Systems and methods for mass flow controller verification

Information

  • Patent Grant
  • 9169975
  • Patent Number
    9,169,975
  • Date Filed
    Tuesday, August 28, 2012
    12 years ago
  • Date Issued
    Tuesday, October 27, 2015
    9 years ago
Abstract
A method and system are disclosed for verifying the flow rate of gas through a mass flow controller, such as a mass flow controller used with a tool for semiconductor or solar cell fabrication. To verify the mass flow rate measured by the mass flow controller, gas passing through the mass flow controller is also passed through a mass flow meter. The measured flow rate through the mass flow controller is compared to the measured flow rate through the mass flow meter and any difference between the two measured flow rates is determined. Depending upon the magnitude of any difference, the flow of gas to the mass flow controller may be altered.
Description

Embodiments of the present application relate to systems and methods for verifying the measured gas flow through a mass flow controller, particularly a mass flow controller used in semiconductor fabrication.


BACKGROUND

In semiconductor fabrication, a substrate or wafer is subjected to a number of processes in order to deposit or remove a layer from the wafer. Many of these processes involve the introduction of gases into a reaction chamber containing the wafer. These gases can include, for example, reactive gases introduced to deposit a layer on the substrate. In addition, inert gases can also be introduced to purge reactive gases from the chamber between reactive steps. Systems for introducing gases generally include gas sources (such as gas tanks, bubblers, other liquid and/or solid vaporization devices) connected via piping ultimately to the reaction chamber. Mass flow controllers and valves are adjusted in order to select the type and amount of the desired source gas(es) to introduce into the reaction chamber. Each mass flow controller (“MFC”) is normally calibrated to measure the flow rate of a particular type of process gas at a particular, flow rate or range of flow rates.


Semiconductor manufacturers have a continuing need to improve process accuracy and repeatability, both on a single tool, and across all tools in a fabrication operation running the same process. Deviations are caused by many factors, but a prime cause of deviation is the accuracy and repeatability of process gas flows controlled by MFCs. Any deviation from the idealized perfect flow for a particular process (caused by an inaccurate MFC, for example) can cause loss of yield and increased costs, and can affect the quality of the finished semiconductor. An MFC whose actual flow rate deviates from its intended flow rate (this deviation is sometimes referred to as “drift”) must be recalibrated or replaced, which leads to tool down time, decreased output and increased costs.


Some digitally controlled MFCs have accuracy levels reportedly in the range of +/−1% of the desired flow rate when the MFC is new. Devices such as MFVs (mass flow verifiers) or MFMs (mass flow meters) can be used to monitor and verify that the amount of gas entering a tool as measured by an MFC is the actual amount entering the tool, i.e., they verify the MFCs accuracy. MFVs generally have an accuracy of +/−1% and can be used to monitor and verify whether the amount the gas flow rate measured by an MFC has deviated from the actual gas flow through the MFC. However, MFV use is very time consuming, taking up to several days to perform a complete verification. Such a verification is typically performed quarterly, thus not always detecting MFC deviations early enough to avoid the afore-mentioned problems with drift.


MFMs can also be used to monitor MFC drift and can detect drift much faster. MFCs and MFMs, however, are configured for a particular gas type and a particular flow rate range. It is impractical to include a duplicately configured MFM for each gas type and flow rate range for which each MFC is configured.


There also has not been a way to improve the accuracy of many tools in a process fabrication using these validation tools, but only the tool within which the MFM or MFV resides.


A method to verify the actual gas flow through an MFC and reduce process deviation caused by MFC variability, whether for a single tool or from tool to tool within a semiconductor fabrication facility, is highly desired.


SUMMARY

Embodiments of the present application help verify the accuracy of the measured gas flow through a MFC. Embodiments of the application also allow replacement MFCs to be quickly tested by an MFM prior to installation on a tool, and the gas flow through the MFC verified and calibrated if necessary. Thus, replacement of MFCs would be less likely to cause process deviation. Additionally, some embodiments may operate in conjunction with a reference MFM that can be used on multiple processing tools and multiple MFCS. Among other things, this allows MFMs resident on each tool to be aligned to the “reference” MFM and thereby improve tool to tool matching.


Exemplary methods and systems according to various aspects of the application may use a single MFM for one MFC or a plurality of MFCs. The method and system preferably include either (a) one MFM used to verify the flow rates for the MFCs for a particular tool, (b) one MFM used to verify the flow rates for MFCs for a plurality of tools, or (c) in a fabrication shop in which multiple tools are running the same process, one MFM can verify the flow rate on each MFC flowing a particular type of gas, regardless of which tool to which each MFC is connected. If one MFM is used to verify the measured gas flow rates for the MFCs for a plurality of tools, the MFCs could each be in fluid communication with the MFM, or the MFM could be moved from tool to tool. Additionally, a single MFM could be used to measure only the same process gas for different MFCs used on different tools. Adjustments to the gas flow rate through an MFC can be made manually, or can be made automatically through a module controller.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.



FIG. 1 is a block diagram of a system according to embodiments of the present disclosure.



FIG. 2 is a block diagram of an alternate system according to the embodiments of the present disclosure.



FIG. 3 is a block diagram of an alternate system according to the embodiments of the present disclosure.



FIG. 4 is a block diagram of an alternate system according to the embodiments of the present disclosure.



FIG. 5 is a block diagram of an alternate system according to the embodiments of the present disclosure.



FIG. 6 is a block diagram of an alternate system according to the embodiments of the present disclosure.



FIG. 7 is a block diagram of an alternate system according to the embodiments of the present disclosure.



FIG. 8 depicts an exemplary system according to the embodiments of the present disclosure.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Embodiments of the present disclosure relate to methods and systems for verifying and potentially adjusting the flow rate of process gases to a reaction chamber during semiconductor processing. It is generally desirable for the amount of process gas injected into a reaction chamber to be as accurate as possible. Imperfect control over gas flow rates could contribute to non-uniformities in the physical properties of the finished product, or to wasted gas and increased costs.


Embodiments of the present disclosure help verify the accuracy of the measured gas flow through a MFC. In various embodiments, the MFM measures the actual gas flow through an MFC, and that measurement is compared to the MFC's own measurement of the gas flow. If the respective measured flow rates are not the same the flow of gas to the MFC may be adjusted. Preferably, the measured gas flow rate through the MFC is within +/−10% or less, +/−2% or less, +/−1% or less or +/−0.05% or less, of the measured gas flow rate through the MFM. If not within the desirable range, the gas flow to the MFC may be adjusted to be within that range.


Some digital MFCs include a database of flow rates for the active gas and the correlating equivalents in nitrogen gas. By accessing the N2 equivalent table of the MFC one can compare MFC deviations to the N2 flow rate measured by the MFC to the gas flow rate measured by MFV or MFM. The use of a single gas such as nitrogen allows for more accurate comparison since the flows through the MFC and the verification device are output from a common gas, such as N2. The common gas is flowed through the MFC and an MFM for the comparison. A scaling factor is used to compare the N2 flow measured by the MFM to the N2 flow measured by the MFC (which is configured to its own process gas).


The measured gas flow of the MFM can also be verified utilizing any suitable method or device, such as additional MFMs, a mass flow verifier or a restrictor conduit. By entering the common gas flow data into a tabulated format, a scaling factor can be derived at a selected number of points near the gas flow required by the particular process. This step-wise scaling is very accurate for the range of flows required by the process. Most importantly, this scaling can be used by a process controller to calibrate the actual MFC flow rate to the measured MFM gas flow rate. The controller can access the offset table and, if necessary, correct the gas flow of each MFC such that the actual gas flow through each MFC be within a desired range of the measured MFM gas flow.


This process is easily automated, and can be performed quickly and frequently, allowing for tighter control of MFC performance and process repeatability. The fact that this process can be performed more frequently also means it will quickly detect when an MFC is drifting significantly and in need of replacement. A replacement MFC can then be ordered early and be ready for installation at the next scheduled tool maintenance period instead of shutting down the tool solely to replace an MFC, which reduces tool down time.


This detailed description proceeds by describing how the measured flow rate of gas through an MFC is verified using an MFM. It then refers to the drawings to describe exemplary systems according to the disclosure.


Each process gas comes from a different source, such as a tank containing the gas, and is transferred via piping or tubing. Each process gas passes through a different MFC than the other process gases, and is then injected into a tool for manufacturing semiconductors. The MFC regulates the amount of process gas injected into the tool. Each MFC is calibrated for a particular gas and for a particular gas flow rate range required by the fabrication process. As an example, in a semiconductor manufacturing process, depending upon the layers to be deposited on the wafer, each of a plurality of MFCs could be programmed to permit a specific flow of a specific gas into the tool in which a semiconductor is fabricated.


Therefore, the MFC regulates the amount of process gas that enters the tool and is programmed to deliver the amount of gas required for a particular fabrication process. As mentioned previously, the flow rate indicated by MFCs can be incorrect, and it is therefore desirable to utilize systems and methods of the present disclosure to verify that the measured gas flow through the MFC is correct. If it is not correct, then a user has the option to adjust the gas flow to the MFC, or the gas flow could be adjusted automatically.


Some exemplary embodiments may include an MFC that is calibrated to one type of gas (sometimes referred to herein as a second gas) and an MFM that is calibrated to a different type of gas (sometimes referred to herein as a first gas). The second gas to which the MFC is calibrated is usually a process gas used in a tool for manufacturing semiconductors. Such process gases may include, but are not limited to, SiH4, GeH4, GeH4/H2, SiHCL3, Si3H8 and H2. The first gas to which the MFM is calibrated is a different gas, usually an inert gas because process gases can corrode the MFM. Some gases for which MFMs are usually calibrated, and that can be used to verify the flow through an MFC, are nitrogen, hydrogen and helium. Nitrogen is most preferred, but any suitable gas could be used. In some embodiments, a single MFM, which is calibrated for a single gas, can be used to verify the accuracy of a plurality of MFCs, wherein each MFC is calibrated for a different process gas.


In embodiments of the present disclosure, the gas for which the MFM is calibrated (the “first gas”) is passed through both the MFC and the MFM and a gas flow rate is measured by each. Because the MFC is calibrated to measure the flow of the second gas, not the first gas, its measurement is adjusted according to a scaling factor according to various aspects of the present disclosure. The scaling factor is applied to the measured flow of the first gas through the MFC in order to provide the true measurement of the first gas through the MFC. This true measurement is compared to the gas flow rate measured by the MFM to verify whether it is correct. The scaling factor can be obtained or derived from any suitable source or method. In one preferred embodiment the scaling factor for the process gas flowed through an MFC to N2 is programmed into the MFC and can be retrieved by a software program interfacing with the MFC.


An example of a table showing the results of utilizing a method according to aspects of the present disclosure is reproduced below. This table shows values verified by an MFM for an MFC calibrated for H2 and for a maximum flow of 30 liters per minute:












MFC 3: N-SRC (3 slm H2)















N2 Equiv
Inlet Prs (MPa)
Set Point
% Setpoint
MFM Prs (T)
MFM
ATM Prs (T)
Δ
% Δ


















0.303
0.204
0.30
10.00%
721
0.300
725.1
−0.003
−1.12%


0.599
0.201
0.60
20.00%
727
0.595
725.0
−0.004
−0.63%


0.892
0.209
0.90
30.00%
731
0.887
725.1
−0.005
−0.53%


1.184
0.209
1.20
40.00%
722
1.188
725.0
0.004
0.35%


1.477
0.207
1.50
50.00%
723
1.483
724.9
0.006
0.41%


1.770
0.206
1.80
60.00%
724
1.777
724.9
0.007
0.40%


2.066
0.205
2.10
70.00%
726
2.075
724.9
0.009
0.44%


2.366
0.204
2.40
80.00%
727
2.378
724.9
0.012
0.51%


2.674
0.203
2.70
90.00%
729
2.686
724.9
0.012
0.43%


2.995
0.202
3.00
100.00%
731
3.008
724.9
0.013
0.43%









The first column, designated as “N2 Equivalent,” is a programed value resident in the MFC. It is the N2 equivalent flow rate through the MFC when the MFC is adjusted to flow a set amount of process gas.


The second column, designated as “Inlet Prs (MPa),” is an actual measurement of the gas inlet pressure at the MFC. This measurement is not required to practice the embodiments disclosed herein, and is simply used to show that the MFC is being operated at the proper pressure.


The third column, designated as “Set Point,” designates a set point on the MFC for the volume of process gas per minute (in this case liters per minute) the MFC is supposed to flow.


The fourth column, marked “% Setpoint,” designates the percentage of the MFC full scale set point the Set Point in the third column is. Here, the full scale flow of the MFC is 3 liters per minute of H2, so the first Set Point of 0.300 liters per minute is 10% of the full scale flow.


The fifth column, designated as “MFM Prs (T),” is the inlet pressure to the MFM measured in Torr. The purpose of measuring this is only to show that the MFM is being operated at the proper pressure.


The sixth column, designated as “MFM,” is the measured flow of N2 gas through the MFM.


The seventh column, designated as “ATM Prs (T),” is the measured pressure at the outlet of the MFM, and this should be common to all measurements since the outlet is to the exhaust.


The eighth column, designated as “D,” (delta) is the difference in the value in the first column subtracted from the value in the sixth column (in the same row). This shows the difference between the actual N2 flow rate measured by the MFM and the intended flow rate for the MFC.


The ninth column, designated as “% D,” (% delta) is the percentage of the difference shown in the eighth column.


MFCs operating in conjunction with embodiments of the present disclosure may be configured for any type of gas and any desired flow rate. Preferably, all MFCs are calibrated for a specific range of N2 corresponding to the desired flow range for the MFC. In some embodiments of the present disclosure, a software program interfacing with an MFC can provide a set point (or a percentage of the maximum flow rate for the MFC) and retrieve the N2 equivalent flow rate for the MFC.


For the example described in the table above, the N2 equivalent flow rate for at a set point of 3.00 liters (or 100% of the MFC's maximum flow rate) of H2 is 2.995. Likewise, the N2 equivalent flow rate at a set point of 1.5 liters (or 50% of the MFC's maximum flow rate) is 1.477. Similarly, the MFC's N2 equivalent flow rate at a set point of 0.30 liters (10% the maximum flow rate) is 0.303.


The MFC's intended flow rate at each set point can be compared to a measured value from an MFM, as shown in the eighth column. In the above example, when the MFC reads a flow rate of 2.995, which should correspond to a flow rate of 3.00 liters of H2, the MFM indicates the flow rate is actually 3.008 liters, or a difference of 0.43%. If desired, the flow rate of the MFC may be adjusted such that its actual rate of flow more closely matches the desired flow rate. In many semiconductor processing systems, however, a certain range of inaccuracy from an MFC may be acceptable. In some embodiments, for example, an accepted tolerance for MFC accuracy may be +/−1%. In such cases, the MFC's output for most of the set points in the above example would be acceptable. For the 0.30 liter (10%) set point, however, the MFC is off by −1.12%, which would require an adjustment to the MFC's flow rate in such a scenario. Otherwise, too much or too little of a process gas can lead to defects in the semiconductor devices being fabricated. In accordance with embodiments of this disclosure, adjustments to the MFC's flow rate may be made automatically or manually and at any point during the process.


Adjustment of the input to an MFC may be +/−10% or more as desired to correct for an inaccurate flow rate measured by the MFC. Such adjustment may be performed manually or automatically. In some exemplary embodiments, in response to detecting a flow rate that is inaccurate in excess of a predetermined threshold compared to a flow rate measurement from an MFM results in an automatic adjustment to the input set point to the MFC. Methods operating in conjunction with the embodiments of the present disclosure may generate an alert to an operator of the semiconductor processing tool that an automatic adjustment has been made in response to drift in an MFC, or request confirmation from the operator before adjusting the MFC.


An option to this process is to manifold a single MFM to a cluster set of tools that are served by a common wafer handling platform. There could be 1, 2, 3, 4 or more process tools connected to a common MFM manifold. Thus, a specific type of MFC on one tool could be compared to the same MFC on another tool, and the step wise scaling would thus be to a common referenced MFM. MFM repeatability is much better than its accuracy, typically on the range of +/−0.2%. Thus, matching of various process tool gas performance within a single wafer platform could reduce variation from the typical +/−1% to +/−0.2%, an improvement of 500%. This improved matching would improve wafer yields and save money for manufacturers.


In embodiments of the present disclosure, a “reference” MFM may be moved from platform to platform to perform the step wise scaling routine at each platform. This is a longer process since gas line leak check would be required when the MFM is installed or removed from a system, but would allow platform to platform matching of +/−0.2%. This is a highly desirable improvement and will reduce costs to a semiconductor fabricator across multiple tool sets in their fab.


The creation of the step wise scaling, via accessing the N2 equivalents table in each MFC, and comparing to the MFM flows in N2, can be done manually or automatically. In some exemplary embodiments, these and other processes may be performed by software operating on a computer system, such as system 800 depicted in FIG. 8 and described in more detail below.


Turning now to the figures, where the purpose is to describe exemplary embodiments of the present disclosure and not limit same, FIG. 1 shows a schematic diagram of system 1.


System 1 has a plurality (four) MFCs 2 that can be either connected to (also called in fluid communication with) an MFM 4, which is called the first position, or connected to a tool 4, which is called the second position. It will be understood that when an MFC 2 is in the first position, it individually communicates with the MFM 4 over a given time period because the MFM4 cannot simultaneously verify the measured gas flow rate through a plurality of MFCs 2.


In system 1, a structure of any suitable type, which is referred to herein as a valve, alters the flow of gas exiting an MFC2 to move through either the tool 6 or the MFM4. When the flow of gas moves through the MFM4, the measured flow rate of the MFC2 is verified by the measured flow rate through the MFM4 as described herein. Preferably, gas exiting the MFM4 goes to a suitable exhaust (not shown).



FIG. 2 shows an alternate system 10 of the present disclosure that is in all respects the same as system 1. MFCs 12 correspond to MFCs 2, MFM 14 corresponds to MFM 4, and tool 16 corresponds to tool 6. The added structure in system 10 is an MFV or other verification device 18, which verifies the flow rate of gas as measured by MFM 14. Device 18 can be an MFV or a calibration tube, each of which is known by those skilled in the relevant art, but have not been known previously to be used in this manner.



FIG. 3 shows an alternate system 20 of the present disclosure. MFCs 22 correspond to MFCs 2, and MFMs 24 correspond to MFMs 4 in system 1. In system 20, there are at least three MFMs 24. When in the first position the gas entering each individual MFC 22 is passed through the plurality of MFMs 24 to verify the measured gas flow rate through the MFC. If one of the MFMs is not functioning properly, its measurement of the gas flow rate will be different than that of the other two (or more) MFMs. In that case, the measured flow rate through the MFC could be verified if two of the three MFMs measure essentially the same flow rate, even though one of the MFMs may measure a different flow rate, and the malfunctioning MFM 24 can be repaired or replaced.



FIG. 4 shows a system 30 wherein the MFM 34 is positioned in the gas flow paths that enter tool 36. In this embodiment, MFCs 32 correspond to MFCs 2, MFM 34 corresponds to MFM 4, tool 36 corresponds to tool 6, and MFV 38 corresponds to MFV 18. In this embodiment, MFM is constructed so that it is not easily corroded by the process gases passing through the MFCs 32, and the process gases pass through MFM 34 and into tool 36. When verifying the accuracy of the measured gas flow through any of the MFCs 32, a common gas is used as explained above, and the gas flow exiting MFM 34 is preferably routed to an exhaust rather than into tool 36 (although it could be routed to tool 35, which would later purge the common gas). MFV 38 is, as the other MFVs described herein, an optional feature.



FIG. 5 shows an alternate system 40 of the present disclosure wherein there are at least three MFMs 44 upstream of the MFCs 42 and tool 46. In this embodiment each process gas would flow from a source (not shown) through the plurality of MFMs 44 and then be routed from the last MFM 44 to the MFC calibrated for that process gas. These MFMs must be designed and constructed to withstand the corrosive effect of the process gases.


To verify the accuracy of any MFC 42, instead of flowing process gas, another gas such as nitrogen would be flowed through the MFMs 44 and the MFC 42 to be verified. During the verification process, gas exiting the MFC would be routed to an exhaust instead of tool 46.



FIG. 6 shows an alternate system 50 according to the present disclosure. System 50 has a plurality of tools 56A, 56B and 56C. Each of the plurality of tools has a plurality (four per tool in this embodiment) of MFCs 52A-52L, each of which receive process gas from a source (not shown) and inject the process gas into the associated tool (56A, 56B, or 56C).


In this embodiment there is a single MFM to verify the flow rates of each MFC. As explained herein the flow rate of the MFCs are verified one at a time. System 50 may have a controller that automatically verifies the flow rate of each MFC on a predetermined schedule. As with other embodiments described herein, MFM 54 may be connected to an MFV or other verification device 58 to verify the accuracy of the gas flow rate measured by MFM 54.



FIG. 7 shows an alternate system 60 according to the present disclosure. In system 60 there is a MFM used to verify a plurality of MFCs wherein each MFC associated with an MFM is calibrated for the same gas.


System 60 includes a plurality of tools (two in this example) 66A and 66B. Each of the tools includes a plurality of MFCs, which as shown is four MFCs per tool. System 60 simulates a fabrication shop wherein the same process gases are being injected into each tool. Therefore, MFC 62A and 62E are each calibrated for the same gas, which is a different gas from which the other MFCs are calibrated. MFC 62B and 62F are also calibrated for the same gas, which is a different gas from which the other MFCs are calibrated. MFCs 62C and 62G are calibrated for the same gas, which is a different gas from which the other MFCs are calibrated. Finally, MFCs 62D and 62H are calibrated for the same gas, which is a different gas from which the other MFCs are calibrated.


As shown, each plurality of MFCs calibrated for the same gas have their gas flow rate verified by an MFM (64A-64D) that is not used to verify the gas flow rate of an MFC calibrated for a different gas. Optionally, each MFM can be connected to an MFV or other verification device (68A-68D) to verify the gas flow rate measured by the MFM.


As previously described, to verify the measured gas flow rate through an MFC, which is done one at a time by each MFM, a first gas such as nitrogen is flowed through the MFC and then through the MFM. The verification and potential adjustment is performed as described above.



FIG. 8 depicts an embodiment of an exemplary system 800 according to various aspects of the present disclosure. In this exemplary embodiment, system 800 includes a computer system 805 comprising a processor 810, memory 820, and user interface 830. The computer system 805 communicates with a semiconductor processing tool 840, which may include any of the semiconductor processing tools described in conjunction with FIGS. 1-7 above.


The computer system 805 may store a software program configured to perform the methods described herein in the memory 820, and run the software program using the processor 810. The computer system 805 may include any number of individual processors 810 and memories 820. Information and commands of any kind may be communicated between the computer system 805 and a user via the user interface 830. Such information may also be communicated between the computer system 805 and the semiconductor processing tool 840 (e.g., through a network such as the Internet).


The computer system 800 may control, or gather information from, any of the components in tool 840, including any MFC or MFM operating in conjunction with embodiments of the present disclosure. The user interface 830 may include various peripheral devices (such as monitors and printers), as well as any suitable control devices (such as a mouse and keyboard) to allow users to control and interact with software operating on the computer system 805. The computer system 805 may include any number of other components, devices, and/or systems.


The particular implementations shown and described above are illustrative of the exemplary embodiments and their best mode and are not intended to otherwise limit the scope of the present disclosure in any way. Indeed, for the sake of brevity, conventional data storage, data transmission, and other functional aspects of the systems may not be described in detail. Methods illustrated in the various figures may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order without departing from the scope of the present disclosure. Furthermore, the connecting lines shown in the various figures are intended to represent exemplary functional relationships and/or physical couplings between the various elements. Many alternative or additional functional relationships or physical connections may be present in a practical system.

Claims
  • 1. A method of verifying the flow rate of gas through a mass flow controller, the method comprising the steps of: (a) measuring a flow of a first gas through a mass flow controller that is calibrated for a second gas,(b) measuring the actual flow of the first gas through at least three mass flow meters, wherein each of a first mass flow meter, a second mass flow meter and a third mass flow meter are calibrated for the first gas,wherein the first flow meter is configured to measure a first actual flow, the second flow meter is configured to measure a second actual flow, and the third flow meter is configured to measure a third actual flow;(c) comparing the first actual flow, the second actual flow, and the third actual flow to determine a match between at least two of the first actual flow, the second actual flow, and the third actual flow;(d) determining a control flow based on the comparing;(e) based on the second gas for which the mass flow controller is calibrated, select a scaling factor to apply to the measured flow of the first gas through the mass flow controller;(f) scale the measured flow of the first gas through the mass flow controller using the scaling factor to determine a scaled measured flow of the first gas through the mass flow controller;(g) compare the scaled measured flow of the first gas through the mass flow controller to the control flow; and(h) determine the difference between the scaled measured flow of the first gas through the mass flow controller to the control flow,wherein the first gas and the second gas selectively flow through the mass flow meter or to a tool.
  • 2. The method of claim 1 wherein in response to the control flow being different from the scaled measured flow through the mass flow controller and outside a range, the flow of gas sent to the mass flow controller is adjusted.
  • 3. The method of claim 2 wherein the measured flow of gas through the mass flow controller is adjusted to one of the group consisting of: (a) +/−10% or less of the control flow, (b) +/−2% or less of the control flow, (c) +/−1% or less of the control flow; or (d) +/−0.5% of the control flow.
  • 4. The method of claim 1 wherein in response to the difference between the measured flow through the first mass flow controller being different than the control flow, an alert is sent to a user.
  • 5. The method of claim 1 wherein the verification steps are performed for a plurality of scaled measured flow rates for a single mass flow controller.
  • 6. The method of claim 1 wherein the verification steps are performed for a plurality of scaled measured flow rates for each of a plurality of mass flow controllers.
  • 7. The method of claim 1 wherein the scaling factor is programmed into the mass flow controller and is accessed by a user.
  • 8. The method of claim 5 wherein there is a different scaling factor for each gas flow rate.
  • 9. The method of claim 8 wherein each different scaling factor is programmed into the mass flow controller and is accessible to a user.
  • 10. The method of claim 1 wherein the first gas is selected from the group consisting of nitrogen, hydrogen and helium.
  • 11. The method of claim 1 wherein the second gas is selected from the group consisting of: SiH4, GeH4, GeH4/H2, SiHCL3, Si3H8 and H2.
  • 12. The method of claim 1 that further includes a mass flow verifier in fluid communication with the mass flow meter and that further includes the step of the mass flow verifier verifying control flow of the first gas that is measured by the plurality of mass flow meters.
  • 13. The method of claim 1 wherein the at least three mass flow meters are in series and in fluid communication, and wherein the first gas exits the mass flow controller and passes through each of the mass flow meters in order to verify the measured flow of first gas passing through the mass flow controller.
  • 14. The method of claim 1 that further includes a calibration tube in fluid communication with the mass flow meter and further comprises the step of directing at least some of the first gas from the mass flow meter through the calibration tube to verify the measured flow of the first gas through the mass flow meter.
  • 15. The method of claim 2 wherein the flow of gas sent to the mass flow controller is adjusted manually by a user.
  • 16. The method of claim 2 wherein the flow of gas to the mass flow controller is adjusted electronically by the mass flow meter sending a signal to a controller.
  • 17. The method of claim 1 that further includes the step of purging the second gas from the mass flow controller prior to verifying the measured flow rate of the first gas through the mass flow controller.
  • 18. The method of claim 1 wherein gas exiting the mass flow controller is re-routed from a tool to the mass flow meter in order to verify the measured flow rate of the first gas through the mass flow controller.
  • 19. The method of claim 1 wherein there is a plurality of mass flow controllers, one of the plurality of mass flow controllers is calibrated for the second gas, and each of the other of the plurality of mass flow controllers is calibrated for a gas other than the first gas, and each of the plurality of mass flow controllers can be individually connected to the mass flow meter to verify the measured flow rate of the first gas through each of the mass flow controllers.
  • 20. The method of claim 18 that further includes the step of the mass flow meter automatically verifying the measured flow of first gas through each of the mass flow controllers on a predetermined time schedule.
  • 21. The method of claim 19 wherein each of the mass flow controllers includes scaling factors and each of the scaling factors is based upon the type of gas regulated by the mass flow controller and the flow rate of the gas through the gas flow controller.
  • 22. The method of claim 1 wherein there is a plurality of mass flow controllers servicing a first tool and a plurality of mass flow controllers servicing a second tool, and the gas flow rate through each of the mass flow controllers is verified by the plurality of mass flow meters.
  • 23. The method of claim 1 that further includes a plurality of tools and a plurality of mass flow controllers associated with each tool, wherein each mass flow controller associated with each tool is calibrated for a gas that is different from the gas for which each other mass flow controller associated with that tool is calibrated, and each of the plurality of tools has at least one mass flow controller calibrated for the same gas as at least one of the plurality of mass flow controllers for another of the plurality of tools is calibrated, and wherein the plurality of mass flow meters verifies the measured flow rates of the first gas through each of the mass flow controllers.
  • 24. The method of claim 1 that further comprises the steps of: (a) Verifying by the plurality of mass flow meters the flow rate of the first gas through at least one mass flow controller for a first tool; and(b) Verifying by plurality of mass flow meters the flow rate of the first gas through at least one mass flow controller at a second tool.
  • 25. The method of claim 24 that further comprises the step of physically moving at least one of the plurality of mass flow meters from the first tool to the second tool.
  • 26. A system for verifying the flow rate of gas through a mass flow controller, the system comprising: (a) a mass flow controller fluidly coupled to a tool, wherein the mass flow controller is calibrated for a second gas and configured to measure the flow rate for a first gas;(b) a storage device including one or more scaling factors to scale the flow rate of the second gas to a flow rate of a first gas;(c) a plurality of mass flow meters configured to measure a first actual flow, a second actual flow, and a third actual flow for the first gas flowing therethrough, wherein the mass flow controller is interposed between the mass flow meter and the tool;(d) a controller configured to compare the first actual flow, the second actual flow, and the third actual flow to determine a match between at least two of the first actual flow, the second actual flow, and the third actual flow, the controller configured to determine a control flow based on the match; and(e) a valve having a first position wherein gas exiting the mass flow controller is directed through the plurality of mass flow meters and a second position wherein gas exiting the mass flow controller is not directed through the plurality of mass flow meters, whereby when the valve is in its first position the measured amount of first gas flow rate through the mass flow controller can be verified by utilizing the scaling factor and comparing the control flow from the plurality of mass flow meters.
  • 27. The system of claim 26 that further includes a gas flow verification device connected to the plurality of mass flow meters to verify that the control flow measured through the plurality of mass flow meters is correct.
  • 28. The system of claim 26 wherein the gas flow verification device is selected from the group consisting of: a mass flow verifier and a calibration tube.
  • 29. The system of claim 26 wherein there is a plurality of mass flow controllers, and gas from only one mass flow controller is directed through the plurality of mass flow meters at any given time.
  • 30. The system of claim 26 wherein when the valve is in its second position, gas exiting the mass flow controller enters a tool for making semiconductors or solar cells.
  • 31. The system of claim 26 that further includes an automated system for adjusting the gas flow to the mass flow controller if there is a predetermined difference between the measured amount of gas flow through the mass flow controller and the control flow.
  • 32. The system of claim 26 wherein there is a plurality of mass flow controllers servicing a first tool and a plurality of mass flow controllers servicing a second tool, and the gas flow rate through each of the mass flow controllers is verified by the plurality of mass flow meters.
  • 33. The system of claim 26 that further includes a plurality of tools and a plurality of mass flow controllers associated with each tool, wherein each mass flow controller associated with each tool is calibrated for a gas that is different from the gas for which each other mass flow controller associated with that tool is calibrated, and each of the plurality of tools has at least one mass flow controller calibrated for the same gas as at least one of the plurality of mass flow controllers for another of the plurality of tools is calibrated, and wherein the plurality of mass flow meters verifies the measured flow rates of the first gas through each of the mass flow controllers that is calibrated for the same gas.
  • 34. A system for verifying the flow rate of gases, the system comprising: a first tool;a first mass flow controller in fluid communication with the first tool, wherein the first mass flow controller is calibrated for a second gas;a mass flow meter in fluid communication with the first mass flow controller, wherein the mass flow meter is calibrated for a first gas;a second tool;a second mass flow controller in fluid communication with the second tool and the mass flow meter, wherein the second mass flow controller is calibrated for the second gas;the mass flow meter is configured to determine and compare an actual flow rate of the first gas from the first mass flow controller and the second mass flow controller; anda controller configured to determine at least one of a control flow or a scaling factor based on the actual flow rate of the first gas from the first mass flow controller and the second mass flow controller.
US Referenced Citations (466)
Number Name Date Kind
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4054071 Patejak Oct 1977 A
4058430 Suntola et al. Nov 1977 A
4145699 Hu et al. Mar 1979 A
4176630 Elmer Dec 1979 A
4181330 Kojima Jan 1980 A
4194536 Stine et al. Mar 1980 A
4322592 Martin Mar 1982 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4436674 McMenamin Mar 1984 A
4499354 Hill et al. Feb 1985 A
4512113 Budinger Apr 1985 A
4570328 Price et al. Feb 1986 A
D288556 Wallgren Mar 1987 S
4653541 Oehlschlaeger et al. Mar 1987 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4882199 Sadoway et al. Nov 1989 A
4986215 Yamada Jan 1991 A
4991614 Hammel Feb 1991 A
5062386 Christensen Nov 1991 A
5074017 Toya et al. Dec 1991 A
5119760 McMillan et al. Jun 1992 A
5167716 Boitnott et al. Dec 1992 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5326427 Jerbic Jul 1994 A
5380367 Bertone Jan 1995 A
5421893 Perlov Jun 1995 A
5422139 Shinriki et al. Jun 1995 A
5518549 Hellwig May 1996 A
5595606 Fujikawa et al. Jan 1997 A
5616947 Tamura Apr 1997 A
5632919 MacCracken et al. May 1997 A
5681779 Pasch et al. Oct 1997 A
5695567 Kordina Dec 1997 A
5730801 Tepman Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5796074 Edelstein et al. Aug 1998 A
5836483 Disel Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5855680 Soininen et al. Jan 1999 A
5920798 Higuchi et al. Jul 1999 A
5979506 Aarseth Nov 1999 A
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6035101 Sajoto et al. Mar 2000 A
6060691 Minami et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6122036 Yamasaki et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6160244 Ohashi Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6201999 Jevtic Mar 2001 B1
6274878 Li et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
D451893 Robson Dec 2001 S
D452220 Robson Dec 2001 S
6326597 Lubomirsky et al. Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6383566 Zagdoun May 2002 B1
6410459 Blalock et al. Jun 2002 B2
6420279 Ono et al. Jul 2002 B1
6454860 Metzner et al. Sep 2002 B2
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6483989 Okada et al. Nov 2002 B1
6511539 Raaijmakers Jan 2003 B1
6521295 Remington Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6569239 Arai et al. May 2003 B2
6579833 McNallan et al. Jun 2003 B1
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6627503 Ma et al. Sep 2003 B2
6633364 Hayashi Oct 2003 B2
6645304 Yamaguchi Nov 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6673196 Oyabu Jan 2004 B1
6682973 Paton et al. Jan 2004 B1
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6734090 Agarwala et al. May 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shipley et al. Nov 2004 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6863019 Shamouilian Mar 2005 B2
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6884066 Nguyen et al. Apr 2005 B2
6884319 Kim Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972478 Waite et al. Dec 2005 B1
7045430 Ahn et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7071051 Jeon et al. Jul 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7147766 Uzoh et al. Dec 2006 B2
7172497 Basol et al. Feb 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7235501 Ahn et al. Jun 2007 B2
7238596 Kouvetakis et al. Jul 2007 B2
D553104 Oohashi et al. Oct 2007 S
7298009 Yan et al. Nov 2007 B2
D557226 Uchino et al. Dec 2007 S
7312494 Ahn et al. Dec 2007 B2
7329947 Adachi et al. Feb 2008 B2
7357138 Ji et al. Apr 2008 B2
7393418 Yokogawa Jul 2008 B2
7393736 Ahn et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7414281 Fastow Aug 2008 B1
7431966 Derderian et al. Oct 2008 B2
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7489389 Shibazaki Feb 2009 B2
D593969 Li Jun 2009 S
7547363 Tomiyasu et al. Jun 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7589003 Kouvetakis et al. Sep 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651583 Kent et al. Jan 2010 B2
D609655 Sugimoto Feb 2010 S
7678197 Maki Mar 2010 B2
D614153 Fondurulia et al. Apr 2010 S
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7740705 Li Jun 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7833353 Furukawahara et al. Nov 2010 B2
7838084 Derderian et al. Nov 2010 B2
7851019 Tuominen et al. Dec 2010 B2
7884918 Hattori Feb 2011 B2
D634719 Yasuda et al. Mar 2011 S
8041197 Kasai et al. Oct 2011 B2
8055378 Numakura Nov 2011 B2
8071451 Berry Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
8092604 Tomiyasu et al. Jan 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8216380 White et al. Jul 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8309173 Tuominen et al. Nov 2012 B2
8323413 Son Dec 2012 B2
8367528 Bauer et al. Feb 2013 B2
8372204 Nakamura Feb 2013 B2
8444120 Gregg et al. May 2013 B2
8506713 Takagi Aug 2013 B2
D691974 Osada et al. Oct 2013 S
8608885 Goto et al. Dec 2013 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
D705745 Kurs et al. May 2014 S
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8802201 Raisanen et al. Aug 2014 B2
D716742 Jang et al. Nov 2014 S
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8986456 Fondurulia et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
9005539 Halpin et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9018111 Milligan et al. Apr 2015 B2
9021985 Alokozai et al. May 2015 B2
9029253 Milligan et al. May 2015 B2
9096931 Yednak et al. Aug 2015 B2
20010017103 Takeshita et al. Aug 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20020001974 Chan Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020064592 Datta et al. May 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030141820 White et al. Jul 2003 A1
20030168001 Sneh Sep 2003 A1
20030180458 Sneh Sep 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040009679 Yeo et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040018307 Park et al. Jan 2004 A1
20040018750 Sophie et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040101622 Park et al. May 2004 A1
20040106249 Huotari Jun 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050054228 March Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050072357 Shero Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050212119 Shero et al. Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20050287725 Kitagawa Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068125 Radhakrishnan Mar 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060163612 Kouvetakis et al. Jul 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060257584 Derderian et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070096194 Streck et al. May 2007 A1
20070116873 Li et al. May 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070209590 Li Sep 2007 A1
20070232501 Tonomura Oct 2007 A1
20070237697 Clark Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20080006208 Ueno et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080237572 Chui et al. Oct 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080315292 Ji et al. Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090035947 Horii Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090122293 Shibazaki May 2009 A1
20090136668 Gregg et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100130017 Luo et al. May 2010 A1
20100162752 Tabata et al. Jul 2010 A1
20100170441 Won et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100230051 Iizuka Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110089469 Merckling Apr 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110254052 Kouvetakis Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120114877 Lee May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20120318334 Bedell et al. Dec 2012 A1
20120321786 Satitpunwaycha et al. Dec 2012 A1
20130023129 Reed Jan 2013 A1
20130081702 Mohammed et al. Apr 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130256838 Sanchez et al. Oct 2013 A1
20130264659 Jung Oct 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20130330911 Huang et al. Dec 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140020619 Vincent et al. Jan 2014 A1
20140027884 Fang et al. Jan 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140077240 Roucka et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140087544 Tolle Mar 2014 A1
20140103145 White et al. Apr 2014 A1
20140120487 Kaneko May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140225065 Rachmady et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150014632 Kim et al. Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
20150091057 Xie et al. Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
20150132212 Winkler et al. May 2015 A1
20150140210 Jung et al. May 2015 A1
20150147877 Jung May 2015 A1
20150167159 Halpin et al. Jun 2015 A1
20150184291 Alokozai et al. Jul 2015 A1
20150187568 Pettinger et al. Jul 2015 A1
Foreign Referenced Citations (18)
Number Date Country
1563483 Jan 2005 CN
101330015 Dec 2008 CN
101522943 Sep 2009 CN
101423937 Sep 2011 CN
2036600 Mar 2009 EP
07283149 Oct 1995 JP
08335558 Dec 1996 JP
2001342570 Dec 2001 JP
2004014952 Jan 2004 JP
2004091848 Mar 2004 JP
2004538374 Dec 2004 JP
2005507030 Mar 2005 JP
2006186271 Jul 2006 JP
2008527748 Jul 2008 JP
1226380 Jan 2005 TW
200701301 Jan 2007 TW
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
Non-Patent Literature Citations (122)
Entry
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Office Action dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
Chinese Patent Office; Office Action dated Jan. 10, 2013 is U.S. Appl. No. 201080015699.9.
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society.
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, 2008-04, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea.
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351.
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Non-Final Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Final Office Action dated Jun. 18,2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Non-Final Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 09/9110,511.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,258.
USPTO; Office Action dated Mar. 24, 2014 in U.S. Appl. No. 13/439,258.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362.
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Serial No. 201080036764.6.
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Serial No. 201080036764.6.
Japanese Patent Office; Office Action dated Dec. 25, 2014 in Serial No. 2012-504786.
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782.
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
Uspto; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTal-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298.
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
Crowell, “Chemical Methods of Thin Film Deposition: Chemical Vapor Deposition, Atomic layer Deposition, and Related Technologies,” Journal of Vacuum Science & Technology A 21.5, (2003): S88-S95.
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, vol. 32, pp. 3987-4000, (1986).
Related Publications (1)
Number Date Country
20140060147 A1 Mar 2014 US