Systems and methods for integrating outsourcers

Information

  • Patent Grant
  • 7660406
  • Patent Number
    7,660,406
  • Date Filed
    Friday, September 29, 2006
    18 years ago
  • Date Issued
    Tuesday, February 9, 2010
    14 years ago
Abstract
Systems and methods for integrating outsourcers are provided. In this regard, a representative method includes: receiving information corresponding to resources of a first contact center; and correlating the information with other information in order to improve integration of resources of the first contact center with resources of one or more other contact centers.
Description
TECHNICAL FIELD

The present invention is generally related to integration of outsourced contact center resources.


DESCRIPTION OF THE RELATED ART

Resource allocation and planning, including the generation of schedules for employees, is a complex problem for enterprises. Telephone call center resource allocation and scheduling is an example of a problem with a large number of variables. Variables include contact volume at a particular time of day, available staff, skills of various staff members, call type (e.g., new order call and customer service call), and number of call queues, where a call queue may be assigned a particular call type. A basic goal of call center scheduling is to minimize the cost of agents available to answer calls while maximizing service.


Traditionally, call center scheduling is performed by forecasting incoming contact volumes and estimating average talk times for each time period based on past history and other measures. These values are then correlated to produce a schedule. However, due to the number of variables that may affect the suitability of a schedule, many schedules need to be evaluated.


Recently, call centers have evolved into “contact centers” in which the agent's contact with the customer can be through many contact media. For example, a multi-contact center may handle telephone, email, web callback, web chat, fax, and voice over internet protocol. Therefore, in addition to variation in the types of calls (e.g., service call, order call), modern contact centers have the complication of variation in contact media. The variation in contact media adds complexity to the agent scheduling process. Additional complexity results when multiple geographically distributed contact center sites are involved.


SUMMARY

Systems and methods for integrating outsourcers are provided. In this regard, a representative method includes: receiving information corresponding to resources of a first contact center; and correlating the information with other information in order to improve integration of resources of the first contact center with resources of one or more other contact centers.


Another embodiment of such a method comprises: receiving information corresponding to resources of a first contact center that shares contacts with a second contact center, the information being configured as an XML file; importing the information into a database, the database being accessible to a workforce manager application associated with the second contact center that is operative to retrieve information stored in the database; correlating the resources contained in the XML file with resources that are to be used at the second contact center; and allocating resources of the second contact center using the information from the database, wherein the allocating is based, at least in part, on a correlation between the resources of the first contact center and the second contact center.


An exemplary embodiment of a system for integrating outsourcers comprises an integration system operative to receive information corresponding to resources of a first contact center, the integration system being further operative to correlate the received information with other information in order to improve integration of resources of the first contact center with resources of one or more other contact centers.


Other systems, methods, features and/or advantages of the present invention will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and protected by the accompanying claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.



FIG. 1 is a schematic diagram illustrating an exemplary embodiment of a system for integrating outsourcers.



FIG. 2 is a flowchart illustrating functionality (or method steps) that can be performed by an embodiment of a system for integrating outsourcers.



FIG. 3 is a schematic diagram illustrating another exemplary embodiment of a system for integrating outsourcers.



FIG. 4 is a flowchart illustrating functionality (or method steps) that can be performed by an embodiment of a remote contact center.



FIG. 5 is a diagram illustrating an embodiment of a file that can be exported by a remote contact center.



FIG. 6 is a diagram illustrating a representative screen that can be used to perform activity mapping.



FIG. 7 is a diagram illustrating a representative dialog box that can be used in importing of outsourcer schedules.



FIG. 8 is a diagram illustrating a representative screen associated with a staffing profile.



FIG. 9 is a flowchart illustrating functionality (or method steps) that can be performed by an embodiment of a system for integrating outsourcers.



FIG. 10 is a schematic diagram of a computer that can be used to implement an embodiment of a system for integrating outsourcers.





DETAILED DESCRIPTION

Systems and methods for integrating outsourcers are provided. In this regard, current workforce optimization (WFO) solutions can potentially provide planning, forecasting, scheduling, and tracking and performance analysis services for customers who have full control over contact center work load as well as resources (e.g., agents) available to handle this work load. The typical implementation of such a solution is a centralized system with a single database deployed on premises. However, this approach is changing due to outsourcing.


For contact centers that share contacts across their own sites and outsourced sites through percent allocation or virtual routing, outsourcing of contact center activities (e.g., scheduling of agents and agent handling of contacts) tends to distribute control from a single (“local”) contact center to multiple other (“remote”) contact centers. As control over these activities is divested from the local contact center, the ability of the local contact center to plan efficient agent staffing and scheduling can be degraded.


Currently, in order to compensate for lack of information and control involving work resources available at remote contact centers, a customer may attempt to model the resources available at the remote sites within the customer's system. However, such a customer typically does not have full information about the resources available (e.g., skills of the agents at the remote sites) or schedules, thereby reducing the accuracy of planning.


In order to alleviate these difficulties, at least some embodiments of the systems for integrating outsourcers involve the use of a distributed set of servers. That is, instead of operating only a centralized database and application server at the local site, in some embodiments, at least one server is deployed at each of the remote (“outsourcer”) sites, in addition to a server being deployed at the local site. The servers are used to implement workforce manager applications that are used to generate agent schedules for staffing the respective contact centers. Additionally, the servers located at the remote sites are used to export information relating to their scheduled agents, with the information being imported by the server of the local site. The local server then uses the information for facilitating efficient planning for use of the local contact center resources and/or tracking performance of the remote contact center resources.


Referring to the drawings, FIG. 1 is a schematic diagram illustrating an exemplary embodiment of a system for integrating outsourcers. In this regard, system 100 incorporates a local contact center 102. The local contact center has access to various resources including a staff of agents that is used to interact with customers who communicate with the local contact center. It should be noted that interactions between an agent and a customer can be facilitated through the use of various media. By way of example, interactions can take place via telephone (such as via telephone 104), voice over Internet Protocol (VoIP), email (such as via workstation 105) and chat, for example, with such communication taking place via network 104.


System 100 also includes remote contact centers (“outsourcers”) 106 and 108, each of which can be geographically distributed with respect to local contact center 102. Each of these contact centers is able to communicate information to the local contact center and/or receive information from the local contact center via the network. In particular, communication of information between the remote contact centers and the local contact center can enable various forms of integration, e.g., scheduling and tracking, of resources. By way of example, such communication can enable the local contact center to effectively utilize its staff of agents as will be described in detail below. It should be noted that although two remote contact centers are depicted in FIG. 1, various other numbers of such contact centers can be provided in other embodiments.



FIG. 2 is a flowchart illustrating functionality (or method steps) that can be performed by an embodiment of a system for integrating outsourcers, such as the embodiment depicted in FIG. 1. In this regard, the functionality may be construed as beginning at block 210, in which information corresponding to a remote contact center is received. In some embodiments, this information can include skills of agents and schedules for those agents.


In block 212, the information received from the remote contact center is correlated with other information in order to improve integration of resources of the remote contact center, such as with resources of one or more other contact centers. By way of example, correlating information from multiple contact centers enables schedules of the resources of the multiple contact centers to be integrated so that efficient staffing can be achieved. In some embodiments, such integration can additionally or alternatively include the allocation of contacts among contact centers, and the tracking of staffing and/or service levels provided by outsourcers. Clearly, various other integrations are possible in which information associated with one or more contact centers is correlated with information associated with one or more other contact centers.


As mentioned before, information from a contact center can be exported to another system for analysis. Due to potential variations in the type and/or format of the information being exported, such information may need to be filtered, e.g., mapped to corresponding data fields of the importing system, in order to ensure that the exported information can be used by the importing system.


In those embodiments in which the exporting system is compatible (e.g., identical) with the importing system, correlation of information between the systems can be performed automatically. In other embodiments, such correlation may be performed manually or in a semi-automated manner, as will be described in greater detail later.



FIG. 3 is a schematic diagram illustrating another exemplary embodiment of a system for integrating outsourcers. In particular, system 300 incorporates a local contact center 302. The local contact center has access to various resources including a staff of agents that is used to interact with customers who communicate with the local contact center. Local contact center 302 includes a workforce management system 303 that includes an integration system 304, a database 306 and a scheduling system 308. Notably, the workforce management system can be implemented by one or more applications running on one or more servers, for example.


System 300 also includes remote contact centers 310 and 312, each of which typically is geographically distributed with respect to local contact center 302. Each of the remote contact centers is able to communicate information to the local contact center and/or receive information from the local contact center via network 314. Notably, each of the remote contact centers has access to various resources including a staff of agents that is used to interact with customers. In some embodiments, contacts are distributed among the local and remote contact centers via percent allocation or virtual routing, for example.


Notably, each of the remote contact centers and the local contact center typically is responsible for staffing and scheduling of its respective staff of agents. In this regard, each of the remote contact centers typically schedules its staff based on general contact-handling requirements that are communicated to the remote contact center through an outsourcing agreement with the local contact center in the form of forecasted requirements. In contrast, the local contact center uses more specific information obtained from the remote contact centers in order to facilitate staffing and scheduling of its agents as will be described in greater detail below.


In operation, workforce management system 303 is able to communicate forecasted requirements, such as agent requirements, workload to be handled and specific schedules to be staffed, to one or more of the remote contact centers. It should be noted that, in some embodiments, the remote contact centers need not be provided with forecasted requirements. Regardless, the remote contact centers generate work schedules for their agents, such as by using other potentially disparate workforce management systems (e.g., remote contact center 310 uses workforce management system 316). Once generated, information related to the generated schedules is communicated to the local contact center via the network, such as by each of the remote contact centers exporting a file containing the information. By way of example, in the embodiment of FIG. 3, remote contact center 310 communicates export file 320 to the integration system 304 of local contact center 302.


In this regard, FIG. 4 is a flowchart illustrating functionality (or method steps) that can be performed by an embodiment of a remote contact center. As shown in FIG. 4, the functionality may be construed as beginning at block 410, in which schedules for agents of the remote contact center are generated. In block 412, information related to the schedules is exported.


In some embodiments, a schedule export adapter of a workforce management system of the remote contact center is used to prepare and export information related to the schedules. In particular, the information can include one or more of the following: a list of agents, skills of the agents, and generated work schedules for the agents. The information then can be communicated, such as in a selected file format, to the local contact center via the network.


In some embodiments, a schedule export adapter includes the following configuration items: location of export file (e.g., an edit box can specify the location of the export file); an agent filter (e.g., a drop down menu item that contains a list) used to determine which agent schedules are to be exported; and a timer setting (e.g., a box used to specify how often a file should be exported (for example, every 30 minutes).


Once configured, the schedule export adapter can place a file containing the agents, skills and schedules in the specified location. Notably, the schedules contain the activities that each agent is scheduled to perform.


It should be noted that various file types and arrangements of data can be used to provide the information to the local contact center. In this regard, FIG. 5 is a diagram illustrating an embodiment of a file, in this case an XML file, that can be exported by a workforce management system of a remote contact center and which includes such information.


As shown in FIG. 5, the file includes an employee list (<EmployeeList>) that is delineated by organization (<OrganizationName>). Within each organization is a list of agents. Included with each agent (<Employee>) is information corresponding to the agent's name (<FirstName>, <LastName>, and <MiddleInitial>), as well as additional information. This additional information (<AdditionalInfo>) includes a work schedule (<EmployeeSchedule>) and skills of the agent (<SkillAssignment>).


An integration system of the local contact center includes a schedule import adapter that is used to extract information from the files exported from the remote contact centers. An embodiment of such an adapter can include: the location of the import file (e.g., an edit box to specify the location of a file that was exported); activity and skill maps; and the name of the organization in which schedules associated with the export file should be placed on the local system.


In this regard, FIG. 6 is a diagram illustrating a representative screen that can be used to perform activity mapping. Specifically, such a screen can be used to specify the name of an activity on the workforce management system of the local contact center that corresponds to an activity listed in the exported file. This may be necessary as the remote contact center may use different names for their activities than those used by the local contact center. By way of example, screen 600 incorporates a Name field 610 that lists names of activities from the exported file. A Mapped Activity field 612 is used to designate correspondence between activities from the exported file and activity names used by the local contact center. By way of example, field 610 includes an activity 614 entitled “Personal Day” that is mapped to a corresponding mapped activity 616 entitled “CKA.” Thus, each instance of a Personal Day activity discovered in the exported file will be recognized as a CKA activity by the local contact center for scheduling purposes.


In order to use the file exported by a remote contact center, some embodiments incorporate the use of a dialog box associated with the workforce management system. In this regard, FIG. 7 is a diagram illustrating a representative dialog box 700 that can be used in importing of such information.


As shown in FIG. 7, a user designates an organization from which information is to be imported. This is accomplished by entering an organization name in field 710. A date range also is entered in the fields 712 and 714, with the range designating a scheduling period of interest.


Responsive to actuating the import actuator 716, the schedule import adapter parses the imported file and creates staffing profiles. These staffing profiles include agent skills and schedules. FIG. 8 is a diagram illustrating a representative screen 800 associated with a staffing profile. As shown in FIG. 8, schedules of four agents of a remote contact center (Outsourcers 1-4) are shown.


Generally, this screen displays all schedules of agents and staffing profiles in a Gantt style chart. Different colors represent different activities that an agent or staffing profile should perform. Additionally, statistics such as service level or staffing are displayed at the top of the screen.


Since each of the agents of the remote contact center has an established schedule and corresponding skills, scheduling of agents of the local contact center can be generated using this knowledge. That is, the staffing profiles are considered as counting towards service levels when scheduling or simulating by the local contact center. Thus, more effective scheduling of the local contact center agents can be accomplished.


It should be noted that, in this embodiment, the schedules for the agents of the remote contact centers are locked. That is, regardless of the schedules determined for the agents of the local contact center, the schedules of the agents of the remote contact center are not altered. However, in some embodiments, the schedules of the agents of the remote contact centers can be unlocked, thus allowing scheduling determinations from the local contact center to influence the schedules of the remote contact center agents.


More information on various aspects of multi-site contact centers can be found, for example, in U.S. patent application Ser. No. 11/385,499, filed on Mar. 21, 2006, which is incorporated herein by reference.



FIG. 9 is a flowchart illustrating functionality (or method steps) that can be performed by an embodiment of a system for integrating outsourcers, such as the embodiment depicted in FIG. 1. In this regard, the functionality may be construed as beginning at block 910, in which information is received. Specifically, the information corresponds to work schedules and skills of agents of a remote contact center. In some embodiments, contacts that are to be serviced by the remote contact center agents can be allocated among additional contact centers such as among other remote contact centers and/or a local contact center. In this regard, “contacts” denote the communications involved in facilitating interactions between agents and customers. Notably, information corresponding to various skills of the contact center agents, such as information corresponding to skills possessed, skill priority and skill proficiency, can be provided.


In block 912, the skills communicated by the information are correlated with skills that are to be used for scheduling agents of at least one other contact center, e.g., another remote contact center and/or a local contact center. In some embodiments, such as when the scheduling system used to provide the skills information is compatible (e.g., identical) with the scheduling system being used to perform the correlating, correlation of information can be performed automatically. In other embodiments, such correlation may be performed manually or in a semi-automated manner.


In block, 914, work schedules for the agents of the at least one other contact center are generated. Specifically, the work schedules are based, at least in part, on a correlation between the skills of the agents of the remote contact center and of the at least one other contact center, and an evaluation of the work schedules of the agents of the remote contact center.



FIG. 10 is a schematic diagram of a computer 1000 that can be used to implement an embodiment of a system for scheduling contact center agents. It should be noted that the computer 1000 could be located in a local contact center or at a location connected to the local contact center via a communication network. Generally, the computer includes a processing device 1002, memory 1004, and input/output device 1006 that intercommunicate via local interface 1008. The local interface can include, for example, but is not limited to one or more buses or other wired or wireless connections. The local interface may have additional elements, which are omitted for simplicity, such as controllers, buffers (caches), drivers, repeaters, and receivers to enable communications. Further, the local interface may include address, control, and/or data connections to enable appropriate communications among the aforementioned components.


The processing device can be a hardware device for executing software, particularly software stored in memory. The processing device can be a custom made or commercially available processor, a central processing unit (CPU) or an auxiliary processor among several processors, a semiconductor-based microprocessor (in the form of a microchip or chip set), a macroprocessor, or generally any device for executing software instructions.


The memory can include any one or combination of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.). Moreover, the memory may incorporate electronic, magnetic, optical, and/or other types of storage media. Note that the memory (as well as various other components) can have a distributed architecture, where various components are situated remote from one another, but can be accessed by the processing device. Additionally, the memory can include an operating system 1010, as well as instructions associated with various subsystems, such as a forecasting system 1012, which can be used to provide forecasted requirements, a scheduling system 1014, which can be used to generate agent schedules, and an integration system 1016, which can be used to receive information regarding agents of a remote contact center.


It should be noted that a system component embodied as software may also be construed as a source program, executable program (object code), script, or any other entity comprising a set of instructions to be performed. When constructed as a source program, the program is translated via a compiler, assembler, interpreter, or the like, which may or may not be included within the memory, so as to operate properly in connection with the operating system.


When the computer is in operation, the processing device is configured to execute software stored within the memory, to communicate data to and from the memory, and to generally control operations of the system pursuant to the software. Software in memory, in whole or in part, is read by the processing device, perhaps buffered, and then executed.


It should be noted that the flowcharts included herein show the architecture, functionality and/or operation of implementations that may be configured using software. In this regard, each block can be interpreted to represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.


It should be noted that any of the executable instructions, such as those depicted functionally in the accompanying flowcharts, can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device. More specific examples (a nonexhaustive list) of the computer-readable medium could include an electrical connection (electronic) having one or more wires, a portable computer diskette (magnetic), a random access memory (RAM) (electronic), a read-only memory (ROM) (electronic), an erasable programmable read-only memory (EPROM or Flash memory) (electronic), an optical fiber (optical), and a portable compact disc read-only memory (CDROM) (optical). In addition, the scope of the certain embodiments of this disclosure can include embodying the functionality described in logic embodied in hardware or software-configured media.


It should be emphasized that the above-described embodiments are merely possible examples of implementations. Many variations and modifications may be made to the above-described embodiments. By way of example, although several embodiments are described herein that involve the use of systems performing correlation of information at least some of which is associated with agents that are considered local to that system. However, such correlation can be provided even if such local agents are not involved. That is, in some embodiments, systems can correlate information associated with agents of remote contact centers only. All such modifications and variations are intended to be included herein within the scope of this disclosure.

Claims
  • 1. A method for integrating outsourcers comprising: generating a forecast requirement related to a volume of contacts to be handled by a first contact center;transferring the forecast requirement from a second contact center to the first contact center, wherein the first contact center generates work schedules for resources of the first contact center based on the forecast requirement and skills of the resources of the first contact center;receiving information corresponding to the resources of the first contact center that shares contacts with the second contact center, wherein the information comprises the work schedules and the skills of the resources of the first contact center, and wherein the work schedules comprise activities;importing the information into a database, the database being accessible to a workforce manager application associated with the second contact center that is operative to retrieve information stored in the database;correlating the skills contained in the information with skills that are to be used for scheduling resources of the second contact center;correlating the activities contained in the information with activities that are to be used for scheduling the resources of the second contact center; andallocating the resources of the second contact center using the information from the database, wherein the allocating is based, at least in part, on a correlation between the skills of the resources of the first contact center and the second contact center, a correlation between the activities of the resources of the first contact center and the second contact center, and an evaluation of the work schedules of the resources of the first contact center.
  • 2. The method of claim 1, further comprising allocating contacts between the first contact center and the second contact center, wherein at least some of the contacts are communicated via Internet protocol (IP) packets.
  • 3. The method of claim 1, wherein: the resources include agents; andallocating comprises determining work schedules of the agents of the second contact center.
  • 4. The method of claim 3, wherein determining the work schedules of the agents of the second contact center comprises evaluating potential schedules for the agents of the second contact center based on service level goals computed using contributions of the agents of the first contact center.
  • 5. The method of claim 1, wherein, in receiving information, the information is received from a workforce manager application, associated with the first contact center, of a disparate type with respect to the workforce manager application associated with the second contact center.
  • 6. The method of claim 1, wherein the first contact center is a remote contact center and the second contact center is a local contact center.
  • 7. The method of claim 1, wherein the information received is configured as an XML file.
  • 8. The method of claim 1, wherein the correlating steps are performed in order to improve integration of the resources of the first contact center with the resources of the second contact center.
  • 9. The method of claim 1, wherein the work schedules of the resources of the first contact center are locked such that the work schedules of the resources of the first contact center are not changed responsive to allocating the resources of the second contact center.
  • 10. The method of claim 1, wherein the skills contained in the information comprise a skill priority and a skill proficiency for each skill of each resource of the first contact center.
  • 11. A system for integrating outsourcers comprising: a processing device configured to execute a forecasting system operative to generate a forecast requirement related to a volume of contacts to be handled by a first contact center and transfer the forecast requirement from a second contact center to the first contact center, wherein the first contact center generates work schedules for resources of the first contact center based on the forecast requirement and skills of the resources of the first contact center;the processing device configured to execute an integration system operative to receive information corresponding to the resources of the first contact center that shares contacts with the second contact center, wherein the information comprises the work schedules and the skills of the resources of the first contact center, and wherein the work schedules comprise activities;a database operative to store the information, the database being accessible to a workforce manager application associated with the second contact center that is operative to retrieve information stored in the database;the processing device configured to execute the integration system operative to correlate the skills contained in the information with skills that are to be used for scheduling resources of the second contact center, and correlate the activities contained in the information with activities that are to be used for scheduling the resources of the second contact center; andthe processing device configured to execute a scheduling system operative to communicate with the integration system and to allocate the resources of the second contact center using the information from the database, wherein the allocation is based, at least in part, on a correlation between the skills of the resources of the first contact center and the second contact center, a correlation between the activities of the resources of the first contact center and the second contact center, and an evaluation of the work schedules of the resources of the first contact center.
  • 12. The system of claim 11, further comprising the scheduling system operative to allocate contacts between the first contact center and the second contact center, wherein at least some of the contacts are communicated via Internet protocol (IP) packets.
  • 13. The system of claim 11, wherein: the resources include agents; andthe scheduling system, to allocate the resources of the second contact center, determines work schedules of the agents of the second contact center.
  • 14. The system of claim 13, wherein the scheduling system determines the work schedules of the agents of the second contact center by evaluating potential schedules for the agents of the second contact center based on service level goals computed using contributions of the agents of the first contact center.
  • 15. The system of claim 11, wherein the integration system receives the information from a workforce manager application associated with the first contact center, of a disparate type with respect to the workforce manager application associated with the second contact center.
  • 16. The system of claim 11, wherein the first contact center is a remote contact center and the second contact center is a local contact center.
  • 17. The system of claim 11, wherein the integration system receives the information configured as an XML file.
  • 18. The system of claim 11, wherein the integration system correlates the skills and the activities contained in the information with the skills and the activities that are to be used for scheduling the resources of the second contact center in order to improve integration of the resources of the first contact center with the resources of the second contact center.
  • 19. The system of claim 11, wherein the work schedules of the resources of the first contact center are locked such that the work schedules of the resources of the first contact center are not changed responsive to the allocation of the resources of the second contact center by the scheduling system.
  • 20. The system of claim 11, wherein the skills contained in the information comprise a skill priority and a skill proficiency for each skill of each resource of the first contact center.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a utility application that claims the benefit of and priority to U.S. provisional applications having Ser. Nos. 60/816,785 and 60/817,680, which were filed on Jun. 27, 2006 and Jun. 30, 2006, respectively, and which are incorporated by reference herein.

US Referenced Citations (166)
Number Name Date Kind
3594919 De Bell et al. Jul 1971 A
3705271 De Bell et al. Dec 1972 A
4510351 Costello et al. Apr 1985 A
4684349 Ferguson et al. Aug 1987 A
4694483 Cheung Sep 1987 A
4763353 Canale et al. Aug 1988 A
4815120 Kosich Mar 1989 A
4924488 Kosich May 1990 A
4953159 Hayden et al. Aug 1990 A
5016272 Stubbs et al. May 1991 A
5101402 Chiu et al. Mar 1992 A
5111391 Fields et al. May 1992 A
5117225 Wang May 1992 A
5164983 Brown et al. Nov 1992 A
5210789 Jeffus et al. May 1993 A
5239460 LaRoche Aug 1993 A
5241625 Epard et al. Aug 1993 A
5267865 Lee et al. Dec 1993 A
5299260 Shaio Mar 1994 A
5311422 Loftin et al. May 1994 A
5315711 Barone et al. May 1994 A
5317628 Misholi et al. May 1994 A
5347306 Nitta Sep 1994 A
5388252 Dreste et al. Feb 1995 A
5396371 Henits et al. Mar 1995 A
5432715 Shigematsu et al. Jul 1995 A
5465286 Clare et al. Nov 1995 A
5475625 Glaschick Dec 1995 A
5485569 Goldman et al. Jan 1996 A
5491780 Fyles et al. Feb 1996 A
5499291 Kepley Mar 1996 A
5535256 Maloney et al. Jul 1996 A
5572652 Robusto et al. Nov 1996 A
5577112 Cambray et al. Nov 1996 A
5590171 Howe et al. Dec 1996 A
5597312 Bloom et al. Jan 1997 A
5619183 Ziegra et al. Apr 1997 A
5696906 Peters et al. Dec 1997 A
5717879 Moran et al. Feb 1998 A
5721842 Beasley et al. Feb 1998 A
5742670 Bennett Apr 1998 A
5748499 Trueblood May 1998 A
5778182 Cathey et al. Jul 1998 A
5784452 Carney Jul 1998 A
5790798 Beckett, II et al. Aug 1998 A
5796952 Davis et al. Aug 1998 A
5809247 Richardson et al. Sep 1998 A
5809250 Kisor Sep 1998 A
5825869 Brooks et al. Oct 1998 A
5835572 Richardson, Jr. et al. Nov 1998 A
5862330 Anupam et al. Jan 1999 A
5864772 Alvarado et al. Jan 1999 A
5884032 Bateman et al. Mar 1999 A
5907680 Nielsen May 1999 A
5918214 Perkowski Jun 1999 A
5923746 Baker et al. Jul 1999 A
5933811 Angles et al. Aug 1999 A
5944791 Scherpbier Aug 1999 A
5948061 Merriman et al. Sep 1999 A
5958016 Chang et al. Sep 1999 A
5964836 Rowe et al. Oct 1999 A
5978648 George et al. Nov 1999 A
5982857 Brady Nov 1999 A
5987466 Greer et al. Nov 1999 A
5990852 Szamrej Nov 1999 A
5991373 Pattison et al. Nov 1999 A
5991796 Anupam et al. Nov 1999 A
6005932 Bloom Dec 1999 A
6009429 Greer et al. Dec 1999 A
6014134 Bell et al. Jan 2000 A
6014647 Nizzari et al. Jan 2000 A
6018619 Allard et al. Jan 2000 A
6035332 Ingrassia et al. Mar 2000 A
6038544 Machin et al. Mar 2000 A
6039575 L'Allier et al. Mar 2000 A
6057841 Thurlow et al. May 2000 A
6058163 Pattison et al. May 2000 A
6061798 Coley et al. May 2000 A
6072860 Kek et al. Jun 2000 A
6076099 Chen et al. Jun 2000 A
6078894 Clawson et al. Jun 2000 A
6091712 Pope et al. Jul 2000 A
6108711 Beck et al. Aug 2000 A
6115693 McDonough et al. Sep 2000 A
6122665 Bar et al. Sep 2000 A
6122668 Teng et al. Sep 2000 A
6130668 Stein Oct 2000 A
6138139 Beck et al. Oct 2000 A
6144991 England Nov 2000 A
6146148 Stuppy Nov 2000 A
6151622 Fraenkel et al. Nov 2000 A
6154771 Rangan et al. Nov 2000 A
6157808 Hollingsworth Dec 2000 A
6171109 Ohsuga Jan 2001 B1
6182094 Humpleman et al. Jan 2001 B1
6195679 Bauersfeld et al. Feb 2001 B1
6201948 Cook et al. Mar 2001 B1
6211451 Tohgi et al. Apr 2001 B1
6225993 Lindblad et al. May 2001 B1
6230197 Beck et al. May 2001 B1
6236977 Verba et al. May 2001 B1
6244758 Solymar et al. Jun 2001 B1
6282548 Burner et al. Aug 2001 B1
6286030 Wenig et al. Sep 2001 B1
6286046 Bryant Sep 2001 B1
6288753 DeNicola et al. Sep 2001 B1
6289340 Purnam et al. Sep 2001 B1
6301462 Freeman et al. Oct 2001 B1
6301573 McIlwaine et al. Oct 2001 B1
6324282 McIllwaine et al. Nov 2001 B1
6347374 Drake et al. Feb 2002 B1
6351467 Dillon Feb 2002 B1
6353851 Anupam et al. Mar 2002 B1
6360250 Anupam et al. Mar 2002 B1
6370574 House et al. Apr 2002 B1
6404857 Blair et al. Jun 2002 B1
6411989 Anupam et al. Jun 2002 B1
6418471 Shelton et al. Jul 2002 B1
6459787 McIllwaine et al. Oct 2002 B2
6487195 Choung et al. Nov 2002 B1
6493758 McLain Dec 2002 B1
6502131 Vaid et al. Dec 2002 B1
6510220 Beckett, II et al. Jan 2003 B1
6535909 Rust Mar 2003 B1
6542602 Elazar Apr 2003 B1
6546405 Gupta et al. Apr 2003 B2
6560328 Bondarenko et al. May 2003 B1
6583806 Ludwig et al. Jun 2003 B2
6606657 Zilberstein et al. Aug 2003 B1
6665644 Kanevsky et al. Dec 2003 B1
6674447 Chiang et al. Jan 2004 B1
6683633 Holtzblatt et al. Jan 2004 B2
6697858 Ezerzer et al. Feb 2004 B1
6724887 Eilbacher et al. Apr 2004 B1
6738456 Wrona et al. May 2004 B2
6757361 Blair et al. Jun 2004 B2
6772396 Cronin et al. Aug 2004 B1
6775377 McIllwaine et al. Aug 2004 B2
6792575 Samaniego et al. Sep 2004 B1
6810414 Brittain Oct 2004 B1
6820083 Nagy et al. Nov 2004 B1
6823384 Wilson et al. Nov 2004 B1
6870916 Henrikson et al. Mar 2005 B2
6901438 Davis et al. May 2005 B1
6959078 Eilbacher et al. Oct 2005 B1
6965886 Govrin et al. Nov 2005 B2
6970829 Leamon Nov 2005 B1
20010000962 Rajan May 2001 A1
20010032335 Jones Oct 2001 A1
20010043697 Cox et al. Nov 2001 A1
20020038363 MacLean Mar 2002 A1
20020052948 Baudu et al. May 2002 A1
20020065911 Von Klopp et al. May 2002 A1
20020065912 Catchpole et al. May 2002 A1
20020128925 Angeles Sep 2002 A1
20020143925 Pricer et al. Oct 2002 A1
20020165954 Eshghi et al. Nov 2002 A1
20030055883 Wiles et al. Mar 2003 A1
20030079020 Gourraud et al. Apr 2003 A1
20030144900 Whitmer Jul 2003 A1
20030154240 Nygren et al. Aug 2003 A1
20040062380 Delaney Apr 2004 A1
20040100507 Hayner et al. May 2004 A1
20040165717 McIlwaine et al. Aug 2004 A1
20040267591 Hedlund et al. Dec 2004 A1
20050135607 Lee et al. Jun 2005 A1
Foreign Referenced Citations (7)
Number Date Country
0453128 Oct 1991 EP
0773687 May 1997 EP
0989720 Mar 2000 EP
2369263 May 2002 GB
WO 9843380 Nov 1998 WO
WO 0016207 Mar 2000 WO
2006058004 Jun 2006 WO
Related Publications (1)
Number Date Country
20070299680 A1 Dec 2007 US
Provisional Applications (2)
Number Date Country
60816785 Jun 2006 US
60817680 Jun 2006 US