This invention relates to mobile devices and related systems.
A mobile device may be used as an authorization terminal to conduct transactions (e.g., purchase transactions) using the mobile device. Purchase transactions may, for example, be completed by a mobile device using payment information stored within a memory of the mobile device. In order to conduct a purchase transaction, a processor of a mobile device may, for example, first require security credentials to authorize a purchase transaction. Security credentials may, for example, be any type of information that may be communicated to a mobile device by a contactless device using a contactless communication channel (e.g., an RFID communication channel).
Security credentials may, for example, be payment information that may be communicated to a processor of a mobile device by a payment card (e.g., a powered or a non-powered payment card). Accordingly, for example, if payment information communicated to a processor of a mobile device by a physical payment card matches payment information previously stored within a memory of the mobile device, the mobile device may authorize the purchase transaction.
As per an example, a mobile device may receive payment information (e.g., a payment account number and an expiration date) from a payment card via a contactless communication channel and may store such payment information within a memory of the mobile device for future use. Prior to conducting a requested purchase transaction, a processor of a mobile device may first require that a physical payment card be used to authorize the purchase transaction. Accordingly, for example, the same physical payment card that was used to originally communicate payment information to a processor of the mobile device may be required to once again communicate payment information in order to authorize the purchase transaction. Upon verification that the newly communicated payment information matches at least a portion of payment information contained within a memory of the mobile device, the mobile device may authorize the payment transaction.
A powered card may, for example, communicate security credentials that may contain a dynamic security code and other information (e.g., at least a portion of a payment account number or a cardholder's name). Accordingly, for example, an application executed by a processor of a mobile device may synchronize with a dynamic security code generation algorithm that may be executed by a processor of the powered card. In so doing, for example, a processor of the mobile device may generate a dynamic security code in accordance with the security code generation algorithm and may compare the generated dynamic security code to a security code received from a powered card during authorization of a purchase transaction. If a match exists, for example, the purchase transaction may be authorized by the mobile device.
A mobile device may, for example, communicate security credentials received from a physical card via a contactless communication channel to a network entity (e.g., an authorization server). Accordingly, for example, the authorization server may analyze the received security credentials and may either confirm or deny that the security credentials are authentic. A message may, for example, be communicated from the authorization server to the mobile device to either authorize or deny the purchase transaction.
A mobile device may, for example, arrange security credentials (e.g., payment information) stored within a memory of the mobile device as one or more virtual payment cards that may be provided on a display of the mobile device. Accordingly, for example, a user of a mobile device may select one or more virtual cards from a displayed list of virtual cards for use during a purchase transaction. In so doing, for example, a user may retrieve a physical payment card from his or her wallet that corresponds to the virtual payment card selected for use and may communicate (e.g., via a contactless communication channel) payment information from the physical payment card to a processor of the mobile device. Upon verification that the communicated payment information matches at least a portion of payment information stored within a memory of the mobile device, a processor of the mobile device may authorize the purchase transaction using the stored payment information.
A physical payment card may, for example, be used as a master physical payment card to authorize purchase transactions that are to be completed by the mobile device using stored payment information that does not match payment information received from the physical payment card. For example, a master physical payment card may be associated with a particular issuer and a mobile device may store several virtual cards within a memory of the mobile device having the same issuer. Upon receipt of payment information from the master physical payment card, a processor of a mobile device may authorize purchase transactions using one or more virtual cards stored within a memory of the mobile device that may share the same issuer as the issuer of the master physical payment card.
Other devices (e.g., RFID enabled keys) may, for example, communicate security credentials via a contactless communication channel to a processor of a mobile device to authorize other transactions (e.g., non-purchase transactions) that may be conducted by the mobile device. Accordingly, for example, a processor of a mobile device may communicate commands to a wireless device (e.g., a user's car) to perform certain functions (e.g., start the engine of the user's car). In so doing, for example, a user may present an ignition key to the mobile device to communicate security credentials (e.g., a key code matched to the user's car) from the ignition key to the mobile device to authorize the requested function. Upon verification that the key code matches the key code of the user's car, for example, a processor of the mobile device may authorize the requested function and may communicate the associated command to the user's car to execute the requested function.
Any function may, for example, be authorized to be performed by a processor of a mobile device. Accordingly, for example, any decision to perform a function by a mobile device may be authorized by a processor of the mobile device. In so doing, for example, any function (e.g., checking a balance of a banking account or transitioning from paper bank statements to e-statements) that may be performed by a processor of a mobile device may be authorized by the processor upon verification that security credentials (e.g., a bank account number) communicated to the processor from a contactless communication device (e.g., a bank card associated with the bank account) matches at least a portion of security credentials (e.g., banking information) that may be stored within a memory of the mobile device.
Any mobile device, such as a laptop computer, a mobile telephonic device (e.g., a cellular phone), a PDA, an MP3 player, or a positioning device (e.g., a GPS) may be an authorization terminal. Accordingly, for example, any mobile device may accept payment information from any physical payment card, store such payment information within a memory of the mobile device, require that the same (or associated) physical payment card communicate payment information to a processor of the mobile device, and complete a purchase transaction with network entities (e.g., an issuer or a payment server) upon verification that the communicated payment information matches at least a portion of payment information stored within a memory of the mobile device.
A mobile device may include a contactless communication device. Accordingly, for example, a mobile device may communicate with any card having contactless communication capability. For example, a card (e.g., a non-powered card) may include a near-field communication device (e.g., an RFID tag) that may communicate with a contactless communication device of a mobile device to form a two-way communication channel between the card and the mobile device. In so doing, for example, a non-powered card may communicate one, two, and/or three tracks of magnetic stripe information to a processor of a mobile device before and/or during a purchase transaction conducted by the mobile device.
A card (e.g., a powered card) may include a near-field communication device (e.g., an RFID) that may communicate with a contactless communication device of a mobile device. A powered card may, for example, include a battery, a processor, memory, and a manual input interface (e.g., one or more buttons) that may allow a user of the powered card to programmably communicate information to a mobile device. For example, a powered payment card may include a feature associated with a button that allows a user to, for example, pay with credit or pay with debit. Accordingly, for example, a powered payment card may communicate such a payment selection within discretionary data fields of one or more tracks of magnetic stripe data.
A powered card may, for example, include circuitry to simulate touch (e.g., a capacitance change) in order to form a contactless communication channel with a mobile device. Accordingly, for example, a powered card may be pressed against a touch-sensitive display of a mobile device and information may be communicated by the powered card to the mobile device through a series of card-simulated touches that may be detected by the touch-sensitive display of the mobile device and processed by a processor of the mobile device as data communicated by the powered card.
A powered card may, for example, include a light sensor to form a contactless communication channel with a mobile device. Accordingly, for example, a powered card may be pressed against a display of a mobile device and information may be communicated from the mobile device to the powered card through a series of light pulses generated by the display of the mobile device. A frequency, pulse width, and/or a pulse intensity of light pulses may, for example, be detected by a processor of a powered card as data communicated by a mobile device.
A powered card may, for example, include a light source (e.g., an LED) to form a contactless communication channel with a mobile device. Accordingly, for example, a powered card may emit varying light pulses from an LED that may be detected by a motion-capture device (e.g., a camera) of a mobile device as data communicated by the powered card. A powered card may, for example, include sound emission capabilities that may be detected by a microphone of a mobile device as data communicated by the powered card through a contactless communication channel. A mobile device may, for example, include sound emission capabilities that may be detected by a microphone of a powered card as data communicated by the mobile device through a contactless communication channel.
The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
Mobile device 100 may include audio processing devices (e.g., microphone 108 and speaker 110). Accordingly, for example, mobile device 100 may receive voice commands from a user via microphone 108 and may process such commands to perform a function. For example, a user may place mobile device 100 into a desired operational mode by speaking a command into microphone 108 that is associated with the desired operational mode. In so doing, for example, mobile device 100 may engage in hands-free operation by receiving voice commands via microphone 108 and performing functions associated with the received voice commands.
Mobile device 100 may receive data input via microphone 108. For example, a voice-band modem may generate signals in a voice-band frequency range that may be received by microphone 108. A processor of mobile device 100 may interpret the received audible information as data signals and may process the data signals as, for example, data values and/or control data input.
Mobile device 100 may include camera 102. Camera 102 may capture one or more frames of video data and store the video data within a memory of mobile device 102. Accordingly, for example, a processor of mobile device 100 may receive one or more frames of video information via camera 102 and may process the video information as data values and/or control data input. In so doing, for example, mobile device 100 may receive optical information that may be sensed by camera 102 during a series of one or more video capture events that produce one or more frames of video information. The one or more frames of video information may contain one or more data elements (e.g., pixels) having properties (e.g., color, intensity, or contrast) that may be interpreted by a processor of mobile device 100 as data values and/or control data.
Mobile device 100 may include manual input interface 112. Manual input interface 112 may, for example, include keys and/or buttons that may be sensitive to manual input, such as a touch or an application of pressure. Accordingly, for example, a user of mobile device 100 may enter information into mobile device 100 via manual interface 112 to cause a processor of mobile device 100 to enter a particular mode of operation. Manual interface 112 may, for example, be used for data entry (e.g., dialing a phone number or entering data as may be requested by mobile device 100) during a particular mode of operation of mobile device 100.
Mobile device 100 may include display 104. Display 104 may provide visible information that may be utilized by a user during interaction with mobile device 100. A portion or all of display 104 may be touch sensitive such that objects making contact with display 104 or objects coming within a proximity of display 104 may be detected by a processor of mobile device 100. Accordingly, for example, mobile authorization graphical user interface 106 may be provided by display 104 so that graphical information may be displayed to solicit and/or receive data entry from a user. In so doing, for example, touch-sensitive graphical user interface devices such as radio buttons, alphanumeric input boxes, virtual buttons, pull-down menus, and navigational tools may be used for data entry to initiate, change, and/or support functions performed by mobile device 100.
Architecture 150 may include one or more displays 154. Display 154 may, for example, be touch-sensitive. Accordingly, for example, display 154 may be utilized for alphanumeric data entry using virtual buttons that may be rendered onto touch-sensitive portions of display 154. In so doing, for example, touching virtual buttons that may be associated with alphabetic and numeric characters of display 154 may be detected by processor 158 as alphanumeric data entry.
Alphanumeric entry boxes may, for example, be rendered onto display 154. A user may, for example, activate a cursor within such an alphanumeric entry box by touching an area within the alphanumeric entry box. A user may utilize user interface 152 and/or a virtual keypad rendered onto display 154 to select alphanumeric characters to be placed within the alphanumeric entry box in accordance with a character position identified by an activated cursor within the alphanumeric entry box. In so doing, for example, processor 158 may receive alphanumeric characters as typed into a alphanumeric entry box of display 154 and may use such alphanumeric characters as data input.
Display 154 may, for example, provide data output from architecture 150. For example, display 154 may communicate data using a series of light pulses. Accordingly, for example, processor 158 may cause one or more portions of display 154 to produce light pulses having varying characteristics (e.g., duration, intensity, and frequency) that may communicate information via such light pulses. In so doing, for example, a device that may be sensitive to light pulses may receive information communicated by display 154 via light pulses having varying characteristics. Display 154 may, for example, communicate data using visual information that may be substantially static (e.g., a barcode).
Architecture 150 may include one or more transceivers 156. Transceiver 156 may communicate information to and/or may receive information from one or more devices. Transceiver 156 may, for example, communicate via a wireless interface with one or more cellular stations of a mobile network. Accordingly, for example, transceiver 156 may allow a mobile device (e.g., mobile device 100 of
Transceiver 156 may, for example, communicate via a wireless interface with one or more mobile devices directly. Accordingly, for example, transceiver 156 may communicate with another mobile device without first accessing a mobile network via a cellular station of the mobile network. As per another example, transceiver 156 may, for example, communicate via a wireless interface with one or more network devices (e.g., a wireless access point) directly. Accordingly, for example, a mobile device (e.g., mobile device 100 of
Architecture 150 may include contactless communication device 162, which may communicate via any one or more contactless communication methodologies, such as for example, near field communications (e.g., RFID), Bluetooth, touch simulation, light pulsing (e.g., via an LED), and electromagnetic data communication (e.g., via a dynamic magnetic stripe communications device). Accordingly, for example, contactless communication device 162 may be compatible with any contactless device, such as for example, an RFID enabled payment card and a contactless reader (e.g., a magnetic stripe reader or an NFC reader).
A non-powered card may, for example, communicate with contactless communications device 162. Contactless communication device 162 may, for example, establish a carrier field (e.g., an RF field) that may be modulated by a device (e.g., an RFID tag) of a non-powered payment card. In so doing, for example, an RFID tag of a non-powered payment card may derive operational power from an RF field provided by contactless communications device 162 and may communicate information (e.g., one, two, and/or three tracks of magnetic stripe data) to contactless communication device 162 by modulating the RF field produced by contactless communications device 162.
A powered card may, for example, communicate with contactless communication device 162. A powered card may, for example, include a processor, a battery, a memory, wireless communication devices (e.g., a dynamic magnetic stripe communications device or RFID) and other electronics (e.g., buttons) that may allow a user to interact with the powered card to perform one or more functions. Accordingly, for example, a powered card may be used to communicate specific information to contactless communication device 162 by selective interaction with the buttons of the powered card. In so doing, for example, a powered card may be used to interactively communicate magnetic stripe information (e.g., one, two, and/or three tracks of magnetic stripe data) to contactless communication device 162 by sending a signal to a processor of a powered card (e.g., by pressing a button on the powered card) to initiate such communications.
Contactless communication device 162 may receive variable data sets from a powered card based upon, for example, manual input provided to a powered card. For example, a button associated with an on-line purchase may be pressed on the powered card that causes a variable data set (e.g., account number and expiration date) to be communicated from the powered card to contactless communication device 162.
Discretionary data may, for example, be communicated by a powered card based upon which button was pressed on the powered card. In so doing, for example, a security code (e.g., “111”) may be communicated within a discretionary data field when a button associated with a particular feature (e.g., pay with credit) is pressed on the powered card. As per another example, a different security code (e.g., “222”) may be communicated within a discretionary data field when a button associated with a different feature (e.g., pay with debit) is pressed on the powered card. A powered card may, for example, communicate a different security code no matter what feature may be selected on the powered card. Accordingly, for example, processor 158 may identify what type of device may be in communication with contactless communication device 162 by analyzing the data communicated to contactless communication device 162.
Any device having contactless communication capability may communicate with contactless communication device 162 to authorize functions that may be performed by a mobile device. An RFID enabled device (e.g., an RFID equipped automobile key) may, for example, communicate with contactless communication device 162 to authorize functions that may be performed by a mobile device (e.g., mobile device 100 of
Architecture 150 may include memory 160 and/or processor 158 may include internal memory. Accordingly, for example, application code may be stored within memory 160 and/or processor 158 and executed by processor 158 in support of functions performed by architecture 150. For example, an application (e.g., a graphical user interface) may be executed by processor 158 and displayed onto display 154, which may be used to interact with a user of a mobile device (e.g., mobile device 100 of
Application data (e.g., security credentials) may be stored within memory 160 and accessed by processor 158 during operation. For example, security credentials may be stored within memory 160 and recalled by processor 158 to authorize a function that may be performed by processor 158 of a mobile device (e.g., mobile device 100 of
Mobile device 202 may provide one or more transceivers that may communicate with one or more wired networks (e.g., IP network 212 and/or payment network 214) and/or one or more wireless networks (e.g., mobile network 210). Mobile device 202 may, for example, communicate with a cellular station over a wireless radio interface (e.g., a GSM air interface) that may be used by mobile device 202 to communicate information (e.g., voice and data) to cellular network access infrastructure 206 (e.g., one or more GSM base transceiver stations, base station controllers, and mobile switching centers). Persons skilled in the art will appreciate that cellular network access infrastructure 206 may utilize any multiple access architecture, such as for example, a code-division multiple access architecture and/or a time-division multiple access architecture.
Mobile device 202 may, for example, communicate with wireless access point 208 over a wireless interface (e.g., a Bluetooth interface or a Wi-Fi interface). Accordingly, for example, mobile device 202 may access one or more wired networks (e.g., IP network 212 and/or payment network 214) and/or one or more wireless networks (e.g., mobile network 210) without the need to first gain access to cellular network access infrastructure 206.
Contactless device 204 may, for example, be a powered card, a non-powered card (e.g., a powered payment card or a non-powered payment card) or any contactless enabled device (e.g., an RFID enabled device). Accordingly, for example, security credentials may be communicated via a contactless communication channel from contactless device 204 to mobile device 202 to authenticate a purchase transaction that may be performed by mobile device 202. In so doing, for example, items for purchase on IP network 212 (e.g., the internet) may be accessed by a browser of mobile device 202 via an access point (e.g., wireless access point 208 or cellular network access infrastructure 206), payment information may be retrieved from a memory of mobile device 202, a user of mobile device 202 may be challenged for security credentials (e.g., at least a portion of a payment account number and a card expiration date communicated to mobile device 202 from a payment card corresponding to the payment information retrieved from a memory of mobile device 202), such payment information may be authenticated by such security credentials, and such payment information may be communicated to network entities (e.g., issuer 220) to complete the purchase transaction.
Issuer 220 may, for example, contact authorization server 216 via a network (e.g., payment network 214) with payment information and security credentials received from mobile device 202 for authorization of a purchase. Once authorized, payment transaction information may be recorded onto a receipt that may be delivered to mobile device 202 via any one or more delivery options (e.g., via a short messaging service of mobile network 210 or an email delivery service of IP network 212). Mobile device 202 may allow a user to associate purchase categories (e.g., groceries, auto repair, or entertainment) to purchases transacted by the mobile device so that the user may receive a more detailed accounting of his or her expenditures on his or her receipt. Accordingly, for example, a user may enjoy a higher degree of integration such that a user may customize a level of detail provided on a receipt via mobile device 202.
A payment receipt may, for example, be provided to mobile device 202 as a proof-of-purchase object (e.g., a barcode) that may be provided to a display of mobile device 202 and read by other computing equipment (e.g., a barcode scanner) for proof-of-purchase confirmation.
A processor of mobile device 202 may, for example, authorize wireless device 234 to perform functions that may be authenticated by contactless device 204 (e.g., via security credentials communicated by contactless device 204 to a processor of mobile device 202). Accordingly, for example, a processor of mobile device 202 may require security credentials to be communicated by contactless device 204 via contactless communication channel 226 and based upon a validity of the security credentials communicated, the processor may communicate instructions to wireless device 234 via contactless communication channel 236 to perform some function. As per another example, a processor of mobile device 202 may communicate instructions (e.g., via wireless access point 208 or cellular network access infrastructure 206) to wireless device 234 (e.g., a car or a home) to perform a function (e.g., start the engine of the car) based upon a validity of security credentials communicated by contactless device 204.
A processor of mobile device 202 may, for example, locally validate security credentials communicated by contactless device 204. Alternately, for example, mobile device 202 may forward security credentials communicated by contactless device 204 to a network entity (e.g., authorization server 232) for remote validation.
A mobile device (e.g., mobile device 224) may, for example, include a contactless communication device (e.g., an RFID device) that may initiate, sustain, and/or terminate contactless communication channel 228 with merchant terminal 218. Accordingly, for example, a processor of mobile device 224 may communicate payment information to merchant terminal 218 to complete a financial transaction. In so doing, for example, a processor of mobile device 224 may receive payment information via contactless communication channel 230 from contactless device 222 (e.g., a powered or a non-powered card) and store the received payment information within a memory of mobile device 224. To complete a purchase transaction, contactless device 222 may, for example, be presented to mobile device 224 and may communicate security credentials (e.g., at least a portion of a payment card number and a cardholder's name) via contactless communication channel 230. A processor of mobile device 224 may validate the security credentials and may forward the payment information onto merchant terminal 218 to complete the purchase transaction.
Mobile device 302 and contactless devices 308-314 may each include a contactless communication device (e.g., an RFID device) that may communicate via a contactless communication channel that may be formed between mobile device 302 and contactless devices 308-314 after coming into proximity to one another.
Contactless devices 308-314 may, for example, be tapped onto display 304 of mobile device 302 to establish a proximity relationship that forms a communication channel with mobile device 302. As per another example, contactless devices 308-314 may be brought within a proximity distance (e.g., up to two inches) of mobile device 302 to establish a contactless communication channel with mobile device 302.
A processor of mobile device 302 may, for example, execute application code that may generate a graphical user interface (GUI) onto display 304 of mobile device 302. Message 306 of a GUI may invite a user of mobile device 302 to begin a mobile authorization by tapping a contactless device against display 304. As per another example, by tapping a contactless device against mobile device 302, a processor of mobile device 302 may autonomously determine that a mobile authorization is desired and may then generate a mobile authorization GUI onto display 304.
Mobile device 302 may, for example, autonomously determine a type of contactless device that may be tapped against it. For example, a processor of mobile device 302 may receive security credentials that may be indicative of a non-powered payment card (e.g., security credentials received from non-powered payment card 308 may include at least a portion of a payment card number and a cardholder's name). As per another example, a processor of mobile device 302 may receive security credentials that may be indicative of a powered card (e.g., security credentials received from powered card 312 may contain a dynamically generated security code). Security credentials received from powered card 312 may, for example, include a dynamic security code that may change for each function authorized by powered card 312.
A contactless device (e.g., key 314) may, for example, be a key that may start the ignition of a car, open a door to a home, or open a safe deposit box. Key 314 may, for example, include a contactless communication device (e.g., an RFID device) that may communicate security credentials to a processor of mobile device 302. Once security credentials received from key 314 are validated, a processor of mobile device 302 may effect an operation that may eliminate the need to physically use key 314 to perform the operation (e.g., a user of mobile device 302 may remotely start the engine of the user's car by running an application on a processor of mobile device 302 to validate security credentials received from key 314 and wirelessly communicate with a wireless device of the user's car to start its ignition). As per an example, the user's physical key 314 may, for example, be locked inside the user's car, in which case the user may select another contactless device (e.g., identification card 310) to present to mobile device 302. Identification card 310 may, for example, communicate security credentials to a processor of mobile device 302 and once the processor authorizes the identify of the user of mobile device 302, mobile device 302 may, for example, wirelessly communicate with the user's car to unlock its doors so that the user may retrieve key 314 that may have been previously locked within the user's car.
Powered payment card 312 may, for example, include electronics to simulate a human touch (e.g., powered payment card 312 may generate a change in capacitance that may be sensed by display 304). Through a series of simulated touches, powered payment card 312 may communicate a series of data bits to display 304, which may then be processed by a processor of mobile device 302 as security credentials. In so doing, for example, a contactless communication channel may be established where data is transferred from powered payment card 312 to a processor of mobile device 302 via a series of simulated touches to authorize a function to be performed (or commanded to be performed) by a processor of mobile device 302.
Powered payment card 312 may, for example, include a light sensor. Accordingly, for example, powered payment card 312 may be sensitive to light pulses generated within a region of display 304. The light sensor of powered payment card 312 may receive a series of light pulses, which may be construed by a processor of powered payment card 312 as data generated by a processor of mobile device 302. In so doing, for example, powered payment card 312 may receive an optical data stream represented by a series of light pulses generated by display 304. As such, a two-way communication channel may be formed, where simulated touches may generate a data stream from powered payment card 312 to mobile device 302 and light pulses may generate a data stream from mobile device 302 to powered payment card 312.
Mobile device 302 may, for example, include a motion-capture device (e.g., a camera). Identification card (e.g., driver's license 310) may, for example, include a barcode. Accordingly, for example, a contactless communication channel may be formed between identification card 310 and mobile device 302 where a camera of mobile device 302 may capture an image of the barcode of identification card 310. In so doing, for example, a processor of mobile device 302 may analyze the barcode image and extract information from the barcode image that may be construed by the processor as security credentials that when validated, may authorize a processor of mobile device 302 to perform (or cause to perform) any function.
As per another example, a user's photograph may appear on identification card 310. Accordingly, for example, a camera of mobile device 302 may capture an image of the picture and a processor of mobile device 302 may construe the captured image as a security credential. In so doing, for example, a processor of mobile device 302 may compare a scanned image of a user's picture to an image contained within a memory of mobile device 302 (or contained within a memory of a remote authorization server) for authorization. As per yet another example, a user may snap a picture of himself or herself with a camera of mobile device 302 so that a processor of mobile device 302 may scan the snapped picture for authorization purposes.
Mobile device 302 may, for example, require authorization before being activated for use. Accordingly, for example, a processor of mobile device 302 may require a password to be entered and verified before a processor of mobile device 302 may unlock functions available to be performed by mobile device 302. In so doing, for example, one or more contactless devices 308-314 may be presented to mobile device 302 and security credentials may be communicated by the one or more contactless devices 308-314 in lieu of providing a password to mobile device 302. Upon validation of the security credentials, a processor of mobile device 302 may unlock those functions that may be available to be executed by the processor of mobile device 302.
Physical card (e.g., payment card) information (e.g., track 1, track 2, and/or track 3 magnetic stripe data) may be communicated by the physical card to the mobile device via a contactless communication channel and such information may be displayed within a virtual card (e.g., virtual payment card 402) as summary information that may be associated with the physical payment card. A payment card number communicated to a processor of a mobile device may, for example, include issuer identification as well as an issuing network identifier. Accordingly, for example, a processor of a mobile device may analyze the payment card number received from a physical payment card and may render a portion or all of the identifying information associated with the payment card number onto virtual payment card 402. In so doing, for example, issuer identification as well as a logo representative of an issuing network identifier may be rendered onto virtual payment card 402. Other virtual payment cards may, for example, be sorted behind virtual payment card 402 in virtually any order (e.g., most popular to least popular, highest credit limit to lowest credit limit, or highest credit available to lowest credit available). Other virtual cards (e.g., virtual gift card 404 and virtual driver's license 406) may be stored within a memory of a mobile device as well.
Once retrieved, a user may tap the physical card against region 502. Accordingly, for example, a contactless communication channel (e.g., an RFID communication channel) may be formed between the physical card and the mobile device, such that security credentials may be communicated from the physical card to the mobile device via the contactless communication channel to authorize virtual payment card 502 for use. In so doing, for example, a physical card may communicate security credentials (e.g., at least a portion of a payment card number of the physical card and/or a cardholder's name) to a processor of the mobile device and the processor may compare the received security credentials to security credentials stored within a memory of the mobile device that may be associated with virtual payment card 502. If the processor of the mobile device determines that the received security credentials match at least a portion of the security credentials associated with virtual payment card 502, then virtual card 502 may be authorized for use.
A user's physical card that corresponds to virtual payment card 602 may, for example, be a powered card having touch-simulation electronics and a light sensor. Accordingly, for example, the user's physical card may be pressed against region 602, such that the touch simulation electronics of the physical card aligns with touch-sensitive portion 604 and the light sensor of the physical card aligns with portion 606. In so doing, for example, a contactless communication channel may be formed between the user's physical card and the mobile device, such that data may be communicated from the user's physical card to the mobile device through a series of simulated touches generated by the physical card and sensed at portion 604 by a processor of the mobile device. Such communicated data may be construed by a processor of the mobile device as security credentials communicated by the user's physical card.
Security credentials that may be communicated (e.g., via a capacitive, visible, audible, electromagnetic, magnetic, or RFID-based contactless communication channel) to a mobile device by a powered payment card may, for example, include a dynamic security code that may change with each use. Accordingly, for example, a network entity (e.g., an authorization server) may be synchronized with the user's powered payment card, such that when a dynamic security code of the powered payment card changes, so does the corresponding dynamic security code of the authorization server. In so doing, for example, a dynamic security code received by a mobile device from a powered payment card during authorization of virtual payment card 602 may be communicated by a processor of the mobile device to an authorization server for verification that the dynamic security code matches the dynamic security code maintained by the authorization server. If so, virtual payment card 602 may be authorized for use by the mobile device (e.g., payment information associated with virtual payment card 602 may be communicated by the mobile device to complete a purchase transaction).
Prior to authorizing the financial account management function, GUI 704 may challenge a user of mobile device 702 to tap a card against mobile device 702 that may be associated with the transaction. Accordingly, for example, a payment card (e.g., payment card 708) that may be associated with the financial accounts used for the financial account management function may be used as a security credential to authorize the transaction. In so doing, for example, security credentials communicated by payment card 708 to mobile device 702 via contactless communication channel 706 (e.g., an RFID communication channel) may be relayed by mobile device 702 to authorization server 710 via communication channel 712 for authorization of the financial account management function. Once authorized, a processor of mobile device 702 may receive the authorization from authorization server 710 and may contact other network entities (e.g., a payment server of network 714) to complete the financial account management function.
Payment card 708 need not be directly related to the financial accounts involved with a financial account management function. Instead, authorization server 710 may, for example, maintain links between various financial accounts that may be owned by a user of a mobile device. Accordingly, for example, while payment card 708 may not be used as the source account from which money is to be transferred to an auto loan account, payment card 708 may nevertheless be linked with the source account (e.g., M/C 1234). In so doing, for example, authorization server 710 may recognize the link between payment card 708 and the source account (e.g., M/C 1234) and may authorize the money transfer due to the recognized link.
Payment card 708 may, for example, be a powered payment card. Accordingly, for example, a dynamic security code may be communicated from payment card 708 to a processor of mobile device 702 (e.g., via a discretionary data field of a magnetic stripe message communicated by payment card 708) along with other identifying information (e.g., at least a portion of a dynamic payment card number or a cardholder's name). In so doing, for example, the dynamic security code and/or other optional identifying information may serve as the security credential that authorizes mobile device 702 to perform the requested function. The dynamic security code and/or other optional identifying information may, for example, be relayed to authorization server 710. Accordingly, for example, authorization server 710 may analyze the security code and any other optional identifying information to determine whether the requested function is to be authorized. If so, the authorization may be communicated by authorization server 710 to a processor of mobile device 702 via communication channel 712 so that the function may be completed.
A user may, for example, start his or her car from the convenience and warmth of the user's office at work when temperatures outside may warrant a time period within which car 814 may need to warm up. Accordingly, for example, a user may start his or her car via commands communicated by a processor of mobile device 802 to car 814 prior to leaving the office for the day. In so doing, for example, a processor of mobile device 802 may require authorization to issue the command, in which case the user may be challenged to present key 808 within a communication distance from mobile device 802 to form contactless communication channel 806. Security credentials may, for example, be communicated from key 808 to a processor of mobile device 802 via contactless communication channel 806 and the processor may compare the received security credentials to security credentials stored within a memory of mobile device 802 (or a remote authorization server). If a match is found, for example, a processor of mobile device 802 may be authorized to issue one or more commands 816 to car 814.
A wireless device of car 814 may, for example, communicate to a processor of mobile device 802 via communication channel 810. Accordingly, for example, once a command is authorized and sent to a wireless device of car 814 by a processor of mobile device 802, the wireless device of car 814 may respond with an acknowledgment that the command (e.g., “Start car”) was executed. A wireless device of car 814 may, for example, provide status to a display of mobile device 802. Accordingly, for example, a wireless device of car 814 may report a gasoline level status to mobile device 802 via communication channel 810 so that the user of mobile device 802 may know that leaving car 814 running for a length of time may deplete the car's gas reserves.
Banking functions performed by a mobile device may, for example, be authorized as defined by options 904. A mobile device may, for example, be equipped with scanning capability, such that biometrics (e.g., fingerprints) may be taken from the user of the mobile device and verified before banking functions may be authorized. As per another example, a dynamic security code communicated to a processor of a mobile device by a powered payment card via a contactless communication channel may authorize banking functions to be performed by the mobile device.
Functions associated with remote operation of a car may, for example, be authorized as defined by options 906. A mobile device may, for example, be equipped with a camera, such that only when a picture of an authorized user is taken with the camera and verified by a processor of the mobile device will that user be able to issue remote commands (e.g., unlock driver's door) to the user's car.
Other functions, such as remote house functions, may be authorized as defined by options 908. For example, a garage door of a user's house may be commanded to be opened by the user's mobile device, but only if a house key communicates security credentials (e.g., a key code) to a processor of the user's mobile device via a contactless communication channel. Alternately, for example, a user may disable any house functions to be conducted by the user's mobile device.
A memory of a mobile device may, for example, contain a number of virtual cards that may correspond to information communicated to a processor of the mobile device via physical card counterparts to the virtual cards. Such virtual cards may, for example, be selected (e.g., as in step 1021 of sequence 1020) to perform a function in conjunction with the mobile device (e.g., payment information associated with a virtual payment card may be selected to complete a purchase transaction using the mobile device). In step 1022, a user of a mobile device may be required to produce a physical card that corresponds to the selected virtual card. A contactless communication channel (e.g., an RFID communication channel) may be formed between the physical card and the mobile device so that security credentials may be communicated from the physical card to a processor of the mobile device via the contactless communication channel (e.g., as in step 1023). In step 1024, a processor of a mobile device may compare the security credentials to security credentials stored within a memory of the mobile device (or remote authorization server) that corresponds to a physical card. Upon a favorable comparison, a processor of a mobile device may authorize the selected virtual card for use.
Any function (e.g., non-purchase transactions) that may be performed by a mobile device may be requested (e.g., as in step 1031 of sequence 1030) and challenged (e.g., as in step 1032 of sequence 1030). For example, a processor of a mobile device may be requested to perform any function (e.g., remotely start the engine of a user's car) and a processor of the mobile device may first require security credentials to be presented before the function may be performed. Security credentials may, for example, be any information that may be communicated to a mobile device by a contactless device (e.g., an RFID enabled ignition key) via a contactless communication channel. A processor of the mobile device may authorize the requested function if the security credentials are verified (e.g., as in step 1033) and may deny the requested function if the security credentials are not verified (e.g., as in step 1034).
In step 1041 of sequence 1040, a user of a mobile device may request a function to be performed by a mobile device. Upon receipt of security credentials communicated by a contactless communication device to a processor of the mobile device (e.g., as in step 1042), the security credentials may be forwarded (e.g., as in step 1043) to a remote authorization server for verification. In step 1044, the remote authorization server may communicate a message to a processor of the mobile device to either grant or deny authorization for the mobile device to perform the requested function.
Persons skilled in the art will appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information and the exchange thereof. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application claims the benefit of U.S. Provisional Patent Application Nos. 61/484,547, titled “SYSTEMS AND DEVICES FOR MOBILE PAYMENT ACCEPTANCE,” filed May 10, 2011, 61/484,566, titled “SYSTEMS AND METHODS FOR A MOBILE ELECTRONIC WALLET,” filed May 10, 2011, 61/484,576, titled “SYSTEMS AND METHODS FOR MOBILE AUTHORIZATIONS,” filed May 10, 2011, and 61/484,588, titled “SYSTEMS AND METHODS FOR CONTACTLESS COMMUNICATION MECHANISMS FOR CARDS AND MOBILE DEVICES,” filed May 10, 2011 all of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4353064 | Stamm | Oct 1982 | A |
4394654 | Hofmann-Cerfontaine | Jul 1983 | A |
4614861 | Pavlov et al. | Sep 1986 | A |
4667087 | Quintana | May 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4720860 | Weiss | Jan 1988 | A |
4786791 | Hodama | Nov 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4797542 | Hara | Jan 1989 | A |
5038251 | Sugiyama et al. | Aug 1991 | A |
5168520 | Weiss | Dec 1992 | A |
5237614 | Weiss | Aug 1993 | A |
5276311 | Hennige | Jan 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5361062 | Weiss et al. | Nov 1994 | A |
5412199 | Finkelstein et al. | May 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5434405 | Finkelstein et al. | Jul 1995 | A |
5478994 | Rahman | Dec 1995 | A |
5479512 | Weiss | Dec 1995 | A |
5484997 | Haynes | Jan 1996 | A |
5485519 | Weiss | Jan 1996 | A |
5585787 | Wallerstein | Dec 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5608203 | Finkelstein et al. | Mar 1997 | A |
5623552 | Lane | Apr 1997 | A |
5657388 | Weiss | Aug 1997 | A |
5834747 | Cooper | Nov 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5907142 | Kelsey | May 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5937394 | Wong et al. | Aug 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6025054 | Tiffany, III | Feb 2000 | A |
6045043 | Bashan et al. | Apr 2000 | A |
6076163 | Hoffstein et al. | Jun 2000 | A |
6085320 | Kaliski | Jul 2000 | A |
6095416 | Grant et al. | Aug 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6145079 | Mitty et al. | Nov 2000 | A |
6157920 | Jakobsson et al. | Dec 2000 | A |
6161181 | Haynes, III et al. | Dec 2000 | A |
6176430 | Finkelstein et al. | Jan 2001 | B1 |
6182894 | Hackett et al. | Feb 2001 | B1 |
6189098 | Kaliski | Feb 2001 | B1 |
6199052 | Mitty et al. | Mar 2001 | B1 |
6206293 | Gutman et al. | Mar 2001 | B1 |
6240184 | Huynh et al. | May 2001 | B1 |
6241153 | Tiffany, III | Jun 2001 | B1 |
6256873 | Tiffany, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6286022 | Kaliski et al. | Sep 2001 | B1 |
6308890 | Cooper | Oct 2001 | B1 |
6313724 | Osterweil | Nov 2001 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6393447 | Jakobsson et al. | May 2002 | B1 |
6411715 | Liskov et al. | Jun 2002 | B1 |
6446052 | Juels | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6607127 | Wong | Aug 2003 | B2 |
6609654 | Anderson et al. | Aug 2003 | B1 |
6631849 | Blossom | Oct 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6681988 | Stack et al. | Jan 2004 | B2 |
6705520 | Pitroda et al. | Mar 2004 | B1 |
6755341 | Wong et al. | Jun 2004 | B1 |
6764005 | Cooper | Jul 2004 | B2 |
6769618 | Finkelstein | Aug 2004 | B1 |
6805288 | Routhenstein et al. | Oct 2004 | B2 |
6811082 | Wong | Nov 2004 | B2 |
6813354 | Jakobsson et al. | Nov 2004 | B1 |
6817532 | Finkelstein | Nov 2004 | B2 |
6873974 | Schutzer | Mar 2005 | B1 |
6902116 | Finkelstein | Jun 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6991155 | Burchette, Jr. | Jan 2006 | B2 |
7013030 | Wong et al. | Mar 2006 | B2 |
7035443 | Wong | Apr 2006 | B2 |
7039223 | Wong | May 2006 | B2 |
7044394 | Brown | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7083094 | Cooper | Aug 2006 | B2 |
7100049 | Gasparini et al. | Aug 2006 | B2 |
7100821 | Rasti | Sep 2006 | B2 |
7111172 | Duane et al. | Sep 2006 | B1 |
7114652 | Moullette et al. | Oct 2006 | B2 |
7136514 | Wong | Nov 2006 | B1 |
7140550 | Ramachandran | Nov 2006 | B2 |
7163153 | Blossom | Jan 2007 | B2 |
7195154 | Routhenstein | Mar 2007 | B2 |
7197639 | Juels et al. | Mar 2007 | B1 |
7219368 | Juels et al. | May 2007 | B2 |
7225537 | Reed | Jun 2007 | B2 |
7225994 | Finkelstein | Jun 2007 | B2 |
7246752 | Brown | Jul 2007 | B2 |
7298243 | Juels et al. | Nov 2007 | B2 |
7334732 | Cooper | Feb 2008 | B2 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7346775 | Gasparini et al. | Mar 2008 | B2 |
7356696 | Jakobsson et al. | Apr 2008 | B1 |
7357319 | Lin et al. | Apr 2008 | B1 |
7359507 | Kaliski | Apr 2008 | B2 |
7360688 | Harris | Apr 2008 | B1 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7398253 | Pinnell | Jul 2008 | B1 |
7404087 | Teunen | Jul 2008 | B2 |
7424570 | D'Albore et al. | Sep 2008 | B2 |
7427033 | Roskind | Sep 2008 | B1 |
7454349 | Teunen et al. | Nov 2008 | B2 |
7461250 | Duane et al. | Dec 2008 | B1 |
7461399 | Juels et al. | Dec 2008 | B2 |
7472093 | Juels | Dec 2008 | B2 |
7472829 | Brown | Jan 2009 | B2 |
7494055 | Fernandes et al. | Feb 2009 | B2 |
7494067 | Zhu | Feb 2009 | B1 |
7502467 | Brainard et al. | Mar 2009 | B2 |
7502933 | Jakobsson et al. | Mar 2009 | B2 |
7503485 | Routhenstein | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7523301 | Nisbet et al. | Apr 2009 | B2 |
7530495 | Cooper | May 2009 | B2 |
7532104 | Juels | May 2009 | B2 |
7543739 | Brown et al. | Jun 2009 | B2 |
7559464 | Routhenstein | Jul 2009 | B2 |
7562221 | Nystrom et al. | Jul 2009 | B2 |
7562222 | Gasparini et al. | Jul 2009 | B2 |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7591426 | Osterweil et al. | Sep 2009 | B2 |
7591427 | Osterweil | Sep 2009 | B2 |
7597250 | Finn | Oct 2009 | B2 |
7602904 | Juels et al. | Oct 2009 | B2 |
7631804 | Brown | Dec 2009 | B2 |
7639537 | Sepe et al. | Dec 2009 | B2 |
7641124 | Brown et al. | Jan 2010 | B2 |
7660902 | Graham et al. | Feb 2010 | B2 |
7784687 | Mullen et al. | Aug 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7828207 | Cooper | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7942337 | Jain | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
D643063 | Mullen et al. | Aug 2011 | S |
8011577 | Mullen et al. | Sep 2011 | B2 |
8020775 | Mullen et al. | Sep 2011 | B2 |
8066191 | Cloutier et al. | Nov 2011 | B1 |
D651237 | Mullen et al. | Dec 2011 | S |
D651238 | Mullen et al. | Dec 2011 | S |
8074877 | Mullen et al. | Dec 2011 | B2 |
D651644 | Mullen et al. | Jan 2012 | S |
D652075 | Mullen et al. | Jan 2012 | S |
D652076 | Mullen et al. | Jan 2012 | S |
D652448 | Mullen et al. | Jan 2012 | S |
D652449 | Mullen et al. | Jan 2012 | S |
D652450 | Mullen et al. | Jan 2012 | S |
D652867 | Mullen et al. | Jan 2012 | S |
D653288 | Mullen et al. | Jan 2012 | S |
8095113 | Kean | Jan 2012 | B2 |
8172148 | Cloutier et al. | May 2012 | B1 |
D665022 | Mullen et al. | Aug 2012 | S |
D665447 | Mullen et al. | Aug 2012 | S |
D666241 | Mullen et al. | Aug 2012 | S |
8282007 | Cloutier et al. | Oct 2012 | B1 |
8286876 | Mullen et al. | Oct 2012 | B2 |
D670759 | Mullen et al. | Nov 2012 | S |
8302872 | Mullen | Nov 2012 | B2 |
D672389 | Mullen et al. | Dec 2012 | S |
8322623 | Mullen et al. | Dec 2012 | B1 |
D674013 | Mullen et al. | Jan 2013 | S |
8348172 | Cloutier et al. | Jan 2013 | B1 |
8352323 | Fisher | Jan 2013 | B2 |
8382000 | Mullen et al. | Feb 2013 | B2 |
8393545 | Mullen | Mar 2013 | B1 |
8393546 | Yen et al. | Mar 2013 | B1 |
8413892 | Mullen et al. | Apr 2013 | B2 |
8424773 | Mullen et al. | Apr 2013 | B2 |
8459548 | Mullen et al. | Jun 2013 | B2 |
D687094 | Mullen et al. | Jul 2013 | S |
8485437 | Mullen et al. | Jul 2013 | B2 |
8485446 | Mullen et al. | Jul 2013 | B1 |
8511574 | Yen et al. | Aug 2013 | B1 |
8517276 | Mullen et al. | Aug 2013 | B2 |
8523059 | Mullen et al. | Sep 2013 | B1 |
8561894 | Mullen et al. | Oct 2013 | B1 |
8565723 | Cox | Oct 2013 | B2 |
8567679 | Mullen et al. | Oct 2013 | B1 |
8573503 | Cloutier et al. | Nov 2013 | B1 |
8579203 | Lambeth et al. | Nov 2013 | B1 |
8590796 | Cloutier et al. | Nov 2013 | B1 |
8602312 | Cloutier et al. | Dec 2013 | B2 |
8608083 | Mullen et al. | Dec 2013 | B2 |
8622309 | Mullen et al. | Jan 2014 | B1 |
8668143 | Mullen et al. | Mar 2014 | B2 |
8727219 | Mullen | May 2014 | B1 |
8733638 | Mullen et al. | May 2014 | B2 |
8746579 | Cloutier et al. | Jun 2014 | B1 |
8757483 | Mullen et al. | Jun 2014 | B1 |
8757499 | Cloutier et al. | Jun 2014 | B2 |
8814050 | Mullen et al. | Aug 2014 | B1 |
8875999 | Mullen et al. | Nov 2014 | B2 |
8881989 | Mullen et al. | Nov 2014 | B2 |
8918855 | Singh et al. | Dec 2014 | B2 |
8931703 | Mullen et al. | Jan 2015 | B1 |
8944333 | Mullen et al. | Feb 2015 | B1 |
8973824 | Mullen et al. | Mar 2015 | B2 |
9004368 | Mullen et al. | Apr 2015 | B2 |
9010630 | Mullen et al. | Apr 2015 | B2 |
9053398 | Cloutier | Jun 2015 | B1 |
9064255 | Mullen et al. | Jun 2015 | B1 |
9129270 | Spodak | Sep 2015 | B2 |
9292843 | Mullen et al. | Mar 2016 | B1 |
9306666 | Zhang et al. | Apr 2016 | B1 |
9329619 | Cloutier | May 2016 | B1 |
9361569 | Mullen et al. | Jun 2016 | B2 |
9373069 | Cloutier et al. | Jun 2016 | B2 |
9384438 | Mullen et al. | Jul 2016 | B2 |
9547816 | Mullen et al. | Jan 2017 | B2 |
9639796 | Mullen et al. | May 2017 | B2 |
9646240 | Mullen et al. | May 2017 | B1 |
9652436 | Yen et al. | May 2017 | B1 |
9684861 | Mullen et al. | Jun 2017 | B2 |
D792511 | Mullen et al. | Jul 2017 | S |
D792512 | Mullen et al. | Jul 2017 | S |
D792513 | Mullen et al. | Jul 2017 | S |
9697454 | Mullen et al. | Jul 2017 | B2 |
9704088 | Mullen et al. | Jul 2017 | B2 |
9704089 | Mullen et al. | Jul 2017 | B2 |
9721201 | Mullen et al. | Aug 2017 | B1 |
9727813 | Mullen et al. | Aug 2017 | B2 |
9805297 | Mullen et al. | Oct 2017 | B2 |
9818125 | Mullen et al. | Nov 2017 | B2 |
9836680 | Cloutier | Dec 2017 | B1 |
9852368 | Yen et al. | Dec 2017 | B1 |
9875437 | Cloutier et al. | Jan 2018 | B2 |
9928456 | Cloutier et al. | Mar 2018 | B1 |
9953255 | Yen et al. | Apr 2018 | B1 |
10022884 | Cloutier | Jul 2018 | B1 |
10032100 | Mullen et al. | Jul 2018 | B2 |
10055614 | Cloutier et al. | Aug 2018 | B1 |
10095970 | Mullen | Oct 2018 | B1 |
10095974 | Mullen et al. | Oct 2018 | B1 |
10169692 | Mullen et al. | Jan 2019 | B2 |
10176419 | Cloutier et al. | Jan 2019 | B1 |
10176423 | Mullen et al. | Jan 2019 | B1 |
10181097 | Mullen et al. | Jan 2019 | B1 |
10198687 | Mullen et al. | Feb 2019 | B2 |
10223631 | Mullen et al. | Mar 2019 | B2 |
10255545 | Mullen et al. | Apr 2019 | B2 |
10325199 | Mullen et al. | Jun 2019 | B2 |
10430704 | Mullen et al. | Oct 2019 | B2 |
10467521 | Mullen et al. | Nov 2019 | B2 |
10482363 | Cloutier et al. | Nov 2019 | B1 |
10496918 | Mullen et al. | Dec 2019 | B2 |
10504105 | Mullen et al. | Dec 2019 | B2 |
10579920 | Mullen et al. | Mar 2020 | B2 |
10693263 | Mullen et al. | Jun 2020 | B1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010047335 | Arndt et al. | Nov 2001 | A1 |
20020059114 | Cockrill et al. | May 2002 | A1 |
20020082989 | Fife et al. | Jun 2002 | A1 |
20020096570 | Wong et al. | Jul 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20030034388 | Routhenstein et al. | Feb 2003 | A1 |
20030052168 | Wong | Mar 2003 | A1 |
20030057278 | Wong | Mar 2003 | A1 |
20030116635 | Taban | Jun 2003 | A1 |
20030152253 | Wong | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030173409 | Vogt et al. | Sep 2003 | A1 |
20030179909 | Wong et al. | Sep 2003 | A1 |
20030179910 | Wong | Sep 2003 | A1 |
20030226899 | Finkelstein | Dec 2003 | A1 |
20040035942 | Silverman | Feb 2004 | A1 |
20040054574 | Kaufman et al. | Mar 2004 | A1 |
20040127256 | Goldthwaite et al. | Jul 2004 | A1 |
20040133787 | Doughty | Jul 2004 | A1 |
20040162732 | Rahim et al. | Aug 2004 | A1 |
20040172535 | Jakobsson | Sep 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20050043997 | Sohata et al. | Feb 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050086160 | Wong et al. | Apr 2005 | A1 |
20050086177 | Anderson et al. | Apr 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050119940 | Concilio et al. | Jun 2005 | A1 |
20050154643 | Doan et al. | Jul 2005 | A1 |
20050228959 | D'Albore et al. | Oct 2005 | A1 |
20060000900 | Fernandes et al. | Jan 2006 | A1 |
20060037073 | Juels et al. | Feb 2006 | A1 |
20060041759 | Kaliski et al. | Feb 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060091223 | Zellner | May 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060163353 | Moulette et al. | Jul 2006 | A1 |
20060165060 | Dua | Jul 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060196931 | Holtmanns et al. | Sep 2006 | A1 |
20060219776 | Finn | Oct 2006 | A1 |
20060256961 | Brainard et al. | Nov 2006 | A1 |
20070034700 | Poidomani et al. | Feb 2007 | A1 |
20070106892 | Engberg | May 2007 | A1 |
20070114274 | Gibbs et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070152070 | D'Albore | Jul 2007 | A1 |
20070152072 | Frallicciardi et al. | Jul 2007 | A1 |
20070153487 | Frallicciardi et al. | Jul 2007 | A1 |
20070174614 | Duane et al. | Jul 2007 | A1 |
20070192249 | Biffle et al. | Aug 2007 | A1 |
20070241183 | Brown et al. | Oct 2007 | A1 |
20070241201 | Brown et al. | Oct 2007 | A1 |
20070256123 | Duane et al. | Nov 2007 | A1 |
20070278291 | Rans | Dec 2007 | A1 |
20070291753 | Romano | Dec 2007 | A1 |
20080005510 | Sepe et al. | Jan 2008 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080008322 | Fontana et al. | Jan 2008 | A1 |
20080010675 | Massascusa et al. | Jan 2008 | A1 |
20080016351 | Fontana et al. | Jan 2008 | A1 |
20080019507 | Fontana et al. | Jan 2008 | A1 |
20080028447 | O'Malley et al. | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080040271 | Hammad et al. | Feb 2008 | A1 |
20080040276 | Hammad et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080058016 | Di Maggio et al. | Mar 2008 | A1 |
20080059379 | Ramaci et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080126398 | Cimino | May 2008 | A1 |
20080128515 | Di Iorio | Jun 2008 | A1 |
20080148394 | Poidomani et al. | Jun 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080209550 | Di Iorio | Aug 2008 | A1 |
20080288699 | Chichierchia | Nov 2008 | A1 |
20080294930 | Varone et al. | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080302877 | Musella et al. | Dec 2008 | A1 |
20090013122 | Sepe et al. | Jan 2009 | A1 |
20090036147 | Romano | Feb 2009 | A1 |
20090046522 | Sepe et al. | Feb 2009 | A1 |
20090070272 | Jain | Mar 2009 | A1 |
20090108064 | Fernandes et al. | Apr 2009 | A1 |
20090132362 | Fisher et al. | May 2009 | A1 |
20090143104 | Loh et al. | Jun 2009 | A1 |
20090150295 | Hatch et al. | Jun 2009 | A1 |
20090152365 | Li et al. | Jun 2009 | A1 |
20090159663 | Mullen et al. | Jun 2009 | A1 |
20090159667 | Mullen et al. | Jun 2009 | A1 |
20090159668 | Mullen et al. | Jun 2009 | A1 |
20090159669 | Mullen et al. | Jun 2009 | A1 |
20090159670 | Mullen et al. | Jun 2009 | A1 |
20090159671 | Mullen et al. | Jun 2009 | A1 |
20090159672 | Mullen et al. | Jun 2009 | A1 |
20090159673 | Mullen et al. | Jun 2009 | A1 |
20090159680 | Mullen et al. | Jun 2009 | A1 |
20090159681 | Mullen et al. | Jun 2009 | A1 |
20090159682 | Mullen et al. | Jun 2009 | A1 |
20090159688 | Mullen et al. | Jun 2009 | A1 |
20090159689 | Mullen et al. | Jun 2009 | A1 |
20090159690 | Mullen et al. | Jun 2009 | A1 |
20090159696 | Mullen | Jun 2009 | A1 |
20090159697 | Mullen et al. | Jun 2009 | A1 |
20090159698 | Mullen et al. | Jun 2009 | A1 |
20090159699 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159701 | Mullen et al. | Jun 2009 | A1 |
20090159702 | Mullen | Jun 2009 | A1 |
20090159703 | Mullen et al. | Jun 2009 | A1 |
20090159704 | Mullen et al. | Jun 2009 | A1 |
20090159705 | Mullen et al. | Jun 2009 | A1 |
20090159706 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090159708 | Mullen et al. | Jun 2009 | A1 |
20090159709 | Mullen | Jun 2009 | A1 |
20090159710 | Mullen et al. | Jun 2009 | A1 |
20090159711 | Mullen et al. | Jun 2009 | A1 |
20090159712 | Mullen et al. | Jun 2009 | A1 |
20090159713 | Mullen et al. | Jun 2009 | A1 |
20090160617 | Mullen et al. | Jun 2009 | A1 |
20090170432 | Lortz | Jul 2009 | A1 |
20090191811 | Griffin et al. | Jul 2009 | A1 |
20090210308 | Toomer et al. | Aug 2009 | A1 |
20090222383 | Tato et al. | Sep 2009 | A1 |
20090242648 | Di Sirio et al. | Oct 2009 | A1 |
20090244858 | Di Sirio et al. | Oct 2009 | A1 |
20090253460 | Varone et al. | Oct 2009 | A1 |
20090255996 | Brown et al. | Oct 2009 | A1 |
20090290704 | Cimino | Nov 2009 | A1 |
20090303885 | Longo | Dec 2009 | A1 |
20090307132 | Phillips | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20100019033 | Jolivet | Jan 2010 | A1 |
20100023449 | Skowronek et al. | Jan 2010 | A1 |
20100051689 | Diamond | Mar 2010 | A1 |
20100063895 | Dominguez | Mar 2010 | A1 |
20100082445 | Hodge | Apr 2010 | A1 |
20100131413 | Kranzley | May 2010 | A1 |
20100153269 | McCabe | Jun 2010 | A1 |
20100260388 | Garrett et al. | Oct 2010 | A1 |
20100303230 | Taveau | Dec 2010 | A1 |
20100304670 | Shuo | Dec 2010 | A1 |
20110028184 | Cooper | Feb 2011 | A1 |
20110218911 | Spodak | Sep 2011 | A1 |
20110264543 | Taveau | Oct 2011 | A1 |
20110270757 | Hammad | Nov 2011 | A1 |
20110272465 | Mullen et al. | Nov 2011 | A1 |
20110272466 | Mullen et al. | Nov 2011 | A1 |
20110272467 | Mullen et al. | Nov 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272472 | Mullen | Nov 2011 | A1 |
20110272473 | Mullen et al. | Nov 2011 | A1 |
20110272474 | Mullen et al. | Nov 2011 | A1 |
20110272475 | Mullen et al. | Nov 2011 | A1 |
20110272476 | Mullen et al. | Nov 2011 | A1 |
20110272477 | Mullen et al. | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110272479 | Mullen | Nov 2011 | A1 |
20110272480 | Mullen et al. | Nov 2011 | A1 |
20110272481 | Mullen et al. | Nov 2011 | A1 |
20110272482 | Mullen et al. | Nov 2011 | A1 |
20110272483 | Mullen et al. | Nov 2011 | A1 |
20110272484 | Mullen et al. | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276416 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110276436 | Mullen et al. | Nov 2011 | A1 |
20110276437 | Mullen et al. | Nov 2011 | A1 |
20110278364 | Mullen et al. | Nov 2011 | A1 |
20110282753 | Mullen et al. | Nov 2011 | A1 |
20110284632 | Mullen et al. | Nov 2011 | A1 |
20110284640 | Mullen et al. | Nov 2011 | A1 |
20110320293 | Khan | Dec 2011 | A1 |
20120028702 | Mullen et al. | Feb 2012 | A1 |
20120037709 | Cloutier et al. | Feb 2012 | A1 |
20120150601 | Fisher | Jun 2012 | A1 |
20120197708 | Mullen et al. | Aug 2012 | A1 |
20120209744 | Mullen et al. | Aug 2012 | A1 |
20120254031 | Walker et al. | Oct 2012 | A1 |
20120254037 | Mullen | Oct 2012 | A1 |
20120286037 | Mullen et al. | Nov 2012 | A1 |
20120286928 | Mullen et al. | Nov 2012 | A1 |
20120286936 | Mullen et al. | Nov 2012 | A1 |
20120290449 | Mullen et al. | Nov 2012 | A1 |
20120290472 | Mullen et al. | Nov 2012 | A1 |
20120318871 | Mullen et al. | Dec 2012 | A1 |
20120326013 | Cloutier et al. | Dec 2012 | A1 |
20130020396 | Mullen et al. | Jan 2013 | A1 |
20130282573 | Mullen et al. | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20140054384 | Cloutier et al. | Feb 2014 | A1 |
20150186766 | Mullen et al. | Jul 2015 | A1 |
20160162713 | Cloutier et al. | Jun 2016 | A1 |
20160180209 | Mullen et al. | Jun 2016 | A1 |
20160239735 | Mullen et al. | Aug 2016 | A1 |
20160283837 | Mullen et al. | Sep 2016 | A1 |
20160307085 | Mullen et al. | Oct 2016 | A1 |
20160335529 | Mullen et al. | Nov 2016 | A1 |
20160342876 | Mullen et al. | Nov 2016 | A1 |
20160342877 | Mullen et al. | Nov 2016 | A1 |
20160342878 | Mullen et al. | Nov 2016 | A1 |
20160342879 | Mullen et al. | Nov 2016 | A1 |
20160342880 | Mullen et al. | Nov 2016 | A1 |
20170286817 | Mullen et al. | Oct 2017 | A1 |
20170300796 | Mullen et al. | Oct 2017 | A1 |
20180053079 | Cloutier et al. | Feb 2018 | A1 |
20180060881 | Mullen et al. | Mar 2018 | A1 |
20190042903 | Cloutier et al. | Feb 2019 | A1 |
20190065928 | Mullen et al. | Feb 2019 | A1 |
20190197387 | Mullen et al. | Jun 2019 | A1 |
20190340484 | Mullen et al. | Nov 2019 | A1 |
20200082383 | Mullen et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
05210770 | Aug 1993 | JP |
WO9852735 | Nov 1998 | WO |
WO0247019 | Jun 2002 | WO |
WO06066322 | Jun 2006 | WO |
WO06080929 | Aug 2006 | WO |
WO06105092 | Oct 2006 | WO |
WO06116772 | Nov 2006 | WO |
WO08064403 | Jun 2008 | WO |
Entry |
---|
U.S. Appl. No. 60/594,300, Poidomani et al. |
U.S. Appl. No. 60/675,388, Poidomani et al. |
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996. |
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010. |
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010. |
USPTO, International Search Report, dated Apr. 28, 2009. |
English translation of JP 05210770 A. |
USPTO, International Search Report, dated Oct. 16, 2012. |
English translation of JP 05210770. |
Number | Date | Country | |
---|---|---|---|
20120286928 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61484547 | May 2011 | US | |
61484566 | May 2011 | US | |
61484576 | May 2011 | US | |
61484588 | May 2011 | US |