The present invention relates to coordinate measurement machines and, more particularly, to coordinate measurement machines with various types of scanners.
Rectilinear measuring systems, also referred to as coordinate measuring machines (CMMs) and articulated arm coordinate measuring machines, are used to generate highly accurate geometry information. In general, these instruments capture the structural characteristics of an object for use in quality control, electronic rendering and/or duplication. One example of a conventional apparatus used for coordinate data acquisition is a portable coordinate measuring machine (PCMM), which is a portable device capable of taking highly accurate measurements within a measuring sphere of the device. Such devices often include a probe mounted on an end of an arm that includes a plurality of arm members connected together by rotatable joints. The end of the arm opposite the probe is typically coupled to a moveable base. Often, the joints are broken down into singular rotational degrees of freedom, each of which is measured using a dedicated rotational transducer. During a measurement, the probe of the arm is usually moved manually by an operator to various points in the measurement sphere. At each measured point, the position of each of the joints must be determined at a given instant in time. Accordingly, each transducer outputs an electrical signal that varies according to the movement of the joint in that degree of freedom. Typically, the probe also generates a signal. These position signals and the probe signal are transferred through the arm to a recorder/analyzer. The position signals are then used to determine the position of the probe within the measurement sphere, and thus to also determine a position on an object being measured (for example, when contacted or otherwise sensed by the probe). See e.g., U.S. Pat. Nos. 5,829,148 and 7,174,651, which are incorporated herein by reference in their entireties.
Increasingly, PCMM's are used in combination with an optical or laser scanner. In such applications the optical or laser scanner typically includes an optics system, a laser or other light source, sensors, and electronics that are all housed in one box. The scanner box is then, in turn, coupled to the probe end of the PCMM (for example, to a side of the probe). In this manner, 2-dimensional and/or 3-dimensional data could be gathered with the laser scanner and combined with the position signals generated by the PCMM. See e.g., U.S. Pat. No. 7,246,030.
While such PCMM and laser scanner combinations have been useful. As mentioned above, the purpose of PCMM's is to take highly accurate measurements. Accordingly, there is a continuing need to improve the accuracy and capabilities of such devices.
One aspect of the present invention is the realization that such prior art systems suffer from a number of inefficiencies. For example, it may be desirable to use the PCMM to measure more than just geometric coordinates at a surface of an object, such as properties below the surface (for example, using ultrasound), data on the composition of the surface (for example, using spectral imaging or hyperspectral imaging), surface roughness, surface hardness, or other data. Further, it can be desirable to be able to associate this data with the corresponding coordinate data. Then, for example, a more complete description of the measured object can be generated, including various properties of the object beyond the geometric shape of the surface.
In one embodiment, a method of measuring various properties of an object is provided. A first measuring device can be mounted to an end of an articulated arm coordinate measuring machine, and three-dimensional coordinates of a surface of an object can be measured using the first measuring device. Then, a second measuring device can be mounted to the end of the articulated arm coordinate measuring machine and a second property of the object can be measured using the second measuring device, after the three-dimensional coordinates have been measured.
In another embodiment, a method of measuring various properties of an object can be provided. Three-dimensional coordinates of a surface of an object can be measured using a coordinate measuring device. A second measuring device can be mounted to the coordinate measuring device and a second property of the object can be measured using the second measuring device, after the three-dimensional coordinates have been measured.
In another embodiment, a device configured to measure a surface geometry of an object and at least one other property of the object can include a coordinate measuring device, a second measuring device, and one or more processors. The coordinate measuring device can be configured to measure three-dimensional coordinate data of a surface of an object by at least measuring a position and orientation of a portion of the coordinate measuring device. The coordinate measuring device can also include a mounting portion configured to receive a second measuring device such that the coordinate measuring device can measure a position and orientation of the second measuring device. The second measuring device can be mounted to the mounting portion and configured to measure a property of the object different from the three-dimensional coordinate data of the surface of the object at a plurality of locations. The one or more processors can be configured to use the three-dimensional coordinate data of the surface of the object and measured positions and orientations of the second measuring device to associate data collected by the second measuring device with appropriate three-dimensional coordinates.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed. In addition, the individual embodiments need not provide all or any of the advantages described above.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
The position of the rigid arm members 20 and the coordinate acquisition member 50 may be adjusted using manual, robotic, semi-robotic and/or any other adjustment method. In one embodiment, the PCMM 1, through the various articulation members 30-36, is provided with seven rotary axes of movement. It will be appreciated, however, that there is no strict limitation to the number of axes of movement that may be used, and fewer or additional axes of movement may be incorporated into the PCMM design.
In the embodiment PCMM 1 illustrated in
The coordinate acquisition member 50 optionally includes a contact sensitive member or probe 55 (depicted as a hard probe, which can be removed or otherwise not included if only non-contact scanning is intended without reducing the functionality of the other components described herein) configured to contact the surfaces of a selected object and generate geometric data of the surface such as three-dimensional coordinate data on the basis of probe contact, as depicted in
Even further, scanning devices that do not measure surface geometry data, but instead measure some non-geometric property of the object or geometric features below the surface of the object, can also be included, such as spectral and hyperspectral imagers, roughness sensors, hardness sensors, ultrasound sensors, and eddy current sensors. The non-geometric properties can include color, chemical properties, roughness, hardness, and features such as voids and cracks below the surface. Notably, the non-geometric properties can be different from properties that can be determined form a standard camera, such as color, which might already be detected by a camera on the non-contact coordinate detection device 60. The data acquired from these non-geometric sensors can still be associated with a geometric position using the known position and orientation of the PCMM 1 (and thus the scanning device), as well as the known geometry of the surface of the object (which can be measured separately). For example, a pixel on a spectral two-dimensional image can be associated with a measured three-dimensional position on the object using a known position of the scanning device and a known shape and position of the object. The pixel in the image can be known to correspond with a point somewhere along a ray starting at a central point of a camera or other sensor capturing the image and extending at an angle determined by the location of the pixel and the orientation of the sensor. A nearest three-dimensional coordinate on the object (as potentially also measured by the PCMM 1) intersected by the ray can be determined to be associated with the pixel. Similar techniques can be used with other measuring devices that generate a plurality of data over a two-dimensional area (for example, as two-dimensional images). Associating such non-geometric data of the object at a plurality of locations with specific three-dimensional coordinates on the object would be more difficult without also having measured the geometry of the object directly.
Similarly, data measured at one location at a time can be determined using the PCMM 1 in a manner similar to use with a contact sensitive member 55. For example, an ultrasound sensor or eddy current sensor can record data, and that data can be associated with a three dimensional location on the object measured according to the location and position of the PCMM 1.
In one example, depicted in
Notably, in some embodiments it may be possible to mount multiple scanning devices on the PCMM 1 simultaneously, such that the step of replacing one with the other is not necessary. Further, it may be desirable to use multiple devices for measuring geometric properties, such as if one device measures more accurately and another device measures less-accurately but more quickly. In this way, a user can measure a large area less precisely, and a small area more precisely, without needing to change what devices are mounted on the PCMM 1.
Using these various scanning devices, a more complete model of the measured object can be generated. For example, whereas previously the measured data might only indicate a geometry on a surface of the object, now a full geometric description of the object can be created, including sub-surface cracks, open spaces, discontinuities in material, or other characteristics below the surface. Features below the surface can be measured, for example, with an ultrasound sensor, an eddy current sensor, or an x-ray sensor that can be mounted on the PCMM 1. Further, additional properties can be included in the model of the object, such as material properties, textures, hardness, colors, and other properties that can be measured with additional sensors.
It may be difficult for an operator of the device to recognize if the entire object has been measured, particularly if some measurements are being made beneath the surface of the object. In some embodiments, the device can first be used to measure geometric coordinates on the surface of the object to create a model of the surface of the object sufficient to also determine the extent of an interior space of the object. This geometry data can then be used by a processor on the PCMM 1 (such as on the coordinate acquisition member 50, the specific scanning device that is attached, or a base of the PCMM) or on a separate computing device in electronic communication with the PCMM, to create a model of the interior of the object. This model can then be used by the processor to indicate to an operator of the PCMM 1 where additional measurements need to be taken to measure a particular property across all of the surface of an object (and optionally including all of an interior of the object) or all of a desired portion of the object. The processor optionally can also indicate when measurements of the entire object or a desired portion of the object has been completed.
For example, in some embodiments the PCMM 1 can include a display 43 (or be in communication with a separate display) that can show to an operator of the PCMM where additional measurements need to be taken, such as by indicating a position beneath the surface of the object with a particular symbol or color overlaid on an image of the object being measured. In further embodiments, the display can suggest a desired position for the PCMM 1 to be in to measure any portions of the object that have not been measured, showing the suggested position on the display. To further guide an operator of the PCMM 1 to a desired measurement position, the display can optionally show the current position of the PCMM 1 in addition to the desired position on the same screen, highlighting the remaining movement necessary. Such displays of the desired position can be particularly helpful when measuring characteristics below the surface of the object because the optimal position to measure on the surface might not be immediately apparent to a user. When measurement of the entire object (or a desired portion of the object) is complete, a signal can be provided to the user such as a signal on the display or an auditory signal. Similarly, the display can show where measurements have already been taken. These methods can also be used for taking measurements on the surface of the object, and are not limited to measurements beneath the surface of an object.
Thus, in addition to measuring coordinate data on a surface of the object, the PCMM 1 can also measure one or more additional properties of the object. Further, as indicated, these can optionally be done sequentially, such as beginning with geometric coordinates on the surface, then geometric coordinates beneath the surface, and then one or more additional measurements. Other sequences are also possible, such as measuring various additional (non-geometric coordinate) properties of the surface prior to measuring geometric coordinates beneath the surface.
Similar measurements can also be made without an articulated arm portable coordinate measuring machine, instead using a general coordinate measuring device as depicted in
With particular reference to
As shown in
With particular reference to
With continued reference to
In some embodiments, it can be desirable to use a composite material, such as a carbon fiber material, to construct at least a portion of the arm members 20. In some embodiments, other components of the PCMM 1 can also comprise composite materials such as carbon fiber materials. Constructing the arm members 20 of composites such as carbon fiber can be particularly advantageous in that the carbon fiber can react less to thermal influences as compared to metallic materials such as steel or aluminum. Thus, coordinate measuring can be accurately and consistently performed at various temperatures. In other embodiments, the arm members 20 can comprise metallic materials, or can comprise combinations of materials such as metallic materials, ceramics, thermoplastics, or composite materials. Also, as will be appreciated by one skilled in the art, many of the other components of the PCMM 1 can also be made of composites such as carbon fiber. Presently, as the manufacturing capabilities for composites are generally not as precise when compared to manufacturing capabilities for metals, generally the components of the PCMM 1 that require a greater degree of dimensional precision are generally made of a metals such as aluminum. It is foreseeable that as the manufacturing capabilities of composites improved that a greater number of components of the PCMM 1 can be also made of composites.
With continued reference to
In some embodiments, the resistance units can comprise hydraulic resistance units which use fluid resistance to provide assistance for motion of the arm members 20. In other embodiments the resistance units may comprise other resistance devices such as pneumatic resistance devices, or linear or rotary spring systems.
The position of the contact sensitive member 55 in space at a given instant can be calculated by knowing the length of each rigid arm member 20 and the specific position of each of the articulation members 30-36. Each of the articulation members 30-36 can be broken down into a singular rotational degree of motion, each of which is measured using a dedicated rotational transducer. Each transducer outputs a signal (e.g., an electrical signal), which varies according to the movement of the articulation member in its degree of motion. The signal can be carried through wires or otherwise transmitted to the base 10 (or another processor associated with the PCMM 1). From there, the signal can be processed and/or transferred to a computer for determining the position of the coordinate acquisition member 50 and its various parts in space.
In one embodiment, the transducer can comprise an optical encoder. In one example, each encoder measures the rotational position of its axle by coupling its movement to a pair of internal wheels having successive transparent and opaque bands. In such embodiments, light can be shined through the wheels onto optical sensors which feed a pair of electrical outputs. As the axle sweeps through an arc, the output of the analog encoder can be substantially two sinusoidal signals which are 90 degrees out of phase. Coarse positioning can occur through monitoring the change in polarity of the two signals. Fine positioning can be determined by measuring the actual value of the two signals at the instant in question. In certain embodiments, maximum accuracy can be obtained by measuring the output precisely before it is corrupted by electronic noise. Additional details and embodiments of the illustrated embodiment of the PCMM 1 can be found in U.S. Pat. No. 5,829,148, the entirety of which is hereby incorporated by reference herein. Other types of encoders can also be used, such as absolute encoders as described in U.S. Patent Pub. No. 2011/0112786 or spherical encoders as described in U.S. Pat. No. 7,743,524, the entirety of each incorporated by reference herein.
With reference to
While several embodiments and related features of a PCMM 1 have been generally discussed herein, additional details and embodiments of PCMMs can be found in U.S. Pat. Nos. 5,829,148, 7,174,651, and 8,112,896 the entirety of these patents being incorporated by reference herein.
As depicted in
The scanning device 60 can include a light source 65 (depicted as a laser) and an optical sensor 70 (depicted as a camera), and can acquire positional data by methods such as triangulation. The laser or light source 65 can create an illuminated laser plane including a laser line L4. The camera 70 can be displaced from the laser plane and further be non-parallel to the laser plane. Accordingly, the camera 70 will view points illuminated by the laser as higher or lower in an image captured by the camera 70, depending on their position further or closer to the laser 65. Similarly, the camera 70 will view points illuminated by the laser as being either further to the left or the right, according to their actual position relative to the laser 65. Comparing the geometric relationship between the position and orientation of the laser 65 and the camera 70 will allow one of skill in the art to appropriately translate the position of the image of the laser-illuminated point in the image captured by the camera 70 to an actual three-dimensional position in space in relation to the position of the coordinate acquisition member 50 itself.
In other embodiments, the light source 65 can emit a 2-dimensional pattern such as a structured light pattern. The camera can then acquire an image of this pattern on the object being measured, and use variations between the known pattern projected, the pattern acquired in the image, and the relative position and orientation of the camera 70 and the light source 65 to determine geometric coordinates on the object. A further description of such systems can be found, for example, in Geng, Jason, DLP-based Structured Light 3D Imaging Technologies and Applications, Proc. SPIE 7932, Emerging Digital Micromirror Device Based Systems and Applications III, 79320B (11 Feb. 2011); doi: 10.1117/12.873125, which is incorporated by reference in its entirety.
In
The handle 40 can also generally comprise a pistol-grip style, which can further include ergonomic grooves corresponding to human fingers (not shown). The handle can also have a generally central axis. Optionally, within the handle 40, a battery can be held. In some embodiments the handle 40 can include a sealed battery, as described in U.S. Publication No. 2007/0256311A1, published Nov. 8, 2007, which is incorporated by reference herein in its entirety. Further, the battery can insert through the bottom of the handle 40. In other embodiments, the battery can insert through the top of the handle 40, and the handle 40 can release from the coordinate acquisition member 50 to expose an opening for battery insertion and removal. The battery can be provided to power the scanning devices, rotational motors about one of the articulation members 30-36, and/or other types of probes or devices. This can reduce current draw through the arm, decrease overall power requirements, and/or reduce heat generated in various parts of the arm.
Data can be transmitted wirelessly to and from either the coordinate acquisition member 50 or the scanning device 60 and the base of the PCMM 1 or to an external device such as a computer. This can reduce the number of internal wires through the PCMM 1. It can also reduce the number of wires between the PCMM 1 and the computer.
Above the handle 40, the coordinate acquisition member 50 can include a main body 90, best depicted in
As best shown in
As best depicted in
The base plate 75 can also include a repeatable kinematic mount, where the laser scanner 60 can be removed and remounted to the main body 90 without tools (for example, in combination with a snap-lock mechanism). It can be remounted with a high level of repeatability through the use of a 3-point kinematic seat, including three kinematic mounting portions 94 on the base plate 75 (depicted as a pair of cylinders) and three kinematic mounting portions 104 on the main body 90 (depicted as rounded or spherical bodies that are received between the pair of cylinders). The mounting portions 94, 104 can be precisely-shaped to match each other to form a kinematic mounting that holds their angular position constant. Variations on this design can also be used, such as using different shapes or different numbers of mounting portions 94, 104, such as more than three sets of mounting portions, and tetrahedral holes instead of a pair of cylinders.
As best depicted in
Other scanning devices can optionally have similar shapes as the laser scanner 60. For example, other scanning devices can include a base-plate 75 (or another body) that includes a port 85 configured to receive a contact sensitive member 55 (for example, through a hole in the body). Similarly, other scanning devices can include a light source (such as a laser, a projector, or a general light source) that can be received in a recess 92 in a manner similar to the laser 65. Further, in some embodiments the shape of the mounting portion 91 on the PCMM 1 can vary to accommodate other scanning devices. For example, in some embodiments the body of the main body 90 can be reduced to provide clearance for other components on scanning devices that might be mounted to the mounting portion 91. Examples of other devices mounted on the main body 90 (and received by the main body 90) are depicted in
When the PCMM 1 is intended to provide accurate position data, the PCMM can be designed to minimize the errors at both the contact sensitive member 55 and at the non-contact coordinate detection device 60. The error of the coordinate acquisition member 50 can be reduced by minimizing the effect of the errors of the last three axes on both the contact sensitive member 55 and the scanning device 60. For example, as depicted the camera 70, the contact sensitive member 55, and the light source 65 can be directly integrated with the last axis L1. For example, as depicted the camera 70, contact sensitive member 55, and light source 65 can be generally collinear when viewing from the front (e.g. along axis L1), with the contact sensitive member 55 in the middle and aligned with the last axis L1. Further, as depicted the upper housing 80, contact sensitive member 55, and the light source 65 can be arranged generally parallel to the last axis L1. However, the camera 70 can optionally be oriented at an angle relative to the last axis L1.
Such arrangements can be advantageous in a number of ways. For example, in this arrangement the angular position of the elements about L1 can be approximately equal (with the exception of a 180 degree offset when on different sides of the last axis L1), simplifying data processing requirements. As another example, providing these elements aligned with the last axis L1 can facilitate counterbalancing the weight of these elements about the last axis, reducing error from possible deflection and easing movement about the axis. Even further, the error associated with the angle of rotation about the last axis L1 is amplified by the distance (such as the perpendicular distance) from the axis to a center of the pattern emitted by the light source 65 (such as a focal center of the light source). In this orientation, the distance is minimized. In some embodiments, the perpendicular distance from the center of the projected pattern to the last axis can be no greater than 35 mm. Notably, in other embodiments it may be desirable to move the light source 65 even closer to the last axis L1, such as by aligning it directly therewith (placing it where the contact sensitive member 55 is depicted in the figures). However, the accuracy of the contact sensitive member 55 is also partially dependent on its proximity to the last axis L1; and, as described below, some other advantages can arise from separating the light source 65 from the camera 70.
As further depicted, when the scanning device 60 mounts the main body 90, the contact sensitive member 55 and the scanning device can form a compact design. For example, the light source 65 and/or the camera 70 can extend past the one or both of the bearings 150, 151. In other embodiments, these elements can extend to the bearings, and not pass them. Generally, causing these elements to overlap reduces the necessary length of the coordinate acquisition member 50.
In some embodiments such compact designs can allow the coordinate acquisition elements to be closer to the second to last axis L2, as well as the last axis L1. Accordingly, the distance between the second to last axis L2 and the points of measurement (e.g. at the tip of the contact sensitive member 55 and/or at the focus of the camera 70) can be reduced. As the error in the angular position of the coordinate acquisition member 50 along the second to last axis L2 is amplified by these distances, this also reduces the error of the PCMM 1 in other ways. For example, the compact design can also reduce error related to the distance from the focus of the camera 70 to the third to last axis L3. Additionally, providing the elements of the coordinate acquisition member 50 closer to the second and third to last axes L2, L3 can reduce deflection, reducing error even further. In some embodiments the contact sensitive member 55 can be within 185 mm of the second and/or third to last axis L2, L3, and the focus of the camera 70 can be within 285 mm of the third to last axis. As yet another advantage to the compact design, the vertical height of the coordinate acquisition member 50 can be reduced, allowing measurement in tighter spots. In some embodiments the height can be no greater than 260 mm. Notably, as the coordinate acquisition member 50 in the depicted embodiment rotates about the last axis L1, the height can also represent a maximum length of the coordinate acquisition member 50.
In some embodiments, the scanning device 60 can include additional advantages. For example, the scanning device 60 can isolate the light source 65 from heat generated by the other parts of the PCMM arm 1. For example, as depicted in
As depicted, the camera 70 can be held in an upper housing 80 of the scanner 60, and in some embodiments the upper housing can include multiple cameras. In embodiments with multiple cameras, the cameras can be arranged on opposite sides of the last axis of rotation L1, optionally defining equal angular distance about the axis L1 between each of the two cameras and the light source 65. Alternatively, as shown in
The upper housing 80 can also include materials such as aluminum or plastic. Additionally, the upper housing 80 can protect the camera 70 from atmospheric contaminants such as dust, liquids, ambient light, etc. Similarly, the light source 65 can be protected by the recess 92 of the main body 90. In some embodiments, the recess 92 can include a thermal isolation disc or plate with a low coefficient of thermal expansion and/or conductivity, protecting the light source from external heat and substantially preserving its alignment.
In many embodiments, the electronics 160 associated with the scanning device 60 can create a substantial amount of heat. As discussed above, various components can be protected from this heat with materials having low coefficients of thermal expansion and conductivity for example. As depicted, the electronics 160 can be positioned in the upper housing 80 of the scanning device 60.
However, in other embodiments the electronics 160 can be positioned further from the sensors 55, 60, such as in a completely separate housing. For example, in some embodiments the electronics 160 can be held by the scanning device 60 in a separate housing, also attached to the base plate 75. In other embodiments, the electronics 160 can be located further down the PCMM 1, such as in a rigid transfer member 20 or in the base 10. Moving the electronics 160 further down the PCMM 1 can reduce weight at the end of the arm, minimizing deflection of the arm. Similarly, in some embodiments the electronics 160 can be completely outside the PCMM 1, such as in a separate computer. Data from the sensors 55, 70 can be transmitted through the PCMM 1 on an internal cable in the arm, wirelessly, or by other data transmission methods. In some embodiments, data ports 93, 101 can include spring loaded pins such that no cables are externally exposed.
As another advantage of the depicted embodiment, the depicted layout of the system can use a smaller volume. The scanning device 60 can sometimes operate on a theory of triangulation. Accordingly, it may be desirable to leave some distance between the light source 65 and the camera 70. The depicted embodiment advantageously places the contact sensitive member 55 within this space, reducing the volume of the coordinate acquisition member 50. Additionally, the last axis L1 also passes through this space, balancing the system about the axis of rotation and reducing the coordinate acquisition member's 50 rotational volume. In this configuration, the combination of axis and scanning device can further be uniquely optimized to reduce weight, as the more compact design reduces deflection, and accordingly reduces the need for heavy-load bearing materials.
Many other variations on the methods and systems described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.
The various algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.
The various illustrative steps, components, and computing systems (such as devices, databases, interfaces, and engines) described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a graphics processor unit, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor can also include primarily analog components. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a graphics processor unit, a mainframe computer, a digital signal processor, a portable computing device, a personal organizer, a device controller, and a computational engine within an appliance, to name a few.
The steps of a method, process, or algorithm, and database used in said steps, described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module, engine, and associated databases can reside in memory resources such as in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An exemplary storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
Number | Date | Country | |
---|---|---|---|
62564441 | Sep 2017 | US |