This application is related to U.S. patent application Ser. No. 11/084,688, filed on Mar. 17, 2005, entitled “Systems and Methods for Hemmorrhage Control and/or Tissue Repair.”
The invention is generally directed to systems and methods to introduce and deploy tissue bandage structures within a body lumen or hollow body organ, such, e.g., as within the gastrointestinal tract.
Currently, there exists no overwhelmingly accepted treatment for gastrointestinal, specifically esophageal bleeding with etiology such as; esophageal ulcers, esophagitis, Mallory Weis tears, Booerhave's syndrome, esophageal varices, anastomosis, fistula, and endoscopic procedures.
Electro-cautery and sclerotherapy are two existing treatments for esophageal hemorrhage, however both run a risk of perforation to the esophagus. Electro-cautery requires a large amount of pressure to be applied to the wall of the esophagus and also inherently damages tissue. Sclerotherapy consists of injecting a hardening agent in to the area of the injury with a needle. Clipping is another method of treatment; it consists of a two or three-pronged clip that can be inserted into the mucosa of the esophagus to constrict the area of the bleeding. If applied correctly, clipping is effective in controlling hemorrhage, however clips are difficult to deploy. Often, the clip is not inserted deep enough into the mucosa and sloughs off before the desired time.
The invention provides systems and methods for applying a bandage structure within a body lumen or a hollow body organ, e.g., for treating an injured gastrointestinal tract or an esophageal hemorrhage.
Another aspect of the invention includes systems and methods for placing a bandage structure within a body lumen or hollow body organ in a non-invasive way using endoscopic visualization.
The systems and methods do not involve the use of any sharp edges or points. The systems and methods do not involve the use of a point pressure, as existing treatment options require. Only moderate circumferential pressure is required to apply the bandage structure. The systems and methods adapt well to tools and techniques usable by gastroenterologists.
The systems and methods can be sized and configured to apply a chitosan bandage structure within a body lumen or hollow body organ, to take advantage of the mucoadhesive, antimicrobial, hemostatic, and potential accelerated wound healing properties of the chitosan material. Drug delivery and cell therapy with a chitosan bandage structure as a delivery matrix are also made possible.
Other features and advantages of the invention shall be apparent based upon the accompanying description, drawings, and claims.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention, which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
I. The Intraluminal Delivery System
As shown in
A. The Tissue Bandage Structure
The size, shape, and configuration of the bandage structure 12 shown in
The tissue bandage structure 12 desirably includes an active therapeutic surface 36 for contacting tissue. The active surface 36 desirably comprises a biocompatible material that reacts in the presence of blood, body fluid, or moisture to become a strong adhesive or glue. The material of the active surface 36 can, alone or in combination with adhesive features, possess other beneficial attributes, for example, anti-bacterial and/or anti-microbial and/or anti-viral characteristics, and/or characteristics that accelerate or otherwise enhance coagulation and the body's defensive reaction to injury.
In one embodiment, the material of the active surface 36 of the tissue bandage structure 12 comprises a hydrophilic polymer form, such as a polyacrylate, an alginate, chitosan, a hydrophilic polyamine, a chitosan derivative, polylysine, polyethylene imine, xanthan, carrageenan, quaternary ammonium polymer, chondroitin sulfate, a starch, a modified cellulosic polymer, a dextran, hyaluronan or combinations thereof. The starch may be of amylase, amylopectin and a combination of amylopectin and amylase.
In a preferred embodiment, the biocompatible material of the active surface 36 comprises a non-mammalian material, which is most preferably poly [β-(1→4)-2-amino-2-deoxy-D-glucopyranose, which is more commonly referred to as chitosan.
The chitosan material is preferred because of the special properties of the chitosan. The chitosan active surface 36 is capable of adhering to a site of tissue injury along a body lumen in the presence of blood, or body fluids, or moisture. The presence of the chitosan active surface 36 stanches, seals, and/or stabilizes the site of tissue injury, while establishing conditions conducive to the healing of the site.
The chitosan material that is incorporated into the active surface 36 can be produced in conventional ways. The structure or form producing steps for the chitosan material are typically carried out from a chitosan solution employing techniques such as freezing (to cause phase separation), non-solvent die extrusion (to produce a filament), electro-spinning (to produce a filament), phase inversion and precipitation with a non-solvent (as is typically used to produce dialysis and filter membranes) or solution coating onto a preformed sponge-like or woven product. The filament can be formed into a non-woven sponge-like mesh by non-woven spinning processes. Alternately, the filament may be produced into a felted weave by conventional spinning and weaving processes. Improved compliance and flexibility can be achieved by mechanical manipulation during or after manufacture, e.g., by controlled micro-fracturing by rolling, bending, twisting, rotating, vibrating, probing, compressing, extending, shaking and kneading; or controlled macro-texturing (by the formation of deep relief patterns) by thermal compression techniques. The tissue bandage structure 12 can also comprise a sheet of woven or non-woven mesh material enveloped between layers of the chitosan material.
The active surface 36 that includes chitosan material presents a robust, permeable, high specific surface area, positively charged surface. The positively charged surface creates a highly reactive surface for red blood cell and platelet interaction. Red blood cell membranes are negatively charged, and they are attracted to the chitosan material. The cellular membranes fuse to chitosan material upon contact. A clot can be formed very quickly, circumventing immediate need for clotting proteins that are normally required for hemostasis. For this reason, the chitosan material is effective for both normal as well as anti-coagulated individuals, and as well as persons having a coagulation disorder like hemophilia. The chitosan material also binds bacteria, endotoxins, and microbes, and can kill bacteria, microbes, and/or viral agents on contact.
B. The Delivery Device
As
The catheter tube 16 can be formed of conventional polymeric materials and include an interior lumen (not shown) that accommodates passage of a guide wire 32. The lumen also passes through the center of the expandable structure 22 as well. This makes it possible to guide the intraluminal deployment of the expandable structure 22 to an injury site within a body lumen or hollow body organ targeted for treatment.
The catheter tube 16 includes another lumen that communicates with the interior of the balloon 22. The proximal end 18 of the catheter tube 16 includes a coupling 24 for coupling an inflation device 26, such as a syringe or the like (see
The catheter tube also includes a movable sheath 28. The sheath 28 comprises a material that is flexible and impermeable to water. A push-pull wire 30 is coupled to the sheath 28, which extends through another lumen within the catheter tube 16 and is coupled to an actuator 30 on the proximal end 18 of the catheter tube 16. Pushing on the actuator 30 advances the sheath 28 distally over the expandable structure 22 (as shown in phantom lines in
In use, the tissue bandage structure 12 is sized and configured to be carried about the expandable structure 22 in a generally collapsed condition during introduction within the body lumen or hollow body organ (see
Prior to intraluminal introduction of the delivery device 14 (see
In this arrangement, the flexible bandage structure 12 (see
Prior to intraluminal introduction, the sheath 28 is advanced over the bandage structure 12 that has been wrapped about the expandable structure 22 (see
The securing device 44 can be various constructed. It can, e.g., comprise a removable slip-knot that releases when the sheath is withdrawn, or a tearable perforated tab that tears when the sheath is withdrawn, or a ring that slides off or breaks when sheath is withdrawn.
In this position, the sheath 28 prevents contact between the active chitosan surface 36 and the mucosa during introduction until the instance of application. The sheath 28 protects the bandage structure 12 from becoming moist until the sheath 28 is moved proximally to reveal the bandage structure 12.
Prior to insertion into the body lumen (see
As will also be described later, when it is desired to deploy the bandage structure 12, the sheath 28 is withdrawn (see
II. Use of the Delivery System
The delivery system 10 makes possible the deployment of a chitosan bandage structure 12 within a body lumen or hollow body organ under endoscopic visualization, e.g., to treat an injury of the esophagus or other area of the gastrointestinal tract.
As
As the chitosan bandage structure 12 unfurls, it covers a circumferential section of the body lumen or hollow body organ and adheres to it. The properties of the active chitosan surface 36 serve to moderate bleeding, fluid seepage or weeping, or other forms of fluid loss, while also promoting healing. Due to the properties of the chitosan, the active surface 36 can also form an anti-bacterial and/or anti-microbial and/or anti-viral protective barrier at or surrounding the tissue treatment site within a body lumen or hollow body organ. The active surface 36 (whether or not it contains a chitosan material) can also provide a platform for the delivery of one or more therapeutic agents into the blood stream in a controlled release fashion. Examples of therapeutic agents that can be incorporated into the active surface 36 of the bandage structure 12 include, but are not limited to, drugs or medications, stem cells, antibodies, anti-microbials, anti-virals, collagens, genes, DNA, and other therapeutic agents; hemostatic agents like fibrin; growth factors; Bone Morphogenic Protein (BMP); and similar compounds.
The system 10 thereby makes possible an intraluminal delivery method that (i) locates and identifies the site of injury using an endoscope 50 and correlating video monitor; (ii) passes a guide wire 32 into the site of injury; (iii) positions the distal end of the delivery device 14 over the guide wire 32 (see
Various modifications of the above-described method can be made. For example (see
The shape, shape, and configuration of the expandable body and the bandage structure 12 can modified to accommodate varying anatomies encountered within a body lumen or hollow body organ, such as the gastrointestinal tract. This expands the possible use of the delivery system 10 greatly. For example, in esophagogastrectomies, an anastomosis between the stomach and the esophagus is created where an asymmetric expandable structure 22 and a bandage structure 12 can be deployed by the system 10 to cover the suture lines of the anastomosis. In addition, the size and shape of the expandable structure 22 can be altered to accommodate deployment of a bandage structure 12 in the duodenum or stomach.
The intraluminal delivery method as described utilizes the catheter-based delivery device 12, as described, to introduce a flexible, relatively thin chitosan bandage structure 12, as described, in an low profile condition and covered with a water impermeable layer to a targeted treatment site within a body lumen or hollow body organ, e.g. to treat esophageal injury. The delivery method prevents the active chitosan surface 36 of the bandage structure 12 from contacting the mucosa until the bandage structure 12 positioned in a desired position over the injury.
III. Conclusion
It has been demonstrated that a therapeutic bandage structure can be introduced and deployed within a body lumen or hollow body organ using an intraluminal delivery system 10 under endoscopic guidance.
It should be apparent that above-described embodiments of this invention are merely descriptive of its principles and are not to be limited. The scope of this invention instead shall be determined from the scope of the following claims, including their equivalents.
This application is a continuation of patent application Ser. No. 11/805,543 filed 23 May 2007, now abandoned, which claims the benefit of provisional patent application Ser. No. 60/802,654filed 23 May 2006.
Number | Name | Date | Kind |
---|---|---|---|
2610625 | Sifferd et al. | Sep 1952 | A |
2858830 | Robins | Nov 1958 | A |
2923664 | Cook et al. | Feb 1960 | A |
3551556 | Kilment et ai. | Dec 1970 | A |
3632754 | Balassa | Jan 1972 | A |
3800792 | McKnight et al. | Apr 1974 | A |
3801675 | Russell | Apr 1974 | A |
3849238 | Gould et al. | Nov 1974 | A |
3902497 | Casey | Sep 1975 | A |
3911116 | Balassa | Oct 1975 | A |
3954493 | Battista et al. | May 1976 | A |
3977406 | Roth | Aug 1976 | A |
4040884 | Roth | Aug 1977 | A |
4056103 | Kaczmarzyk et al. | Nov 1977 | A |
4068757 | Casey | Jan 1978 | A |
4094743 | Leuba | Jun 1978 | A |
4195175 | Peniston et al. | Mar 1980 | A |
4292972 | Palwelchak et al. | Oct 1981 | A |
4373519 | Errede et al. | Feb 1983 | A |
4394373 | Malette et al. | Jul 1983 | A |
4452785 | Malette et al. | Jun 1984 | A |
4460642 | Errede et al. | Jul 1984 | A |
4501835 | Berke | Feb 1985 | A |
4524064 | Nambu | Jun 1985 | A |
4532134 | Malette et al. | Jul 1985 | A |
4533326 | Anthony | Aug 1985 | A |
4541426 | Webster | Sep 1985 | A |
4599209 | Dautzenberg et al. | Jul 1986 | A |
4651725 | Kifune et al. | Mar 1987 | A |
4684370 | Barrett | Aug 1987 | A |
4699135 | Motosugi et al. | Oct 1987 | A |
4759348 | Cawood | Jul 1988 | A |
4772275 | Erlich | Sep 1988 | A |
4772419 | Malson et al. | Sep 1988 | A |
4833237 | Kawamura et al. | May 1989 | A |
4877030 | Beck et al. | Oct 1989 | A |
4948540 | Nigam | Aug 1990 | A |
4952618 | Olsen | Aug 1990 | A |
4956350 | Mosbey | Sep 1990 | A |
4958011 | Bade | Sep 1990 | A |
4960413 | Sagar et al. | Oct 1990 | A |
4973493 | Guire | Nov 1990 | A |
4977892 | Ewall | Dec 1990 | A |
5006071 | Carter | Apr 1991 | A |
5007926 | Derbyshire | Apr 1991 | A |
5024841 | Chu et al. | Jun 1991 | A |
5035893 | Shioya et al. | Jul 1991 | A |
5062418 | Dyer et al. | Nov 1991 | A |
5110604 | Chu et al. | May 1992 | A |
5116824 | Miyata et al. | May 1992 | A |
5147387 | Jansen et al. | Sep 1992 | A |
5154928 | Andrews | Oct 1992 | A |
5192307 | Wall | Mar 1993 | A |
5206028 | Li | Apr 1993 | A |
5254301 | Sessions et al. | Oct 1993 | A |
5300494 | Brode, II et al. | Apr 1994 | A |
5376376 | Li | Dec 1994 | A |
5378472 | Muzzarelli | Jan 1995 | A |
5411549 | Peters | May 1995 | A |
5420197 | Lorenz et al. | May 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5449382 | Dayton | Sep 1995 | A |
5454719 | Hamblen | Oct 1995 | A |
5525710 | Unger et al. | Jun 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5571181 | Li | Nov 1996 | A |
5578075 | Dayton | Nov 1996 | A |
5593434 | Williams | Jan 1997 | A |
5597581 | Kaessmann et al. | Jan 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5643596 | Pruss et al. | Jul 1997 | A |
5647857 | Anderson et al. | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5700476 | Rosenthal et al. | Dec 1997 | A |
5738860 | Schonfeldt | Apr 1998 | A |
5756111 | Yoshikawa et al. | May 1998 | A |
5765682 | Bley et al. | Jun 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5821271 | Roenigk | Oct 1998 | A |
5827265 | Glinsky et al. | Oct 1998 | A |
5836970 | Pandit | Nov 1998 | A |
5840777 | Eagles et al. | Nov 1998 | A |
5858292 | Dragoo et al. | Jan 1999 | A |
5858350 | Vournakis et al. | Jan 1999 | A |
5952618 | Deslauriers | Sep 1999 | A |
5957929 | Brenneman | Sep 1999 | A |
5961478 | Timmermans | Oct 1999 | A |
5984963 | Ryan et al. | Nov 1999 | A |
6042877 | Lyon et al. | Mar 2000 | A |
6048360 | Khosravi et al. | Apr 2000 | A |
6054122 | MacPhee et al. | Apr 2000 | A |
6103369 | Lucast et al. | Aug 2000 | A |
6124273 | Drohan et al. | Sep 2000 | A |
6156330 | Tsukada et al. | Dec 2000 | A |
6162241 | Coury et al. | Dec 2000 | A |
6200325 | Durcan et al. | Mar 2001 | B1 |
6225521 | Gueret | May 2001 | B1 |
6238431 | Asimacopoulos | May 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6406712 | Rolf | Jun 2002 | B1 |
6448462 | Groitzsch et al. | Sep 2002 | B2 |
6454787 | Maddalo et al. | Sep 2002 | B1 |
6485667 | Tan | Nov 2002 | B1 |
6486285 | Fujita | Nov 2002 | B2 |
6548081 | Sadozai et al. | Apr 2003 | B2 |
6548569 | Williams et al. | Apr 2003 | B1 |
6552244 | Jacques et al. | Apr 2003 | B1 |
6565878 | Schoenfedlt et al. | May 2003 | B2 |
6566577 | Addison et al. | May 2003 | B1 |
6599891 | North et al. | Jul 2003 | B2 |
6693180 | Lee et al. | Feb 2004 | B2 |
6726712 | Raeder-Devens et al. | Apr 2004 | B1 |
6749601 | Chin | Jun 2004 | B2 |
6750262 | Hahnle et al. | Jun 2004 | B1 |
6764504 | Wang et al. | Jul 2004 | B2 |
6827731 | Armstrong et al. | Dec 2004 | B2 |
6855860 | Ruszczak et al. | Feb 2005 | B2 |
6863924 | Ranganathan et al. | Mar 2005 | B2 |
6864245 | Vournakis et al. | Mar 2005 | B2 |
6992233 | Drake et al. | Jan 2006 | B2 |
7019191 | Looney et al. | Mar 2006 | B2 |
7115141 | Menz et al. | Oct 2006 | B2 |
7371403 | McCarthy et al. | May 2008 | B2 |
7482503 | Gregory et al. | Jan 2009 | B2 |
7485138 | Fearnot et al. | Feb 2009 | B2 |
7491227 | Yang | Feb 2009 | B2 |
7546812 | Eastin et al. | Jun 2009 | B2 |
7671102 | Gaserod et al. | Mar 2010 | B2 |
7763065 | Schmid et al. | Jul 2010 | B2 |
7820872 | Gregory et al. | Oct 2010 | B2 |
7850709 | Cummins et al. | Dec 2010 | B2 |
7897832 | McAdams et al. | Mar 2011 | B2 |
8043359 | Edin | Oct 2011 | B2 |
8063265 | Beck et al. | Nov 2011 | B2 |
20010045177 | Harvey et al. | Nov 2001 | A1 |
20020035391 | Mikus et al. | Mar 2002 | A1 |
20020161376 | Barry et al. | Oct 2002 | A1 |
20040193243 | Mangiardi et al. | Sep 2004 | A1 |
20050036955 | DeGould | Feb 2005 | A1 |
20050123581 | Ringeisen et al. | Jun 2005 | A1 |
20050137512 | Campbell et al. | Jun 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050147656 | McCarthy et al. | Jul 2005 | A1 |
20050240137 | Zhu et al. | Oct 2005 | A1 |
20060004314 | McCarthy et al. | Jan 2006 | A1 |
20060008419 | Hissink et al. | Jan 2006 | A1 |
20060079957 | Chin et al. | Apr 2006 | A1 |
20060083710 | Joerger et al. | Apr 2006 | A1 |
20060089702 | Cervantes | Apr 2006 | A1 |
20060184224 | Angel | Aug 2006 | A1 |
20060211973 | Gregory et al. | Sep 2006 | A1 |
20070021703 | McCarthy et al. | Jan 2007 | A1 |
20070066920 | Hopman et al. | Mar 2007 | A1 |
20070083137 | Hopman et al. | Apr 2007 | A1 |
20070237811 | Scherr | Oct 2007 | A1 |
20070255194 | Gudnason et al. | Nov 2007 | A1 |
20070255243 | Kaun et al. | Nov 2007 | A1 |
20070276308 | Huey et al. | Nov 2007 | A1 |
20080132990 | Richardson | Jun 2008 | A1 |
20080241229 | Li et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
0353972 | Feb 1990 | EP |
0477979 | Sep 1991 | EP |
0643963 | Mar 1995 | EP |
1462123 | Sep 2004 | EP |
60-142927 | Jul 1985 | JP |
62-039506 | Feb 1987 | JP |
63-090507 | Apr 1988 | JP |
07-116241 | May 1995 | JP |
11-342153 | Dec 1999 | JP |
2002-233542 | Aug 2002 | JP |
WO 9505794 | Mar 1995 | WO |
WO 9848861 | Nov 1998 | WO |
WO 9902587 | Jan 1999 | WO |
WO 0056256 | Sep 2000 | WO |
WO 02102276 | Dec 2002 | WO |
WO 03047643 | Jun 2003 | WO |
WO 03079946 | Oct 2003 | WO |
WO 03092756 | Nov 2003 | WO |
WO 03101310 | Dec 2003 | WO |
WO 2004047695 | Jun 2004 | WO |
WO 2004060412 | Jul 2004 | WO |
WO 2005062880 | Jul 2005 | WO |
WO 2006049463 | May 2006 | WO |
WO 2006071649 | Jul 2006 | WO |
WO 2007009050 | Jan 2007 | WO |
WO 2007056066 | May 2007 | WO |
WO 2007074327 | Jul 2007 | WO |
WO 2008033462 | Mar 2008 | WO |
WO 2008036225 | Mar 2008 | WO |
Entry |
---|
Park et al., “Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration.” Biomaterials, vol. 21: 153-159, 2000. |
Allan et al., “Biomedical Applications of Chitin and Chitosan.” Chitin, Chitosan, and Related Enzymes—Accademic Press, Inc.: 119-133, 1984. |
Anema et al., “Potential Uses of Absorbable Fibrin Adhesive Bandage for Genitourinary Trauma.” World Journal of Surgery, vol. 25: 1573-1577, 2001. |
Bégin et al., “Antimicrobial films produced from chitosan.” International Journal of Biological Macromolecules, vol. 26: 63-67, 1999. |
Chan et al., “Comparision of Poly-N-acetyl Glucosamine (P-GlcNAc) with Absorbable Collagen (Actifoam), and Fibrin Sealant (Bolheal) for Achieving Hemostasis in a Swine Model of Splenic Hemorrhage.” The Journal of Trauma: 454-458, 2000. |
Cole et al., “A pilot study evaluating the efficacy of a fully acetylated poly-N-acetyl glucosamine membrane formulation as a topical hemostatic agent.” Surgery, vol. 126, No. 3: 510-517, 1999. |
Kiley, Kevin, “Department of the Army memo.” Jul. 20, 2005. |
Kumar, Ravi, “Chitin and chitosan fibres: A review.” Bulletin of Material Science: vol. 22, No. 5: 905-915, Aug. 1999. |
Luo et al., “The role of poly(ethylene glycol) in the formation of silver nanoparticles.” Journal of Colloid and Interface Science, vol. 288: 444-448, 2005. |
Malette et al., “Chitosan: A New Hemostatic.” The Annals of Thoratic Surgery, vol. 36, No. 1: 55-58, Jul. 1983. |
Martin et al., “Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial.” Biochemical Engineering Journal, vol. 16: 97-105, 2003. |
Mi et al., “Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing.” Biomaterials, vol. 22: 165-173, 2001. |
Moody, Robin J., “HemCon bandage stakes claim to soldier's kit bag.” Portland Business Journal, Nov. 4, 2005. |
Ohshima et al., “Clinical Application of Chitin Non-Woven Fabric as Wound Dressing.” European Journal of Plastic Surgery, vol. 10: 66-69, 1987. |
Ohshima et al., “Clinicai application of new chitin non-woven fabric and new chitin sponge sheet as wound dressing.” European Journal of Plastic Surgery, vol. 14: 207-211, 1991. |
Olsen et al., “Bomedical Applicatons of Chitin and its Derivatives.” Chitin and Chitosan: Poceedings from the 4th International Conference on Chitin and Chitosan, 813-829, 1988. |
Percot et al., “Optimization of Chitin Extraction from Shrimp Shells.” Biomacromolecules, vol. 4: 12-18, 2003. |
Pusateri et al., “Advanced Hemostatic Dressing Development Program: Animal Model Selection Criteria and Results of a Study of Nine Hemostatic Dressings in a Model of Severe Large Venous Hemorrhage and Hepatic Injury in Swine.” The Journal of Trauma, vol. 55: 518-526, 2003. |
Sandford, Paul A., “Chitosan: Commercial Uses and Potential Applications.” Chitin and Chitosan: Proceedings from the 4th International Conference on Chitin and Chitosan, 51-69, 1988. |
Sandford et al., “Biomedical Applications of High-Purity Chitosan.” Water-Soluble Polymers: Chapter 28: 430-445, 1991. |
Sandford, Paul A., “Biomedical Applications of New Forms of Chitin/Chitosan.” Chitin Derivatives in Life Science, 12pp., 1992. |
Sondeen et al., “Comparison of 10 Different Hemostatic Dressings in an Aortic Injury.” The Journal of Trauma, vol. 54, No. 2: 280-285, 2003. |
Wedmore et al., “A Special Report on the Chitosan-based Hemosatic Dressing: Experience in Current Combat Operations.” The Journal of Trauma, vol. 60: 655-658, 2006. |
Wilson, J.R., “The Army's Greatest Inventions.” U.S. Army Materiel Command, pp. 30-37, 2005. |
Bendix., “Chemical synthesis of polyactide and its copolymers for medical applications.” Polymer Degradation and Stability, vol. 59: 129-135, 1998. |
Schoof et al., “Control of Pore Structure and Size in Freeze-Dried Collagen Sponges.” Journal of Biomedical Material Research, vol. 58: 352-357, 2001. |
Wu et al., “Development of In Vitro Adhesion Test for Chitosan Bandages.” Society for Biomaterials 30th Annual Meeting Transactions, 2005, 1pg. |
Database WPI, Week 200873 Thomson Scientific, London GB, AN 2008-M34232, XP002695569 & CN 101138648, Mar. 12, 2008. |
Number | Date | Country | |
---|---|---|---|
20080287907 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60802654 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11805543 | May 2007 | US |
Child | 12004297 | US |