The present invention relates generally to systems for generating optical beam arrays for use in aiming projectile launchers and the like.
Optical laser sights are often used with projectile launchers to aid a user in properly aiming the launcher. A laser sight is a small, usually visible-light laser placed on a launcher and aligned to emit a beam parallel to a normal direction of aim of the launcher. Since a laser beam generally has low divergence, the laser light appears as a small dot or spot, even at long distances; the user places the spot on the desired target and the launcher is thereby aligned at the location at which the laser sight is directed.
While such laser sights have proved popular to some degree, there remain applications in which the projected aiming location is difficult for a user to see clearly. Accordingly, efforts continue to provide clearly visible, safe and effective optical laser sights.
In accordance with one aspect of the invention, a system for generating an optical beam array is provided, including: a laser light source capable of generating a primary beam of light and an array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another. A void region can be formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.
In accordance with another aspect of the technology, a projectile launcher device is provided, including a body including at least two sockets, each socket carrying a projectile. A power source can be capable of expelling each projectile from the launcher into a projectile plane. An optical beam generating system can be carried by the body, the optical beam generating system including a laser light source capable of generating a primary beam of light and an array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another and a void region formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.
In accordance with another aspect of the technology, a projectile launcher device is provided, including a body including at least two sockets, each socket carrying a projectile. A power source can be capable of expelling each projectile from the launcher into a projectile plane. An optical beam generating system can be carried by the body. The optical beam generating system can include a laser light source capable of generating a primary beam of light and an array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least seven distinct pattern beams that divergently extend from the array generating optical element at an angle of about 0.75 degrees relative to one another. The at least seven pattern beams can be disposed on a common plane. A void region can be formed between each of the at least seven pattern beams, each void region being devoid of any portion of the primary beam.
The following drawings illustrate exemplary embodiments for carrying out the invention. Like reference numerals refer to like parts in different views or embodiments of the present invention in the drawings.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
As used herein, the singular forms “a” and “the” can include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a “beam” can include one or more of such beams, if the context dictates.
As used herein, the term “launcher” refers to any of a variety of devices capable of launching, propelling or otherwise discharging a projectile. Suitable examples of launchers are discussed in previous patent applications to the present Applicant, including without limitation U.S. patent application Ser. No. 15/467,958, filed Mar. 23, 2017. Other suitable launchers include, without limitation, conventional firearms, EMD (electro-muscular discharge) weapons, and various short- and long-range non-lethal weapons.
As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. As an arbitrary example, an object that is “substantially” enclosed is an article that is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend upon the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. As another arbitrary example, a composition that is “substantially free of” an ingredient or element may still actually contain such item so long as there is no measurable effect as a result thereof.
As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.
Relative directional terms can sometimes be used herein to describe and claim various components of the present invention. Such terms include, without limitation, “lower,” “higher,” “upward,” “downward,” “horizontal,” “vertical,” etc. These terms are generally not intended to be limiting, but are used to most clearly describe and claim the various features of the invention. Where such terms must carry some limitation, they are intended to be limited to usage commonly known and understood by those of ordinary skill in the art in the context of this disclosure.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.
This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
The present technology relates generally to systems for providing optical sighting aids for projectile launchers of varying types. The technology provides a manner by which an array of light beams can be generated to provide a targeting pattern upon a desired surface. The technology maximizes the visibility of each of the light beams while minimizing the potential for injury to the human eye as a result of exposure to one of more of the beams. While the present technology can be used in a variety of applications, it is well suited for use with relatively short-range launchers that may be aimed at irregular or moving objects or surfaces.
Shown generally in
The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another. In the example shown, a total of seven distinct pattern beams are shown, 24a, 24b, 24c, etc. Each of the pattern beams can diverge relative to any other pattern beam by an angle of at least “a.” A void region (shown generally at 26a, 26b, etc.) can be formed between the at least two pattern beams. The void region can be devoid of any portion of the primary beam. As the pattern beams are discrete beams that are generally non-dispersive (at least within the size of environments within which the present systems will be utilized), portions of the primary beam are only passed through the array generating optical element in those areas in which a beam is to be formed. In the remainder of the areas, the primary beam is not transmitted, and thus the void region does not contain any laser light transmitted from the optical element.
As used herein, the term “pattern beam” is to be understood to refer to a distinct, individual beam extending from the array generating optical element 18 or DOE. For purposes of the present disclosure, it is to be understood that each of the pattern beams generated are generated intentionally, and thus that any portion of the beam array 22, 22′ that are illustrated or discussed as not possessing a pattern beam intentionally possess instead a void region. In other words, the void regions discussed and shown are intentionally generated as a positive portion of the beam array.
The present system can be carefully configured to both maximize the brightness of each pattern beam generated and to minimize the risk of any dangerous eye exposure to dangerous levels of laser light. In the example shown in
The angle “α” can vary depending on a number of design conditions. In one aspect, however, the angle between the at least two pattern beams 24a, 24b, etc., is between about 0.5 degrees and about 5 degrees. In another example, the angle is between about 0.5 degrees and about 1 degree. In another example, the angle is about 0.75 degrees.
The varying light-generating and optical components can be of a number of designs generally known in the art. The array generating optical element 18 can, for example, be a Diffractive Optical Element (“DOE”), which can be obtained commercially with design specifications provided by the Applicant to produce the beam array disclosed. As is known in the art, DOEs are manufactured to have microstructure patterns that alter and control the phase of transmitted laser light. By altering the microstructures, it is possible for the present DOE to produce the beam array disclosed herein. Examples of these types of optical elements can be manufactured from various substrates, including plastic, fused silica, germanium, sapphire, and zinc selenide (ZnSe), and the like. These types of optical elements can be used with visible, UV (ultraviolet) and infrared (IR) lasers.
The laser light source 12 can similarly be of a variety of types known in the art. In one nonlimiting embodiment, the laser is a Class 3 laser with a wavelength of about 510-530 nm (nanometers), which produces a visible (when projected onto a surface) green beam pattern. The laser can operate at around 3 volts, with a current of 150 mA (milliamps). A maximum operating current can be 230 mA, with an operating temperature range of between about −10 to 60 degrees Celsius. These figures are provided as examples only: a variety of other configurations can be used to accomplish the beam array disclosed herein. For example, red, blue or violet lasers can also be utilized, at varying power levels. The present technology allows the use of varying types and powers of lasers while still providing an easily visible and safe beam array.
Varying the number and configuration of pattern beams 24a, 24b, etc., and the angle “α” are two manners by which the present technology can compensate for varying laser types and power levels. In one example, the beam array 22 can include at least three distinct pattern beams 24a, 24b, etc., that each divergently extend from the optical element at a non-zero angle relative to one another. In another example, shown in
While not shown in detail in
As that terminology is used herein, two planes that are coincident or coplanar are considered parallel. It will be appreciated that even in the case where the pattern plane 50 might be slightly higher or lower than the projectile plane 70 (the two being parallel on at least one of three axes of rotation), the present system provides an accurate aiming location for the launcher, as the pattern beams can easily be positioned on the subject 100 where impact by the tether is desired.
The present technology thus provides a manner by which a user of launcher 40 can easily orient the launcher toward subject 100 in
In one aspect of the technology, the pattern beams 24a, 24b, 24c, etc., diverge from the launcher 40 substantially symmetrically about a centerline of the launcher. As seen in
In addition, the beam array 22 can be carried by the launcher 40 such that the pattern beams 24a, 24b, etc., diverge from the launcher symmetrically about the centerline 43. Thus, as shown for example in
This aspect of the technology advantageously generally projects the pattern beams through the space through which the projectiles will travel. If projected on a surface very near the launcher, the beam array will appear on the surface with very little spread of the patterns beams (the pattern beams will appear very close together). This corresponds generally with the very little spread that the projectiles will experience near the launcher after being expelled from the launcher. When the launcher and the surface are positioned further away from one another, the beam array will appear on the surface with much more spread between the pattern beams: this corresponds to the spread that the projectiles will experience. Thus, a user can obtain an approximation of spread of the projectiles based on spread of the pattern beams.
In addition, as the pattern beams and projectiles traverse in the same general two dimensional, conic section pattern, the pattern beams will illuminate an object that lies between the launcher and the intended target location. For example, if an unintended person or object is positioned in the field of fire of the projectiles, the pattern beams will impinge upon and illuminate that unintended person or object and thereby alert the user that the projectiles do not have a clear line of travel to the intended subject. By correlating the shape of the beam array with the shape of travel of the projectiles, the beam array provides a visual indication of the pattern of travel of the projectiles prior to discharging the projectiles from the launcher. This can also be helpful in situations in which objects or persons near (slightly aside or behind) the subject may be contacted by one of the projectiles if the launcher is initiated.
In one aspect of the technology, the beam array includes a two-dimensional spray pattern having pattern beams lying on a common plane. The projectiles, once deployed from the launcher, travel along an analogous two-dimensional spray pattern with each projectile lying on a common plane. The spray patterns can be conic sections. The common planes can be parallel to one another on at least one of three axes of rotation.
In the embodiment illustrated in
It is noted that, while the various optical beams are illustrated herein as visible lines, it is likely the case that the beams are not visible to the naked eye until they impinge on a surface. In other words, the beams shown in
In addition, when lasers having wavelengths outside the visible range are utilized, the pattern beams (or the pattern they create on a surface) may not be visible to the naked eye. A user may need to wear specialized optical gear, such as night vision gear, to view such beam patterns.
In addition, it is noted that the drawings are presented to most clearly explain the various embodiments of the technology. Not all components are shown to scale in the drawings. For example, the pattern “dots” presented in
In addition to the structure outlined above, the present technology also provides various methods of configuring beam generating systems, methods of utilizing such systems, methods of associating such systems with various projectile launchers, and methods of utilizing projectile launchers carrying such systems.
It is to be understood that the above-referenced arrangements are illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention while the present invention has been shown in the drawings and described above in connection with the exemplary embodiments(s) of the invention. It will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the examples.
Number | Name | Date | Kind |
---|---|---|---|
1217415 | Colomyjczuk | Feb 1917 | A |
1229421 | Downs | Jun 1917 | A |
1276689 | Poudrier | Aug 1918 | A |
1304857 | Davis | May 1919 | A |
1343747 | Radakovich | Jun 1920 | A |
1488182 | Whelton | Mar 1924 | A |
1536164 | Tainton | May 1925 | A |
2354451 | Forbes | Jul 1944 | A |
2372383 | Lee | Mar 1945 | A |
2373363 | Wellcome | Apr 1945 | A |
2373364 | Wellcome | Apr 1945 | A |
2455784 | Lapsensohn | Dec 1948 | A |
2611340 | Manning | Sep 1952 | A |
2668499 | Mourlaque | Feb 1954 | A |
2797924 | Stewart | Jul 1957 | A |
3085510 | Campbell | Apr 1963 | A |
3340642 | Vasiljevic | Sep 1967 | A |
3484665 | Mountjoy et al. | Dec 1969 | A |
3583087 | Huebner | Jun 1971 | A |
3717348 | Bowers | Feb 1973 | A |
3773026 | Romero | Nov 1973 | A |
3803463 | Cover | Apr 1974 | A |
3831306 | Gregg | Aug 1974 | A |
3921614 | Fogelgren | Nov 1975 | A |
4027418 | Baldi et al. | Jun 1977 | A |
4166619 | Bergmann et al. | Sep 1979 | A |
4193386 | Rossi | Mar 1980 | A |
4253132 | Cover | Feb 1981 | A |
4318389 | Kiss, Jr. | Mar 1982 | A |
4466417 | Mulot et al. | Aug 1984 | A |
4559737 | Washington | Dec 1985 | A |
4656947 | Gordon et al. | Apr 1987 | A |
4664034 | Christian | May 1987 | A |
4750692 | Howard | Jun 1988 | A |
4752539 | Vatter | Jun 1988 | A |
4912867 | Dukes, Jr. | Apr 1990 | A |
4912869 | Govett | Apr 1990 | A |
4962747 | Biller | Oct 1990 | A |
5003886 | Pahnke et al. | Apr 1991 | A |
5078117 | Cover | Jan 1992 | A |
5103366 | Battochi | Apr 1992 | A |
5145187 | Lewis | Sep 1992 | A |
5197691 | Amon et al. | Mar 1993 | A |
5279482 | Dzenitis et al. | Jan 1994 | A |
5314196 | Ruelle | May 1994 | A |
5315932 | Bertram | May 1994 | A |
5326101 | Fay | Jul 1994 | A |
5372118 | Schmidt, III et al. | Dec 1994 | A |
5396830 | Kornblith et al. | Mar 1995 | A |
5460155 | Hobbs, II | Oct 1995 | A |
5561263 | Baillod | Oct 1996 | A |
5601255 | Romer et al. | Feb 1997 | A |
5649466 | Genovese | Jul 1997 | A |
5654867 | Murray | Aug 1997 | A |
5698815 | Ragner | Dec 1997 | A |
5706795 | Gerwig | Jan 1998 | A |
5750918 | Mangolds et al. | May 1998 | A |
5782002 | Reed | Jul 1998 | A |
5786546 | Simson | Jul 1998 | A |
5814753 | Rieger | Sep 1998 | A |
5831199 | McNulty, Jr. et al. | Nov 1998 | A |
5898125 | Mangolds et al. | Apr 1999 | A |
5904132 | Biller | May 1999 | A |
5943806 | Underwood | Aug 1999 | A |
5962806 | Coakley et al. | Oct 1999 | A |
5996504 | Lowery | Dec 1999 | A |
6283037 | Sclafani | Sep 2001 | B1 |
6292304 | Kim | Sep 2001 | B1 |
6377400 | Hollander | Apr 2002 | B1 |
6381894 | Murphy | May 2002 | B1 |
6382071 | Bertani | May 2002 | B1 |
6543173 | Golan | Apr 2003 | B1 |
6575073 | McNulty, Jr. et al. | Jun 2003 | B2 |
6615622 | MacAleese et al. | Sep 2003 | B2 |
6636412 | Smith | Oct 2003 | B2 |
6729222 | McNulty, Jr. | May 2004 | B2 |
6820560 | Romppanen | Nov 2004 | B1 |
6880466 | Carman | Apr 2005 | B2 |
6898887 | Stratbucker | May 2005 | B1 |
7042696 | Smith et al. | May 2006 | B2 |
7065915 | Chang | Jun 2006 | B2 |
7114450 | Chang | Oct 2006 | B1 |
7143539 | Cerovic et al. | Dec 2006 | B2 |
7218501 | Keely | May 2007 | B2 |
7237352 | Keely et al. | Jul 2007 | B2 |
7314007 | Su | Jan 2008 | B2 |
7327549 | Smith et al. | Feb 2008 | B2 |
7412975 | Dillon, Jr. | Aug 2008 | B2 |
7418016 | Gruhlke | Aug 2008 | B2 |
7444939 | McNulty et al. | Nov 2008 | B2 |
7444940 | Kapeles et al. | Nov 2008 | B2 |
7640839 | McNulty, Jr. | Jan 2010 | B2 |
7640860 | Glover et al. | Jan 2010 | B1 |
7673411 | Baldwin | Mar 2010 | B1 |
7686002 | Andrews | Mar 2010 | B2 |
7778005 | Saliga | Aug 2010 | B2 |
7791858 | Hummel et al. | Sep 2010 | B2 |
7856929 | Gavin et al. | Dec 2010 | B2 |
7859818 | Kroll et al. | Dec 2010 | B2 |
7900388 | Brundula et al. | Mar 2011 | B2 |
7905180 | Chen | Mar 2011 | B2 |
7950176 | Nemtyshkin et al. | May 2011 | B1 |
7950329 | Nemtyshkin et al. | May 2011 | B1 |
7984676 | Gavin et al. | Jul 2011 | B1 |
8015905 | Park | Sep 2011 | B2 |
8024889 | Bunker | Sep 2011 | B2 |
8082199 | Kwok | Dec 2011 | B2 |
8141493 | Kuchman | Mar 2012 | B1 |
8186276 | Olden et al. | May 2012 | B1 |
8231474 | Stethem | Jul 2012 | B2 |
8261666 | Garg | Sep 2012 | B2 |
8281776 | Körver et al. | Oct 2012 | B2 |
8339763 | McNulty, Jr. | Dec 2012 | B2 |
8441771 | Hinz et al. | May 2013 | B2 |
8601928 | Martinez et al. | Dec 2013 | B2 |
8671841 | Raquin et al. | Mar 2014 | B2 |
8677675 | Koch | Mar 2014 | B2 |
8695578 | Olden et al. | Apr 2014 | B2 |
8857305 | Tseng | Oct 2014 | B1 |
8896982 | Beechey et al. | Nov 2014 | B2 |
8899139 | Brill et al. | Dec 2014 | B2 |
9025304 | Brundula et al. | May 2015 | B2 |
9157694 | Tseng | Oct 2015 | B1 |
9220246 | Roman | Dec 2015 | B1 |
9255765 | Nelson | Feb 2016 | B2 |
9303942 | Sievers | Apr 2016 | B2 |
9335119 | Werner | May 2016 | B2 |
9414578 | Thornbrough | Aug 2016 | B2 |
9638498 | Chang | May 2017 | B2 |
10107599 | Norris et al. | Oct 2018 | B2 |
20020134365 | Gray | Sep 2002 | A1 |
20020170418 | McNulty, Jr. et al. | Nov 2002 | A1 |
20030165041 | Stethem | Sep 2003 | A1 |
20030165042 | Stethem | Sep 2003 | A1 |
20040245338 | Poloniewicz | Dec 2004 | A1 |
20050166441 | Mattox | Aug 2005 | A1 |
20060033995 | Smith | Feb 2006 | A1 |
20060112574 | Hodge et al. | Jun 2006 | A1 |
20070019358 | Kroll | Jan 2007 | A1 |
20070101893 | Shalev et al. | May 2007 | A1 |
20070264079 | Martinez et al. | Nov 2007 | A1 |
20070273957 | Zalevsky | Nov 2007 | A1 |
20090009838 | Masuda | Jan 2009 | A1 |
20090084284 | Martinez et al. | Apr 2009 | A1 |
20100126483 | Makowski | May 2010 | A1 |
20100315756 | Gavin | Dec 2010 | A1 |
20110005373 | Martinez et al. | Jan 2011 | A1 |
20110271825 | Howland | Nov 2011 | A1 |
20120019975 | Hanchett et al. | Jan 2012 | A1 |
20120210904 | Merems | Aug 2012 | A1 |
20140168774 | Zhao | Jun 2014 | A1 |
20140307307 | Georgiou | Oct 2014 | A1 |
20140331984 | Brahler, II et al. | Nov 2014 | A1 |
20140334058 | Galvan et al. | Nov 2014 | A1 |
20150075073 | Sylvester | Mar 2015 | A1 |
20150168107 | Tseng | Jun 2015 | A1 |
20150241180 | Pruett | Aug 2015 | A1 |
20150276351 | Teetzel et al. | Oct 2015 | A1 |
20150316345 | Brahler, II et al. | Nov 2015 | A1 |
20150371434 | Nash | Dec 2015 | A1 |
20160010949 | Teetzel et al. | Jan 2016 | A1 |
20160161225 | Searle et al. | Jun 2016 | A1 |
20160238350 | Tseng | Aug 2016 | A1 |
20160377414 | Thuries | Dec 2016 | A1 |
20170160060 | Purvis | Jun 2017 | A1 |
20170241751 | Nerheim | Aug 2017 | A1 |
20170276461 | Norris et al. | Sep 2017 | A1 |
20180003462 | Chavez | Jan 2018 | A1 |
20180292172 | Ehrlich | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
202506124 | Oct 2012 | CN |
0195566 | Sep 1986 | EP |
WO 2019136854 | Jul 2019 | WO |
Entry |
---|
PCT Application No. PCT/US18/56068 Filing Date Oct. 16, 2018 Troy Chambers International Search Report dated Jan. 15, 2019; 11 Pages. |
PCT Application No. PCT/US2022/045809 Filing Date Filing Date Oct. 5, 2022 International Search Report dated Jan. 6, 2023; 13 Pages. |
Number | Date | Country | |
---|---|---|---|
20230160660 A1 | May 2023 | US |