The instant disclosure relates generally to percutaneous access and, more specifically, to methods and devices associated with percutaneous access. Generally, the instant disclosure relates to an access port for subcutaneous implantation. In one embodiment, an access port may allow a physician or other medical personnel to obtain long term percutaneous access to the interior of a patient's body. Employing an access port for percutaneous access may reduce the opportunity for infection by inhibiting fluid connections (that extend into the interior of a patient's body) from the patient's skin and from the external environment. The access device allows access to the interior of the patient without requiring a needle to pierce the skin. Further, internal components, such as a catheter or a valve, may be replaced without a surgical procedure. Features or aspects of the instant disclosure may apply to any such access ports for subcutaneous access to a patient, without limitation. The access port may be injected by hand (e.g., via a syringe including a needle) for example, or may be injected and pressurized by mechanical assistance (e.g., a so-called power injectable port).
Power injectable ports may be employed in, among other processes, for example, computed tomography (“CT”) scanning processes. More particularly, a so-called “power injector” system may be employed for injecting contrast media into a peripherally inserted intravenous (IV) line. For example, such power injectors or injection systems may be commercially available from Medrad, Inc., a subsidiary of Schering AG, Germany and may be marketed under the trademark STELLANT®. Because fluid infusion procedures are often defined in terms of a desired flow rate of contrast media, such power injection systems are, in general, controllable by selecting a desired flow rate.
More specifically, the instant disclosure relates to an access port having at least one perceivable or identifiable feature for identifying the access port, wherein the identifiable feature is perceivable after the access port is implanted within a patient. For example, at least one or perhaps multiple identifiable feature(s) of an access port contemplated by the instant disclosure may be correlative to information (e.g., a manufacturer's model or design) pertaining to the access port. Thus, an identifiable feature from an access port of a particular model may be unique in relation to most if not all other identifiable features of another access port of a different models or design. Of course, the at least one identifiable feature of an access port contemplated by the instant disclosure may be further correlative with any information of interest, such as type of port, catheter type, date of manufacture, material lots, part numbers, etc. In one example, at least one identifiable feature of an access port may be correlative with the access port being power injectable. In this way, once at least one identifiable feature of an access port is observed or otherwise determined, correlation of such at least one feature of an access port may be accomplished, and information pertaining to the access port may be obtained.
In one embodiment, at least one feature may be perceived by palpation (i.e., to examine by touch), by way of other physical interaction, or by visual observation. Accordingly, a person of interest may touch or feel the access port through the skin to perceive at least one identifying characteristic thereof. In another embodiment, at least one identifiable feature may be perceived via x-ray or ultrasound imaging. In yet a further embodiment, at least one identifiable feature may be perceived through magnetic, light, or radio energy interaction or communication with the access port.
Turning to the embodiment wherein at least one feature may be perceived through palpation, other physical interaction, or visual observation, a topography or exterior surface feature of an access port contemplated by the instant disclosure may be configured for perception. For example, referring to
The body 20 may be implanted in a patient 7, as shown in
Body 20 of access port 10 may comprise a bio-compatible material such as polysulfone, titanium, or any other suitably bio-compatible material as known in the art. Accordingly, the body 20 may be formed from a bio-compatible plastic material. If desired, the body 20 may comprise a penetrable material for penetration by sutures or needles. In another embodiment, and as discussed further hereinbelow, body 20 may comprise an impenetrable material such as, for instance, a metal if desired. Body 20 may include a concave bottom or, in another embodiment, may include a flat bottom, without limitation.
According to the instant disclosure, access port 10 may comprise a body 20 exhibiting at least one identifiable feature. More particularly, as shown in
As shown in
It may be appreciated that there are many variations to the geometry of access port 10 as shown in
In another embodiment, in another aspect contemplated by the instant disclosure, a template may be employed for perceiving at least one feature of an access port. For instance, a complementarily-shaped template may be positioned over and abutted against an access port contemplated by the instant disclosure so as to determine if the access port matches or substantially corresponds to the shape of the template. Such a process may reliably indicate or perceive at least one feature of an access port contemplated by the instant disclosure. Of course, a plurality of templates corresponding to different models of access ports may be serially engaged with an unknown access port so as to perceive at least one feature thereof. Such a process may allow for identification (e.g., of a model or manufacturer) of an access port contemplated by the instant disclosure.
In another aspect contemplated by the instant disclosure, an upper topography of an access port may include at least one feature for identifying the access port. For example, as shown in
In yet a further embodiment of an access port contemplated by the instant disclosure, side regions 54 extending between rounded corner regions 30 may exhibit at least one perceivable feature. For example, as shown in
In a further embodiment of an access port contemplated by the instant disclosure,
Of course, one or more side surfaces of an access port according to the instant disclosure may be configured for forming a body exhibiting a selected shape as may be desired. An elongated body portion of an access port contemplated by the instant disclosure may form, in combination with other features as described hereinabove or, in another embodiment, taken alone, at least one perceivable feature for identification of an access port according to the instant disclosure.
It should be understood that the instant disclosure contemplates access ports having an exterior geometry that is not quadrilateral in nature. Rather, the instant disclosure contemplates that an access port may have an exterior which is generally cylindrical, generally conical, generally elliptical, generally oval, or an exterior that is otherwise arcuate in nature. Specifically, the instant disclosure contemplates that an access port having a substantially rounded or arcuate exterior may include at least one feature configured for identification of the access port after implantation. For example, as shown in
The instant disclosure further contemplates that at least one protrusion, protruding region, recess, recessed region, undulation, or adjacent features of different elevation may comprise a feature for identifying an access port contemplated by the instant disclosure. More specifically, upper topography 61C, as shown in
Further,
In a further embodiment of an access port contemplated by the instant disclosure,
In a further embodiment of an access port contemplated by the instant disclosure,
In a further embodiment of an access port contemplated by the instant disclosure,
In a further embodiment of an access port contemplated by the instant disclosure,
In a further embodiment of an access port contemplated by the instant disclosure,
It should be understood from the above-described various embodiments of an access port contemplated by the instant disclosure that many variations, additions, or different features may be encompassed by the instant disclosure. Thus, the instant disclosure is not limited to the several above-described exemplary embodiments.
For example, as shown in
Additionally, the instant disclosure contemplates access ports having an exterior geometry that is polygonal in nature. Specifically, the instant disclosure contemplates that an access port contemplated by the instant disclosure may exhibit a generally triangular exterior. Thus, as shown in
Additionally,
The instant disclosure also contemplates that at least one feature of an access port contemplated by the instant disclosure may not be observable visually or by palpation but, rather, may be otherwise observable. For example, the instant disclosure contemplates that at least one feature of an access port may be observable through interaction with an imaging technology such as x-ray or ultrasound. For example, in one embodiment, a metal feature (e.g., a plate or other metal geometry) may be included by an access port contemplated by the instant disclosure. As may be appreciated, such a metal feature may be represented on an x-ray generated by exposure of the access port to x-ray energy while simultaneously exposing x-ray sensitive film to x-ray energy passing through the access port. Further, the instant disclosure contemplates that a size, shape, or both size and shape of a metal feature of an access port may be configured for enhancing identification of an access port. For example, assuming that a metal feature comprises a metal plate, a size, shape, or both may be selectively tailored for identification of an access port. Similarly, a feature of an access port contemplated by the instant disclosure may be tailored for detection via ultrasound interaction. Such a feature may comprise an exterior topographical feature. In another embodiment, such a feature may comprise a composite structure including two or more materials that form an interface surface that may be identified by ultrasound imaging.
One example embodiment of a feature observable through interaction with imaging technology contemplated by the instant disclosure is shown in
As mentioned above,
Although also useful in access ports where only a portion of a port includes a metallic material, e.g., a metal plate, the engraving technique is well-suited in one embodiment for access ports that are composed of solid metal, such as titanium, stainless steel, or other materials that are typically radiopaque, i.e., non-transmissive to x-rays in sufficient thickness.
Regardless of the cut profile used, better contrast is achieved generally with greater engraving depth X. The optimal engraving depth X will depend, however, on the thickness of the overall cavity base 220, which is the portion of the base directly below the cavity 36, as shown in
It is also contemplated by this disclosure that the use of an identification feature in a metallic or other radiopaque access port can be applied to access ports having a variety of possible configurations, such as is seen in
In another embodiment contemplated by the instant disclosure,
Additionally, the instant disclosure contemplates access ports having any variety or combination of desired identification features for indicating power-injectability or other aspect or characteristic of an access port. Specifically,
In additional embodiments, the identification feature can be defined on an inside bottom surface 36B of the cavity 36 of an access port 10, or in addition to the identification feature 200 provided on the bottom surface 251. In another embodiment, the material surrounding the defining edges of the desired radiopaque alphanumeric character, symbol, pattern, etc., can be removed instead of removing the desired feature shape itself so as to define a “positive” relief image of the identification feature. Such a positive relief identification feature can be defined on a lower surface of an access port body or on the inside bottom surface of the cavity, for example.
In addition to the various types of symbols, patterns, marks, and alphanumeric characters that are contemplated by the instant disclosure,
In a further aspect contemplated by the instant disclosure, it is contemplated that a communicative technology may be utilized wherein information is encompassed by an access port contemplated by the instant disclosure. Generally, a communication device (e.g., a radio beacon, a light-emitting element, an ultrasound emitting transducer, etc.), may be imbedded or otherwise affixed to an access port contemplated by the instant disclosure. Such a communication device may be configured for transmitting information in response to a given impetus. More specifically, the instant disclosure contemplates that an access port contemplated by the instant disclosure may be exposed to a request signal (e.g., a sound, an impact or an acceleration, light, radio waves, etc.). Such a request signal may cause the communication device to transmit information therefrom via sound, light, radio waves, or as otherwise known in the art. Such information may be employed for identifying an access port contemplated by the instant disclosure.
In one exemplary example, it is contemplated that radio frequency identification technology may be employed for identification of an access port contemplated by the instant disclosure. Particularly, so-called active RFID tags are powered by an internal battery and are typically read/write devices. Currently, a suitable cell coupled to suitable low power circuitry can ensure functionality for as long as ten or more years, depending upon the operating temperatures and read/write cycles and usage. So-called passive RFID tags operate without a separate external power source and obtain operating power generated from the reader. Passive RFID tags are typically programmed with a unique set of data (usually 32 to 128 bits) that cannot be modified. Read-only tags may operate as an identifier comparable to linear barcodes which may contain selected product-specific information. Thus, passive RFID tags may be much lighter than active RFID tags, less expensive, and may offer a virtually unlimited operational lifetime. The tradeoff is that they have shorter read ranges than active tags and require a higher-powered reader.
One advantage of RFID approach is the noncontact, non-line-of-sight nature of the technology. Tags can be read through a variety of substances such as snow, fog, ice, paint, crusted grime, and other visually and environmentally challenging conditions, where other optically read technologies may be less effective. RFID tags can also be read in challenging circumstances at rapid speeds, in most cases responding in less than about 100 milliseconds.
Reference is now generally made to
In the present embodiment the retaining ring 330 includes an identification feature 200 for identifying a predetermined attribute or characteristic of the port 310 after implantation thereof. Specifically, the retaining ring 330 includes alphanumeric character identification features 200A spelling “POWER INJECTABLE,” which indicates that the port 310 is capable of power injection. The alphanumeric characters in one embodiment are inset via etching or otherwise suitably defined in the retaining ring 330 so as to provide a relative thickness difference between the characters and surrounding metallic retaining ring material, thus providing a corresponding radiographic contrast when the port 310 is imaged with x-ray imaging technology. This contrast enables the alphanumeric characters to become visible in an x-ray and therefore discernible by a clinician viewing the x-ray, thus enabling the port attribute or characteristic relating to the identification feature 200 to be ascertained.
Note that the alphanumeric identification features 200A can be defined on the retaining ring 330 in any number of suitable ways, including etching, engraving, etc., and the characters can be defined partially or completely through the retaining ring. Also, the particular characters or words used can vary from what is described here. Indeed, other characters, patterns, symbols, etc. can be employed in the identification feature 200. Optionally, the identification features can be defined in negative relief, as shown in
Additionally, in other embodiments the identification feature of the retaining ring can be configured in other ways according to the configuration of the port. For instance, in embodiments where the port body includes a non-metallic material, the identification feature can include radiopaque ink that is applied to a surface of the retaining ring so as to form the alphanumeric or other characters or features. In yet other embodiments, the identification feature can be included on portions or surfaces of the port in addition to the retaining ring. These and other modifications are therefore contemplated.
The radiopaque marking of the identification feature 200 can include a metallic powder intermixed with an ink-based marking. Specifically, in one embodiment, the radiopaque marking includes tungsten powder intermixed with 1020 black wire marking ink manufactured by Gem Gravure, Inc. of West Hanover, Mass., in a ratio of three parts tungsten powder to one part ink. Mixing of the two components can include ball mixing to ensure good component integration in one embodiment. Also, additives can be added to the mixture to attain a proper mixture viscosity.
In other embodiments, the powder-to-ink ratio can be modified from that described above, including 2:1, 4:1, and 5:1 ratios, for instance. The ideal ratio will vary according to the type of materials employed in the mixture, the density of the desired image, powder particle size, amount of mixture applied to the port, etc. In yet other embodiments, other medical grade inks or suitable liquids, as well as other biocompatible metallic powders or suitable radiopaque materials, could be used. In one embodiment, a ceramic, such as zirconium oxide powder, can be intermixed with a marking ink to provide the radiopaque marking. Ink thinners can also be added to the mixture, along with other suitable substances as appreciated by those skilled in the art.
As shown in
The substrate 440 is employed as a base on which the radiopaque marking can be deposited in preparation for integration of the substrate and marking into the port 410 during an injection molding process so as to encapsulate the radiopaque marking within the molded port. In detail, in one embodiment, the radiopaque marking, including the above-described ink/powder mixture or other suitable substance, is first deposited on a surface of the substrate 440 via any acceptable process, including pad printing, manual or automatic painting, silk screening, use of a template, etc. To improve adhesion of the ink/powder mixture, the substrate can be plasma treated or corona treated in one embodiment.
Once the radiopaque marking has been applied to the substrate 440, the substrate is loaded into a mold, such as that shown in
The port 410 is then fabricated by an injection molding process. The substrate 440 is thus insert-molded into the port 410 via the injection molding process, which bonds the substrate 440 to the molded body of the port 410, thus encapsulating the radiopaque marking of the identification feature 200 within the port and preventing its inadvertent removal. Additionally, due to the relative thinness of the substrate 440, the identification feature remains visible through the substrate from outside of the port 410, as seen in
It is appreciated that in other embodiments, the substrate can be configured to be positioned in other regions of the port. In yet other embodiments, other substrate materials can be used. For instance, in one embodiment the substrate can include woven high-density polyethylene sold under the brand TYVEK®. In this case, the substrate 440 does not permanently adhere to the port 410 as a result of the insert molding process, but is removed after molding process is complete. The radiopaque marking ink/powder mixture initially included on the woven substrate 440, however, is integrated into the port body and remains with the port 410 after molding and substrate removal to serve as the identification feature 200. Flaps or flanges can be included on the substrate to facilitate its separation from the substrate from the port after molding, in one embodiment. In another embodiment, the ink/powder radiopaque marker mixture is allowed to dry on the substrate 440 after application thereon to improve adhesion to the port 410 during the insert molding process. In addition to those explicitly described here, other suitable materials can be used as the substrate. In yet another embodiment, no substrate is used and the ink/powder radiopaque marker mixture is applied directly to the mold surface before the port 410 is molded therein.
The substrate 440 with the included identification feature 200 can then be inserted into a mold and insert-molded to form part of a base 616 of an access port. The radiopaque identification feature 200, now encapsulated within the base, provides the desired identification of a predetermined attribute or characteristic of the port once manufacture of the port is complete.
Reference is now made to
In one embodiment, the fill material 448 is injected into the cavity 446 by a pressurized syringe, such as an electronic fluid dispenser, though other suitable techniques can also be employed, including manual filling by syringe. Any excess fill material 448 can be removed from the port base bottom surface 416A after filling, and the fill material can be allowed to cure. Note that in other embodiments the bottom surface of the port can include other portions of the port in addition or instead of the base, as shown in
In the present embodiment, the radiopaque annular portion 470 includes barium sulfate-loaded silicone, while the remainder of the septum 468 is unloaded silicone. In other embodiments, other suitable radiopaque materials can be employed with silicone or other septum materials. In one embodiment, the septum 468 of
In another embodiment, the present septum 468 is manufactured integrally via a co-molding process, wherein separate injection heads are employed in a mold cavity in order to injection mold the annular portion 470 with one or more heads and the rest of the septum 468 with separate heads. These and other manufacturing methods are therefore considered within the spirit of the present disclosure.
The principles discussed in connection with
In one embodiment, the septum, suture plugs, or other portion of the port can include an ultraviolet light-sensitive material. The ultraviolet light-sensitive material can be applied to the surface of the port component or can impregnated into the component. After implantation of the port, ultraviolet light is directed through the skin of the patient to be incident on the ultraviolet light-sensitive material of the port, which causes the material to fluoresce with visible light that is observable through the skin of the patient, thus identifying the port and/or its predetermined attribute or characteristic.
It is appreciated that a radiopaque identification feature can be included or associated with a port in other ways in addition to those embodiments already described. Examples of this can be found in the embodiments depicted in
In
In
As shown in
While certain representative embodiments and details have been shown for purposes of illustrating aspects contemplated by the instant disclosure, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing form the scope contemplated by the instant disclosure, which is defined in the appended claims. For example, other access port sizes and shapes may be employed; and various other embodiments and structures may be employed for forming at least one identifiable feature of an access port contemplated by the instant disclosure. In particular,
This application is a continuation-in-part of U.S. patent application Ser. No. 12/420,028, filed Apr. 7, 2009, and entitled “Access Port Identification Systems and Methods,” which is a continuation-in-part of the U.S. patent application Ser. No. 11/368,954, filed Mar. 6, 2006, and entitled “Access Port Identification Systems and Methods,” which claims the benefit of U.S. Patent Application No. 60/658,518, filed Mar. 4, 2005, and entitled “Access Port Identification System.” This application also claims the benefit of U.S. Patent Application No. 61/110,507, filed Oct. 31, 2008, and entitled “Radiopaque and Radiographically Discernible Indicators for an Implantable Port.” Each of the afore-referenced applications is incorporated, in its entirety, by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1713267 | Crowley | May 1929 | A |
2891689 | Gould | Jun 1959 | A |
D198453 | Weichselbaum | Jun 1964 | S |
3293663 | Cronin | Dec 1966 | A |
3341417 | Sinaiko | Sep 1967 | A |
3518428 | Ring | Jun 1970 | A |
3529633 | Vailancourt | Sep 1970 | A |
3643358 | Morderosian | Feb 1972 | A |
3829904 | Ling et al. | Aug 1974 | A |
3831583 | Edmunds, Jr. et al. | Aug 1974 | A |
3840009 | Michaels et al. | Oct 1974 | A |
3891997 | Herbert | Jul 1975 | A |
3915162 | Miller | Oct 1975 | A |
3919724 | Sanders et al. | Nov 1975 | A |
3922726 | Trentani et al. | Dec 1975 | A |
3951147 | Tucker et al. | Apr 1976 | A |
4027391 | Samis | Jun 1977 | A |
4035653 | Karasko | Jul 1977 | A |
4121108 | Manor | Oct 1978 | A |
4123806 | Amstutz et al. | Nov 1978 | A |
4168586 | Samis | Sep 1979 | A |
4190040 | Schulte | Feb 1980 | A |
4190057 | Hill et al. | Feb 1980 | A |
4194122 | Mitchell et al. | Mar 1980 | A |
4202349 | Jones | May 1980 | A |
4222374 | Sampson et al. | Sep 1980 | A |
4233964 | Jefferts et al. | Nov 1980 | A |
4274006 | Caine | Jun 1981 | A |
4349498 | Ellis et al. | Sep 1982 | A |
4361153 | Slocum et al. | Nov 1982 | A |
4405305 | Stephen et al. | Sep 1983 | A |
4406567 | Samis | Sep 1983 | A |
4425119 | Berglund | Jan 1984 | A |
4445896 | Gianturco | May 1984 | A |
4450592 | Niederer et al. | May 1984 | A |
4450985 | Beard | May 1984 | A |
4456011 | Warnecke et al. | Jun 1984 | A |
4469483 | Becker et al. | Sep 1984 | A |
4494545 | Slocum et al. | Jan 1985 | A |
4529635 | Sheldon | Jul 1985 | A |
4543088 | Bootman et al. | Sep 1985 | A |
4549879 | Groshong et al. | Oct 1985 | A |
4559046 | Groshong et al. | Dec 1985 | A |
4571749 | Fischell | Feb 1986 | A |
4576595 | Aas et al. | Mar 1986 | A |
4612877 | Hayes et al. | Sep 1986 | A |
4627844 | Schmitt | Dec 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4636194 | Schulte et al. | Jan 1987 | A |
4636213 | Pakiam | Jan 1987 | A |
4645495 | Vaillancourt | Feb 1987 | A |
4653508 | Cosman | Mar 1987 | A |
4655765 | Swift | Apr 1987 | A |
4657024 | Coneys | Apr 1987 | A |
4662652 | Hargis | May 1987 | A |
4668221 | Luther | May 1987 | A |
4671796 | Groshong et al. | Jun 1987 | A |
4673394 | Fenton, Jr. et al. | Jun 1987 | A |
4684365 | Reinicke | Aug 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4685905 | Jeanneret nee Aab | Aug 1987 | A |
4692146 | Hilger | Sep 1987 | A |
4695273 | Brown | Sep 1987 | A |
4697595 | Breyer et al. | Oct 1987 | A |
4701166 | Groshong et al. | Oct 1987 | A |
4704103 | Stober et al. | Nov 1987 | A |
4710174 | Moden et al. | Dec 1987 | A |
4718894 | Lazorthes et al. | Jan 1988 | A |
4728894 | Yoda et al. | Mar 1988 | A |
4743231 | Kay et al. | May 1988 | A |
4753640 | Nichols et al. | Jun 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
4760837 | Petit | Aug 1988 | A |
4762517 | McIntyre et al. | Aug 1988 | A |
4767410 | Moden et al. | Aug 1988 | A |
4772270 | Wiita et al. | Sep 1988 | A |
4772276 | Wiita et al. | Sep 1988 | A |
4773552 | Boege et al. | Sep 1988 | A |
4778452 | Moden et al. | Oct 1988 | A |
4781680 | Redmond et al. | Nov 1988 | A |
4781685 | Lehmann et al. | Nov 1988 | A |
4781695 | Dalton | Nov 1988 | A |
4802885 | Weeks et al. | Feb 1989 | A |
4804054 | Howson et al. | Feb 1989 | A |
4820273 | Reinicke | Apr 1989 | A |
4822341 | Colone | Apr 1989 | A |
4840615 | Hancock et al. | Jun 1989 | A |
4848346 | Crawford | Jul 1989 | A |
4857053 | Dalton | Aug 1989 | A |
4861341 | Woodburn | Aug 1989 | A |
4863470 | Carter | Sep 1989 | A |
4886501 | Johnston et al. | Dec 1989 | A |
4892518 | Cupp et al. | Jan 1990 | A |
4904241 | Bark | Feb 1990 | A |
4905709 | Bieganski et al. | Mar 1990 | A |
4909250 | Smith | Mar 1990 | A |
4915690 | Cone et al. | Apr 1990 | A |
4928298 | Tanaka et al. | May 1990 | A |
4929236 | Sampson | May 1990 | A |
4955861 | Enegren et al. | Sep 1990 | A |
4963133 | Whipple | Oct 1990 | A |
4966583 | Debbas | Oct 1990 | A |
4973319 | Melsky | Nov 1990 | A |
4983162 | Metais et al. | Jan 1991 | A |
5009644 | McDonald | Apr 1991 | A |
5013298 | Moden et al. | May 1991 | A |
5041098 | Loiterman et al. | Aug 1991 | A |
5044955 | Jagmin | Sep 1991 | A |
5045060 | Melsky et al. | Sep 1991 | A |
5045064 | Idriss | Sep 1991 | A |
5084015 | Moriuchi et al. | Jan 1992 | A |
5085216 | Henley, Jr. et al. | Feb 1992 | A |
5090066 | Schoepe et al. | Feb 1992 | A |
5092849 | Sampson | Mar 1992 | A |
5108317 | Beinhaur et al. | Apr 1992 | A |
5108377 | Cone et al. | Apr 1992 | A |
5112301 | Fenton, Jr. et al. | May 1992 | A |
5112303 | Pudenz et al. | May 1992 | A |
5129891 | Young | Jul 1992 | A |
5137529 | Watson et al. | Aug 1992 | A |
5147483 | Melsky et al. | Sep 1992 | A |
5152753 | Laguette et al. | Oct 1992 | A |
5156600 | Young | Oct 1992 | A |
5158547 | Doan et al. | Oct 1992 | A |
5167629 | Vertenstein et al. | Dec 1992 | A |
5167633 | Mann et al. | Dec 1992 | A |
5167638 | Felix et al. | Dec 1992 | A |
5171228 | McDonald | Dec 1992 | A |
5176653 | Metals et al. | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5178612 | Fenton, Jr. | Jan 1993 | A |
5185003 | Brethauer et al. | Feb 1993 | A |
5189690 | Samuel | Feb 1993 | A |
5193106 | DeSena | Mar 1993 | A |
5195122 | Fabian | Mar 1993 | A |
5195123 | Clement | Mar 1993 | A |
5201715 | Masters | Apr 1993 | A |
5203771 | Melker et al. | Apr 1993 | A |
5203777 | Lee | Apr 1993 | A |
5213574 | Tucker | May 1993 | A |
5215537 | Lynn et al. | Jun 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
D337637 | Tucker | Jul 1993 | S |
5224938 | Fenton, Jr. | Jul 1993 | A |
5263930 | Ensminger | Nov 1993 | A |
5281205 | McPherson | Jan 1994 | A |
5290263 | Wigness et al. | Mar 1994 | A |
5295658 | Atkinson et al. | Mar 1994 | A |
5299253 | Wessels | Mar 1994 | A |
5309863 | Leeb, Jr. | May 1994 | A |
5312337 | Flaherty et al. | May 1994 | A |
5318545 | Tucker | Jun 1994 | A |
5320100 | Herweck et al. | Jun 1994 | A |
5328480 | Melker et al. | Jul 1994 | A |
5332398 | Miller et al. | Jul 1994 | A |
5336194 | Polaschegg et al. | Aug 1994 | A |
5338398 | Szwejkowski et al. | Aug 1994 | A |
5350360 | Ensminger et al. | Sep 1994 | A |
5352204 | Ensminger | Oct 1994 | A |
5360407 | Leonard et al. | Nov 1994 | A |
5383223 | Inokuchi et al. | Jan 1995 | A |
5383233 | Russell | Jan 1995 | A |
5383858 | Reilly et al. | Jan 1995 | A |
D355240 | Gladfelter et al. | Feb 1995 | S |
5387192 | Glantz et al. | Feb 1995 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5395324 | Hinrichs et al. | Mar 1995 | A |
5397329 | Allen | Mar 1995 | A |
5399168 | Wadsworth, Jr. et al. | Mar 1995 | A |
5405402 | Dye et al. | Apr 1995 | A |
5417565 | Long | May 1995 | A |
5417656 | Ensminger et al. | May 1995 | A |
5421814 | Geary | Jun 1995 | A |
5423334 | Jordan | Jun 1995 | A |
5425762 | Muller | Jun 1995 | A |
5456698 | Byland et al. | Oct 1995 | A |
5476460 | Montalvo | Dec 1995 | A |
5476880 | Cooke et al. | Dec 1995 | A |
5484402 | Saravia et al. | Jan 1996 | A |
5503630 | Ensminger et al. | Apr 1996 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5509805 | Jagmin | Apr 1996 | A |
5513637 | Twiss et al. | May 1996 | A |
5514103 | Srisathapat et al. | May 1996 | A |
5520632 | Leveen et al. | May 1996 | A |
5527277 | Ensminger et al. | Jun 1996 | A |
5527307 | Srisathapat et al. | Jun 1996 | A |
5531684 | Ensminger et al. | Jul 1996 | A |
5545143 | Fischell | Aug 1996 | A |
5556381 | Ensminger et al. | Sep 1996 | A |
5558641 | Glantz et al. | Sep 1996 | A |
5562617 | Finch, Jr. et al. | Oct 1996 | A |
5562618 | Cai et al. | Oct 1996 | A |
5575770 | Melsky et al. | Nov 1996 | A |
5607393 | Ensminger et al. | Mar 1997 | A |
5607407 | Tolkoff et al. | Mar 1997 | A |
5613945 | Cai et al. | Mar 1997 | A |
5620419 | Lui et al. | Apr 1997 | A |
5632729 | Cai et al. | May 1997 | A |
5637102 | Tolkoff et al. | Jun 1997 | A |
5638832 | Singer et al. | Jun 1997 | A |
5647855 | Trooskin | Jul 1997 | A |
5662612 | Niehoff | Sep 1997 | A |
5676146 | Scarborough | Oct 1997 | A |
5695490 | Flaherty et al. | Dec 1997 | A |
5702128 | Maxim et al. | Dec 1997 | A |
5702363 | Flaherty | Dec 1997 | A |
5704915 | Melsky et al. | Jan 1998 | A |
5709668 | Wacks | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5713858 | Heruth et al. | Feb 1998 | A |
5713859 | Finch, Jr. et al. | Feb 1998 | A |
5718382 | Jaeger | Feb 1998 | A |
5718682 | Tucker | Feb 1998 | A |
5725507 | Petrick | Mar 1998 | A |
5733336 | Neuenfeldt et al. | Mar 1998 | A |
5733400 | Gore et al. | Mar 1998 | A |
5741228 | Lambrecht et al. | Apr 1998 | A |
5743873 | Cai et al. | Apr 1998 | A |
5743891 | Tolkoff et al. | Apr 1998 | A |
5746460 | Marohl et al. | May 1998 | A |
5758667 | Slettenmark | Jun 1998 | A |
5769823 | Otto | Jun 1998 | A |
5773552 | Hutchings et al. | Jun 1998 | A |
5776188 | Shepherd et al. | Jul 1998 | A |
5792104 | Speckman et al. | Aug 1998 | A |
5792116 | Berg et al. | Aug 1998 | A |
5810789 | Powers et al. | Sep 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5830172 | Leveen et al. | Nov 1998 | A |
5833654 | Powers et al. | Nov 1998 | A |
5835563 | Navab et al. | Nov 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
5840063 | Flaherty | Nov 1998 | A |
5843069 | Butler et al. | Dec 1998 | A |
5853394 | Tolkoff et al. | Dec 1998 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5882353 | VanBeek et al. | Mar 1999 | A |
5895424 | Steele, Sr. et al. | Apr 1999 | A |
5906596 | Tallarida | May 1999 | A |
5908414 | Otto et al. | Jun 1999 | A |
5913998 | Butler et al. | Jun 1999 | A |
5916263 | Goicoechea et al. | Jun 1999 | A |
5925017 | Kriesel et al. | Jul 1999 | A |
5925030 | Gross et al. | Jul 1999 | A |
5928197 | Niehoff | Jul 1999 | A |
5931829 | Burbank et al. | Aug 1999 | A |
5944023 | Johnson et al. | Aug 1999 | A |
5944688 | Lois | Aug 1999 | A |
5944712 | Frassica et al. | Aug 1999 | A |
5947953 | Ash et al. | Sep 1999 | A |
5951512 | Dalton | Sep 1999 | A |
5951522 | Rosato et al. | Sep 1999 | A |
5954687 | Baudino | Sep 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5968011 | Larsen et al. | Oct 1999 | A |
5970162 | Kawashima et al. | Oct 1999 | A |
5989216 | Johnson et al. | Nov 1999 | A |
5989239 | Finch et al. | Nov 1999 | A |
5997524 | Burbank et al. | Dec 1999 | A |
6007516 | Burbank et al. | Dec 1999 | A |
6013051 | Nelson | Jan 2000 | A |
6013058 | Prosl et al. | Jan 2000 | A |
6017331 | Watts et al. | Jan 2000 | A |
6022335 | Ramadan | Feb 2000 | A |
6033389 | Cornish | Mar 2000 | A |
6039712 | Fogarty et al. | Mar 2000 | A |
6077756 | Lin et al. | Jun 2000 | A |
6086555 | Eliasen et al. | Jul 2000 | A |
6090066 | Schnell | Jul 2000 | A |
6102884 | Squitieri | Aug 2000 | A |
6113572 | Gailey et al. | Sep 2000 | A |
6120492 | Finch et al. | Sep 2000 | A |
6161033 | Kuhn et al. | Dec 2000 | A |
6171198 | Lizama Troncoso et al. | Jan 2001 | B1 |
6171298 | Matsuura et al. | Jan 2001 | B1 |
6190352 | Haarala et al. | Feb 2001 | B1 |
6193684 | Burbank et al. | Feb 2001 | B1 |
6198807 | DeSena | Mar 2001 | B1 |
6203570 | Baeke | Mar 2001 | B1 |
6213973 | Eliasen et al. | Apr 2001 | B1 |
6228088 | Miller et al. | May 2001 | B1 |
6251059 | Apple et al. | Jun 2001 | B1 |
D445175 | Bertheas | Jul 2001 | S |
6269148 | Jessop et al. | Jul 2001 | B1 |
6287293 | Jones et al. | Sep 2001 | B1 |
6290677 | Arai et al. | Sep 2001 | B1 |
6305413 | Fischer et al. | Oct 2001 | B1 |
D450115 | Bertheas | Nov 2001 | S |
6332874 | Eliasen et al. | Dec 2001 | B1 |
6355021 | Nielsen et al. | Mar 2002 | B1 |
6356782 | Sirimanne et al. | Mar 2002 | B1 |
6361557 | Gittings et al. | Mar 2002 | B1 |
6398764 | Finch, Jr. et al. | Jun 2002 | B1 |
6419680 | Cosman et al. | Jul 2002 | B1 |
6450937 | Mercereau et al. | Sep 2002 | B1 |
6473638 | Ferek-Petric | Oct 2002 | B2 |
6478783 | Moorehead | Nov 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6494867 | Elver et al. | Dec 2002 | B1 |
6497062 | Koopman et al. | Dec 2002 | B1 |
6500155 | Sasso | Dec 2002 | B2 |
6503228 | Li et al. | Jan 2003 | B1 |
6527754 | Tallarida et al. | Mar 2003 | B1 |
6537255 | Raines | Mar 2003 | B1 |
RE38074 | Recinella et al. | Apr 2003 | E |
6582418 | Verbeek et al. | Jun 2003 | B1 |
6613002 | Clark et al. | Sep 2003 | B1 |
6613662 | Wark et al. | Sep 2003 | B2 |
6626936 | Stinson | Sep 2003 | B2 |
6629950 | Levin | Oct 2003 | B1 |
6632217 | Harper et al. | Oct 2003 | B2 |
6652486 | Bialecki et al. | Nov 2003 | B2 |
6652503 | Bradley | Nov 2003 | B1 |
6676633 | Smith et al. | Jan 2004 | B2 |
6697664 | Kienzle III et al. | Feb 2004 | B2 |
6705316 | Blythe et al. | Mar 2004 | B2 |
6719721 | Okazaki et al. | Apr 2004 | B1 |
6719739 | Verbeek et al. | Apr 2004 | B2 |
6738531 | Funahashi et al. | May 2004 | B1 |
6755842 | Kanner et al. | Jun 2004 | B2 |
6758841 | Haarala et al. | Jul 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6784783 | Scoggin et al. | Aug 2004 | B2 |
6826257 | Sayre et al. | Nov 2004 | B2 |
6852106 | Watson et al. | Feb 2005 | B2 |
6878136 | Fleury et al. | Apr 2005 | B2 |
6878137 | Benchetrit et al. | Apr 2005 | B2 |
6949084 | Marggi et al. | Sep 2005 | B2 |
6962580 | Adams et al. | Nov 2005 | B2 |
6994315 | Ryan et al. | Feb 2006 | B2 |
6997914 | Smith et al. | Feb 2006 | B2 |
7008377 | Beane et al. | Mar 2006 | B2 |
7008412 | Maginot | Mar 2006 | B2 |
7016456 | Basu et al. | Mar 2006 | B2 |
7018361 | Gillespie, Jr. et al. | Mar 2006 | B2 |
7044942 | Jolly et al. | May 2006 | B2 |
7056316 | Burbank et al. | Jun 2006 | B1 |
7070591 | Adams et al. | Jul 2006 | B2 |
7072704 | Bucholz | Jul 2006 | B2 |
7074232 | Kanner et al. | Jul 2006 | B2 |
7083593 | Stultz | Aug 2006 | B2 |
7108686 | Burke et al. | Sep 2006 | B2 |
7123690 | Brown et al. | Oct 2006 | B1 |
7127040 | Sayre et al. | Oct 2006 | B2 |
7131962 | Estabrook et al. | Nov 2006 | B1 |
7140769 | Kay | Nov 2006 | B2 |
7191011 | Cantlon | Mar 2007 | B2 |
7198631 | Kanner et al. | Apr 2007 | B2 |
7214207 | Lynch et al. | May 2007 | B2 |
7214215 | Heinzerling et al. | May 2007 | B2 |
7223257 | Shubayev et al. | May 2007 | B2 |
7229417 | Foerster et al. | Jun 2007 | B2 |
7235067 | Morris et al. | Jun 2007 | B2 |
D546440 | Burnside | Jul 2007 | S |
7242982 | Singhal et al. | Jul 2007 | B2 |
7252469 | Zaluzec et al. | Aug 2007 | B2 |
7252649 | Sherry | Aug 2007 | B2 |
7261705 | Edoga et al. | Aug 2007 | B2 |
D554253 | Kornerup et al. | Oct 2007 | S |
7275682 | Excoffier et al. | Oct 2007 | B2 |
7276075 | Callas et al. | Oct 2007 | B1 |
D556153 | Burnside et al. | Nov 2007 | S |
7306579 | Fujii | Dec 2007 | B2 |
7311702 | Tallarida et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7318818 | Yashiro et al. | Jan 2008 | B2 |
7322953 | Redinger | Jan 2008 | B2 |
D562442 | Blateri | Feb 2008 | S |
D562443 | Zinn et al. | Feb 2008 | S |
7331130 | Schweikert | Feb 2008 | B2 |
7331948 | Skarda | Feb 2008 | B2 |
7333013 | Berger | Feb 2008 | B2 |
D564449 | Dewberry | Mar 2008 | S |
7347838 | Kulli | Mar 2008 | B2 |
7347843 | Adams et al. | Mar 2008 | B2 |
7351233 | Parks | Apr 2008 | B2 |
7377915 | Rasmussen et al. | May 2008 | B2 |
D574950 | Zawacki et al. | Aug 2008 | S |
7413564 | Morris et al. | Aug 2008 | B2 |
D578203 | Bizup | Oct 2008 | S |
7445614 | Bunodiere et al. | Nov 2008 | B2 |
D582032 | Bizup et al. | Dec 2008 | S |
7465847 | Fabian | Dec 2008 | B2 |
D595892 | Smith et al. | Jul 2009 | S |
7563025 | Kay | Jul 2009 | B2 |
7713251 | Tallarida et al. | May 2010 | B2 |
20010016717 | Haarala et al. | Aug 2001 | A1 |
20010051766 | Gazdzinski | Dec 2001 | A1 |
20010053889 | Marggi et al. | Dec 2001 | A1 |
20010056266 | Tallarida et al. | Dec 2001 | A1 |
20020095205 | Edwin et al. | Jul 2002 | A1 |
20020138068 | Watson et al. | Sep 2002 | A1 |
20020173769 | Gray et al. | Nov 2002 | A1 |
20030028173 | Forsberg | Feb 2003 | A1 |
20030130627 | Smith et al. | Jul 2003 | A1 |
20030139812 | Garcia et al. | Jul 2003 | A1 |
20030181878 | Tallarida et al. | Sep 2003 | A1 |
20030191452 | Meglin et al. | Oct 2003 | A1 |
20040006316 | Patton | Jan 2004 | A1 |
20040020462 | Sauler et al. | Feb 2004 | A1 |
20040044306 | Lynch et al. | Mar 2004 | A1 |
20040054352 | Adams et al. | Mar 2004 | A1 |
20040056266 | Suh et al. | Mar 2004 | A1 |
20040064110 | Forsell | Apr 2004 | A1 |
20040073196 | Adams et al. | Apr 2004 | A1 |
20040106891 | Langan et al. | Jun 2004 | A1 |
20040157952 | Soffiati et al. | Aug 2004 | A1 |
20040158207 | Hunn et al. | Aug 2004 | A1 |
20040167543 | Mazzocchi et al. | Aug 2004 | A1 |
20040176743 | Morris et al. | Sep 2004 | A1 |
20040199129 | DiMatteo | Oct 2004 | A1 |
20040199220 | Cantlon | Oct 2004 | A1 |
20040204692 | Eliasen | Oct 2004 | A1 |
20040225254 | Tanaka et al. | Nov 2004 | A1 |
20040254536 | Conlon et al. | Dec 2004 | A1 |
20040254537 | Conlon et al. | Dec 2004 | A1 |
20050038390 | Fago et al. | Feb 2005 | A1 |
20050049553 | Triplett et al. | Mar 2005 | A1 |
20050070875 | Kulessa | Mar 2005 | A1 |
20050075614 | Bunodiere et al. | Apr 2005 | A1 |
20050113806 | De Carvalho et al. | May 2005 | A1 |
20050131352 | Conlon et al. | Jun 2005 | A1 |
20050148866 | Gunderson | Jul 2005 | A1 |
20050148956 | Conlon et al. | Jul 2005 | A1 |
20050148957 | Girard et al. | Jul 2005 | A1 |
20050152841 | Sayre et al. | Jul 2005 | A1 |
20050171502 | Daly et al. | Aug 2005 | A1 |
20050182857 | Kong | Aug 2005 | A1 |
20050209573 | Brugger et al. | Sep 2005 | A1 |
20050215874 | Wang et al. | Sep 2005 | A1 |
20050241203 | Lizotte et al. | Nov 2005 | A1 |
20050256451 | Adams et al. | Nov 2005 | A1 |
20050256500 | Fujii | Nov 2005 | A1 |
20050277899 | Conlon et al. | Dec 2005 | A1 |
20050283119 | Uth et al. | Dec 2005 | A1 |
20060009788 | Freeman et al. | Jan 2006 | A1 |
20060017341 | Hahn et al. | Jan 2006 | A1 |
20060084929 | Eliasen | Apr 2006 | A1 |
20060089619 | Ginggen | Apr 2006 | A1 |
20060100592 | Eliasen | May 2006 | A1 |
20060116648 | Hamatake | Jun 2006 | A1 |
20060173410 | Moberg et al. | Aug 2006 | A1 |
20060173424 | Conlon | Aug 2006 | A1 |
20060178647 | Stats | Aug 2006 | A1 |
20060184141 | Smith et al. | Aug 2006 | A1 |
20060184142 | Schon et al. | Aug 2006 | A1 |
20060217359 | Wentworth et al. | Sep 2006 | A1 |
20060217659 | Patton | Sep 2006 | A1 |
20060224128 | Lurvey et al. | Oct 2006 | A1 |
20060224129 | Beasley et al. | Oct 2006 | A1 |
20060247584 | Sheetz et al. | Nov 2006 | A1 |
20060253076 | Butts et al. | Nov 2006 | A1 |
20060264898 | Beasley et al. | Nov 2006 | A1 |
20070007839 | Lin | Jan 2007 | A1 |
20070049876 | Patton | Mar 2007 | A1 |
20070055290 | Lober | Mar 2007 | A1 |
20070073250 | Schneiter | Mar 2007 | A1 |
20070078391 | Wortley et al. | Apr 2007 | A1 |
20070078416 | Eliasen | Apr 2007 | A1 |
20070078432 | Halseth et al. | Apr 2007 | A1 |
20070083156 | Muto et al. | Apr 2007 | A1 |
20070120683 | Flippen et al. | May 2007 | A1 |
20070149920 | Michels et al. | Jun 2007 | A1 |
20070149921 | Michels et al. | Jun 2007 | A1 |
20070161958 | Glenn | Jul 2007 | A1 |
20070179456 | Glenn | Aug 2007 | A1 |
20070185462 | Byrum | Aug 2007 | A1 |
20070191773 | Wojcik | Aug 2007 | A1 |
20070208313 | Conlon et al. | Sep 2007 | A1 |
20070219510 | Zinn et al. | Sep 2007 | A1 |
20070233017 | Zinn et al. | Oct 2007 | A1 |
20070233018 | Bizup et al. | Oct 2007 | A1 |
20070255234 | Haase et al. | Nov 2007 | A1 |
20070270691 | Bailey et al. | Nov 2007 | A1 |
20070270770 | Bizup | Nov 2007 | A1 |
20070276344 | Bizup et al. | Nov 2007 | A1 |
20070299408 | Alferness et al. | Dec 2007 | A1 |
20080004642 | Birk et al. | Jan 2008 | A1 |
20080008654 | Clarke et al. | Jan 2008 | A1 |
20080015701 | Garcia et al. | Jan 2008 | A1 |
20080039820 | Sommers et al. | Feb 2008 | A1 |
20080048855 | Berger | Feb 2008 | A1 |
20080114308 | di Palma et al. | May 2008 | A1 |
20080138387 | Machiraju | Jun 2008 | A1 |
20080140025 | Sheetz et al. | Jun 2008 | A1 |
20080208236 | Hobbs et al. | Aug 2008 | A1 |
20080281279 | Hoendervoogt et al. | Nov 2008 | A1 |
20080319398 | Bizup | Dec 2008 | A1 |
20080319399 | Schweikert et al. | Dec 2008 | A1 |
20080319405 | Bizup | Dec 2008 | A1 |
20090024024 | Zinn | Jan 2009 | A1 |
20090024098 | Bizup et al. | Jan 2009 | A1 |
20090035582 | Nakatani et al. | Feb 2009 | A1 |
20090118683 | Hanson et al. | May 2009 | A1 |
20090156928 | Evans et al. | Jun 2009 | A1 |
20090204072 | Amin et al. | Aug 2009 | A1 |
20090204074 | Powers et al. | Aug 2009 | A1 |
20090221976 | Linden | Sep 2009 | A1 |
20090227862 | Smith et al. | Sep 2009 | A1 |
20090227951 | Powers et al. | Sep 2009 | A1 |
20100042073 | Oster et al. | Feb 2010 | A1 |
20100069743 | Sheetz et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
619101 | Oct 1994 | EP |
0619101 | Oct 1994 | EP |
2006025948 | Feb 2006 | JP |
WO-8600213 | Jan 1986 | WO |
WO-9305730 | Apr 1993 | WO |
WO-9701370 | Jan 1997 | WO |
WO-9706845 | Feb 1997 | WO |
WO-9817337 | Apr 1998 | WO |
WO-9942166 | Aug 1999 | WO |
WO-0033901 | Jun 2000 | WO |
WO-0247549 | Jun 2002 | WO |
WO-2004004800 | Jan 2004 | WO |
2004071555 | Aug 2004 | WO |
2004091434 | Oct 2004 | WO |
2005037055 | Apr 2005 | WO |
2006078915 | Jul 2006 | WO |
WO-2006096686 | Sep 2006 | WO |
WO-2006116438 | Nov 2006 | WO |
2006130133 | Dec 2006 | WO |
WO-2006134100 | Dec 2006 | WO |
WO-2007079024 | Jul 2007 | WO |
WO-2007094898 | Aug 2007 | WO |
WO-2007092210 | Aug 2007 | WO |
2007109164 | Sep 2007 | WO |
WO-2007098771 | Sep 2007 | WO |
2007126645 | Nov 2007 | WO |
WO-2007136538 | Nov 2007 | WO |
WO-2008008126 | Jan 2008 | WO |
WO-2008019236 | Feb 2008 | WO |
WO-2008048361 | Apr 2008 | WO |
WO-2008063226 | May 2008 | WO |
2008147760 | Dec 2008 | WO |
2009002839 | Dec 2008 | WO |
WO-2008157763 | Dec 2008 | WO |
WO-2009012385 | Jan 2009 | WO |
WO-2009012395 | Jan 2009 | WO |
WO-2009035582 | Mar 2009 | WO |
WO-2009035582 | Mar 2009 | WO |
2009046725 | Apr 2009 | WO |
WO-2009046439 | Apr 2009 | WO |
WO-2009046439 | Apr 2009 | WO |
2009108669 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100069743 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
61110507 | Oct 2008 | US | |
60658518 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12420028 | Apr 2009 | US |
Child | 12610084 | US | |
Parent | 11368954 | Mar 2006 | US |
Child | 12420028 | US |