Referring to
As illustrated in
In an inline manufacturing system, a primary factor affecting the entire processing time is the unit processing time (“tact time”) of each of the processing units. That is, it is necessary to make the unit processing time in each of the respective processing units relatively uniform, and to minimize the time taken after any one process is completed until a subsequent process commences. However, one of problems of the prior art wire grid polarizer manufacturing systems is that the stamping and curing processes are sequentially performed in a single unit, thereby resulting in a significantly increased processing time of that unit relative to the others, which in turn increases the effective processing time of the other units commensurately and results in a substantial increase of the total manufacturing processing time.
Accordingly, in the exemplary system of the present invention, the stamping unit 500 and the curing unit 600 are provided as separate units, unlike systems of the prior art in which the stamping and curing processes are performed in a single unit. As a result, the unit processing time required in each of the stamping unit 500 and the curing unit 600 is decreased, and the unit processing time in each of the separate stamping 500 and curing units 600 is adjusted to be similar to the respective unit processing times of each of other units, thereby minimizing waiting time, and accordingly, minimizing the total manufacturing processing time.
The functions of the respective units of the exemplary system and the entire process for manufacturing a wire grid polarizer with the exemplary manufacturing systems of the invention are described below with reference to
First, the loading unit 100 loads a substrate (not illustrated) upon which a wire grid polarizer is to be formed into the system (S201). The substrate loaded by the loading unit 100 is carried to the cleaning unit 200 by a carrying unit 1000, and the cleaning unit 200 cleans the carried substrate (S202). The cleaned substrate is carried to the deposition unit 300 by another carrying unit 1000, and the deposition unit 300 forms a thin metal film layer (not illustrated) on the substrate (S203). In this particular embodiment, the thin metal film layer is formed by depositing a metal material having high reflectance, such as aluminum (Al), using a sputtering method. However, the material and method for forming the same are not limited thereto, and various other materials and forming methods may be.
The substrate on which the thin metal film layer has been formed is carried to the coating unit 400 by another carrying unit 1000, and the coating unit 400 applies a layer of photoresist having a resolution on the nano scale to the thin metal film layer using a spin coating method or a slit coating method (S204). Then, the photoresist is subjected to a soft baking process at a selected temperature and for a selected amount of time (S205).
The soft-baked substrate is carried to the stamping unit 500 by another carrying unit 1000. The stamping unit 500 includes a stamp (not illustrated) having a selected pattern thereon. The stamping unit 500 aligns the stamp above the substrate, and then presses it onto the photoresist so as to transfer the pattern on the stamp to the photoresist on the substrate (S206).
The substrate onto which the stamp has been pressed is then carried to the curing unit 600 by another carrying unit 1000, and the curing unit 600 cures the photoresist (S207). After the photoresist has been cured, the stamp is separated from the substrate (S208).
After the stamp has been separated from the substrate, the substrate is carried to the etching unit 700 by another carrying unit 1000, and the etching unit 700 etches the thin metal film layer using the photoresist that has been patterned by the stamp as an etching mask (S209). In this particular embodiment, the thin metal film layer is etched using a dry etching method, such as a high density Reactive Ion Etching (RIE) method, a Plasma Etching (PE) method, or an Inductively Coupled Plasma (ICP) method.
After the etching process is complete, the substrate is carried to the ashing unit 800 by another carrying unit 1000, and the ashing unit 800 finishes the wire grid polarizer by removing the photoresist that was used as the etching mask to leave the finished wire grid polarizer remaining on the substrate (S210). The substrate with the finished wire grid polarizer thereon is carried to the unloading unit 900 by another carrying unit 1000, and the unloading unit 900 unloads the substrate with the finished wire grid polarizer thereon from the system (S211).
Next, a layer of photoresist 2300 is applied over the thin metal film layer 2200 using a spin coating method or a slit coating method (S204). The photoresist is then softly baked at a selected temperature and for a selected amount of time (see
After a stamp 530 having a pattern thereon is aligned above the substrate, the stamp 530 is pressed down onto the soft-baked photoresist 2300 on the substrate (see
The thin metal film layer 2200 is then etched using the photoresist 2300, in which the “opposite” pattern above has been formed, as an etching mask (see
In the following description, various alternative exemplary embodiments of the novel stamping unit 500 and curing unit 600 of the manufacturing systems of the present invention are described, and descriptions of the other units and processes described above are omitted for brevity.
Referring to
The stamping chamber 510 of the stamping unit 500 provides a space in which various components of the unit are installed. The first substrate supporting unit 520 is disposed in the stamping chamber 510 and serves to support a substrate 2000 carried into the stamping chamber 510. In this particular embodiment, the substrate 200 refers to a substrate on which a thin metal film layer and a photoresist have previously been sequentially formed through the unit processes performed in preceding units, such as the cleaning unit, the deposition unit and the coating unit.
A striped pattern (not illustrated) having a selected line width and line spacing is formed on one surface of a stamp 530. The stamp 530 functions to transfer the striped pattern to a layer of photoresist that is applied to the substrate. The structure of the stamp 530 and the method of manufacturing the same is described in more detail below with reference to
The pressing unit 540 is disposed in the upper portion of the stamping chamber 510, and functions to press the stamp 530 onto the substrate 2000 by moving the stamp 530 upward and downward. The structure and operation of the pressing unit 540 is described in more detail below with reference to
In the particular embodiment of
The curing unit 600 includes a curing chamber 610, a second substrate supporting unit 620 provided in the curing chamber 610 and configured to support the substrate 2000 carried from the stamping unit 500, and a curing source unit 630 for curing the photoresist on the substrate. The photoresist, which is applied to the substrate in the coating unit 400 (see
The process of manufacturing a wire grid polarizer with the first exemplary embodiment of stamping and curing units 500 and 600 of
First, the substrate 2000 on which a thin metal film layer and a photoresist have been sequentially formed is carried to the stamping unit 500 and placed securely on the first substrate supporting unit 520 such that the stamp 530 is disposed above and aligned with the substrate 2000 (
When the stamp 530 is aligned above the substrate 2000, the stamp 530 is pressed down onto the photoresist on the upper surface of the substrate 2000 by the pressing unit 540 (S520).
The substrate 2000 onto which the stamp 530 has been pressed is then carried to the curing unit 600,by an intermediate carrying unit 1000 (S530) and placed securely on the second substrate supporting unit 620 with the stamp 530 pressed thereon facing up, and the curing source unit 630 then cures the photoresist on the substrate 2000 by, e.g., irradiating the substrate with UV light or heat (S540). When the photoresist curing process is completed, the stamp 530 is separated from the substrate (S550) and returned to the stamping unit 500 for reuse.
After the stamp 530 has been removed from the substrate 2000, the substrate is carried to the etching unit 700 (see to
The second embodiment of
Referring to
The stamping chamber 510 of the stamping unit 500 provides a space in which various components of the stamping unit 500 are disposed, and the first substrate supporting unit 520 is disposed in the stamping chamber 510 and serves to support a substrate 2000 carried into the stamping chamber 510. A striped pattern (not shown) having a selected line width and spacing is formed on one surface of a stamp 530. The stamp 530 functions to transfer the striped pattern to a layer of photoresist applied to the substrate, and in the particular embodiment illustrated, a plurality of stamps is used, in the manner described below.
The pressing unit 540 is disposed in the upper portion of the stamping chamber 510, and functions to press the stamp 530 onto the photoresist on the substrate 2000 by moving the stamp 530 upward and downward. The stamp storing chamber 550 stores other, separate stamps, i.e., other than the stamp disposed in the stamping chamber 510 of the stamping unit 500, and functions to provide these waiting stamps to the stamping chamber 510 when needed.
As will be understood, since the substrate which was stamped in the stamping unit 500 is carried to the curing unit 600 while carrying the stamp 530 pressed thereon, no stamp remains in the stamping chamber 510. As a result, in order to stamp the next substrate, it is necessary to wait for the stamp that is separated from the substrate in the curing unit to be carried back to the stamping chamber 510 after the photoresist curing process is completed in the curing unit 600. However, in the particular embodiment of
The process of manufacturing a wire grid polarizer using the second embodiment of stamping and curing units 500 and 600 is described in more detail below with reference to
First, the substrate 2000 on which a thin metal film layer and a photoresist layer have been sequentially formed is carried to the stamping unit 500 and placed securely placed on the first substrate supporting unit 520. The stamp 530 is disposed above and aligned with the substrate 2000 (
The substrate 2000 on which the stamp 530 has been pressed is then carried to the curing unit 600 by an intermediate carrying unit 1000 (S730). Simultaneously, another stamp stored in the stamp storing chamber 550 is carried into the stamping chamber 510, and preparation is begun for stamping the next substrate in line.
The substrate 2000 with the stamp 530 pressed thereon and carried to the curing unit 600 is placed securely on the second substrate supporting unit 620, and the photoresist on the substrate is cured with the curing source unit 630 by irradiating it with UV light or heat (S740). When the process of curing the photoresist is completed, the stamp 530 is separated from the substrate (S750). The separated stamp 530 is then carried back to the stamp storing chamber 550 and is stored therein, and the substrate 2000 is carried to the etching unit 700 (see
The third embodiment of stamping and curing units 500 and 600 of
Referring to
The photoresist that is applied to the substrate in the coating unit 400 (see
In light of the foregoing, the stamping unit 500 of the third embodiment of
The curing source of the curing unit 600 of the third embodiment comprises a heater 635 for curing the thermosetting portion of the hybrid photoresist mixture.
The process of manufacturing a wire grid polarizer with the third exemplary embodiment of stamping and curing units 500 and 600 is described in more detail below with reference to
First, the substrate 2000 on which a thin metal film layer and a photoresist have been sequentially formed is carried to the stamping unit 500 and is securely placed on the first substrate supporting unit 520. The stamp 530 is then positioned above and aligned with the substrate 2000 (S910). In this particular embodiment, the photoresist formed on the substrate is, as described above, a hybrid photoresist comprising a mixture of a UV-curable photoresist and a thermosetting photoresist.
When the stamp 530 is aligned above the substrate 2000, the stamp 530 is pressed onto the photoresist on the substrate 2000 using the pressing unit 540 (S920). In this particular embodiment, the stamp 530 corresponds in size to the substrate 2000, and accordingly, the pattern of the stamp is transferred to the substrate in one pressing operation.
Next, photoresist is partially cured, i.e., the UV-curable portion of the hybrid photoresist mixture on the substrate is cured by radiating UV light onto the substrate using the UV light source 560 (S930) of the pressing unit 500. The stamp 530 is then separated from the substrate (S940).
The substrate 2000 from which the stamp 530 has been removed is then carried to the curing unit 600 by an intermediate carrying unit 1000 (S950) and placed securely on the second substrate supporting unit 620, and the photoresist on the substrate is then fully cured, i.e., the thermosetting portion of the hybrid photoresist mixture on the substrate is cured by radiating heat onto it with the heater 635 of the curing unit 600 (S960). The substrate 2000 is then carried to the etching unit 700 (see
As described above, when a hybrid photoresist comprising a mixture of a UV-curable photoresist and a thermosetting photoresist is used as the photoresist, if a stamp is pressed onto the hybrid photoresist and the photoresist then irradiated with UV light, the UV-curable portion of the photoresist is cured and its shape therefore becomes fixed. In this condition, even though the stamp is separated from the hybrid photoresist, the cured portion of the photoresist efficiently maintains the pattern transferred thereto by the stamp. When the photoresist is then carried to the curing unit and the thermosetting portion of the hybrid photoresist mixture is cured through a thermo-curing process, the hybrid photoresist is thereby fully cured.
Accordingly, when the above “dual curing” method is respectively applied in the third exemplary embodiment of stamping and curing units 500 and 600, the unit processing time can be reduced to the minimum.
The fourth exemplary embodiment of
Referring to
A hybrid photoresist comprising a mixture of a UV-curable photoresist and a thermosetting photoresist is used as the photoresist that is applied to the substrate in the coating unit 400 (see
As mentioned above, the stamp 530 used in the fourth exemplary embodiment is smaller than the substrate 2000. Accordingly, the process of pressing the stamp 530 on the substrate must be repeatedly performed, at least two times, to completely transfer the pattern of the smaller stamp 530 to the photoresist on the larger substrate. As will be understood, if the above, dual curing technique of pressing the stamp 530 on the hybrid photoresist of the substrate and then curing it with UV light source 560 is used, it is necessary that the regions of the photoresist that have not been pressed by the stamp 530 not be irradiated with the UV light so as to prevent them from being cured until after they have been imprinted with the stamp. Accordingly, the UV light blocking unit 570 is provided in a lower portion of the UV light source 560 to block a part of the UV light that is radiated from the UV light source 560 onto the photoresist. In this embodiment, the UV light blocking unit 570 is formed of a metal film made of a metal material, such as chromium or aluminum.
The process of manufacturing a wire grid polarizer with the fourth exemplary embodiment of stamping and curing units 500 is described in more detail below with reference to
First, the substrate 2000 on which a thin metal film layer and a photoresist have been sequentially formed is carried to the stamping unit 500 and is placed securely on the first substrate supporting unit 520. The stamp 530 is then positioned above and aligned with the substrate 2000 (FIG 11, S1110). As described above, in this embodiment, the photoresist formed on the substrate comprises a hybrid photoresist, i.e., a mixture of UV-curable and thermosetting photoresists. Further, the stamp 530 is smaller in size than the substrate 2000.
When the stamp 530 is initially aligned above the substrate 2000, the stamp 530 is pressed down onto the substrate 2000 using the pressing unit 540 (S1120). Next, the UV-curable portion of the hybrid photoresist mixture is partially cured by radiating UV light onto only a part of the substrate, that is, the region on which the stamp is pressed, using the UV light source 560, and the UV light blocking unit 570 (S1130) is used to block the UV light from the regions of the photoresist that are not to be partially cured. The stamp 530 is then separated from the partially cured region of photoresist on the substrate (S1140).
The foregoing process steps are then performed iteratively and repeatedly until the desired stamp pattern has been transferred to the entire region of the photoresist on the substrate (S1150). Then, after the final iteration, i.e., after the desired pattern has been formed in the entire surface of the photoresist on the substrate 2000, and the entire surface of the photoresist has been partially cured by the above selective UV radiation of selected regions thereof, the substrate 2000 from which the stamp 530 has been separated is carried to the curing unit 600 by an intermediate carrying unit 1000 (S1160).
The substrate 2000 is placed securely on the second substrate supporting unit 620, and the heater 635 then fully cures the thermosetting portion of the hybrid photoresist mixture on the substrate by radiating it with heat (S1170). The fully cured substrate 2000 is then carried to the etching unit 700 (see
Referring to
As illustrated in
The principle by which the unit stamps 535 are attached to the base plate 531 is described in more detail with reference to
Either a silicon or a quartz wafer may be used as the substrate of a unit stamp 535. Since the silicon wafer is itself a conductor, as shown in
Accordingly, when a large stamp is fabricated by attaching a plurality of the unit stamps 535 to the substrate 531 using the electrostatic attraction force of the embedded magnets, the process may be advantageously used in a high cleaning chamber or even a vacuum chamber. Thus, although a known air induction, or “vacuum chuck” method cannot be applied in a vacuum, the electrostatic attraction method can be applied even in a vacuum atmosphere, and the resulting stamp assembly is not easily disturbed, even when used over a long period time, since the strength of the electrostatic attraction remains substantially constant.
As illustrated in
Then, as illustrated in
After the unit stamp substrate 536 has been cut as above, the manufacture of the unit stamp 535 is completed by removing the protective layer 539 on the unit stamp, as illustrated in
When the foregoing processes are performed in the above order, i.e., forming the protective layer, cutting the unit stamp substrate and then removing the protective layer, this prevents the wire grid pattern on the substrate from being contaminated or damaged during the cutting process.
The pressing unit 540 of the stamping unit 500 is described in greater detail with reference to
The gas pressure applying unit includes a gas supply source (not illustrated) provided outside the pressing chamber 541 and configured to supply a gas for injection into the pressing chamber 541, and gas injection holes 543 formed in a wall of the pressing chamber 541.
The gas pressure correcting unit 545 includes a plurality of spring members provided symmetrically inside the pressing chamber 541.
When gas is injected into the pressing chamber through the gas injection holes 543 formed in the wall of the pressing chamber 541, it is possible that the pressure of the gas will not be applied evenly to the stamp because the pressure is applied to the stamp locally, depending on the position of gas injection holes, which could result in the stamp being pressed onto the substrate 520 in a non-uniform manner.
However, even though the gas pressure may be applied non-uniformly over the surface of the stamp 530, i.e., may be greater in certain areas of the stamp than in others, thereby resulting in the stamp being pressed more in those positions and resulting in a non-uniform displacement, the gas pressure correcting unit 545 also includes a plurality of spring members that compensate for the pressure differences and act to restore the equilibrium of the applied pressure by offsetting the differences in displacement of the stamp due to the imbalanced pressure.
Further, the gas pressure applying unit can inject the gas into the pressing chamber 541 almost instantaneously, or alternatively, can inject the gas into the chamber in discrete, incremental steps. Accordingly, it is possible to apply pressure to the chamber in one or in multiple steps.
The openings 515 for opening and closing the stamping chamber may be provided in the side wall of the stamping chamber 510 of the stamping unit 500.
According to the exemplary embodiments of the present invention described above, the processing time for manufacturing a wire grid polarizer can be greatly reduced by arranging the respective processing units of systems for manufacturing the polarizers in an inline arrangement. Additionally, the systems and methods of the present invention make it possible to increase the size of a wire grid polarizer and to enhance the precision of the manufacturing processes by attaching a plurality of unit stamps to a base plate using electrostatic force, thereby enabling the size of the stamps to be increased.
By now, those of skill in this art will appreciate that many modifications, substitutions and variations can be made in and to the systems and methods for manufacturing wire grid polarizers of the present invention without departing from its spirit and scope. In light of this, the scope of the present invention should not be limited to that of the particular embodiments illustrated and described herein, as they are only exemplary in nature, but instead, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0076959 | Aug 2006 | KR | national |