The present invention is generally related to integration of outsourced contact center resources.
Resource allocation and planning, including the generation of schedules for employees, is a complex problem for enterprises. Telephone call center resource allocation and scheduling is an example of a problem with a large number of variables. Variables include contact volume at a particular time of day, available staff, skills of various staff members, call type (e.g., new order call and customer service call), and number of call queues, where a call queue may be assigned a particular call type. A basic goal of call center scheduling is to minimize the cost of agents available to answer calls while maximizing service.
Traditionally, call center scheduling is performed by forecasting incoming contact volumes and estimating average talk times for each time period based on past history and other measures. These values are then correlated to produce a schedule. However, due to the number of variables that may affect the suitability of a schedule, many schedules need to be evaluated.
Recently, call centers have evolved into “contact centers” in which the agent's contact with the customer can be through many contact media. For example, a multi-contact center may handle telephone, email, web callback, web chat, fax, and voice over internet protocol. Therefore, in addition to variation in the types of calls (e.g., service call, order call), modern contact centers have the complication of variation in contact media. The variation in contact media adds complexity to the agent scheduling process. Additional complexity results when multiple geographically distributed contact center sites are involved.
Systems and methods for integrating outsourcers are provided. In this regard, a representative method includes: receiving information corresponding to resources of a first contact center; and correlating the information with other information in order to improve integration of resources of the first contact center with resources of one or more other contact centers.
Another embodiment of such a method comprises: receiving information corresponding to resources of a first contact center that shares contacts with a second contact center, the information being configured as an XML file; importing the information into a database, the database being accessible to a workforce manager application associated with the second contact center that is operative to retrieve information stored in the database; correlating the resources contained in the XML file with resources that are to be used at the second contact center; and allocating resources of the second contact center using the information from the database, wherein the allocating is based, at least in part, on a correlation between the resources of the first contact center and the second contact center.
An exemplary embodiment of a system for integrating outsourcers comprises an integration system operative to receive information corresponding to resources of a first contact center, the integration system being further operative to correlate the received information with other information in order to improve integration of resources of the first contact center with resources of one or more other contact centers.
Other systems, methods, features and/or advantages of the present invention will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and protected by the accompanying claims.
Many aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Systems and methods for integrating outsourcers are provided. In this regard, current workforce optimization (WFO) solutions can potentially provide planning, forecasting, scheduling, and tracking and performance analysis services for customers who have full control over contact center work load as well as resources (e.g., agents) available to handle this work load. The typical implementation of such a solution is a centralized system with a single database deployed on premises. However, this approach is changing due to outsourcing.
For contact centers that share contacts across their own sites and outsourced sites through percent allocation or virtual routing, outsourcing of contact center activities (e.g., scheduling of agents and agent handling of contacts) tends to distribute control from a single (“local”) contact center to multiple other (“remote”) contact centers. As control over these activities is divested from the local contact center, the ability of the local contact center to plan efficient agent staffing and scheduling can be degraded.
Currently, in order to compensate for lack of information and control involving work resources available at remote contact centers, a customer may attempt to model the resources available at the remote sites within the customer's system. However, such a customer typically does not have full information about the resources available (e.g., skills of the agents at the remote sites) or schedules, thereby reducing the accuracy of planning.
In order to alleviate these difficulties, at least some embodiments of the systems for integrating outsourcers involve the use of a distributed set of servers. That is, instead of operating only a centralized database and application server at the local site, in some embodiments, at least one server is deployed at each of the remote (“outsourcer”) sites, in addition to a server being deployed at the local site. The servers are used to implement workforce manager applications that are used to generate agent schedules for staffing the respective contact centers. Additionally, the servers located at the remote sites are used to export information relating to their scheduled agents, with the information being imported by the server of the local site. The local server then uses the information for facilitating efficient planning for use of the local contact center resources and/or tracking performance of the remote contact center resources.
Referring to the drawings,
System 100 also includes remote contact centers (“outsourcers”) 106 and 108, each of which can be geographically distributed with respect to local contact center 102. Each of these contact centers is able to communicate information to the local contact center and/or receive information from the local contact center via the network. In particular, communication of information between the remote contact centers and the local contact center can enable various forms of integration, e.g., scheduling and tracking, of resources. By way of example, such communication can enable the local contact center to effectively utilize its staff of agents as will be described in detail below. It should be noted that although two remote contact centers are depicted in
In block 212, the information received from the remote contact center is correlated with other information in order to improve integration of resources of the remote contact center, such as with resources of one or more other contact centers. By way of example, correlating information from multiple contact centers enables schedules of the resources of the multiple contact centers to be integrated so that efficient staffing can be achieved. In some embodiments, such integration can additionally or alternatively include the allocation of contacts among contact centers, and the tracking of staffing and/or service levels provided by outsourcers. Clearly, various other integrations are possible in which information associated with one or more contact centers is correlated with information associated with one or more other contact centers.
As mentioned before, information from a contact center can be exported to another system for analysis. Due to potential variations in the type and/or format of the information being exported, such information may need to be filtered, e.g., mapped to corresponding data fields of the importing system, in order to ensure that the exported information can be used by the importing system.
In those embodiments in which the exporting system is compatible (e.g., identical) with the importing system, correlation of information between the systems can be performed automatically. In other embodiments, such correlation may be performed manually or in a semi-automated manner, as will be described in greater detail later.
System 300 also includes remote contact centers 310 and 312, each of which typically is geographically distributed with respect to local contact center 302. Each of the remote contact centers is able to communicate information to the local contact center and/or receive information from the local contact center via network 314. Notably, each of the remote contact centers has access to various resources including a staff of agents that is used to interact with customers. In some embodiments, contacts are distributed among the local and remote contact centers via percent allocation or virtual routing, for example.
Notably, each of the remote contact centers and the local contact center typically is responsible for staffing and scheduling of its respective staff of agents. In this regard, each of the remote contact centers typically schedules its staff based on general contact-handling requirements that are communicated to the remote contact center through an outsourcing agreement with the local contact center in the form of forecasted requirements. In contrast, the local contact center uses more specific information obtained from the remote contact centers in order to facilitate staffing and scheduling of its agents as will be described in greater detail below.
In operation, workforce management system 303 is able to communicate forecasted requirements, such as agent requirements, workload to be handled and specific schedules to be staffed, to one or more of the remote contact centers. It should be noted that, in some embodiments, the remote contact centers need not be provided with forecasted requirements. Regardless, the remote contact centers generate work schedules for their agents, such as by using other potentially disparate workforce management systems (e.g., remote contact center 310 uses workforce management system 316). Once generated, information related to the generated schedules is communicated to the local contact center via the network, such as by each of the remote contact centers exporting a file containing the information. By way of example, in the embodiment of
In this regard,
In some embodiments, a schedule export adapter of a workforce management system of the remote contact center is used to prepare and export information related to the schedules. In particular, the information can include one or more of the following: a list of agents, skills of the agents, and generated work schedules for the agents. The information then can be communicated, such as in a selected file format, to the local contact center via the network.
In some embodiments, a schedule export adapter includes the following configuration items: location of export file (e.g., an edit box can specify the location of the export file); an agent filter (e.g., a drop down menu item that contains a list) used to determine which agent schedules are to be exported; and a timer setting (e.g., a box used to specify how often a file should be exported (for example, every 30 minutes).
Once configured, the schedule export adapter can place a file containing the agents, skills and schedules in the specified location. Notably, the schedules contain the activities that each agent is scheduled to perform.
It should be noted that various file types and arrangements of data can be used to provide the information to the local contact center. In this regard,
As shown in
An integration system of the local contact center includes a schedule import adapter that is used to extract information from the files exported from the remote contact centers. An embodiment of such an adapter can include: the location of the import file (e.g., an edit box to specify the location of a file that was exported); activity and skill maps; and the name of the organization in which schedules associated with the export file should be placed on the local system.
In this regard,
In order to use the file exported by a remote contact center, some embodiments incorporate the use of a dialog box associated with the workforce management system. In this regard,
As shown in
Responsive to actuating the import actuator 716, the schedule import adapter parses the imported file and creates staffing profiles. These staffing profiles include agent skills and schedules.
Generally, this screen displays all schedules of agents and staffing profiles in a Gantt style chart. Different colors represent different activities that an agent or staffing profile should perform. Additionally, statistics such as service level or staffing are displayed at the top of the screen.
Since each of the agents of the remote contact center has an established schedule and corresponding skills, scheduling of agents of the local contact center can be generated using this knowledge. That is, the staffing profiles are considered as counting towards service levels when scheduling or simulating by the local contact center. Thus, more effective scheduling of the local contact center agents can be accomplished.
It should be noted that, in this embodiment, the schedules for the agents of the remote contact centers are locked. That is, regardless of the schedules determined for the agents of the local contact center, the schedules of the agents of the remote contact center are not altered. However, in some embodiments, the schedules of the agents of the remote contact centers can be unlocked, thus allowing scheduling determinations from the local contact center to influence the schedules of the remote contact center agents.
More information on various aspects of multi-site contact centers can be found, for example, in U.S. patent application Ser. No. 11/385,499, filed on Mar. 21, 2006, which is incorporated herein by reference.
In block 912, the skills communicated by the information are correlated with skills that are to be used for scheduling agents of at least one other contact center, e.g., another remote contact center and/or a local contact center. In some embodiments, such as when the scheduling system used to provide the skills information is compatible (e.g., identical) with the scheduling system being used to perform the correlating, correlation of information can be performed automatically. In other embodiments, such correlation may be performed manually or in a semi-automated manner.
In block, 914, work schedules for the agents of the at least one other contact center are generated. Specifically, the work schedules are based, at least in part, on a correlation between the skills of the agents of the remote contact center and of the at least one other contact center, and an evaluation of the work schedules of the agents of the remote contact center.
The processing device can be a hardware device for executing software, particularly software stored in memory. The processing device can be a custom made or commercially available processor, a central processing unit (CPU) or an auxiliary processor among several processors, a semiconductor-based microprocessor (in the form of a microchip or chip set), a macroprocessor, or generally any device for executing software instructions.
The memory can include any one or combination of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.). Moreover, the memory may incorporate electronic, magnetic, optical, and/or other types of storage media. Note that the memory (as well as various other components) can have a distributed architecture, where various components are situated remote from one another, but can be accessed by the processing device. Additionally, the memory can include an operating system 1010, as well as instructions associated with various subsystems, such as a forecasting system 1012, which can be used to provide forecasted requirements, a scheduling system 1014, which can be used to generate agent schedules, and an integration system 1016, which can be used to receive information regarding agents of a remote contact center.
It should be noted that a system component embodied as software may also be construed as a source program, executable program (object code), script, or any other entity comprising a set of instructions to be performed. When constructed as a source program, the program is translated via a compiler, assembler, interpreter, or the like, which may or may not be included within the memory, so as to operate properly in connection with the operating system.
When the computer is in operation, the processing device is configured to execute software stored within the memory, to communicate data to and from the memory, and to generally control operations of the system pursuant to the software. Software in memory, in whole or in part, is read by the processing device, perhaps buffered, and then executed.
It should be noted that the flowcharts included herein show the architecture, functionality and/or operation of implementations that may be configured using software. In this regard, each block can be interpreted to represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
It should be noted that any of the executable instructions, such as those depicted functionally in the accompanying flowcharts, can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device. More specific examples (a nonexhaustive list) of the computer-readable medium could include an electrical connection (electronic) having one or more wires, a portable computer diskette (magnetic), a random access memory (RAM) (electronic), a read-only memory (ROM) (electronic), an erasable programmable read-only memory (EPROM or Flash memory) (electronic), an optical fiber (optical), and a portable compact disc read-only memory (CDROM) (optical). In addition, the scope of the certain embodiments of this disclosure can include embodying the functionality described in logic embodied in hardware or software-configured media.
It should be emphasized that the above-described embodiments are merely possible examples of implementations. Many variations and modifications may be made to the above-described embodiments. By way of example, although several embodiments are described herein that involve the use of systems performing correlation of information at least some of which is associated with agents that are considered local to that system. However, such correlation can be provided even if such local agents are not involved. That is, in some embodiments, systems can correlate information associated with agents of remote contact centers only. All such modifications and variations are intended to be included herein within the scope of this disclosure.
This application is a utility application that claims the benefit of and priority to U.S. provisional applications having Ser. Nos. 60/816,785 and 60/817,680, which were filed on Jun. 27, 2006 and Jun. 30, 2006, respectively, and which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3594919 | De Bell et al. | Jul 1971 | A |
3705271 | De Bell et al. | Dec 1972 | A |
4510351 | Costello et al. | Apr 1985 | A |
4684349 | Ferguson et al. | Aug 1987 | A |
4694483 | Cheung | Sep 1987 | A |
4763353 | Canale et al. | Aug 1988 | A |
4815120 | Kosich | Mar 1989 | A |
4924488 | Kosich | May 1990 | A |
4953159 | Hayden et al. | Aug 1990 | A |
5016272 | Stubbs et al. | May 1991 | A |
5101402 | Chiu et al. | Mar 1992 | A |
5111391 | Fields et al. | May 1992 | A |
5117225 | Wang | May 1992 | A |
5164983 | Brown et al. | Nov 1992 | A |
5210789 | Jeffus et al. | May 1993 | A |
5239460 | LaRoche | Aug 1993 | A |
5241625 | Epard et al. | Aug 1993 | A |
5267865 | Lee et al. | Dec 1993 | A |
5299260 | Shaio | Mar 1994 | A |
5311422 | Loftin et al. | May 1994 | A |
5315711 | Barone et al. | May 1994 | A |
5317628 | Misholi et al. | May 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5388252 | Dreste et al. | Feb 1995 | A |
5396371 | Henits et al. | Mar 1995 | A |
5432715 | Shigematsu et al. | Jul 1995 | A |
5465286 | Clare et al. | Nov 1995 | A |
5475625 | Glaschick | Dec 1995 | A |
5485569 | Goldman et al. | Jan 1996 | A |
5491780 | Fyles et al. | Feb 1996 | A |
5499291 | Kepley | Mar 1996 | A |
5535256 | Maloney et al. | Jul 1996 | A |
5572652 | Robusto et al. | Nov 1996 | A |
5577112 | Cambray et al. | Nov 1996 | A |
5590171 | Howe et al. | Dec 1996 | A |
5597312 | Bloom et al. | Jan 1997 | A |
5619183 | Ziegra et al. | Apr 1997 | A |
5696906 | Peters et al. | Dec 1997 | A |
5717879 | Moran et al. | Feb 1998 | A |
5721842 | Beasley et al. | Feb 1998 | A |
5742670 | Bennett | Apr 1998 | A |
5748499 | Trueblood | May 1998 | A |
5778182 | Cathey et al. | Jul 1998 | A |
5784452 | Carney | Jul 1998 | A |
5790798 | Beckett, II et al. | Aug 1998 | A |
5796952 | Davis et al. | Aug 1998 | A |
5809247 | Richardson et al. | Sep 1998 | A |
5809250 | Kisor | Sep 1998 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5835572 | Richardson, Jr. et al. | Nov 1998 | A |
5862330 | Anupam et al. | Jan 1999 | A |
5864772 | Alvarado et al. | Jan 1999 | A |
5884032 | Bateman et al. | Mar 1999 | A |
5907680 | Nielsen | May 1999 | A |
5918214 | Perkowski | Jun 1999 | A |
5923746 | Baker et al. | Jul 1999 | A |
5933811 | Angles et al. | Aug 1999 | A |
5944791 | Scherpbier | Aug 1999 | A |
5948061 | Merriman et al. | Sep 1999 | A |
5958016 | Chang et al. | Sep 1999 | A |
5964836 | Rowe et al. | Oct 1999 | A |
5978648 | George et al. | Nov 1999 | A |
5982857 | Brady | Nov 1999 | A |
5987466 | Greer et al. | Nov 1999 | A |
5990852 | Szamrej | Nov 1999 | A |
5991373 | Pattison et al. | Nov 1999 | A |
5991796 | Anupam et al. | Nov 1999 | A |
6005932 | Bloom | Dec 1999 | A |
6009429 | Greer et al. | Dec 1999 | A |
6014134 | Bell et al. | Jan 2000 | A |
6014647 | Nizzari et al. | Jan 2000 | A |
6018619 | Allard et al. | Jan 2000 | A |
6035332 | Ingrassia et al. | Mar 2000 | A |
6038544 | Machin et al. | Mar 2000 | A |
6039575 | L'Allier et al. | Mar 2000 | A |
6057841 | Thurlow et al. | May 2000 | A |
6058163 | Pattison et al. | May 2000 | A |
6061798 | Coley et al. | May 2000 | A |
6072860 | Kek et al. | Jun 2000 | A |
6076099 | Chen et al. | Jun 2000 | A |
6078894 | Clawson et al. | Jun 2000 | A |
6091712 | Pope et al. | Jul 2000 | A |
6108711 | Beck et al. | Aug 2000 | A |
6115693 | McDonough et al. | Sep 2000 | A |
6122665 | Bar et al. | Sep 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6130668 | Stein | Oct 2000 | A |
6138139 | Beck et al. | Oct 2000 | A |
6144991 | England | Nov 2000 | A |
6146148 | Stuppy | Nov 2000 | A |
6151622 | Fraenkel et al. | Nov 2000 | A |
6154771 | Rangan et al. | Nov 2000 | A |
6157808 | Hollingsworth | Dec 2000 | A |
6171109 | Ohsuga | Jan 2001 | B1 |
6182094 | Humpleman et al. | Jan 2001 | B1 |
6195679 | Bauersfeld et al. | Feb 2001 | B1 |
6201948 | Cook et al. | Mar 2001 | B1 |
6211451 | Tohgi et al. | Apr 2001 | B1 |
6225993 | Lindblad et al. | May 2001 | B1 |
6230197 | Beck et al. | May 2001 | B1 |
6236977 | Verba et al. | May 2001 | B1 |
6244758 | Solymar et al. | Jun 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6286030 | Wenig et al. | Sep 2001 | B1 |
6286046 | Bryant | Sep 2001 | B1 |
6288753 | DeNicola et al. | Sep 2001 | B1 |
6289340 | Purnam et al. | Sep 2001 | B1 |
6301462 | Freeman et al. | Oct 2001 | B1 |
6301573 | McIlwaine et al. | Oct 2001 | B1 |
6324282 | McIllwaine et al. | Nov 2001 | B1 |
6347374 | Drake et al. | Feb 2002 | B1 |
6351467 | Dillon | Feb 2002 | B1 |
6353851 | Anupam et al. | Mar 2002 | B1 |
6360250 | Anupam et al. | Mar 2002 | B1 |
6370574 | House et al. | Apr 2002 | B1 |
6404857 | Blair et al. | Jun 2002 | B1 |
6411989 | Anupam et al. | Jun 2002 | B1 |
6418471 | Shelton et al. | Jul 2002 | B1 |
6459787 | McIllwaine et al. | Oct 2002 | B2 |
6487195 | Choung et al. | Nov 2002 | B1 |
6493758 | McLain | Dec 2002 | B1 |
6502131 | Vaid et al. | Dec 2002 | B1 |
6510220 | Beckett, II et al. | Jan 2003 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6542602 | Elazar | Apr 2003 | B1 |
6546405 | Gupta et al. | Apr 2003 | B2 |
6560328 | Bondarenko et al. | May 2003 | B1 |
6583806 | Ludwig et al. | Jun 2003 | B2 |
6606657 | Zilberstein et al. | Aug 2003 | B1 |
6665644 | Kanevsky et al. | Dec 2003 | B1 |
6674447 | Chiang et al. | Jan 2004 | B1 |
6683633 | Holtzblatt et al. | Jan 2004 | B2 |
6697858 | Ezerzer et al. | Feb 2004 | B1 |
6724887 | Eilbacher et al. | Apr 2004 | B1 |
6738456 | Wrona et al. | May 2004 | B2 |
6757361 | Blair et al. | Jun 2004 | B2 |
6772396 | Cronin et al. | Aug 2004 | B1 |
6775377 | McIllwaine et al. | Aug 2004 | B2 |
6792575 | Samaniego et al. | Sep 2004 | B1 |
6810414 | Brittain | Oct 2004 | B1 |
6820083 | Nagy et al. | Nov 2004 | B1 |
6823384 | Wilson et al. | Nov 2004 | B1 |
6870916 | Henrikson et al. | Mar 2005 | B2 |
6901438 | Davis et al. | May 2005 | B1 |
6959078 | Eilbacher et al. | Oct 2005 | B1 |
6965886 | Govrin et al. | Nov 2005 | B2 |
6970829 | Leamon | Nov 2005 | B1 |
20010000962 | Rajan | May 2001 | A1 |
20010032335 | Jones | Oct 2001 | A1 |
20010043697 | Cox et al. | Nov 2001 | A1 |
20020038363 | MacLean | Mar 2002 | A1 |
20020052948 | Baudu et al. | May 2002 | A1 |
20020065911 | Von Klopp et al. | May 2002 | A1 |
20020065912 | Catchpole et al. | May 2002 | A1 |
20020128925 | Angeles | Sep 2002 | A1 |
20020143925 | Pricer et al. | Oct 2002 | A1 |
20020165954 | Eshghi et al. | Nov 2002 | A1 |
20030055883 | Wiles et al. | Mar 2003 | A1 |
20030079020 | Gourraud et al. | Apr 2003 | A1 |
20030144900 | Whitmer | Jul 2003 | A1 |
20030154240 | Nygren et al. | Aug 2003 | A1 |
20040062380 | Delaney | Apr 2004 | A1 |
20040100507 | Hayner et al. | May 2004 | A1 |
20040165717 | McIlwaine et al. | Aug 2004 | A1 |
20040267591 | Hedlund et al. | Dec 2004 | A1 |
20050135607 | Lee et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
0453128 | Oct 1991 | EP |
0773687 | May 1997 | EP |
0989720 | Mar 2000 | EP |
2369263 | May 2002 | GB |
WO 9843380 | Nov 1998 | WO |
WO 0016207 | Mar 2000 | WO |
2006058004 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070299680 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60816785 | Jun 2006 | US | |
60817680 | Jun 2006 | US |