next, the introducer assembly is retracted, which may cause the one or more fixation elements to transition from the delivery state to the deployed state. For example, the fixation elements may be formed of a flexible material, e.g., a polymer, and may be biased to self-expand to the deployed state when exposed from the introducer assembly.


Finally, an implantable pulse generator that is configured to be coupled to the lead may be implanted within the patient body. The proximal end of the lead may be subcutaneously tunneled to the IPG using a tunneler system.


In accordance with another aspect of the present disclosure, a kit for implanting a device for restoring muscle function to a lumbar spine is provided. The kit may include a guide needle having a distal tip and a longitudinal axis; a delivery needle having a distal tip and a lumen extending therethrough; a guidewire configured to be inserted through the lumen of the delivery needle; an introducer assembly having a distal tip and a lumen extending therethrough configured to receive the guidewire; and a lead having one or more electrodes disposed at a distal region of the lead, as described above.


The kit may further include an implantable pulse generator configured to be coupled to the one or more electrodes via the lead.





V. BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B illustrate electrode leads implanted via a midline insertion and a lateral insertion within a patient body, where the electrode leads are shown when the patient body is in a supine position in FIG. 1A and in a seated position in FIG. 1B.



FIG. 2 shows an exemplary kit for delivering an electrode lead in accordance with the principles of the present disclosure.



FIG. 3 illustrates a flow chart of an exemplary method for implanting an electrode lead at a target location in accordance with the principles of the present disclosure.



FIGS. 4A through 4J show an exemplary method for implanting an electrode lead and IPG using the kit of FIG. 2.



FIGS. 5A and 5B illustrate multiple electrode leads implanted via a midline insertion in accordance with the principles of the present disclosure from an anterior/posterior view in FIG. 5A and a lateral view in FIG. 5B.





VI. DETAILED DESCRIPTION OF THE INVENTION

The systems and methods of the present disclosure may provide efficient implantation of an electrode lead in a midline-to-lateral manner such that the implanted lead may be secured within the patient and used to restore muscle function of local segmental muscles associated with the lumbar spine stabilization system without disruption of the electrode lead post-implantation due to surrounding anatomical structures. In accordance with the principles of the present disclosure, the systems and methods may be optimized for use in restoring muscle function to the lumbar spine to treat, for example, low back pain.


Referring to FIGS. 1A and 1B, a comparison of traditional implantation methods and the exemplary method in accordance with the principles of the present disclosure is provided. FIGS. 1A and 1B illustrate x-ray images of the lumbar region of a cadaver with electrode lead 10 and electrode leads 12 implanted therein. Electrode lead 10 was implanted via traditional methods of lead implantation utilizing a lateral incision, whereas electrode leads 12 were implanted via the exemplary method in accordance with the principles of the present disclosure. FIG. 1A depicts electrode lead 10 and electrode leads 12 implanted in the cadaver while the cadaver is in a supine (laying down) position, while FIG. 1B depicts electrode lead 10 and electrode leads 12 implanted in the cadaver while the cadaver is in a seated position to reflect the various positions a potential living patient would experience on a day-to-day basis. Both electrode lead 10 and electrode leads 12 are depicted with strain relief portions to reduce further stress on the respective leads, as described in more detail below.


As shown in FIG. 1B, electrode lead 10 experiences a tight bend along the lead body distal to the strain relief portion of the lead, whereas electrode leads 12 lack any such tight bend. It is believed that the tight bend observed in electrode lead 10 results from the trajectory from the incision site to the target implantation location. Specifically, as described above, the superficial fascia fibers run in the transverse direction, whereas deep fascia fibers run in a cranial-caudal direction, which provides a crisscross environment of the thoracolumbar fascia in the proximity of the traditional implantation trajectory. This crisscross environment applies forces on the lead body resulting in the observed tight bend. In contrast, electrode leads 12 are implanted with a trajectory from an insertion site located along the midline of the vertebrae toward the target implantation location lateral to the midline. Thus, the exemplary method of the present disclosure provides an implantation trajectory that avoids the problematic crisscross environment provided by the thoracolumbar fascia, and reduces the risk of a high stress location on the lead observed in traditional implantation methods.


Referring now to FIG. 2, an exemplary kit for implanting an electrode lead is described. In FIG. 2, components of the kit are not depicted to scale on either a relative or absolute basis.


Kit 200 may include guide needle 202, delivery needle 204, a guidewire, introducer assembly 205, electrode lead 212, suture sleeve 210 and an implantable pulse generator (IPG). Guide needle 202 includes a distal tip and a longitudinal axis. The distal tip of guide needle 202 may be beveled to ease introduction through tissue. Delivery needle 204 includes a distal tip and a lumen extending therethrough shaped and sized to receive a guidewire. The distal tip of delivery needle 204 may be beveled to ease introduction through tissue. The guidewire is configured to be inserted through the lumen of delivery needle 204.


Introducer assembly 205 includes a distal tip and a lumen extending therethrough configured to receive the guidewire. The distal tip of introducer assembly 205 may be beveled to ease introduction through tissue. Introducer assembly 205 may include introducer sheath 208, which has a lumen extending therethrough configured to receive electrode lead 212. Introducer sheath 208 may include handle 209 sized and shaped to permit a clinician to comfortably hold introducer sheath 208. Introducer assembly 205 also may include dilator 206, which has a lumen extending therethrough configured to receive the guidewire. The lumen of introducer sheath 208 may be shaped and sized to permit dilator 206 to slide therethrough, and the lumen of dilator 206 also serves as the lumen of introducer assembly 205. Further in this embodiment, introducer sheath 208 has a coupling portion configured to be coupled to a portion of dilator 206. In addition, when dilator 206 is removed from within the lumen of introducer sheath 208, the lumen of introducer sheath 208 may receive electrode lead 212.


Electrode lead 212 may include a distal region having one or more electrodes disposed thereon that are configured to be implanted in or adjacent to tissue, such as nervous tissue, muscle, ligament, and/or joint capsule. Electrode lead 212 is a suitable length for positioning the electrodes in or adjacent to target tissue while the IPG is implanted in a suitable location, e.g., the lower back. For example, electrode lead 212 may be between about 30 and 80 cm in length, and preferably about 45 or about 65 cm in length. Electrode lead 212 is also of a suitable diameter for placement, for example, between about 1 and 2 mm in diameter and preferably about 1.3 mm.


The one or more electrodes may be configured to stimulate the tissue at a stimulation frequency and at a level and duration sufficient to cause muscle to contract and may be ring electrodes, partial electrodes, segmented electrodes, nerve cuff electrodes placed around the nerve innervating the target muscle, or the like. For example, the one or more electrodes may be implanted in or adjacent to nervous tissue associated with a target muscle(s). The one or more electrodes may be implanted in or adjacent to the dorsal ramus nerve, or fascicles thereof, innervating the multifidus muscle. In such embodiments, the one or more electrodes are configured to emit electrical energy to stimulate the dorsal ramus nerve, or fascicles thereof, to cause the multifidus to contract to thereby rehabilitate the multifidus and increase stability of the lumbar spine to reduce back pain. The one or more electrodes are a suitable length(s) and spaced apart a suitable distance along the distal region of electrode lead 212. For example, the one or more electrodes may be about 2-5 mm in length, and preferably about 3 mm, and may be spaced apart about 2-6 mm, and preferably about 4 mm.


Electrode lead 212 may further include fixation elements 214 and 215 disposed in proximity to at least one of the one or more electrodes. As will also be understood by one of skill in the art, fixation elements 214 and 215 may be positioned along the electrode lead to secure any one of the other electrodes disposed thereon at a target implantation location. Electrode lead 212 also may be structurally similar to any of the electrode leads described in U.S. Ser. No. 15/202,435, U.S. Pat. No. 9,072,897 to Sachs, U.S. Pat. No. 9,079,019 to Crosby, U.S. Patent Application Pub. No. 2013/0338730 to Shiroff, U.S. Patent Application Pub. No. 2014/0350653 to Shiroff, and/or U.S. Pat. No. 9,186,501 to Rawat, each assigned to the assignee of the present disclosure, the entire contents of each of which are incorporated herein by reference. As such, fixation elements 214 and 215 may be positioned adjacent to at least one of the one or more electrodes of electrode lead 212 in a delivery state, or may be spaced apart from the one or more electrodes of electrode lead 212 in a deployed state. In the deployed state, fixation elements 214 and 215 may be positioned to anchor electrode lead 212 to an anchor site, e.g., muscle such as the intertransversarii. Fixation elements 214 and 215 may be formed of a flexible material, e.g., a polymer, and may be biased to self-expand to the deployed state when exposed from the introducer assembly. Fixation elements 214 and 215 may include any number of projections, generally between 1 and 8 each and preferably 3 or 4 each. The length of and spacing between fixation elements 214 and 215 are defined by the structure around which they are to be placed. In one embodiment, the length of the projections of fixation elements 214 and 215 is between about 1.5-4 mm and preferably about 2.5 mm and the spacing between fixation elements 214 and 215 is between about 2 mm and 10 mm and preferably about 6 mm.


In one embodiment, fixation elements 214 may be configured to be radially offset relative to fixation elements 215 by prefabricating at least one of fixation elements 214 and fixation elements 215 relative to electrode lead 212 such that the projections of fixation elements 214 are radially offset relative to the projections of fixation elements 215 as illustrated and described in further detail in U.S. Ser. No. 15/202,435. For example, the projections of fixation elements 214 may be radially offset relative to the projections of fixation elements 215 by a predetermined angle, e.g., approximately 60 degrees. However, as appreciated by one of ordinary skill in the art, the projections of fixation elements 214 may be radially offset relative to the projections of fixation elements 215 by other angles to achieve the benefits in accordance with the present disclosure.


While FIG. 2 illustrates electrode lead 212 having fixation elements 214 and 215, it should be understood that other fixation elements may be used to anchor electrode lead 212 at a suitable location including the fixation elements described in U.S. Pat. No. 9,079,019 to Crosby and U.S. Patent Application Pub. No. 2013/0338730 to Shiroff, both assigned to the assignee of the present disclosure, the entire contents of each of which are incorporated herein by reference.


In one embodiment, kit 200 may further include a stylet and electrode lead 212 may further include a stylet lumen extending therethrough. The stylet lumen is shaped and sized to permit a stylet to be inserted therein, for example, during delivery of electrode lead 212 to provide additional stiffness to electrode 212.


Suture sleeve 210 may optionally be provided to secure at least a portion of electrode lead 212 percutaneously under the skin of the patient body. Suture sleeve 210 illustratively includes a first end section, a middle section separated from first end section by a first groove, a second end section separated from the middle section by a second groove, and a sleeve lumen extending therethrough. The first and second end sections may have truncated conical portions as shown. The first and second grooves are sized and shaped to accept sutures such that suture sleeve 210 may be secured to tissue, e.g., superficial fascia, using the sutures. The lumen of suture sleeve 210 is sized such that electrode lead 212 may be inserted therethrough.


The IPG is configured to be coupled to a proximal end of electrode lead 212, e.g., using a tunneler system such as that described in U.S. Ser. No. 15/202,435, and to provide electrical stimulation via the one or more electrodes of electrode lead 212. The internal functional components of the IPG may be structurally similar to the IPG described in U.S. Pat. No. 9,072,897 to Sachs.


Referring now to FIGS. 3 and 4A-4J, an exemplary method using the kit described above to implant an electrode lead in accordance with the principles of the present disclosure is described. Specifically, FIG. 3 illustrates exemplary method 300 for implanting electrode lead 212 at a target implantation location, e.g., in or adjacent to tissue associated with control of the lumbar spine. For example, the electrode lead may be implanted such that the one or more electrodes are positioned to stimulate the dorsal ramus nerve, or fascicles thereof, that innervate the multifidus muscle. FIGS. 4B and 4D-4J depict a lateral projection of a segment of a typical human lumbar spine shown having a vertebral body V, transverse process TP, intertransversarii ITV, a dorsal ramus DR nerve, and a dorsal root ganglion DRG.


Referring back to FIG. 3 and FIG. 4A, step 302 is described. At 302, the clinician locates the target vertebrae. The target vertebrae is the vertebrae of the patient body associated with the target implantation site. In one embodiment, the target vertebrae may be the L3 vertebrae. The clinician may locate the target vertebrae manually by using his or her fingers to count vertebra-by-vertebra from an identifiable starting location, e.g., the sacrum or the L5 vertebrae. Alternatively, the clinician may use any other method known in the art to identify a target vertebrae, e.g., a visualization technique such as x-ray.


Referring back to FIG. 3 and now to FIG. 4B, step 304 is described. At 304, the clinician inserts the distal tip of guide needle 202 at a first insertion site. The first insertion site, shown in FIGS. 4A and 4B, may be located lateral to the midline of the target vertebrae, and proximal to the cranial edge of the transverse process of the target vertebrae, just lateral to the base of the superior articular process. The clinician inserts guide needle 202 within the patient body at the first insertion site, e.g., directly or through a previously made incision, such that the longitudinal axis of guide needle 202 is approximately perpendicular, e.g., within ±10°, to the plane of a target anchor site, e.g., muscle such as the intertransversarii ITV of the target vertebrae. The clinician inserts the distal tip of guide needle 202 to a predetermined depth in proximity to the target implantation location. The clinician may insert the distal tip of guide needle 202 to a depth determined based on anatomical structures observed via lateral images and/or detected resistance. For example, to ensure accuracy for proper positioning of guide needle 202 visualization techniques such as x-ray, fluoroscopy, acoustic, anatomic, or CT guidance, may be used so the clinician may monitor guide needle 202 periodically via lateral and/or anterior/posterior images as guide needle 202 is advanced to the target implantation location. For example, from a lateral image, a clinician may understand that guide needle 202 is in the proper position when the distal tip of guide needle 202 is visible at an edge of an outline of the neural foramen of the target vertebrae.


Referring back to FIG. 3 and now to FIG. 4C, step 306 is described. At 306, the clinician locates a second delivery needle insertion site. The second insertion site may be located along the midline of the target vertebrae and may be based on the depth attained by guide needle 202 in step 304. For example, the clinician may measure the depth attained by guide needle 202. The clinician may then locate the second insertion site such that the second insertion site is along the midline of the target vertebrae and at a distance from the first insertion site that is approximately equal to the depth attained by guide needle 202 in step 304. Preferably, the second insertion site is location anterior to the spinous process of the L4 vertebrae of the patient body.


Referring back to FIG. 3 and now to FIG. 4D, step 308 is described. At 308, the clinician inserts the distal tip of delivery needle 204 at the second insertion site, e.g., directly or through a previously made incision. The distal tip of delivery needle 204 is inserted toward the distal tip of guide needle 202 such that the longitudinal axis of delivery needle 204 is angled relative to the longitudinal axis of guide needle 202. Preferably, the longitudinal axis of delivery needle 204 is angled relative to the longitudinal axis of guide needle 202 approximately 45 degrees, e.g., within ±10°. Accordingly, the longitudinal axis of delivery needle 204 is angled relative to the plane of the intertransversarii ITV approximately 45 degrees. The insertion method of delivery needle 204 by the clinician provides a medial-to-lateral trajectory from the second insertion site to the target implantation location such that the crisscross environment of the superficial and deep thoracolumbar fascia is avoided, and delivery needle 204 crosses the posterior thoracolumbar fascia at a point of minimal relative motion.


Preferably, delivery needle 204 is inserted with a consistent trajectory, such that the clinician may restart step 308 if necessary to avoid misalignment of the distal tip of delivery needle 204 to the distal tip of guide needle 202. Preferably, delivery needle 204 is advanced approximately 3-5 mm beyond the distal tip of guide needle 202, thereby penetrating the intertransversarii ITV of the target vertebrae. To ensure accuracy for proper positioning of delivery needle 204, using visualization techniques such as x-ray, fluoroscopy, acoustic, anatomic, or CT guidance, the clinician may monitor delivery needle 204 periodically via lateral and/or anterior/posterior images as delivery needle 204 is advanced to the target implantation location. For example, from a lateral image, a clinician may understand that delivery needle 204 is in the proper position when the distal tip of delivery needle 204 is visible at an edge of an outline of the neural foramen of the target vertebrae. In one embodiment, guide needle 202 may be removed from the patient body after delivery needle 204 is in the proper position.


Referring back to FIG. 3 and now to FIG. 4E, step 310 is described. At 310, the clinician advances guidewire 311 through the lumen of delivery needle 204. Preferably, guidewire 311 exits the lumen of delivery needle 204 at the distal end of delivery needle 204 in a straight orientation. To ensure accuracy for proper positioning of guidewire 311, using fluoroscopy, acoustic, anatomic, or CT guidance, the clinician may monitor guidewire 311 periodically via lateral and/or anterior/posterior images as guidewire 311 exits the lumen of delivery needle 204 at the distal end of delivery needle 204.


In the event that guidewire 311 exits the lumen of delivery needle 204 at the distal end of delivery needle 204 such that guidewire 311 deflects cranially due to muscle tissue in proximity to the target implantation location, the clinician may remove guidewire 311 and reattempt step 310. In one embodiment, the clinician may remove both guidewire 311 and delivery needle 204, and reattempt both steps 308 and 310.


Referring back to FIG. 3 and now to FIG. 4F, step 312 is described. At 312, the clinician removes delivery needle 204 from the patient body, leaving behind guidewire 311.


Referring back to FIG. 3 and now to FIG. 4G, step 314 is described. At 314, the clinician advances introducer assembly 205 over guidewire 311. The clinician may advance the distal tip of introducer assembly 205 through the intertransversarii ITV of the target vertebrae. To ensure accuracy for proper positioning of introducer assembly 205, using fluoroscopy, acoustic, anatomic, or CT guidance, the clinician may monitor introducer assembly 205 periodically via lateral and/or anterior/posterior images as introducer assembly 205 is advanced over guidewire 311 to the target implantation location. For example, from a lateral image, a clinician may understand that introducer assembly 205 is in the proper position when the distal tip of introducer assembly 205 is visible at an edge of an outline of the neural foramen of the target vertebrae. In addition, the clinician may use handle 209 of introducer sheath 208 to ensure advancement of introducer assembly 205 follows the same trajectory as delivery needle 204 over guidewire 311. In the event that introducer assembly 205 is not positioned within the plane of the intertransversarii, the clinician may remove introducer assembly 205 and reattempt step 314.


In one embodiment, introducer assembly 205 is advanced over guidewire 311 with dilator 206 disposed within introducer sheath 208. In this embodiment, introducer assembly 205 is advanced over guidewire 311 by receiving guidewire 311 through the lumen of dilator 206. Further in this embodiment, the clinician may remove dilator 206 from the lumen of introducer sheath 208 after the clinician removes guidewire 311 from the lumen of introducer assembly 205 as described in further detail below. For example, the clinician may rotate dilator 206 in a direction, e.g., counter-clockwise, to disengage it from the coupling portion of introducer sheath 208. In addition, the clinician may maintain slight forward pressure on introducer sheath 208 while removing dilator 206 from the lumen of introducer sheath 208.


Referring back to FIG. 3 and now to FIG. 4H, step 316 is described. At 316, the clinician removes guidewire 311 from the lumen of introducer assembly 205, while maintaining the position of introducer assembly 205 at the target implantation location, e.g., within the plane of the intertransversarii ITV.


Referring back to FIG. 3 and now to FIG. 4I, steps 318 and 320 are described. At 318, the clinician advances electrode lead 212 through the lumen of introducer sheath 208. The clinician may advance electrode lead 212 until the distal end of electrode lead 212 is slightly proximal or distal to the distal tip of introducer sheath 208, such that the distal end of electrode lead 212 is in proximity to the target implantation location, e.g., in or adjacent to tissue associated with control of the lumbar spine. For example, the one or more electrodes may be implanted in or adjacent to nervous tissue associated with a target muscle(s). The one or more electrodes may be implanted in or adjacent to the dorsal ramus DR nerve, or fascicles thereof, innervating the multifidus muscle. In such embodiments, the one or more electrodes are configured to emit electrical energy to stimulate the dorsal ramus DR nerve, or fascicles thereof, to cause the multifidus to contract to thereby rehabilitate the multifidus and increase stability of the lumbar spine to reduce back pain. The one or more electrodes also may be configured to stimulate other nervous tissue such as the dorsal root ganglion DRG.


In one embodiment, a stylet is inserted within the stylet lumen of electrode lead 212 to provide additional stiffness to electrode lead 212 to ease passage of electrode lead 212 through introducer sheath 208. Electrode lead 212 with the stylet disposed therein then is advanced through the lumen of introducer sheath 208.


At 320, introducer assembly 205 is moved proximally off electrode lead 212, e.g., using handle 209 of introducer sheath 208, while maintaining the position of electrode lead 212 at the target implantation location, as shown in FIG. 4I. Fixation elements 214 and 215 of electrode lead 212 individually transition from a collapsed state within introducer assembly 205 to an expanded state as introducer assembly 205 passes over the respective fixation element. Fixation elements 214 and 215 sandwich an anchor site, e.g., muscle such as the intertransversarii ITV, therebetween without damaging the anchor site in the expanded state to fix electrode lead 212 at the target implantation location. For example, one of the fixation elements may be exposed from introducer sheath 208 and expand from a delivery state to a deployed state anterior to the intertransversarii IVT, while another one of the fixation elements may be exposed from introducer sheath 208 and expand from a delivery state to a deployed state posterior to the intertransversarii ITV. An impedance test may be conducted to determine that the fixation elements were properly deployed as described in U.S. Pat. No. 9,186,501 to Rawat.


To confirm that electrode lead 212 is properly positioned at the target implantation location such that electrode lead 212 is sufficiently anchored to the anchor site, the clinician may perform a push-pull test. The push-pull test may include gently pulling electrode lead 212 proximally until a predetermined resistance is felt. If fixation elements 214 and 215 successfully are in the deployed state, electrode lead 212 will experience approximately 2-3 mm of movement during the push-pull test administered by the clinician. In an embodiment comprising utilizing a stylet, the clinician may remove the stylet after determining that fixation elements 214 and 215 have successfully deployed and electrode lead 212 is properly anchored to the anchor site, prior to completely retracting introducer sheath 208.


In one embodiment, electrodes of electrode lead 212 are positioned to stimulate the medial branch of the dorsal ramus DR nerve, or fascicles thereof, that exits between the L2 and L3 lumbar segments and passes over the transverse process of the L3 vertebra, thereby eliciting contraction of fascicles of the lumbar multifidus at the L3, L4, L5 and Si segments and in some patients also at the L2 segment.


In another embodiment, the electrodes are positioned to stimulate a peripheral nerve where the nerve enters skeletal muscle, which may be one or more of the multifidus, transverse abdominus, quadratus lumborum, psoas major, internus abdominus, obliquus externus abdominus, and erector spinae muscles. Such stimulation may induce contraction of the muscle to restore neural control and rehabilitate the muscle, thereby improving muscle function of local segmental muscles of the lumbar spine, improving lumbar spine stability, and reducing back pain.


Referring now to FIG. 4J, the clinician may place suture sleeve 210 over the proximal end of electrode lead 212 and moved distally. When suture sleeve 210 is positioned adjacent to the superficial fascia SF beneath skin SK, sutures are sewn into the first and second grooves of suture sleeve 210 so as to secure suture sleeve 210 to the superficial fascia SF.


In one embodiment, as shown in FIG. 4J, electrode lead 212 may include strain relief portion 216 as described below. Strain relief portion 216 is configured to reduce lead dislodgement and/or fracture after implantation due to, for example, the lack of suitable anchor sites for the electrode leads, the torsional and/or bending stresses imposed on the electrode leads by movement of the surrounding muscles. As described below, strain relief portion 216 may take on a variety of structures that are designed to reduce the strain on electrode lead 212 and the fixation elements, thereby reducing the risk of lead dislodgement, fatigue fracture, and injury to the nervous tissue through which electrode lead 212 passes. In the embodiment shown in FIG. 4J, strain relief portion 216 comprises a loop. Preferably, the loop comprises a diameter of at least 2 cm. In an alternative embodiment, strain relief portion 216 comprises a “C” shape. Other strain relief structures designed to reduce the strain on electrode lead 212 and fixation elements 214 and 215 of the present disclosure are described in U.S. Patent Application Pub. No. 2014/0350653 to Shiroff, assigned to the assignee of the present disclosure, the entire contents of which are incorporated herein by reference. Strain relief portion 216 permits extension of electrode lead 212 between the proximal end and the distal end of electrode lead 212 without imposing excessive loads on the fixation elements 214 and 215 that could result in axial displacement of the electrodes.


Finally, the proximal end of the lead may be subcutaneously tunneled to the IPG using a tunneler system and coupled to the IPG such that the IPG is implanted in a suitable location, e.g., the lower back of the patient, and the electrode lead is fully implanted.


Referring now to FIGS. 5A and 5B, multiple electrode leads may be implanted in accordance with the principles of the present disclosure. The illustrated electrode leads may be structurally similar to electrode lead 212 of FIG. 2 described above, and may each contain a plurality of electrodes disposed at their respective distal ends. The plurality of electrodes are configured to be implanted in or adjacent to tissue at the opposing side of the spine, such as nervous tissue, muscle, ligament, and/or joint capsule. As illustrated in FIGS. 5A and 5B, the electrode leads may be anchored at different anchor sites. For example, after implanting a first electrode lead as described in FIGS. 4A through 4J, the implantation method may be repeated on the opposing side of the spine to implant a second electrode lead. As a result, one electrode lead may be anchored such that the plurality of electrodes disposed thereon are in or adjacent to the dorsal root ganglion and/or the medial branch of the dorsal ramus nerve, or fascicles thereof, that innervates the multifidus muscle located on one side of the target vertebrae, while the other electrode lead may simultaneously be anchored such that the plurality of electrodes disposed thereon are in or adjacent to the dorsal root ganglion and/or the medial branch of the dorsal ramus nerve, or fascicles thereof, that innervates the multifidus muscle located on the opposite side of the target vertebrae.


While various illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made therein without departing from the invention. The appended claims are intended to cover all such changes and modifications that fall within the true scope of the invention.

Claims
  • 1. A method for implanting a device for restoring muscle function to a lumbar spine of a patient, the method comprising: selecting a guide needle having a longitudinal axis and a distal tip;selecting a lead having a distal region including one or more electrodes;locating a first insertion site at a cranial edge of a transverse process of a target vertebrae of the lumbar spine;inserting the distal tip of the guide needle percutaneously at the first insertion site;locating a second insertion site along a midline of the target vertebrae; andimplanting the lead with a medial-to-lateral trajectory from the second insertion site toward the distal tip of guide needle such that the distal region is angled relative to the longitudinal axis of the guide needle and the one or more electrodes are disposed near or in contact with tissue associated with control of the lumbar spine,wherein the medial-to-lateral trajectory traverses naturally occurring fascicle planes.
  • 2. The method of claim 1, wherein the target vertebrae is an L3 vertebra.
  • 3. The method of claim 1, wherein the first insertion site is located a lateral distance from the midline of the target vertebrae, and proximately lateral to a base of a superior articular process of the target vertebrae.
  • 4. The method of claim 1, further comprising visualizing the distal tip of the guide needle within an outline of a neural foramen of the target vertebrae to confirm target positioning of the guide needle.
  • 5. The method of claim 4, wherein visualizing the distal tip of the guide needle comprises visualizing the distal tip of the guide needle via at least one of x-ray, fluoroscopy, acoustic, anatomic, or CT guidance.
  • 6. The method of claim 4, wherein visualizing the distal tip of the guide needle comprises visualizing the distal tip of the guide needle via at least one of lateral, anterior, or posterior images.
  • 7. The method of claim 1, wherein the second insertion site is located above an L4 spinous process.
  • 8. The method of claim 1, further comprising: measuring a depth attained by the distal tip of the guide needle at the first insertion site; andlocating the second insertion site along the midline of the target vertebrae based on the depth.
  • 9. The method of claim 8, wherein the second insertion site is located a distance from the first insertion site approximately equal to the depth.
  • 10. The method of claim 1, wherein the one or more electrodes are disposed near or in contact with a dorsal ramus nerve or fascicles thereof.
  • 11. The method of claim 1, wherein the distal region of the lead is approximately angled 45 degrees relative to the longitudinal axis of the guide needle.
  • 12. The method of claim 1, wherein implanting the lead at the second insertion site comprises: selecting a delivery needle having a distal tip, a lumen and a longitudinal axis;inserting the distal tip of the delivery needle percutaneously at the second insertion site along the medial-to-lateral trajectory from the second insertion site toward the distal tip of guide needle such that the longitudinal axis of the delivery needle is angled relative to the longitudinal axis of the guide needle;advancing a guidewire through the lumen of the delivery needle;removing the delivery needle;advancing an introducer assembly over the guidewire;removing the guidewire;advancing the lead through the introducer assembly so that the one or more electrodes are disposed near or in contact with the tissue associated with control of the lumbar spine; andretracting the introducer assembly.
  • 13. The method of claim 12, further comprising visualizing the distal tip of the delivery needle within an outline of a neural foramen of the target vertebrae to confirm target positioning of the delivery needle.
  • 14. The method of claim 12, wherein inserting the distal tip of the delivery needle further comprises advancing the distal tip of the delivery needle approximately 3-5 mm beyond the distal tip of the guide needle, thereby penetrating an intertransversarii.
  • 15. The method of claim 12, wherein advancing the introducer assembly over the guidewire comprises advancing the introducer assembly over the guidewire until the introducer assembly is within a plane of an intertransversarii.
  • 16. The method of claim 12, wherein the lead comprises a pair of oppositely-angled fixation elements disposed in proximity to at least one of the one or more electrodes, the pair of oppositely-angled fixation elements configured to transition from a collapsed delivery state to a deployed state, and wherein retracting the introducer assembly causes the pair of oppositely-angled fixation elements to transition from the collapsed delivery state to the deployed state to thereby anchor the lead to an anchor site.
  • 17. The method of claim 16, wherein the anchor site is an intertransversarii, such that the pair of oppositely-angled fixation elements sandwich the intertransversarii in the deployed state.
  • 18. The method of claim 12, wherein the introducer assembly comprises a dilator having a lumen extending therethrough configured to receive the guidewire, and an introducer sheath having a lumen extending therethrough configured to receive the dilator, the method further comprising removing the dilator prior to advancing the lead through the introducer assembly.
  • 19. The method of claim 12, further comprising: inserting a stylet through a lumen of the lead prior to advancing the lead through the introducer assembly; andremoving the stylet from the lead when the one or more electrodes are disposed near or in contact with the tissue associated with control of the lumbar spine.
  • 20. The method of claim 1, further comprising implanting an implantable pulse generator configured to be coupled to the lead.
  • 21. The method of claim 1, further comprising causing the one or more electrodes to stimulate the tissue associated with control of the lumbar spine.
  • 22. The method of claim 1, wherein implanting the lead comprises implanting the lead such that the one or more electrodes are positioned to stimulate nervous tissue innervating a multifidus muscle.
I. CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of Ser. No. 16/443,819, filed Jun. 17, 2019, now U.S. Pat. No. 11,406,421, which is a divisional application of U.S. patent application Ser. No. 15/202,485, filed Jul. 5, 2016, now U.S. Pat. No. 10,327,810, the entire contents of which are incorporated herein by reference.

US Referenced Citations (318)
Number Name Date Kind
1526595 George et al. Feb 1925 A
3077884 John et al. Feb 1963 A
3416534 Quinn Dec 1968 A
3710777 Sparks Jan 1973 A
3754555 Schmitt Aug 1973 A
3875947 Jula et al. Apr 1975 A
3893463 Williams Jul 1975 A
3902501 Citron et al. Sep 1975 A
3976082 Schmitt Aug 1976 A
3999551 Spitz et al. Dec 1976 A
4010757 Jula et al. Mar 1977 A
4026301 Friedman et al. May 1977 A
4031899 Renirie Jun 1977 A
4149528 Murphy Apr 1979 A
4235246 Weiss Nov 1980 A
4269198 Stokes May 1981 A
4342317 Axelgaard Aug 1982 A
4408609 Axelgaard Oct 1983 A
4418693 LeVeen et al. Dec 1983 A
4528984 Morawetz et al. Jul 1985 A
4549556 Tarjan et al. Oct 1985 A
4574806 McCarthy Mar 1986 A
4608986 Beranek et al. Sep 1986 A
4658835 Pohndorf Apr 1987 A
4832687 Smith, III May 1989 A
4917093 Dufresne et al. Apr 1990 A
5069680 Grandjean Dec 1991 A
5199430 Fang et al. Apr 1993 A
5215088 Normann et al. Jun 1993 A
5273053 Pohndorf Dec 1993 A
5300108 Rebell et al. Apr 1994 A
5330515 Rutecki et al. Jul 1994 A
5376108 Collins et al. Dec 1994 A
5496345 Kieturakis et al. Mar 1996 A
5501452 Halvorson Mar 1996 A
5507788 Lieber Apr 1996 A
5522854 Ideker et al. Jun 1996 A
5569183 Kieturakis Oct 1996 A
5638825 Yamazaki et al. Jun 1997 A
5733307 Dinsdale Mar 1998 A
5741321 Brennen Apr 1998 A
5760341 Laske et al. Jun 1998 A
5782841 Ritz et al. Jul 1998 A
5807234 Bui et al. Sep 1998 A
5873900 Maurer et al. Feb 1999 A
5897584 Herman Apr 1999 A
5916172 Hodges et al. Jun 1999 A
5957968 Belden et al. Sep 1999 A
6104957 Alo et al. Aug 2000 A
6119516 Hock Sep 2000 A
6314325 Fitz Nov 2001 B1
6319241 King et al. Nov 2001 B1
6324414 Gibbons et al. Nov 2001 B1
6366819 Stokes Apr 2002 B1
6381496 Meadows et al. Apr 2002 B1
6406421 Grandjean et al. Jun 2002 B1
6473654 Chinn Oct 2002 B1
6516227 Meadows et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6565594 Herweck et al. May 2003 B1
6600954 Cohen et al. Jul 2003 B2
6600956 Maschino et al. Jul 2003 B2
6605094 Mann et al. Aug 2003 B1
6671557 Gliner Dec 2003 B1
6735474 Loeb et al. May 2004 B1
6839594 Cohen et al. Jan 2005 B2
6845271 Fang et al. Jan 2005 B2
6862479 Whitehurst et al. Mar 2005 B1
7018384 Skakoon Mar 2006 B2
7096070 Jenkins et al. Aug 2006 B1
7206641 Ignagni et al. Apr 2007 B2
7218970 Ley et al. May 2007 B2
7239918 Strother et al. Jul 2007 B2
7286879 Wallace Oct 2007 B2
7317948 King et al. Jan 2008 B1
7324852 Barolat et al. Jan 2008 B2
7324853 Ayal et al. Jan 2008 B2
7337005 Kim et al. Feb 2008 B2
7337006 Kim et al. Feb 2008 B2
7369894 Gerber May 2008 B2
7389149 Rossing et al. Jun 2008 B2
7444181 Shi et al. Oct 2008 B2
7447546 Kim et al. Nov 2008 B2
7450993 Kim et al. Nov 2008 B2
7489561 Armstrong et al. Feb 2009 B2
7493175 Cates et al. Feb 2009 B2
7499746 Buhlmann et al. Mar 2009 B2
7502651 Kim et al. Mar 2009 B2
7515971 Doan Apr 2009 B1
7580753 Kim et al. Aug 2009 B2
7668598 Herregraven et al. Feb 2010 B2
7684866 Fowler et al. Mar 2010 B2
7708763 Selover et al. May 2010 B2
7761166 Giftakis et al. Jul 2010 B2
7792591 Rooney et al. Sep 2010 B2
7797053 Atkinson et al. Sep 2010 B2
7813803 Heruth et al. Oct 2010 B2
7908015 Lazeroms et al. Mar 2011 B2
7917230 Bly Mar 2011 B2
7930039 Olson Apr 2011 B2
7981144 Geist et al. Jul 2011 B2
8016846 McFarlin et al. Sep 2011 B2
8065020 Ley et al. Nov 2011 B2
8082039 Kim et al. Dec 2011 B2
8170690 Morgan et al. May 2012 B2
8229565 Kim et al. Jul 2012 B2
8229656 Ikushima et al. Jul 2012 B2
8249701 Imran et al. Aug 2012 B2
8249713 Fang et al. Aug 2012 B2
8321021 Kisker et al. Nov 2012 B2
8380318 Kishawi et al. Feb 2013 B2
8386045 Zhao et al. Feb 2013 B2
8391966 Luo et al. Mar 2013 B2
8409233 Chinn et al. Apr 2013 B1
8428728 Sachs Apr 2013 B2
8463383 Sakai et al. Jun 2013 B2
8498697 Yong et al. Jul 2013 B2
8606358 Sachs Dec 2013 B2
8798005 Vargantwar et al. Aug 2014 B1
8886337 Bennett et al. Nov 2014 B2
8965516 Bennett et al. Feb 2015 B2
9072897 Sachs et al. Jul 2015 B2
9079019 Crosby et al. Jul 2015 B2
9108053 Crosby et al. Aug 2015 B2
9186501 Rawat et al. Nov 2015 B2
9248278 Crosby et al. Feb 2016 B2
9320847 Rooney et al. Apr 2016 B2
9474906 Sachs et al. Oct 2016 B2
9561364 Bondhus et al. Feb 2017 B2
9861811 Crosby et al. Jan 2018 B2
9950159 Beck et al. Apr 2018 B2
9981122 Rawat et al. May 2018 B2
9999763 Shiroff et al. Jun 2018 B2
10016603 Sachs et al. Jul 2018 B2
10195419 Shiroff et al. Feb 2019 B2
10327810 Shiroff et al. Jun 2019 B2
10449355 Beck et al. Oct 2019 B2
10471268 Crosby et al. Nov 2019 B2
10661078 Crosby et al. May 2020 B2
10828490 Sachs et al. Nov 2020 B2
20010053885 Gielen et al. Dec 2001 A1
20020065543 Gomperz et al. May 2002 A1
20020068960 Saberski et al. Jun 2002 A1
20020099419 Cohen et al. Jul 2002 A1
20020115945 Herman et al. Aug 2002 A1
20020147485 Mamo et al. Oct 2002 A1
20020156513 Borkan Oct 2002 A1
20020161415 Cohen et al. Oct 2002 A1
20020183765 Adams Dec 2002 A1
20030100933 Ayal et al. May 2003 A1
20030120323 Meadows et al. Jun 2003 A1
20030120328 Jenkins et al. Jun 2003 A1
20030135120 Parks et al. Jul 2003 A1
20030199938 Smits et al. Oct 2003 A1
20040030360 Eini et al. Feb 2004 A1
20040097986 Adams May 2004 A1
20040111118 Hill et al. Jun 2004 A1
20040122482 Tung et al. Jun 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040167580 Mann et al. Aug 2004 A1
20040214790 Borgens Oct 2004 A1
20040230281 Heil et al. Nov 2004 A1
20040236383 Yelizarov Nov 2004 A1
20050070971 Fowler et al. Mar 2005 A1
20050075701 Shafer Apr 2005 A1
20050080472 Atkinson et al. Apr 2005 A1
20050107861 Harris et al. May 2005 A1
20050119713 Whitehurst et al. Jun 2005 A1
20050149154 Cohen et al. Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050165456 Mann et al. Jul 2005 A1
20050177211 Leung et al. Aug 2005 A1
20050240243 Barolat et al. Oct 2005 A1
20050246006 Daniels Nov 2005 A1
20050283204 Buhlmann et al. Dec 2005 A1
20060004429 Mrva et al. Jan 2006 A1
20060009810 Mann et al. Jan 2006 A1
20060009827 Kurth et al. Jan 2006 A1
20060032657 Zarembo Feb 2006 A1
20060052856 Kim et al. Mar 2006 A1
20060106416 Raymond et al. May 2006 A1
20060111746 Foreman et al. May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060155341 Tehrani et al. Jul 2006 A1
20060184222 Camps et al. Aug 2006 A1
20060206166 Weiner Sep 2006 A1
20060235484 Jaax et al. Oct 2006 A1
20060241716 Finch et al. Oct 2006 A1
20060259074 Kelleher et al. Nov 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20070027501 Jensen et al. Feb 2007 A1
20070049980 Zielinski et al. Mar 2007 A1
20070060967 Strother et al. Mar 2007 A1
20070073357 Rooney et al. Mar 2007 A1
20070100377 Armstrong et al. May 2007 A1
20070100391 Armstrong May 2007 A1
20070100408 Gerber May 2007 A1
20070100411 Bonde May 2007 A1
20070123954 Gielen et al. May 2007 A1
20070129780 Whitehurst et al. Jun 2007 A1
20070135768 Carlsen Jun 2007 A1
20070179557 Maschino et al. Aug 2007 A1
20070208392 Kuschner et al. Sep 2007 A1
20070232936 Mann et al. Oct 2007 A1
20070239224 Bennett et al. Oct 2007 A1
20070276453 Hill et al. Nov 2007 A1
20080026981 Muhrer et al. Jan 2008 A1
20080103573 Gerber May 2008 A1
20080103579 Gerber May 2008 A1
20080132961 Jaax et al. Jun 2008 A1
20080132969 Bennett et al. Jun 2008 A1
20080147156 Imran Jun 2008 A1
20080167698 Kim et al. Jul 2008 A1
20080177351 Fang et al. Jul 2008 A1
20080183221 Burdulis Jul 2008 A1
20080183257 Imran et al. Jul 2008 A1
20080200972 Rittman et al. Aug 2008 A1
20080228241 Sachs Sep 2008 A1
20080234791 Arle et al. Sep 2008 A1
20080269716 Bonde et al. Oct 2008 A1
20080269812 Gerber et al. Oct 2008 A1
20090005833 Cameron et al. Jan 2009 A1
20090018576 Binmoeller Jan 2009 A1
20090020764 Anderson et al. Jan 2009 A1
20090105700 Anderson Apr 2009 A1
20090112263 Pool et al. Apr 2009 A1
20090192567 Armstrong et al. Jul 2009 A1
20090210041 Kim et al. Aug 2009 A1
20090248095 Schleicher et al. Oct 2009 A1
20090254095 Levine et al. Oct 2009 A1
20090259280 Wilkin et al. Oct 2009 A1
20090299201 Gunderson Dec 2009 A1
20090326613 Knoblich Dec 2009 A1
20100030227 Kast et al. Feb 2010 A1
20100036280 Ballegaard et al. Feb 2010 A1
20100036454 Bennett et al. Feb 2010 A1
20100082086 Zhu Apr 2010 A1
20100114206 Kaemmerer et al. May 2010 A1
20100137938 Kishawi et al. Jun 2010 A1
20100152808 Boggs, II Jun 2010 A1
20100152809 Boggs, II Jun 2010 A1
20100174240 Wells et al. Jul 2010 A1
20100174326 Selover et al. Jul 2010 A1
20100179562 Linker et al. Jul 2010 A1
20100185161 Pellegrino et al. Jul 2010 A1
20100211149 Morgan et al. Aug 2010 A1
20100249875 Kishawi et al. Sep 2010 A1
20100280576 Gerber et al. Nov 2010 A1
20100292769 Brounstein et al. Nov 2010 A1
20100331883 Schmitz et al. Dec 2010 A1
20110004269 Strother et al. Jan 2011 A1
20110021943 Lacour et al. Jan 2011 A1
20110022114 Navarro Jan 2011 A1
20110022123 Stancer et al. Jan 2011 A1
20110054565 Wacnik et al. Mar 2011 A1
20110106207 Cauller et al. May 2011 A1
20110160538 Ravikumar et al. Jun 2011 A1
20110190786 Gerber et al. Aug 2011 A1
20110202112 Ruais Aug 2011 A1
20110224665 Crosby et al. Sep 2011 A1
20110224682 Westlund et al. Sep 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110257660 Jones et al. Oct 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20120035953 Armstrong Feb 2012 A1
20120089153 Christopherson et al. Apr 2012 A1
20120116477 Crowe et al. May 2012 A1
20120192874 Bolea et al. Aug 2012 A1
20120209285 Barker et al. Aug 2012 A1
20120215218 Lipani Aug 2012 A1
20120283800 Perryman et al. Nov 2012 A1
20120290055 Boggs, II Nov 2012 A1
20120310140 Kramer et al. Dec 2012 A1
20120310301 Bennett et al. Dec 2012 A1
20120310302 Bennett et al. Dec 2012 A1
20120310314 Bennett et al. Dec 2012 A1
20120323253 Garai et al. Dec 2012 A1
20130023974 Amrani Jan 2013 A1
20130053926 Hincapie Ordonez et al. Feb 2013 A1
20130096641 Strother et al. Apr 2013 A1
20130131766 Crosby et al. May 2013 A1
20130155117 Bang Jun 2013 A1
20130197607 Wilder et al. Aug 2013 A1
20130197615 Rundle et al. Aug 2013 A1
20130211487 Fang et al. Aug 2013 A1
20130218247 Sachs Aug 2013 A1
20130238066 Boggs, II et al. Sep 2013 A1
20130245715 Peterson Sep 2013 A1
20130253605 Bennett et al. Sep 2013 A1
20130261696 Thacker et al. Oct 2013 A1
20130296966 Wongsarnpigoon et al. Nov 2013 A1
20130310901 Perryman et al. Nov 2013 A1
20130338730 Shiroff et al. Dec 2013 A1
20140029695 Liu et al. Jan 2014 A1
20140031837 Perryman et al. Jan 2014 A1
20140039574 Bradley Feb 2014 A1
20140046398 Sachs et al. Feb 2014 A1
20140058476 Crosby et al. Feb 2014 A1
20140114385 Nijhuis et al. Apr 2014 A1
20140288616 Rawat et al. Sep 2014 A1
20140350653 Shiroff et al. Nov 2014 A1
20150101188 Klardie et al. Apr 2015 A1
20150105840 Boggs, II Apr 2015 A1
20150306405 Sachs et al. Oct 2015 A1
20150374992 Crosby et al. Dec 2015 A1
20160045746 Jiang et al. Feb 2016 A1
20160045747 Jiang et al. Feb 2016 A1
20160067476 Rawat et al. Mar 2016 A1
20160106994 Crosby et al. Apr 2016 A1
20160213927 McGee et al. Jul 2016 A1
20160310732 Beck et al. Oct 2016 A1
20170100408 Bertolini et al. Apr 2017 A1
20180008311 Shiroff et al. Jan 2018 A1
20180133461 Crosby et al. May 2018 A1
20180353757 Sachs et al. Dec 2018 A1
20190167995 Sachs et al. Jun 2019 A1
20190328423 Shiroff et al. Oct 2019 A1
20200203858 Youtsey Jun 2020 A1
Foreign Referenced Citations (40)
Number Date Country
1211930 Mar 1999 CN
1211930 Jul 2005 CN
101678203 Mar 2010 CN
0587269 Mar 1994 EP
0587269 Dec 1998 EP
1053762 Nov 2000 EP
1255583 Nov 2002 EP
1053762 Aug 2005 EP
1255583 Dec 2007 EP
2125100 Dec 2009 EP
2273931 Jan 2011 EP
WO-0158520 Aug 2001 WO
WO-2004066820 Aug 2004 WO
WO-2006091611 Aug 2006 WO
WO-2006133445 Dec 2006 WO
WO-2006135791 Dec 2006 WO
WO-2007051146 May 2007 WO
WO-2007138598 Dec 2007 WO
WO-2008048471 Apr 2008 WO
WO-2008070807 Jun 2008 WO
WO-2008094952 Aug 2008 WO
WO-2008112178 Sep 2008 WO
WO-2009020764 Feb 2009 WO
WO-2009134475 Nov 2009 WO
WO-2010062600 Jun 2010 WO
WO-2010062622 Jun 2010 WO
WO-2011079866 Jul 2011 WO
WO-2011112773 Sep 2011 WO
WO-2012057916 May 2012 WO
WO-2012091747 Jul 2012 WO
WO-2013016268 Jan 2013 WO
WO-2013019853 Feb 2013 WO
WO-2013036630 Mar 2013 WO
WO-2013096260 Jun 2013 WO
WO-2013138786 Sep 2013 WO
WO-2013155117 Oct 2013 WO
WO-2014099423 Jun 2014 WO
WO-2015059570 Apr 2015 WO
WO-2015187426 Dec 2015 WO
WO-2018007914 Jan 2018 WO
Non-Patent Literature Citations (156)
Entry
Airaksinen, et al., Chapter 4. European guidelines for the management of chronic nonspecific low back pain, European spine journal [I: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 15 Suppl 2:S192-300 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16550448.
Baker, et al., Clinical Uses of Neuromuscular Electrical Stimulation, NeuroMuscular Electrical Stimulation—A Practical Guide, 4th ed., Rancho Los Amigos Research and Education Institute Inc (pp. 47-66) (2000).
Bhadra, et al., Peripheral nerve stimulation for restoration of motor function, Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 14(5):378-33 (Sep. 1997).
Bogie, et al., Effects of Regular Use of Neuromuscular Electrical Stimulation on Tissue Health, Journal of Rehabilitation Research and Development, 40(6):469-475 (2003) available at: http://www.ncbi.nlm.nih.gov/pubmed/15077659 (Accessed Jan. 18, 2011).
Bowman, et al., Effects of Waveform Parameters on Comfort during Transcutaneous Neuromuscular Electrical Stimulation, Annals of Biomedical Engineering, 13:59-74 (1985).
Bradford, et al., Surface Electrical Stimulation in the Treatment of Idiopathic Scoliosis: Preliminary Results in 30 Patients, Spine, 8(7):757-764 (1983).
Brazier, et al., A Comparison of the EQ-5D and SF-6D Across Seven Patient Groups, Health Economics, 13:873-884 (2004).
Chou et al., “Interventional Therapies, Surgery, and Interdisciplinary Rehabilitation for Low Back Pain: An Evidence-Based Clinical Practice Guideline From the American Pain Society.” Spine, 34(10):1066-1077 (2009).
Coghlan, et al., Electrical Muscle Stimulation for Deep Stabilizing Muscles in Abdominal Wall, Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, Conference, 2008 (pp. 2756-2759)available at: http://www.ncbi.nlm.nih.gov/pubmed/19163276.
Coghlan, et al., Neuromuscular Electrical Stimulation Training Results in Enhanced Activation of Spinal Stabilizing Muscles During Spinal Loading and Improvements in Pain Ratings, Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, Conference, 2011 (pp. 7622-7625) available at: http://www.ncbi.n1m.nih.gov/pubmed/22256103.
Costa et al., Motor Control Exercise for Chronic Low Back Pain: A Randomized Placebo-Controlled Trial, Physical Therapy, 89(12):1275-1286 (2009).
Crago, et al., The Choice of Pulse Duration for Chronic Electrical Stimulation Via Surface, Nerve, and Intramuscular Electrodes, Annals of Biomedical Engineering, 2(3):252-264 (1974).
Criterion Inc., NMES Treatment Protocols, 3 pages (accessed Jun. 7, 2012) available at http://www.criterionmed.com/PDF/NMES%20Treatment%20Protocols.pdf.
Deckers, et al., Chronic Low Back Pain: Restoration of Dynamic Stability, Neuromodulation, 18:478-486 (2015).
Durham, et al., Surface Electrical Stimulation Versus Brace in Treatment of Idiopathic Scoliosis, Spine, 15(9):888-891 (1990).
Dworkin et al., Interpreting the Clinical Importance of Treatment Outcomes in Chronic Pain Clinical Trials: IMMPACT Recommendations, The Journal of Pain, 9(2):105-121 (2008).
Eldabe et al., “Complications of Spinal Cord Stimulation and Peripheral Nerve Stimulation Techniques: A Review of the Literature.” Pain Medicine, 17:325-336 (2016).
EMPI, Low Back Syndrome/Chronic Low Back Pain, NMES Guidelines for Treatment, 2 pages (2003).
Extended European Search Report dated Jan. 7, 2013 in EP Patent Appl. Serial No. 12176863 (0231).
Extended European Search Report dated Feb. 24, 2020 in EP Patent Appl. Serial No. 08726632.6 (0230).
Extended European Search Report dated Mar. 5, 2015 in EP Patent Appl. Serial No. 14189412.1 (0830).
Extended European Search Report dated Sep. 30, 2019 in EP Patent Appl. Serial No. 19173003.5 (0840).
Farrar et al., “Use of the Cumulative Proportion of Responders Analysis Graph to Present Pain Data Over Range of Cut-Off Points: Making Clinical Trial Data More Understandable.” J Pain Symptom Manage, 31(4):369-377 (2006).
Federov et al., “Consequences of dichotomization.” Pharmaceut. Statist., 8:50-61 (2009).
Ferreira, et al., Comparison of general exercise, motor control exercise and spinal manipulative therapy for chronic low back pain: A randomized trial, Pain, 131(1-2):31-37 (2007) available at: http://www.ncbi.nlm.nih.gov/pubmed/17250965.
Follett, et al., Prevention and Management of Intrathecal Drug Delivery and Spinal Cord Stimulation System Infections, Anesthesiology, 100:1582-94 (2004).
Freeman, et al., The Role of the Lumbar Multifidus in Chronic Low Back Pain: A Review, American Academy of Physical Medicine and Rehabilitation, 2:142-146 (2010).
Friedman, et al., Electrical stimulation for scoliosis, American Family Physician, 25(4):155-160 (1982) available at: http://www.ncbi.n1m.nih.gov/pubmed/6978055 (Accessed Oct. 19, 2011).
Garmirian , et al., Discriminating Neurogenic from Myopathic Disease via Measurement of Muscle Anisotrophy, Muscle Nerve, 39(1):16-24 (2009) (abstract).
Gazelle, et al., Tumor Ablation with Radio-frequency Energy, Radiology, 217(3):633-646 (2000).
Ghamkhar, et al., Application of rehabilitative ultrasound in the assessment of low back pain: a literature review, Journal of Bodywork & Movement Therapies, 15(4):465-477 (2011).
Gilmore, et al., A Review of Peripheral Nerve Stimulation Techniques Targeting the Medial Branches of the Lumbar Dorsal Rami in the Treatment of Chronic Low Back Pain, Pain Medicine, 21(S1):S41-S46 (2020).
Glaser, et al., Electrical Muscle Stimulation as an Adjunct to Exercise Therapy in the Treatment of Nonacute Low Back Pain: A Randomized Trial, The Journal of Pain, 2(5), pp. 295-300 (2001).
Gondin, et al., “Electromyostimulation Training Effects on Neural Drive and Muscle Architecture.” Med. Sci. Sports Exerc., 37(8):1291-1299, (2005).
Gondin, et al., Electromyostimulation Training Effects on Neural Drive and Muscle Architecture, Medicine & Science in Sports & Exercise, 37(8):1291-1299 (Aug. 2005).
Gorman, et al., The Effect of Stimulus Parameters on the Recruitment Characteristics of Direct Nerve Stimulation, IEEE Transactions on Bio-medical Engineering, 30 (7): 407-414 (1983).
Haemmerich, et al., Thermal Tumour Ablation: Devices, Clinical Applications and Future Directions, Int. J. Hyperthermia, 21(8):755-760 (2005) (abstract).
Hagg, et al., The Clinical Importance of Changes in Outcome Scores After Treatment for Chronic Low Back Pain, Eur. Spine. J., 12:12-20 (2003).
Hauggaard et al., “Specific spinal stabilisation exercises in patients with low back pain—a systematic review.” Physical Therapy Reviews, 12(3):233-248 (2007).
Hayek et al., “Treatment-Limiting Complications of Percutaneous Spinal Cord Stimulator Implants: A Review of Eight Years of Experience from an Academic Center Database.” Neuromodulation, 18:603-609 (2015).
Hebert et al., The Relationship of Transversus Abdominis and Lumbar Multifidus Activation and Prognostic Factors for Clinical Success With a Stabilization Exercise Program: A Cross-Sectional Study, Arch. Phys. Med. Rehabil., 91:78-85 (2010).
Herbert, et al., Scoliosis Treatment in Children Using a Programmable, Totally Implantable Muscle Stimulator (ESI), IEEE Transactions on Biomedical Engineering, 36(7): 801-802(Jul. 1989).
Hides et al., Long-Term Effects of Specific Stabilizing Exercises for First-Episode Low Back Pain, Spine, 26(11):E243-248 (2001).
Hodges, et al., Intervertebral Stiffness of the Spine is Increased by Evoked Contraction of Transversus Abdominis and the Diaphragm: in Vivo Porcine Studies, Spine 28(23):2594-2601 (Dec. 1, 2003) (abstract).
Hodges, et al., Response of the Deep Paraspinal Muscles to Cortical but not Transmastoid Stimulation is Increased at a Single Lumbar Level Following Interverebral Disc Lesion,Progress in Motor Control Vi—Brazil., 36:2-3 (2007).
Hodges., Is there a Role for Transversus Abdominis in Lumbo-Pelvis Stability?, Manual Therapy, 4(2):74-86, (1999).
Holm, et al., Sensorimotor Control of the Spine, J. Electromyogr. Kinesiol., 12(3):219-234 (2002), (Abstract).
Hortobagyi, et al., Neural adaptations to Electrical Stimulation Strength Training, European Journal of Applied Physiology, 2011 (pp. 2439-2449) available at: http://www.ncbi.nlm.nih.gov/pubmed/21643920 (Accessed Jul. 19, 2011).
Informal Response to Written Opinion dated Jan. 17, 2012 in Int'l PCT Patent Appl. Serial No. PCT/US2011/027834 (0410).
International Search Report & Written Opinion dated Apr. 5, 2013 in Int'l PCT Patent Application Serial No. PCT/US2012/070259 (0610).
International Search Report & Written Opinion dated Jan. 19, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2015/055926 (0910).
International Search Report & Written Opinion dated Jun. 25, 2008 in Int'l PCT Patent Appl. No. PCT/US08/03126 (0210).
International Search Report & Written Opinion dated Oct. 20, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2017/053946 (1310).
International Search Report & Written Opinion dated Sep. 28, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2017/053945 (1210).
International Search Report & Written Opinion dated Mar. 19, 2015 in Int'l PCT Patent Appl. Serial No. PCT/IB2014/002920 (0810).
International Search Report & Written Opinion dated Sep. 3, 2013 in Int'l PCT Application No. PCT/US2013/045223 (0710).
International Search Report & Written Opinion dated Oct. 17, 2012 in Int'l PCT Patent Appl. No. PCT/US12/49148 (0510).
International Search Report & Written Opinion dated Oct. 19, 2011 in Int'l PCT Patent Appl. No. PCT/US11/27834, 12 pages (0410).
International Search Report and Written Opinion dated Jan. 26, 2016 in Int'l PCT Patent Appl. Serial No. PCT/IB2015/057838 (1010).
International Search Report and Written Opinion dated Oct. 16, 2015 in Int'l PCT Patent Appl. Serial No. PCT/US2015/032732 (1110).
International Search Report dated Oct. 19, 2011 in Int'l PCT Patent Appl No. PCT/US2011/027934, 5 pages.
Jinkins, Randy, The Anatomic and Physiologic Basis of Local, Referred and Radiating Lumbosacral Pain Syndromes Related to Disease of the Spine, J. Neuroradiol., 31:163-80 (2004).
Keller, et al., Muscular Contributions to Dynamic Dorsoventral Lumber Spine Stiffness, Eur. Spine J. 16(2): 245-254 (Apr. 29, 2006).
Kiesel, et al., Measurement of Lumbar Multifidus Muscle Contraction with Rehabilitative Ultrasound Imaging, Manual Therapy, 12(2):161-166 (2007) available at: http://www.ncbi.nlm.nih.gov/pubmed/16973400.
Lauridsen, et al., Responsiveness and Minimal Clinically Important Difference for Pain and Disability Instruments in Low Back Pain Patients, BMC Musculoskeletal Disorders, 7(82):16 pages (2006).
Lieber, Richard., Comparison between Animal and Human Studies of Skeletal Muscle Adaptation to Chronic Stimulation, Clinical Orthopaedics and Related Research, 233:19-24 (1988).
Lieber, Richard L., Skeletal Muscle Adaptability. II: Muscle Properties Following Spinal-Cord Injury, Developmental Medicine and Child Neurology, 28(4):533-542 (Aug. 1986).
Lieber, Richard L., Skeletal Muscle Adaptability. III: Muscle Properties Following Chronic Electrical Stimulation, Developmental medicine and child neurology, 28(5):662-670 (Oct. 1986).
McIntosh, et al., Low back pain (chronic), Clin. Evid., 10:1-28(2008).
Medtronic Extension Passer 3555 Accessory Kit—Technical Instructions, 2 pages (2001).
Medtronic Interstim Therapy 3093 & 3889—Implant Manual, 38 pages (2010).
Medtronic, Kinetra, Soletra, and Itrel II, 8870, Neurostimulators for Deep Brain Stimulation (DBS), Software Application Card, Programming Guide for Software A, Dec. 1, 2003, Published 2005, Retrieved from the Internet: URL:http:://www.boala-parkinson.ro/Carti%20tehnice/dbs-prog8870-gd.pdf [retrieved Aug. 23, 2018].
Medtronic Model 3464 Receiver/Extension Internalization Manual, SE-4 for Spinal Cord Stimulation (SCS), 7 pages (1986).
Medtronic Tunneling Rod Accessory Kit 8590-41—Technical Manual, 9 pages (No date available).
MicroProbes for Life Science, Nerve Cuff electrodes,2018, available at https://microprobes.com/products/peripheral-electrodes/nerve-cuff, accessed Mar. 5, 2018.
Miyatani, et al., Validity of Estimating Limb Muscle vol. by Bioelectrical Impedance, J. Appl. Physiol., 91:386-394, (2001).
Mortimer, et al., Intramuscular electrical stimulation: tissue damage, Annals of Biomedical Engineering, 8(3):235-244 (1980).
Mortimer, et al., Peripheral Nerve and Muscle Stimulation. In: Horch KW, Dhillon G, eds, Neuroprosthetics: Theory and Practice (Series on Bioengineering & Biomedical Engineering—vol. (2), 2005, World Scientific Publishing Company, (pp. 1-48).
Nachemson, et al., Effectiveness of Treatment with a Brace in Girls Who Have Adolescent Idiopathic Scoliosis, The Journal of Bone and Joint Surgery, 77-A(6):815-822 (Jun. 1995).
OAAO Bock, ActiGait Implantable Drop Foot Stimulator, Surgeon Manual, 2006 (28 pages).
O'Donnell, et al., Electrical Stimulation in the Treatment of Idiopathic Scoliosis, Clinical Orthopaedics and Related Research, No. 229:107-112 (Apr. 1988).
Ostelo et al., Interpreting Change Scores for Pain and Functional Status in Low Back Pain: Towards International Consensus Regarding Minimal Important Change, Spine, 33(1):90-94 (2008).
Paicius, et al., Peripheral Nerve Field Stimulation for the Treatment of Chronic Low Back Pain: Preliminary Results of Long-Term Follow-up: A Case Series, Neuromodulation, 10(3):279-290 (2007) available at:http://www.blackwell-synergy.com/doi/abs/10.llll/j.1525-1403.2007.00116.x-.
Panjabi, Manohar., A hypothesis of Chronic Back Pain: Ligament Sub-Failure Injuries Lead to Muscle Control Dysfunction, European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 15(5): 668-676, (May 2006), http://www.ncbi.nlm.nih.gov/pubmed/16047209.
Panjabi, Manohar., The Stabilizing System of the Spine, Part 1, Function, Dysfunction, Adaptation, and Enhancement, Journal of Spinal Disorders, 5(4)383-389 (Dec. 1992), Discussion 397., http://www.ncbi.nlm.nih.gov/pubmed/1490034.
Panjabi, Manohar., The stabilizing system of the spine, Part II, Neutral zone and instability hypothesis, Journal of Spinal Disorders, 5(4):390-396 (Dec. 1992), Discussion 397. http://www.ncbi.nlm.nih.gov/pubmed/1490035.
Partial International Search Report dated Aug. 4, 2015 in Int'l PCT Patent Application Serial No. PCT/US2015/032732 (1110).
PCT Written Opinion dated Aug. 23, 2013 in Int'l PCT Patent Appl. Serial No. PCT/US2010/049148 (0510).
Peckham, et al., Functional Electrical Stimulation for Neuromuscular Applications, Annual review of Biomedical Engineering, 7:327-360 (2005) available at: http://www.ncbi.nlm.nih.gov/pubmed/16004574.
Peterson, et al., Long-term Intramuscular Electrical Activation of the Phrenic Nerve: Safety and Reliability, IEEE Transactions on Bio-medical Engineering, 41(12):1115-1126 (1994).
Poitras, et al., Evidence-informed Management of Chronic Low Back Pain with Transcutaneous Electrical Nerve Stimulation, Interferential Current, Electrical Muscle Stimulation, Ultrasound, And Thermotherapy, The Spine Journal, 8:226-233 (2008).
Reed B., The Physiology of Neuromuscular Electrical Stimulation, Pediatric Physical Therapy, 9(3):96-102 (1997) available at: http://journals.lww.com/pedpt/pages/articleviewer.aspx?year=1997&issue=00-930&article=00002&type=abstract.
Rosatelli, et al., Three-Dimensional Study of the Musculotendinous Architecture Of Lumber Multifidus and its Functional Implications, Clinical Anatomy, 21(6):539-544 (Sep. 2008).
RS Medical, RS-4M Muscle Stimulator, available at http://www.rsmedical.com/documents/fact_sheet_RS4m.pdf (last visited Jul. 19, 2012).
Russo, et al., Muscle Control and Non-specific Chronic Low Back Pain, Neuromodulation: Technology at the Neural Interface, 21:1-9 (2017).
Rutkove., Electrical Impedance Myography: Background, Current State, and Future Directions, Muscle Nerve, 40(6):936-946 (2009).
Schwartz, et al., Therapeutic Electrical Stimulation of the Hypoglossal Nerve in Obstructive Sleep Apnea, Arch Otolaryngal Head Neck Surg., 127:1216-1223 (2001).
Senn et al., “Measurement in clinical trials: A neglected issue for statisticians?” Statist. Med., 28:3189-3209 (2009).
Sheffler et al., Neuromuscular Electrical Stimulation in Neurorehabilitation, Muscle Nerve, 35:562-590 (2007).
Sippl, Charles J., Computer Dictionary: Third Edition, pp. 2257 and 2340 (1984).
Sluijter, Radiofrequency Ablation in the Management of Spinal Pain, C212, IV(1):10-15, (2006).
Soer et al., Clinimetric properties of the EuroQol-50 in patients with chronic low backpain, The Spine Journal, 12:1035-1039 (2012).
Solomonow, et al., The Ligamento-Muscular Stabilizing System of the Spine, Spine, 23(23):2552-2562, (1998).
Spinal Fusion Guidelines, MD Guidelines, 2009. www.mdguidelines.com/spinal-fusion.
Stokes, et al., Surface EMG Electrodes Do Not Accurately Record from Lumbar Multifidus Muscles, Clin. Biomech, 18(1):9-13, (2003), (Abstract Only).
Unit III—The Spine, “Motions of the Spine,” available at https://courses.vcu.edu/DANC291-003/unit_3.htm, accessed Mar. 5, 2018.
Van Buyten et al., Neuromuscular Reactivation—A New Therapy for Patients with Chronic Low Back Pain (CLBP): Results of a European Multicenter Feasibility Study, Neuromodulation, 16:e176 (2013).
Van, et al., The Use of Real-Time Ultrasound Imaging for Biofeedback of Lumbar Multifidus Muscle Contraction in Healthy Subjects, The Journal of Orthopaedic and Sports Physical Therapy, 36(12):920-925 (2006) available at: http://www.ncbi.n1m.nih.gov/pubmed/17193869.
Van, et al., Trunk Muscle Recruitment Patterns in Patients with Low Back Pain Enhance the Stability of the Lumbar Spine, Spine, (2003), 28(8):834-841 (Abstract Only).
Verrills, et al., Peripheral Nerve Stimulation: A Treatment for Chronic Low Back Pain and Failed Back Surgery Syndrome?, Neuromodulation: Technology at the Neural Interface, 12(1):68-75, (2009).
Vrbova et al., Application of Muscle/Nerve Stimulation in Health and Disease, Springer Verlag (2008) available at: http://books.google.com/books?h1=en&1r=&id=jb8fDGxkbqEC&oi=fn-d&pg=PA1&dq=Application+of+Muscle/Nerve+Stimulation+in+Health+and+-Disease&ots=CMV5rXiDQD&sig=Wg8ulYOC4PgvVDzcjdwBub5U2To (Accessed Jun. 2, 2011).
Wallwork, et al., The Effect of Chronic Low Back Pain on Size and Contraction of the Lumbar Multifidus Muscle, Manual Therapy, 14(5):496-500 (2009) available at: http://www.ncbi.nlm.nih.gov/pubmed/19027343.
Ward, et al., Architectural Analysis and Intraoperative Measurements Demonstrate the Unique Design of the Multifidus for Lumbar Spine Stability, J. Bone Joint Surg. [Am.] 91:176-185, PMC2663324 (2009).
Wikipedia., Anterior superior iliac spine, Updated Feb. 12, 2018, available at https://en.wikipedia.org/wiki/Anterior_superior_iliac_spine.
Wikipedia., Blunt Dissection, Updated Feb. 14, 2018, available at https://en.wikipedia.org/wiki/Blunt_dissection.
Wikipedia, Cavernous Nerves, Updated Feb. 26, 2018, available at https://en.wikipedia.org/wiki/Cavernous_nerves.
Wikipedia, Dorsal Ramus of Spinal Nerve, Updated Feb. 12, 2018, available at https://en.wikipedia.org/wiki/Dorsal_ramus_of_spinal_nerve.
Wikipedia, “Interference Fit,” http://en.wikipedia.org/wiki/Interference.sub.--fit, accessed Dec. 4, 2014.
Wikipedia, Time-division Multiplexing, https://en.wikipedia.org/wiki/Time-division.sub.--multiplexing (accessed Nov. 12, 2015).
Wikipedia, Ventral Ramus of Spinal Nerve, Updated Feb. 12, 2018, available at https://en.wikipedia.org/wiki/Ventral_ramus_of spinal_nerve.
Wright et al., Morphologic and Histochemical Characteristics of Skeletal Muscle after Long-Term Intramuscular Electrical Stimulation, Spine, 17(7):767-770 (1992) available at: http://www.ncbi.nlm.nih.gov/pubmed/1502640 (Accessed Aug. 2, 2011).
Written Opinion dated Nov. 16, 2011 in Int'l PCT Patent Appl. No. PCT/US2011/027934, 7 pages (0410).
Written Opinion of the International Preliminary Examining Authority dated Feb. 3, 2014 in Int'l PCT Patent Appl. Serial No. PCT/US2012/070259 (0610).
Zundert, et al., Radiofrequency Treatment for Chronic Pain Syndromes, CPD Anaesthesia, 6(1):13-17 (2004).
U.S. Appl. No. 12/075,174 / U.S. Pat. No. 8,428,728, filed Mar. 10, 2008 / Apr. 23, 2013.
U.S. Appl. No. 13/045,421 / U.S. Pat. No. 9,248,278, filed Mar. 10, 2011 / Feb. 2, 2016.
U.S. Appl. No. 13/045,435 / U.S. Pat. No. 10,925,637, filed Mar. 10, 2011 / Feb. 3, 2021.
U.S. Appl. No. 13/564,584 / U.S. Pat. No. 9,079,019, filed Aug. 1, 2012 / Jul. 14, 2015.
U.S. Appl. No. 13/718,806 / U.S. Pat. No. 9,108,053, filed Dec. 18, 2012 / Aug. 18, 2015.
U.S. Appl. No. 13/797,100 / U.S. Pat. No. 9,999,763, filed Mar. 12, 2013 / Jun. 19, 2018.
U.S. Appl. No. 13/858,809 / U.S. Pat. No. 8,606,358, filed Apr. 8, 2013 / Dec. 10, 2013.
U.S. Appl. No. 14/061,614 / U.S. Pat. No. 9,072,897, filed Oct. 23, 2013 / Jul. 7, 2015.
U.S. Appl. No. 14/295,153 / U.S. Pat. No. 9,186,501, filed Jun. 3, 2014 / Nov. 17, 2015.
U.S. Appl. No. 14/453,423 / U.S. Pat. No. 10,195,419, filed Aug. 6, 2014 / Feb. 5, 2019.
U.S. Appl. No. 14/792,430 / U.S. Pat. No. 9,474,906, filed Jul. 6, 2015 / Oct. 25, 2016.
U.S. Appl. No. 14/849,478 / U.S. Pat. No. 9,861,811, filed Sep. 9, 2015 / Jan. 9, 2018.
U.S. Appl. No. 14/882,087 / U.S. Pat. No. 10,471,268, filed Oct. 13, 2015 / Nov. 12, 2019.
U.S. Appl. No. 14/939,955 / U.S. Pat. No. 9,981,122, filed Nov. 12, 2015 / May 29, 2018.
U.S. Appl. No. 15/202,435 / U.S. Pat. No. 9,950,159, filed Jul. 5, 2016 / Apr. 24, 2018.
U.S. Appl. No. 15/202,485 / U.S. Pat. No. 10,327,810, filed Jul. 5, 2016 / Jun. 25, 2019.
U.S. Appl. No. 15/299,399 / U.S. Pat. No. 10,016,603, filed Oct. 20, 2016 / Jul. 10, 2018.
U.S. Appl. No. 15/853,543 / U.S. Pat. No. 10,661,078, filed Dec. 22, 2017 / May 26, 2020.
U.S. Appl. No. 15/944,730 / U.S. Pat. No. 10,828,490, filed Apr. 3, 2018 / Nov. 10, 2020.
U.S. Appl. No. 15/948,945 / U.S. Pat. No. 10,449,355, filed Apr. 9, 2018 / Oct. 22, 2019.
U.S. Appl. No. 16/264,632 / U.S. Pat. No. 11,103,706, filed Jan. 31, 2019 / Aug. 31, 2021.
U.S. Appl. No. 16/443,819 / U.S. Pat. No. 11,406,421, filed Jun. 17, 2019 / Aug. 9, 2022.
U.S. Appl. No. 16/656,500 / U.S. Pat. No. 11,376,427, filed Oct. 17, 2019 / Jul. 5, 2022.
U.S. Appl. No. 16/817,574 / U.S. Pat. No. 10,926,083, filed Mar. 12, 2020 / Feb. 23, 2021.
U.S. Appl. No. 17/092,073, filed Nov. 6, 2020.
U.S. Appl. No. 17/173,121, filed Feb. 10, 2021.
U.S. Appl. No. 17/411,713 / U.S. Pat. No. 11,331,488, filed Aug. 25, 2021 / May 17, 2022.
U.S. Appl. No. 17/647,341, filed Jan. 6, 2022.
U.S. Appl. No. 17/660,375, filed Apr. 22, 2022.
U.S. Appl. No. 17/810,586, filed Jul. 1, 2022.
U.S. Appl. No. 17/812,981, filed Jul. 15, 2022.
U.S. Appl. No. 17/812,989, filed Jul. 15, 2022.
Related Publications (1)
Number Date Country
20220370098 A1 Nov 2022 US
Divisions (1)
Number Date Country
Parent 15202485 Jul 2016 US
Child 16443819 US
Continuations (1)
Number Date Country
Parent 16443819 Jun 2019 US
Child 17816519 US