Systems and methods for generating optical beam arrays

Information

  • Patent Grant
  • 11852439
  • Patent Number
    11,852,439
  • Date Filed
    Wednesday, November 24, 2021
    2 years ago
  • Date Issued
    Tuesday, December 26, 2023
    5 months ago
Abstract
A system for generating an optical beam array includes a laser light source capable of generating a primary beam of light. An array generating optical element is capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another. A void region is formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to systems for generating optical beam arrays for use in aiming projectile launchers and the like.


Related Art

Optical laser sights are often used with projectile launchers to aid a user in properly aiming the launcher. A laser sight is a small, usually visible-light laser placed on a launcher and aligned to emit a beam parallel to a normal direction of aim of the launcher. Since a laser beam generally has low divergence, the laser light appears as a small dot or spot, even at long distances; the user places the spot on the desired target and the launcher is thereby aligned at the location at which the laser sight is directed.


While such laser sights have proved popular to some degree, there remain applications in which the projected aiming location is difficult for a user to see clearly. Accordingly, efforts continue to provide clearly visible, safe and effective optical laser sights.


SUMMARY OF THE INVENTION

In accordance with one aspect of the invention, a system for generating an optical beam array is provided, including: a laser light source capable of generating a primary beam of light and an array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another. A void region can be formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.


In accordance with another aspect of the technology, a projectile launcher device is provided, including a body including at least two sockets, each socket carrying a projectile. A power source can be capable of expelling each projectile from the launcher into a projectile plane. An optical beam generating system can be carried by the body, the optical beam generating system including a laser light source capable of generating a primary beam of light and an array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another and a void region formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.


In accordance with another aspect of the technology, a projectile launcher device is provided, including a body including at least two sockets, each socket carrying a projectile. A power source can be capable of expelling each projectile from the launcher into a projectile plane. An optical beam generating system can be carried by the body. The optical beam generating system can include a laser light source capable of generating a primary beam of light and an array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array. The beam array can include at least seven distinct pattern beams that divergently extend from the array generating optical element at an angle of about 0.75 degrees relative to one another. The at least seven pattern beams can be disposed on a common plane. A void region can be formed between each of the at least seven pattern beams, each void region being devoid of any portion of the primary beam.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings illustrate exemplary embodiments for carrying out the invention. Like reference numerals refer to like parts in different views or embodiments of the present invention in the drawings.



FIG. 1A is a schematic top view of an optical beam generating system in accordance with an aspect of the technology;



FIG. 1B is a schematic representation of a front or rear view of a target pattern formed by the optical beam generating system of FIG. 1A;



FIG. 2A is a schematic side view of the optical beam generating system of FIG. 1A;



FIG. 2B is a schematic representation of a side view of the target pattern formed by the optical beam generating system of FIG. 2A;



FIG. 3A is a side view of an optical beam generating system in accordance with another aspect of the technology;



FIG. 3B is a schematic representation of a side view of a target pattern formed by the optical beam generating system of FIG. 3A;



FIG. 3C is a schematic representation of a front or rear view of the target pattern formed by the optical beam generating system of FIG. 3A;



FIG. 4 is a perspective view of an exemplary projectile launcher in accordance with an aspect of the technology;



FIG. 5 is a top view an exemplary cassette or internal portion of the launcher of FIG. 4, showing a pair of sockets each carrying one of a pair of projectiles in accordance with an aspect of the technology;



FIG. 6 is a top view of the launcher of FIG. 4, showing a beam pattern generated by an optical beam generating system carried by the launcher;



FIG. 7 is a side view of the launcher of FIG. 6; and



FIG. 8 is a front or rear view of an exemplary implementation of a launcher directing a beam pattern toward a subject in accordance with an aspect of the technology, shown after the launcher has directed a pair of projectiles toward the subject.





DETAILED DESCRIPTION

Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.


Definitions

As used herein, the singular forms “a” and “the” can include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a “beam” can include one or more of such beams, if the context dictates.


As used herein, the term “launcher” refers to any of a variety of devices capable of launching, propelling or otherwise discharging a projectile. Suitable examples of launchers are discussed in previous patent applications to the present Applicant, including without limitation U.S. patent application Ser. No. 15/467,958, filed Mar. 23, 2017. Other suitable launchers include, without limitation, conventional firearms, EMD (electro-muscular discharge) weapons, and various short- and long-range non-lethal weapons.


As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. As an arbitrary example, an object that is “substantially” enclosed is an article that is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend upon the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. As another arbitrary example, a composition that is “substantially free of” an ingredient or element may still actually contain such item so long as there is no measurable effect as a result thereof.


As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.


Relative directional terms can sometimes be used herein to describe and claim various components of the present invention. Such terms include, without limitation, “lower,” “higher,” “upward,” “downward,” “horizontal,” “vertical,” etc. These terms are generally not intended to be limiting, but are used to most clearly describe and claim the various features of the invention. Where such terms must carry some limitation, they are intended to be limited to usage commonly known and understood by those of ordinary skill in the art in the context of this disclosure.


As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.


Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.


This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.


Invention

The present technology relates generally to systems for providing optical sighting aids for projectile launchers of varying types. The technology provides a manner by which an array of light beams can be generated to provide a targeting pattern upon a desired surface. The technology maximizes the visibility of each of the light beams while minimizing the potential for injury to the human eye as a result of exposure to one of more of the beams. While the present technology can be used in a variety of applications, it is well suited for use with relatively short-range launchers that may be aimed at irregular or moving objects or surfaces.


Shown generally in FIG. 1, in one aspect of the invention, a system 10 is provided for generating an optical beam array that can be directed toward a variety of subjects to generate a beam pattern on the subject. The system can include a laser light source 12 capable of generating a primary beam of light 14. Optionally, a collimator 16 can be provided to collimate the primary beam of light to create a columnar primary beam 14′. An array generating optical element 18 can be capable of receiving the primary beam of light 14 (with no collimator present), or 14′ after collimation, and splitting the primary beam of light into a beam array 22. The beam array can pass through a protective, transparent cover 20.


The beam array can include at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another. In the example shown, a total of seven distinct pattern beams are shown, 24a, 24b, 24c, etc. Each of the pattern beams can diverge relative to any other pattern beam by an angle of at least “a.” A void region (shown generally at 26a, 26b, etc.) can be formed between the at least two pattern beams. The void region can be devoid of any portion of the primary beam. As the pattern beams are discrete beams that are generally non-dispersive (at least within the size of environments within which the present systems will be utilized), portions of the primary beam are only passed through the array generating optical element in those areas in which a beam is to be formed. In the remainder of the areas, the primary beam is not transmitted, and thus the void region does not contain any laser light transmitted from the optical element.


As used herein, the term “pattern beam” is to be understood to refer to a distinct, individual beam extending from the array generating optical element 18 or DOE. For purposes of the present disclosure, it is to be understood that each of the pattern beams generated are generated intentionally, and thus that any portion of the beam array 22, 22′ that are illustrated or discussed as not possessing a pattern beam intentionally possess instead a void region. In other words, the void regions discussed and shown are intentionally generated as a positive portion of the beam array.


The present system can be carefully configured to both maximize the brightness of each pattern beam generated and to minimize the risk of any dangerous eye exposure to dangerous levels of laser light. In the example shown in FIGS. 1A through 2B, the laser source 12 can be capable of generating a 35 milliwatt (“mW”) primary beam. As this beam is dispersed into the beam array 22, each pattern beam can thus have a maximum power of about 5 mW, which is in most jurisdictions considered safe for exposure to the human eye. As each of the beams diverge from one another after leaving the optical element 18, the collective exposure a user or third party experiences will not exceed the recommended total exposure. By carefully controlling the angle “a,” the present technology can provide a beam array that is sufficiently bright to be visible even in daylight conditions, yet is safe for use due to the physical arrangement of the pattern beams.


The angle “α” can vary depending on a number of design conditions. In one aspect, however, the angle between the at least two pattern beams 24a, 24b, etc., is between about 0.5 degrees and about 5 degrees. In another example, the angle is between about 0.5 degrees and about 1 degree. In another example, the angle is about 0.75 degrees.


The varying light-generating and optical components can be of a number of designs generally known in the art. The array generating optical element 18 can, for example, be a Diffractive Optical Element (“DOE”), which can be obtained commercially with design specifications provided by the Applicant to produce the beam array disclosed. As is known in the art, DOEs are manufactured to have microstructure patterns that alter and control the phase of transmitted laser light. By altering the microstructures, it is possible for the present DOE to produce the beam array disclosed herein. Examples of these types of optical elements can be manufactured from various substrates, including plastic, fused silica, germanium, sapphire, and zinc selenide (ZnSe), and the like. These types of optical elements can be used with visible, UV (ultraviolet) and infrared (IR) lasers.


The laser light source 12 can similarly be of a variety of types known in the art. In one nonlimiting embodiment, the laser is a Class 3 laser with a wavelength of about 510-530 nm (nanometers), which produces a visible (when projected onto a surface) green beam pattern. The laser can operate at around 3 volts, with a current of 150 mA (milliamps). A maximum operating current can be 230 mA, with an operating temperature range of between about −10 to 60 degrees Celsius. These figures are provided as examples only: a variety of other configurations can be used to accomplish the beam array disclosed herein. For example, red, blue or violet lasers can also be utilized, at varying power levels. The present technology allows the use of varying types and powers of lasers while still providing an easily visible and safe beam array.


Varying the number and configuration of pattern beams 24a, 24b, etc., and the angle “α” are two manners by which the present technology can compensate for varying laser types and power levels. In one example, the beam array 22 can include at least three distinct pattern beams 24a, 24b, etc., that each divergently extend from the optical element at a non-zero angle relative to one another. In another example, shown in FIGS. 1A through 2B and 6 through 8, the beam array includes seven distinct pattern beams that each divergently extend from the optical element at a non-zero angle relative to one another. In these embodiments, all of the pattern beams are disposed on a common plane, referenced herein as a pattern plane, shown by example in FIGS. 1B and 2B at 50. This can prove advantageous in applications where the beam array is utilized with a projectile launcher that launchers a plurality of projectiles.



FIGS. 4 through 7 illustrate one such exemplary projectile launcher 40. This launcher is similar in operation to others produced by the present applicant, earlier models being available under the trademark BolaWrap® launchers. One exemplary configuration of a cassette 42 for use with this type of launcher is shown schematically in FIG. 5. It is noted that this view is intended only to illustrate the operation of the launcher and projectiles and is not necessarily a representation of the dimensions, components or structure used in the launcher shown. In this non-limiting example, the cassette includes a pair of sockets 44a, 44b, in each of which a projectile 46a, 46b, respectively, can be carried. A pair of power sources 48a, 48b, can be associated with each socket (alternatively, only a single power source can be utilized). Activation of the power sources causes a high pressure wave to expel or discharge the projectiles from the cassette, and thus from the launcher. A protective cover 49 (FIG. 4) can remain in position ahead of the projectiles until deployment.


While not shown in detail in FIG. 5, a tether can connect the two projectiles 46a, 46b. Once projected from the launcher, the projectiles diverge from one another, pulling the tether taught between them. The resulting arrangement is shown in FIG. 8, where tether 52 is pulled taught between projectiles 46a, 46b. The projectiles, once deployed from the launcher, extend into a projectile plane, shown at 70 in FIG. 8. The present technology is well suited for use with such launchers, as such launchers do not launch projectiles toward a single point, but rather along a plane. As will be appreciated from FIG. 8, in this embodiment, the projectile plane 70 is shown coinciding with (or is coplanar with) the pattern plane 50. Stated generally, the components can be configured such that pattern plane 50 is parallel with projectile plane 70, in at least one of three axes of rotation. In other words, even if the respective planes diverge or angle away from or toward one another, when projected onto a surface, a line of intersection of the pattern plane will be visible as being parallel to a line of intersection of the projectile plane.


As that terminology is used herein, two planes that are coincident or coplanar are considered parallel. It will be appreciated that even in the case where the pattern plane 50 might be slightly higher or lower than the projectile plane 70 (the two being parallel on at least one of three axes of rotation), the present system provides an accurate aiming location for the launcher, as the pattern beams can easily be positioned on the subject 100 where impact by the tether is desired.


The present technology thus provides a manner by which a user of launcher 40 can easily orient the launcher toward subject 100 in FIG. 8 and visibly discern the beam array 22 that is thereby projected on the subject. The discrete pattern beams 24a, 24b, 24c, etc., once resolved upon the subject and/or the surrounding environment, provide a highly visible manner by which the user can orient the launcher prior to initiating the launcher. The resulting pattern is easily visible to the user, even in bright daylight, the most challenging environment in which a user must visualize the beam array.


In one aspect of the technology, the pattern beams 24a, 24b, 24c, etc., diverge from the launcher 40 substantially symmetrically about a centerline of the launcher. As seen in FIGS. 5 and 6, launcher 40 and cassette 42 can include a centerline 43 that corresponds to a forward direction of aim of the launcher. As shown in FIG. 5, the sockets 44a, 44b of cassette 42 diverge substantially symmetrically from centerline 43. That is, each socket is angled from the centerline at about the same angle. Thus, assuming the centerline is directed toward the center of the subject 100, the projectiles 46a, 46b will extend equidistance to the sides of the subjects.


In addition, the beam array 22 can be carried by the launcher 40 such that the pattern beams 24a, 24b, etc., diverge from the launcher symmetrically about the centerline 43. Thus, as shown for example in FIG. 6, the beam array can include a center pattern beam 24d that extends from the launcher substantially parallel with the centerline 43 of the launcher. The remaining pattern beams diverge symmetrically relative to each of the pattern beam 24d and the centerline 43. In this manner, both the beam array 22 and the projectiles 46a, 46b (once deployed from the launcher) extend outward from the launcher in a two-dimensional, conic section pattern, with the conic section pattern centered on the centerline 43.


This aspect of the technology advantageously generally projects the pattern beams through the space through which the projectiles will travel. If projected on a surface very near the launcher, the beam array will appear on the surface with very little spread of the patterns beams (the pattern beams will appear very close together). This corresponds generally with the very little spread that the projectiles will experience near the launcher after being expelled from the launcher. When the launcher and the surface are positioned further away from one another, the beam array will appear on the surface with much more spread between the pattern beams: this corresponds to the spread that the projectiles will experience. Thus, a user can obtain an approximation of spread of the projectiles based on spread of the pattern beams.


In addition, as the pattern beams and projectiles traverse in the same general two dimensional, conic section pattern, the pattern beams will illuminate an object that lies between the launcher and the intended target location. For example, if an unintended person or object is positioned in the field of fire of the projectiles, the pattern beams will impinge upon and illuminate that unintended person or object and thereby alert the user that the projectiles do not have a clear line of travel to the intended subject. By correlating the shape of the beam array with the shape of travel of the projectiles, the beam array provides a visual indication of the pattern of travel of the projectiles prior to discharging the projectiles from the launcher. This can also be helpful in situations in which objects or persons near (slightly aside or behind) the subject may be contacted by one of the projectiles if the launcher is initiated.


In one aspect of the technology, the beam array includes a two-dimensional spray pattern having pattern beams lying on a common plane. The projectiles, once deployed from the launcher, travel along an analogous two-dimensional spray pattern with each projectile lying on a common plane. The spray patterns can be conic sections. The common planes can be parallel to one another on at least one of three axes of rotation.


In the embodiment illustrated in FIGS. 3A through 3C, a system is provided in which a beam array 22a includes at least two rows of distinct pattern beams that are parallel to one another in at least one of three axes of rotation. As in earlier embodiments, pattern beams on each row can divergently extend from optical element 18a at a non-zero angle relative to one another (e.g., if viewed from the top, analogous to FIG. 1A, the beams would diverge at angle “α”). In addition, each of the at least two rows of pattern beams divergently extend from the optical element at a non-zero angle relative to the other row of pattern beams. That is, as viewed from the side in FIG. 3B, the two rows of pattern beams diverge from one another at angle “α.” Similarly, a void region 26e can be formed between the at least two rows of pattern beams, the void region being devoid of any portion of the primary beam. Thus, in this embodiment, no two pattern beams are generated that do not diverge relative to one another by at least an angle “α.” While not so required, each of the two rows of pattern beams can include the same number of pattern beams arranged in substantially the same orientation. In other words, each of the two rows of pattern beams can be identical, but for their varying elevation relative to one another.


It is noted that, while the various optical beams are illustrated herein as visible lines, it is likely the case that the beams are not visible to the naked eye until they impinge on a surface. In other words, the beams shown in FIG. 1A may not be visible to the naked eye, but the pattern shown in FIG. 1B will be visible once the pattern beams contact a surface. In addition, the spacing of the pattern beams provided may vary from those shown by example in figures. They may initially exit the DOE closer together than shown, then diverge from that point forward. Also, the DOE may be closer or further than shown from the protective cover (which would alter the degree of divergence, if any, that has occurred prior to the pattern beams exiting the launcher).


In addition, when lasers having wavelengths outside the visible range are utilized, the pattern beams (or the pattern they create on a surface) may not be visible to the naked eye. A user may need to wear specialized optical gear, such as night vision gear, to view such beam patterns.


In addition, it is noted that the drawings are presented to most clearly explain the various embodiments of the technology. Not all components are shown to scale in the drawings. For example, the pattern “dots” presented in FIGS. 1B, 2B, 3B, 3C and 8 are merely to illustrate the concepts presented. The “dots” are not drawn to scale, and the actual point of contact of a pattern beam on a surface may appear different. For example, instead of round dots or circles, the pattern beams may create a small “x,” circle, cross, or other hash mark that clearly indicates the impingement of a beam on a surface.


In addition to the structure outlined above, the present technology also provides various methods of configuring beam generating systems, methods of utilizing such systems, methods of associating such systems with various projectile launchers, and methods of utilizing projectile launchers carrying such systems.


It is to be understood that the above-referenced arrangements are illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention while the present invention has been shown in the drawings and described above in connection with the exemplary embodiments(s) of the invention. It will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the examples.

Claims
  • 1. A system for generating an optical beam array, comprising: a laser light source capable of generating a primary beam of light; andan array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array;the beam array including: at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another; anda void region formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.
  • 2. The system of claim 1, wherein the angle between the at least two pattern beams is between 0.5 degrees and 5 degrees.
  • 3. The system of claim 2, wherein the angle between the at least two pattern beams is 0.75 degrees.
  • 4. The system of claim 1, wherein the array generating optical element is a Diffractive Optical Element (“DOE”).
  • 5. The system of claim 4, further comprising a collimator disposed optically between the laser light source and the DOE.
  • 6. The system of claim 1, wherein the beam array includes at least three distinct pattern beams that each divergently extend from the optical element at a non-zero angle relative to one another.
  • 7. The system of claim 6, wherein the beam array includes seven distinct pattern beams that each divergently extend from the optical element at a non-zero angle relative to one another.
  • 8. The system of claim 6, wherein the at least three pattern beams are disposed on a common pattern plane.
  • 9. The system of claim 8, further comprising a projectile launcher carrying the array generating optical element, the projectile launcher carrying at least two projectiles dischargeable on a projectile plane.
  • 10. The system of claim 9, wherein the array generating optical element is arranged such that the pattern plane is substantially parallel with the projectile plane in at least one of three axes of rotation.
  • 11. The system of claim 1, wherein the beam array includes: at least two rows of distinct pattern beams that are parallel to one another in at least one of three axes of rotation, pattern beams on each row divergently extending from the optical element at a non-zero angle relative to one another, and each of the at least two rows of pattern beams divergently extending from the optical element at a non-zero angle relative to the other row of pattern beams, with a void region formed between the at least two rows of pattern beams, the void region being devoid of any portion of the primary beam.
  • 12. The system of claim 11, wherein each of the at least two rows of pattern beams includes the same number of pattern beams.
  • 13. A projectile launcher device, comprising: a body including at least two sockets, each socket carrying a projectile;a power source, capable of expelling each projectile from the launcher into a projectile plane; andan optical beam generating system, carried by the body, the optical beam generating system including: a laser light source capable of generating a primary beam of light; andan array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array;the beam array including: at least two distinct pattern beams that divergently extend from the array generating optical element at a non-zero angle relative to one another; anda void region formed between the at least two pattern beams, the void region being devoid of any portion of the primary beam.
  • 14. The device of claim 13, wherein the at least two pattern beams are disposed on a common pattern plane.
  • 15. The device of claim 14, wherein the array generating optical element is arranged such that the pattern plane is substantially parallel with the projectile plane on at least one of three axes of rotation.
  • 16. The device of claim 13, wherein the angle between the at least two pattern beams is between 0.5 degrees and 5 degrees.
  • 17. The device of claim 16, wherein the angle between the at least two pattern beams is 0.75 degrees.
  • 18. The device of claim 13, wherein the beam array includes at least three distinct pattern beams that each divergently extend from the optical element at a non-zero angle relative to one another.
  • 19. The device of claim 13, wherein the beam array includes seven distinct pattern beams that each divergently extend from the optical element at a non-zero angle relative to one another.
  • 20. A projectile launcher device, comprising: a body including at least two sockets, each socket carrying a projectile;a power source, capable of expelling each projectile from the launcher into a projectile plane; andan optical beam generating system, carried by the body, the optical beam generating system including: a laser light source capable of generating a primary beam of light; andan array generating optical element capable of receiving the primary beam of light and splitting the primary beam of light into a beam array;the beam array including: at least seven distinct pattern beams that divergently extend from the array generating optical element at an angle of 0.75 degrees relative to one another, the at least seven pattern beams being disposed on a common plane; anda void region formed between each of the at least seven pattern beams, each void region being devoid of any portion of the primary beam.
US Referenced Citations (169)
Number Name Date Kind
1217415 Colomyjczuk Feb 1917 A
1229421 Downs Jun 1917 A
1276689 Poudrier Aug 1918 A
1304857 Davis May 1919 A
1343747 Radakovich Jun 1920 A
1488182 Whelton Mar 1924 A
1536164 Tainton May 1925 A
2354451 Forbes Jul 1944 A
2372383 Lee Mar 1945 A
2373363 Wellcome Apr 1945 A
2373364 Wellcome Apr 1945 A
2455784 Lapsensohn Dec 1948 A
2611340 Manning Sep 1952 A
2668499 Mourlaque Feb 1954 A
2797924 Stewart Jul 1957 A
3085510 Campbell Apr 1963 A
3340642 Vasiljevic Sep 1967 A
3484665 Mountjoy et al. Dec 1969 A
3583087 Huebner Jun 1971 A
3717348 Bowers Feb 1973 A
3773026 Romero Nov 1973 A
3803463 Cover Apr 1974 A
3831306 Gregg Aug 1974 A
3921614 Fogelgren Nov 1975 A
4027418 Baldi et al. Jun 1977 A
4166619 Bergmann et al. Sep 1979 A
4193386 Rossi Mar 1980 A
4253132 Cover Feb 1981 A
4318389 Kiss, Jr. Mar 1982 A
4466417 Mulot et al. Aug 1984 A
4559737 Washington Dec 1985 A
4656947 Gordon et al. Apr 1987 A
4664034 Christian May 1987 A
4750692 Howard Jun 1988 A
4752539 Vatter Jun 1988 A
4912867 Dukes, Jr. Apr 1990 A
4912869 Govett Apr 1990 A
4962747 Biller Oct 1990 A
5003886 Pahnke et al. Apr 1991 A
5078117 Cover Jan 1992 A
5103366 Battochi Apr 1992 A
5145187 Lewis Sep 1992 A
5197691 Amon et al. Mar 1993 A
5279482 Dzenitis et al. Jan 1994 A
5314196 Ruelle May 1994 A
5315932 Bertram May 1994 A
5326101 Fay Jul 1994 A
5372118 Schmidt, III et al. Dec 1994 A
5396830 Kornblith et al. Mar 1995 A
5460155 Hobbs, II Oct 1995 A
5561263 Baillod Oct 1996 A
5601255 Romer et al. Feb 1997 A
5649466 Genovese Jul 1997 A
5654867 Murray Aug 1997 A
5698815 Ragner Dec 1997 A
5706795 Gerwig Jan 1998 A
5750918 Mangolds et al. May 1998 A
5782002 Reed Jul 1998 A
5786546 Simson Jul 1998 A
5814753 Rieger Sep 1998 A
5831199 McNulty, Jr. et al. Nov 1998 A
5898125 Mangolds et al. Apr 1999 A
5904132 Biller May 1999 A
5943806 Underwood Aug 1999 A
5962806 Coakley et al. Oct 1999 A
5996504 Lowery Dec 1999 A
6283037 Sclafani Sep 2001 B1
6292304 Kim Sep 2001 B1
6377400 Hollander Apr 2002 B1
6381894 Murphy May 2002 B1
6382071 Bertani May 2002 B1
6543173 Golan Apr 2003 B1
6575073 McNulty, Jr. et al. Jun 2003 B2
6615622 MacAleese et al. Sep 2003 B2
6636412 Smith Oct 2003 B2
6729222 McNulty, Jr. May 2004 B2
6820560 Romppanen Nov 2004 B1
6880466 Carman Apr 2005 B2
6898887 Stratbucker May 2005 B1
7042696 Smith et al. May 2006 B2
7065915 Chang Jun 2006 B2
7114450 Chang Oct 2006 B1
7143539 Cerovic et al. Dec 2006 B2
7218501 Keely May 2007 B2
7237352 Keely et al. Jul 2007 B2
7314007 Su Jan 2008 B2
7327549 Smith et al. Feb 2008 B2
7412975 Dillon, Jr. Aug 2008 B2
7418016 Gruhlke Aug 2008 B2
7444939 McNulty et al. Nov 2008 B2
7444940 Kapeles et al. Nov 2008 B2
7640839 McNulty, Jr. Jan 2010 B2
7640860 Glover et al. Jan 2010 B1
7673411 Baldwin Mar 2010 B1
7686002 Andrews Mar 2010 B2
7778005 Saliga Aug 2010 B2
7791858 Hummel et al. Sep 2010 B2
7856929 Gavin et al. Dec 2010 B2
7859818 Kroll et al. Dec 2010 B2
7900388 Brundula et al. Mar 2011 B2
7905180 Chen Mar 2011 B2
7950176 Nemtyshkin et al. May 2011 B1
7950329 Nemtyshkin et al. May 2011 B1
7984676 Gavin et al. Jul 2011 B1
8015905 Park Sep 2011 B2
8024889 Bunker Sep 2011 B2
8082199 Kwok Dec 2011 B2
8141493 Kuchman Mar 2012 B1
8186276 Olden et al. May 2012 B1
8231474 Stethem Jul 2012 B2
8261666 Garg Sep 2012 B2
8281776 Körver et al. Oct 2012 B2
8339763 McNulty, Jr. Dec 2012 B2
8441771 Hinz et al. May 2013 B2
8601928 Martinez et al. Dec 2013 B2
8671841 Raquin et al. Mar 2014 B2
8677675 Koch Mar 2014 B2
8695578 Olden et al. Apr 2014 B2
8857305 Tseng Oct 2014 B1
8896982 Beechey et al. Nov 2014 B2
8899139 Brill et al. Dec 2014 B2
9025304 Brundula et al. May 2015 B2
9157694 Tseng Oct 2015 B1
9220246 Roman Dec 2015 B1
9255765 Nelson Feb 2016 B2
9303942 Sievers Apr 2016 B2
9335119 Werner May 2016 B2
9414578 Thornbrough Aug 2016 B2
9638498 Chang May 2017 B2
10107599 Norris et al. Oct 2018 B2
20020134365 Gray Sep 2002 A1
20020170418 McNulty, Jr. et al. Nov 2002 A1
20030165041 Stethem Sep 2003 A1
20030165042 Stethem Sep 2003 A1
20040245338 Poloniewicz Dec 2004 A1
20050166441 Mattox Aug 2005 A1
20060033995 Smith Feb 2006 A1
20060112574 Hodge et al. Jun 2006 A1
20070019358 Kroll Jan 2007 A1
20070101893 Shalev et al. May 2007 A1
20070264079 Martinez et al. Nov 2007 A1
20070273957 Zalevsky Nov 2007 A1
20090009838 Masuda Jan 2009 A1
20090084284 Martinez et al. Apr 2009 A1
20100126483 Makowski May 2010 A1
20100315756 Gavin Dec 2010 A1
20110005373 Martinez et al. Jan 2011 A1
20110271825 Howland Nov 2011 A1
20120019975 Hanchett et al. Jan 2012 A1
20120210904 Merems Aug 2012 A1
20140168774 Zhao Jun 2014 A1
20140307307 Georgiou Oct 2014 A1
20140331984 Brahler, II et al. Nov 2014 A1
20140334058 Galvan et al. Nov 2014 A1
20150075073 Sylvester Mar 2015 A1
20150168107 Tseng Jun 2015 A1
20150241180 Pruett Aug 2015 A1
20150276351 Teetzel et al. Oct 2015 A1
20150316345 Brahler, II et al. Nov 2015 A1
20150371434 Nash Dec 2015 A1
20160010949 Teetzel et al. Jan 2016 A1
20160161225 Searle et al. Jun 2016 A1
20160238350 Tseng Aug 2016 A1
20160377414 Thuries Dec 2016 A1
20170160060 Purvis Jun 2017 A1
20170241751 Nerheim Aug 2017 A1
20170276461 Norris et al. Sep 2017 A1
20180003462 Chavez Jan 2018 A1
20180292172 Ehrlich Oct 2018 A1
Foreign Referenced Citations (3)
Number Date Country
202506124 Oct 2012 CN
0195566 Sep 1986 EP
WO 2019136854 Jul 2019 WO
Non-Patent Literature Citations (2)
Entry
PCT Application No. PCT/US18/56068 Filing Date Oct. 16, 2018 Troy Chambers International Search Report dated Jan. 15, 2019; 11 Pages.
PCT Application No. PCT/US2022/045809 Filing Date Filing Date Oct. 5, 2022 International Search Report dated Jan. 6, 2023; 13 Pages.
Related Publications (1)
Number Date Country
20230160660 A1 May 2023 US