The present invention generally relates to methods and systems for narrowing a wavelength emission of light.
Optical coherence tomography (OCT) is an established medical imaging technique that relies on light for producing an image. In OCT, light from a broadband light source is split by an optical fiber splitter with one fiber directing light to a sample path and the other fiber directing light to a reference path mirror. An end of the sample path is typically connected to a scanning device. The light reflected from the scanning device is recombined with the signal from the reference mirror to form interference fringes, which are transformed into a depth resolved image.
Numerous different OCT techniques have been developed, including swept source OCT. In swept source OCT, a narrowband light source is rapidly tuned over a broad optical bandwidth, and spectral components are encoded in time. Thus, image quality in swept source OCT relies on the swept laser source achieving very narrow bandwidths at very high frequencies (e.g., 20-200 kHz) over a very short period of time (e.g., 10,000-10,000,000 Sweeps/sec).
A typical set-up for a swept source OCT system uses a ring resonator that includes an optical amplifier, a tunable filter, and an optical coupler. Laser light at a specific bandwidth is produced by the optical amplifier and sent through the filter. The filter assists in maintaining the outputted light at the specific bandwidth. From the filter, the light travels to the optical coupler where a portion of the light is directed to an interferometer and the remainder of the light returns to the optical amplifier. The process repeats to achieve different bandwidths of light.
A problem with this set-up is that a single pass through an optical amplifier cannot impart enough energy to the light to obtain the very narrow bandwidths in an optimal amount of time. Another problem with this set-up is that a single pass through an optical amplifier cannot impart enough energy to the light to prevent broadening of the obtained bandwidth, particularly at higher frequencies. Both problems lead to degradation of image quality.
The invention provides a ring resonator set-up for optical coherence tomography (OCT) in which light passes through an optical amplifier twice before it proceeds to an OCT interferometer. As encompassed by the invention, a first pass of light exiting the optical amplifier is directed back through the amplifier rather than continuing through the ring resonator. Light exiting the amplifier can be sent back through the amplifier by using, for example, a mirror. The light re-enters the amplifier, wherein it is amplified a second time. This re-amplified light is then transmitted through the ring resonator where it can continue onto the OCT interferometer. An optical coupler may be used to coordinate the passage of light between the amplifier and the rest of the ring resonator. The provided ring resonators may also include a filter for maintaining the narrow bandwidth of light after it has been amplified twice by the optical amplifier.
By passing the light through the amplifier twice during a single trip through the resonator, a narrowed bandwidth of light is achieved faster than only passing the light through an interferometer once before proceeding to the interferometer. The second pass through the amplifier in a single trip also imparts additional energy to the light, which prevents undesired broadening of the obtained bandwidth at higher frequencies. Accordingly, the provided ring resonators are able to produce high quality OCT images that avoid the image degradation problems associated with prior art ring resonator configurations.
The provided ring resonator can serve as a light source for a variety of applications, including medical imaging. For example, light leaving the ring resonator can be directed towards an OCT system. As noted above, the present invention is particularly suited for OCT due to the improvement of image quality.
In addition to the provided resonators, the invention also encompasses methods for narrowing a wavelength of light. The methods involve passing light through an optical amplifier of a ring resonator twice during one pass around the ring resonator. Using the provided methods, a narrow bandwidth of light is achieved in an optimal amount of time and image quality is improved.
The invention generally relates to methods and systems for producing narrow emissions of light. The invention can involve transmitting light through a filter and passing a portion of the filtered light through a gain chip assembly at least two times before that portion of the filtered light passes again through the filter. Broadband light is emitted from a light source and transmitted through a filter. The filtered light is passed through a gain chip assembly in which the light signal is amplified. The amplified light leaves the gain chip assembly, whereupon a portion of that light is sent back into the gain chip assembly, where it is amplified a second time. This re-amplified light is then directed back through the filter, wherein the whole process can repeat itself. Accordingly, the re-amplification of filtered light prior to its return to the filter can include sending the light through a gain medium in the gain chip assembly back through the gain chip assembly. This results in a second pass through the assembly gain medium before passing again through the filter.
Any optical filter is useful for practicing the invention. As encompassed by the invention, the filter receives light from a broadband light source and emits light of a predetermined wavelength. An optical filter typically has a peak reflectivity and a background reflectivity. The peak reflectivity indicates an amount of light output (reflected) at the specified wavelength, wherein a desired wavelength can be set in a tunable filter by placing mirrors in an etalon at an appropriate distance apart. The background reflectivity indicates an amount of light output at wavelengths other than the desired wavelength.
Typical filters might have, for example, a 20% peak reflectivity and a 0.02% background reflectivity. The ratio of these numbers (103) defines the filter contrast ratio, expressed in decibels (dB) (here, 30 dB). Thus, if light of a certain wavelength, for example, 1200 nm, is intended, the filter will transmit light at 1200 nm as well as a broad spectrum of light at lower power in a ratio of 30 dB.
In some embodiments, systems of the invention include an optical filter that can be tuned to a desired wavelength, i.e., a tunable filter. Amplified light of a selected wavelength is obtained by tuning the filter to that wavelength and sending the light into the gain medium with sufficient input power to achieve a desired output power.
Where an optical system requires a particular wavelength of amplified light, the light source may include an optical filter module such as a tunable optical filter in optical communication with a gain component.
In certain embodiments of the invention, the tunable filter is a voltage-controlled optical attenuator. In a VCOA, an optical attenuator is placed between an input and output lens for obstructing the path of an incoming light beam. The attenuator has variable attenuation (reflection, absorption, etc.) which is controlled for maintaining a preset power or wavelength of the outgoing light beam. To this end, a fraction of the outgoing signal is diverted to an output detector by reflecting off an end face of a lens, and processed for obtaining a control signal representative of the output power. An electric output displaces the attenuator to a position corresponding to a preset output power. Further detail on VCOAs can be found, for example, in U.S. Pat. No. 5,745,634, incorporated by reference herein in its entirety.
The invention also encompasses the use of a gain chip assembly that amplifies the power of light that is transmitted through it. As provided by the invention, light travels from the filter to the gain chip assembly for amplification. The gain chip assembly, or gain component, generally refers to any device known in the art capable of amplifying light such as an optical amplifier, laser, or any component employing a gain medium. A gain medium is a material that increases the power of light transmitted through the gain medium. Exemplary gain mediums include crystals (e.g., sapphire), doped crystals (e.g., yttrium aluminum garnet, yttrium orthovanadate), glasses such as silicate or phosphate glasses, gasses (e.g., mixtures of helium and neon, nitrogen, argon, or carbon monoxide), semiconductors (e.g., gallium arsenide, indium gallium arsenide), and liquids (e.g., rhodamine, fluorescein).
When light interacts with the material of the gain medium, several outcomes may be obtained. Light may be transmitted through the material unaffected or reflect off a surface of the material. Alternatively, an incident photon of light can exchange energy with an electron of an atom within the material by either absorption or stimulated emission. If the photon is absorbed, the electron transitions from an initial energy level to a higher energy level. In three-level system, there is a transient energy state associated with a third energy level.
When electron returns to ground state, a photon is emitted. When photons are emitted, there is a net increase in power of light within the gain medium. In stimulated emission, an electron emits energy ΔE through the creation of a photon of frequency v12 and coherent with the incident photon. Two photons are coherent if they have the same phase, frequency, polarization, and direction of travel. Equation 1 gives the relationship between energy change ΔE and frequency v12:
ΔE=hv12 (1)
where h is Plank's constant. Light produced this way can be temporally coherent, i.e., having a single location that exhibits clean sinusoidal oscillations over time.
An electron can also release a photon by spontaneous emission. Amplified spontaneous emission (ASA) in a gain medium produces spatially coherent light, e.g., having a fixed phase relationship across the profile of a light beam.
Emission prevails over absorption when light is transmitted through a material having more excited electrons than ground state electrons—a state known as a population inversion. A population inversion can be obtained by pumping in energy (e.g., current or light) from outside. Where emission prevails, the material exhibits a gain G defined by Equation 2:
G=10 Log10(Pout/Pin) dB (2)
where Pout and Pin are the optical output and input power of the gain medium.
As encompassed by the invention, the gain chip component can be an optical amplifier or a laser. An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier generally includes a gain medium (e.g., without an optical cavity), or one in which feedback from the cavity is suppressed. Exemplary optical amplifiers include doped fibers, bulk lasers, semiconductor optical amplifiers (SOAs) and Raman optical amplifiers. In doped fiber amplifiers and bulk lasers, stimulated emission in the amplifier's gain medium causes amplification of incoming light. In SOAs, electron-hole recombination occurs. In Raman amplifiers, Raman scattering of incoming light with phonons (i.e., excited state quasiparticles) in the lattice of the gain medium produces photons coherent with the incoming photons.
Doped fiber amplifiers (DFAs) are optical amplifiers that use a doped optical fiber as a gain medium to amplify an optical signal. In a DFA, the signal to be amplified and a pump laser are multiplexed into the doped fiber, and the signal is amplified through interation with the doping ions. The most common DFA is Erbium Doped Fiber Amplifier (EDFA), which features a silica fiber with an Erbium-ion doped core. An exemplary EDFA is the Cisco ONS 15501 EDFA from Cisco Systems, Inc. (San Jose, Calif.)
Semiconductor optical amplifiers (SOAs) are amplifiers that use a semiconductor to provide the gain medium. In a SOA, input light is transmitted through the gain medium and amplified output light is produced. An SOA includes n-cladding layer and p-cladding layer. The SOA also typically includes a group III-V compound semiconductor such as GaAs/AlGaAs, InP/InGas, InP/InGaAsP and InP/InAlGaAs, though any suitable semiconductor material may be used.
A typical semiconductor optical amplifier includes a double heterostructure material with n-type and p-type high band gap semiconductor layers around a low band gap semiconductor. The high band gap layers are sometimes referred to as p-cladding layers (which have more holes than electrons) and n-cladding layers (which have more electrons than holes). The carriers are injected into the gain medium where they recombine to produce photons by both spontaneous and stimulated emission. The cladding layers also function as waveguides to guide the propagation of the light signal. Semiconductor optical amplifiers are described in Dutta and Wang, Semiconductor Optical Amplifiers, World Scientific Publishing Co. Pte. Ltd., Hackensack, N.J. (2006) the contents of which are hereby incorporated by reference in their entirety.
Booster Optical Amplifiers (BOAs) are single-pass, traveling-wave amplifiers that only amplify one state of polarization generally used for applications where the input polarization of the light is known. Since a BOA is polarization sensitive, it can provide desirable gain, noise, bandwidth, and saturation power specification. In some embodiments, a BOA includes a semiconductor gain medium. The input and output of BOA can be coupled to one or more waveguides on an optical amplifier chip.
Optical amplifier components can be provided in a standard 14-pin butterfly package with either single mode fiber (SMF) or polarization maintain fiber (PMF) pigtails, which can be terminated with any fixed connection (FC) connector such as an angled physical connection (FC/APC) connector. Optional polarization-maintaining isolators can be provided at the input, output, or both. In certain embodiments, the gain chip assembly includes a wavelength dependent reflector as a reflective surface of the optical amplifier, such as a mirror or one or more facets of the gain medium.
A laser generally is an optical amplifier in which the gain medium is positioned within an optical resonator (i.e., an optical cavity) as diagrammed in
In a laser, one of the mirrors of the optical cavity is generally known as the high reflector while the other is the output coupler. Typically, the output coupler is partially transparent and emits the output laser beam. In certain embodiments, the invention provides a wavelength dependent reflector as a reflective surface with laser, such as one of the mirrors (e.g., the output coupler) or one of the facets of the gain medium.
A laser can be provided, for example, as a COTS component in a 14-pin butterfly package with either SMF or PMF pigtails. One such exemplary laser is the PowerPure 1998 PLM, a 980 nm pump laser module with Bragg grating available from Avanex Corporation (Fremont, Calif.).
In certain embodiments, a gain component such as an optical amplifier or a laser amplifies light in a frequency-specific manner. A gain component includes a gain medium having a gain coefficient g (gain per unit length) that is a function of the optical frequency of the incident signal w. The gain coefficient at a given frequency g(ω) is given by equation 3:
g(ω)=g0/(1+(ω−ω0)2T2+P/Ps) (3)
where g0 is the peak gain of the medium, P is the optical power of the signal being amplified, Ps is the saturation power of the gain medium, ω0 is an atomic transition frequency of the medium, and T is a dipole relaxation time. Where incident light has a frequency ω, a gain medium has a gain coefficient g(ω) and gain is given by Equation 4:
G(ω)=exp[g(ω)L] (4)
where L is a length of the gain medium.
The power of amplified light at a distance z from the input end of a gain medium is given by Equation 5:
P(z)=Pinexp(gz) (5)
Gain coefficient g has an inverse square relationship to (ω−ω0) (see Equation 3) and power P(z) is exponentially related to gain coefficient g. Thus, the gain of a gain medium is higher for optical frequencies w closer to ω0.
If light of various wavelengths is amplified by the medium (at powers well below the saturation power Ps of the gain medium), light having a wavelength at or near the peak gain will be amplified to a greater degree than light having a wavelength not at or near the peak gain.
For any wavelength of light, if the gain is greater than the loss, lasing can result in which the light is emitted as a laser beam. The conditions at which gain equals loss is the lasing threshold for a frequency of light. The lasing threshold is lowest at the peak gain and light having a wavelength at the peak gain is more readily and more robustly amplified than at other wavelengths. Consequently, the gain medium most readily lases light at the peak gain.
Unintentional lasing is known as parasitic lasing. If light transmitted through the medium has sufficient power, wavelengths near the peak gain will cross the lasing threshold, causing lasing. This parasitic lasing leaches power from the system, reduces coherence length of signal light, and introduces noise into the signal. Due to the shape of the gain curve in a typical gain medium, parasitic lasing is problematic near the peak gain.
Devices and methods of the invention mitigate parasitic lasing and improve image quality. In one embodiment, systems and methods of the invention mitigate parasitic lasing by optimizing the time required to reach amplified light of a desired wavelength. Accordingly, undesired wavelengths have less opportunity to become amplified and also surpass the lasing threshold. In addition, image quality is also improved by reducing the time necessary to reach a desired wavelength.
In certain aspects, the gain component produces new infrared light from incident light delivered by a filter module in optical connection to the gain component. Preferably, the reflector is an output coupler and the gain component is a semiconductor optical amplifier. Systems of the invention further include any other compatible component known in the art. Exemplary components include interferometers, couplers/splitters, controllers, and any other device known in the art. Systems of the invention may include input and output mechanisms, such as an output mechanism configured to be coupled to a fiber optic interferometer or other imaging device. An optical system may include a controller component. For example, systems can include the LDC1300 butterfly LD/TEC controller from Thorlabs (Newton, N.J.). The LD/TEC controller and mount allows a system to be controlled by a computer. In certain embodiments, optical systems are integrated into an optical networking platform such as the Cisco ONS 15500 Dense Wave Division Multiplexer.
In certain embodiments, the system includes an interferometer such as a fiber optic interferometer. An interferometer, generally, is an instrument used to interfere waves and measure the interference. Interferometry includes extracting information from superimposed, interfering waves.
As encompassed by the invention, a portion of the amplified light leaving the gain chip assembly is directed back into the assembly. In certain aspects, this re-direction is accomplished using a partial mirror. Mirrors typically reflect uniformly over a broad spectral range. In contrast, partial mirrors work at off-normal angles of incidence, thereby reflecting only a portion of the light while transmitting the remainder. In certain aspects, a partial mirror is appropriately positioned outside the gain chip assembly so that when light leaves the assembly, it is reflected by the partial mirror back into the assembly. Accordingly, light is amplified a second time upon re-entering the gain chip assembly.
Any material suitable for antireflective coating may be used to construct the partial mirror. Exemplary materials include metals such as aluminum, silver, or gold or compounds such as magnesium fluoride. Additional exemplary coated materials are sold under the trademark HEBBAR by CVI Melles Griot (Albuquerque, N. Mex.).
Coatings of the desired thickness can be fabricated by any method known in the art including, for example, vacuum deposition, electric bombardment vaporization, plasma ion-assisted deposition (PIAD), carbon vapor deposition, plasma vapor deposition, and related techniques. In vacuum deposition, a substrate is put in a vacuum chamber along with a metal crucible holding the coating substance. A high current (e.g., 100 A) is passed through the coating material, vaporizing it. Due to the vacuum, the vaporized material disperses to the material to be coated.
In certain aspects, the filter and gain chip assembly are connected with optical fibers, such that light transmitted from the filter travels through the optical fiber to the gain chip assembly and from the gain chip assembly back into the filter. In certain aspects of the invention, one optical fiber transmits light from the filter to the gain chip assembly, while a second optical fiber transmits light from the gain chip assembly back to the filter.
Optical fibers are flexible, transparent fibers able to transmit light from one end of the fiber to the other. Optical fibers can be prepared from glass (silica) or from a variety of plastic polymers. Optical fibers usually include a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by total internal reflection, which causes the fiber to act as a waveguide or “light pipe.”
Any type of optical fiber is useful for practicing the invention, including multi-mode fibers (MMF) and single-mode fibers (SMF). MMF fibers support many propogation paths or transverse modes while SMF fibers support only a single mode. MMF fibers usually have wider core diameter than SMF fibers, and are used for short-distance communication links and for applications where high power must be transmitted. SMF fibers are often used for communication links longer than 1000 meters. Assemblies of multiple fibers can also be prepared in wrapped bundles, which are often used for imaging procedures. The selection of the appropriate fibers and their connection to the various components described herein is within the skill of the art. For example, MMF fibers having a wavelength range of 400-2400 nm are available from Thorlabs (Item No. AFS50/125Y).
Further embodiments of the invention include an optical circulator for redirecting light among the various components encompassed by the invention. For example, light can travel from the filter to the circulator through an optical fiber connecting both the filter and the circulator. The light can then travel from the circulator to the gain chip assembly and back again via a separate optical fiber connecting the circulator to the gain chip assembly.
An optical circulator is a special fiber-optic component that can be used to separate optical signals that travel in different directions in an optical fiber. Optical circulators are typically three-port devices, configured such that light entering any port exits from the next. This means that if light enters port 1, it is emitted from port 2, but if some of the emitted light is reflected back to the circulator, it does not come out of port 1, but instead exits from port 3. In this sense, fiber optic circulators act as signal routers, transmitting light from an input fiber at a first port to an output fiber at a second port, but directing light that returns along the output fiber to a third port. Circulators protect the input fiber from return power, but also allow the rejected light to be employed. The selection of the appropriate circulators and their connection to the various components described herein is within the skill of the art. For example, optical circulators having a wavelength range of 1525-1610 nm are available from Thorlabs, Inc (Item No. 6015-3-APC).
As encompassed by the invention, light from the filter enters the circulator at a first port, and exits the circulator at a second port, which is connected to the gain chip assembly. When the light amplified in the gain chip assembly reaches the lasing threshold, light is emitted from the gain chip assembly. The emitted light meets a partial mirror outside the gain chip assembly, whereupon a portion of the amplified light is reflected back into the assembly. The amplified light is amplified for a second time in the gain chip assembly. This re-amplified light travels back to the circulator, entering the circulator at the second port. The re-amplified light then exits the circulator out the third port, whereupon the re-amplified light travels back to the filter and the whole process can begin again.
The present invention can operate as a light source for a variety of uses, including imaging applications. In certain aspects, the unreflected portion of the light leaving the gain chip assembly is directed to an optical tomography (OCT) system. Systems and methods of the invention are particularly amenable for use in OCT as the provided systems and methods can improve image quality and reduce the incidence of parasitic lasing.
Measuring a phase change in one of two beams from a coherent light is employed in optical coherence tomography. Commercially available OCT systems are employed in diverse applications, including art conservation and diagnostic medicine, e.g., ophthalmology. Recently, it has also begun to be used in interventional cardiology to help diagnose coronary heart disease. OCT systems and methods are described in U.S. Patent Application Nos. 2011/0152771; 2010/0220334; 2009/0043191; 2008/0291463; and 2008/0180683, the contents of which are hereby incorporated by reference in their entirety.
Various lumen of biological structures may be imaged with the aforementioned imaging technologies in addition to blood vessels, including, but not limited to, vasculature of the lymphatic and nervous systems, various structures of the gastrointestinal tract including lumen of the small intestine, large intestine, stomach, esophagus, colon, pancreatic duct, bile duct, hepatic duct, lumen of the reproductive tract including the vas deferens, vagina, uterus, and fallopian tubes, structures of the urinary tract including urinary collecting ducts, renal tubules, ureter, bladder, and structures of the head, neck, and pulmonary system including sinuses, parotid, trachea, bronchi, and lungs.
In OCT, a light source delivers a beam of light to an imaging device to image target tissue. Within the light source is an optical amplifier and an tunable filter that allows that allows a user to select a wavelength of light to be amplified. Wavelengths commonly used in medical applications include near-infrared light, for example, 800 nm for shallow, high-resolution scans or 1700 nm for deep scans.
Generally, there are two types of OCT systems, common beam path systems and differential beam path systems, which differ from each other based upon the optical layout of the systems. A common beam path system sends all produced light through a single optical fiber to generate a reference signal and a sample signal, whereupon a differential beam path system splits the produced light such that a portion of the light is directed to the sample and the other portion is directed to a reference surface. The reflected light from the sample is recombined with the signal from the reference surface of detection. Common beam path interferometers are further described in, for example, U.S. Pat. Nos. 7,999,938; 7,995,210; and 7,787,127, the contents of which are incorporated by reference herein in its entirety.
In a differential beam path system, amplified light from a light source is inputted into an interferometer with a portion of light directed to a sample and the other portion directed to a reference surface. A distal end of an optical fiber is interfaced with a catheter for interrogation of the target tissue during a catheterization procedure. The reflected light from the tissue is recombined with the signal from the reference surface, forming interference fringes that allow precise depth-resolved imaging of the target tissue on a micron scale. Exemplary differential beam path interferometers are further described in, for example, U.S. Pat. Nos. 6,134,003; and 6,421,164, the contents of which are incorporated by reference herein in its entirety.
In certain embodiments, the invention can be used in conjunction with a differential beam path OCT system with intravascular imaging capability as illustrated in
As shown in
In certain embodiments, each interferometer is configured in a Mach-Zehnder layout and uses single mode fiber optics to guide the light. Fibers are connected via LC/APC connectors or protected fusion splices. By controlling the split ratio between the OCT and auxiliary interferometers with splitter 901, the optical power in the auxiliary interferometer is controlled to optimize the signal in the auxiliary interferometer. Within the auxiliary interferometer, light is split and recombined by a pair of 50/50 coupler/splitters.
Light directed to the main OCT interferometer is also split by splitter 917 and recombined by splitter 919 with an asymmetric split ratio. The majority of the light is guided into the sample path 913 and the remainder into a reference path 915. The sample path includes optical fibers running through the PIM 839 and the imaging catheter 826 and terminating at the distal end of the imaging catheter 826 where the image is captured.
Typical intravascular OCT involves introducing the imaging catheter into a patients' target vessel using standard interventional techniques and tools such as a guidewire, guide catheter, and angiography system. When operation is triggered from the PIM or control console, the imaging core of the catheter rotates while collecting image data that it delivers to the console screen. Rotation is driven by spin motor 861 while translation is driven by pullback motor 865, as shown in
In certain embodiments, the imaging catheter has a crossing profile of 2.4 F (0.8 mm) and transmits focused OCT imaging light to and from the vessel of interest. Embedded microprocessors running firmware in both the PIM and the imaging engine control the system. The imaging catheter includes a rotating and longitudinally-translating inner core contained within an outer sheath. Using light provided by the imaging engine, the inner core detects reflected light. This reflected light is then transmitted along a sample path to be recombined with the light from the reference path.
A variable delay line (VDL) 925 on the reference path uses an adjustable fiber coil to match the length of the reference path 915 to the length of the sample path 913. The reference path length is adjusted by translating a mirror on a lead screw based translation stage that is actuated electromechanically by a small stepper motor. The free-space optical beam on the inside of the VDL 925 experiences more delay as the mirror moves away from the fixed input/output fiber. Stepper movement is under firmware/software control.
Light from the reference path is combined with light from the sample path. This light is split into orthogonal polarization states, resulting in RF-band polarization-diverse temporal interference fringe signals. The interference fringe signals are converted to photocurrents using PIM photodiodes 929a and 929b on the OCG as shown in
In certain embodiments, the invention provides a light source for OCT including a filter, a gain chip assembly comprising a gain medium, and a partially reflecting mirror. The components are configured such that light passes from the filter to the gain chip assembly and a portion of the light is reflected by the partial mirror back through the gain chip assembly before the light passes again through the filter.
Any filter known in the art compatible with the invention may be used, including, for example, a tunable filter. The filter is included to deliver light of a specified wavelength into an optical amplifier. The filter typically has a peak reflectivity and a background reflectivity. In some embodiments, the system includes a commercial off-the-shelf (COTS) filter. One exemplary filter for use with the use with the invention is filter module TFM-687 by Axsun technologies, Inc. (Billerica, Mass.). An exemplary tunable optical filter exhibits 20% reflectivity and 29 dB contrast ratio.
Any optical amplifier or laser known in the art and compatible with the invention may be used as the gain component including, for example, a semiconductor optical amplifier. The amplifier amplifies the light to a sufficient output power for imaging by OCT. The amplifier typically has a semiconductor gain medium and an optical cavity. In some embodiments, a system includes a COTS amplifier. One exemplary optical amplifier for use with the invention is booster optical amplifier serial number BOA1130S, BOA1130P, or BOA-8702-11820.4.B01 from Thorlabs (Newton, N.J.). An exemplary optical amplifier has a center wavelength of 1285 nm and a small signal gain of 30 dB with a chip length of 1.5 mm.
A mirror can be coated with wavelength dependent material. Suitable materials are available from Unioriental Optics co., Ltd (Zhong Guan Cun Science Park, Beijing, China).
In certain embodiments, the invention provides a light source that emits narrow wavelength light for OCT systems like those shown in
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/745,270, filed Dec. 21, 2012, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3301258 | Werner | Jan 1967 | A |
3617880 | Cormack et al. | Nov 1971 | A |
3789841 | Antoshkiw | Feb 1974 | A |
3841308 | Tate | Oct 1974 | A |
4140364 | Yamashita et al. | Feb 1979 | A |
4274423 | Mizuno et al. | Jun 1981 | A |
4344438 | Schultz | Aug 1982 | A |
4398791 | Dorsey | Aug 1983 | A |
4432370 | Hughes et al. | Feb 1984 | A |
4552554 | Gould et al. | Nov 1985 | A |
4577543 | Wilson | Mar 1986 | A |
4676980 | Segal et al. | Jun 1987 | A |
4682895 | Costello | Jul 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4744619 | Cameron | May 1988 | A |
4762129 | Bonzel | Aug 1988 | A |
4766386 | Oliver et al. | Aug 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4794931 | Yock | Jan 1989 | A |
4800886 | Nestor | Jan 1989 | A |
4803639 | Steele et al. | Feb 1989 | A |
4816567 | Cabilly et al. | Mar 1989 | A |
4819740 | Warrington | Apr 1989 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4824435 | Giesy et al. | Apr 1989 | A |
4830023 | de Toledo et al. | May 1989 | A |
4834093 | Littleford et al. | May 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4864578 | Proffitt et al. | Sep 1989 | A |
4873690 | Adams | Oct 1989 | A |
4877314 | Kanamori | Oct 1989 | A |
4887606 | Yock et al. | Dec 1989 | A |
4917085 | Smith | Apr 1990 | A |
4917097 | Proudian et al. | Apr 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4932413 | Shockey et al. | Jun 1990 | A |
4932419 | de Toledo | Jun 1990 | A |
4948229 | Soref | Aug 1990 | A |
4951677 | Crowley et al. | Aug 1990 | A |
4969742 | Falk et al. | Nov 1990 | A |
4987412 | Vaitekunas et al. | Jan 1991 | A |
4993412 | Murphy-Chutorian | Feb 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5000185 | Yock | Mar 1991 | A |
5024234 | Leary et al. | Jun 1991 | A |
5025445 | Anderson et al. | Jun 1991 | A |
5032123 | Katz et al. | Jul 1991 | A |
5037169 | Chun | Aug 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040548 | Yock | Aug 1991 | A |
5041108 | Fox et al. | Aug 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5065010 | Knute | Nov 1991 | A |
5065769 | de Toledo | Nov 1991 | A |
5085221 | Ingebrigtsen et al. | Feb 1992 | A |
5095911 | Pomeranz | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5120308 | Hess | Jun 1992 | A |
5125137 | Corl et al. | Jun 1992 | A |
5135486 | Eberle et al. | Aug 1992 | A |
5135516 | Sahatjian et al. | Aug 1992 | A |
5155439 | Holmbo et al. | Oct 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5163445 | Christian et al. | Nov 1992 | A |
5167233 | Eberle et al. | Dec 1992 | A |
5174295 | Christian et al. | Dec 1992 | A |
5176141 | Bom et al. | Jan 1993 | A |
5176674 | Hofmann | Jan 1993 | A |
5178159 | Christian | Jan 1993 | A |
5183048 | Eberle | Feb 1993 | A |
5188632 | Goldenberg | Feb 1993 | A |
5201316 | Pomeranz et al. | Apr 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5203779 | Muller et al. | Apr 1993 | A |
5220922 | Barany | Jun 1993 | A |
5224953 | Morgentaler | Jul 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5240003 | Lancee et al. | Aug 1993 | A |
5240437 | Christian | Aug 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5257974 | Cox | Nov 1993 | A |
5266302 | Peyman et al. | Nov 1993 | A |
5267954 | Nita | Dec 1993 | A |
5301001 | Murphy et al. | Apr 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5313949 | Yock | May 1994 | A |
5313957 | Little | May 1994 | A |
5319492 | Dorn et al. | Jun 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5325198 | Hartley et al. | Jun 1994 | A |
5336178 | Kaplan et al. | Aug 1994 | A |
5346689 | Peyman et al. | Sep 1994 | A |
5348017 | Thornton et al. | Sep 1994 | A |
5348481 | Ortiz | Sep 1994 | A |
5353798 | Sieben | Oct 1994 | A |
5358409 | Obara | Oct 1994 | A |
5358478 | Thompson et al. | Oct 1994 | A |
5368037 | Eberle et al. | Nov 1994 | A |
5373845 | Gardineer et al. | Dec 1994 | A |
5373849 | Maroney et al. | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5377682 | Ueno et al. | Jan 1995 | A |
5383853 | Jung et al. | Jan 1995 | A |
5387193 | Miraki | Feb 1995 | A |
5396328 | Jestel et al. | Mar 1995 | A |
5397355 | Marin et al. | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5411016 | Kume et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5423806 | Dale et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5436759 | Dijaili et al. | Jul 1995 | A |
5439139 | Brovelli | Aug 1995 | A |
5443457 | Ginn et al. | Aug 1995 | A |
5453575 | O'Donnell et al. | Sep 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5480388 | Zadini et al. | Jan 1996 | A |
5485845 | Verdonk et al. | Jan 1996 | A |
5492125 | Kim et al. | Feb 1996 | A |
5496997 | Pope | Mar 1996 | A |
5507761 | Duer | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5529674 | Hedgcoth | Jun 1996 | A |
5541730 | Chaney | Jul 1996 | A |
5546717 | Penczak et al. | Aug 1996 | A |
5546948 | Hamm et al. | Aug 1996 | A |
5565332 | Hoogenboom et al. | Oct 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5581638 | Givens et al. | Dec 1996 | A |
5586054 | Jensen et al. | Dec 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5596079 | Smith et al. | Jan 1997 | A |
5598844 | Diaz et al. | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5630806 | Inagaki et al. | May 1997 | A |
5651366 | Liang et al. | Jul 1997 | A |
5660180 | Malinowski et al. | Aug 1997 | A |
5667499 | Welch et al. | Sep 1997 | A |
5667521 | Keown | Sep 1997 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5693015 | Walker et al. | Dec 1997 | A |
5713848 | Dubrul et al. | Feb 1998 | A |
5745634 | Garrett et al. | Apr 1998 | A |
5771895 | Slager | Jun 1998 | A |
5779731 | Leavitt | Jul 1998 | A |
5780958 | Strugach et al. | Jul 1998 | A |
5798521 | Froggatt | Aug 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5803083 | Buck et al. | Sep 1998 | A |
5814061 | Osborne et al. | Sep 1998 | A |
5817025 | Alekseev et al. | Oct 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5824520 | Mulligan-Kehoe | Oct 1998 | A |
5827313 | Ream | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5848121 | Gupta et al. | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5857974 | Eberle et al. | Jan 1999 | A |
5872829 | Wischmann et al. | Feb 1999 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5882722 | Kydd | Mar 1999 | A |
5912764 | Togino | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5921931 | O'Donnell et al. | Jul 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951586 | Berg et al. | Sep 1999 | A |
5974521 | Akerib | Oct 1999 | A |
5976120 | Chow et al. | Nov 1999 | A |
5978391 | Das et al. | Nov 1999 | A |
5997523 | Jang | Dec 1999 | A |
6021240 | Murphy et al. | Feb 2000 | A |
6022319 | Willard et al. | Feb 2000 | A |
6031071 | Mandeville et al. | Feb 2000 | A |
6036889 | Kydd | Mar 2000 | A |
6043883 | Leckel et al. | Mar 2000 | A |
6050949 | White et al. | Apr 2000 | A |
6059738 | Stoltze et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6074362 | Jang et al. | Jun 2000 | A |
6078831 | Belef et al. | Jun 2000 | A |
6080109 | Baker et al. | Jun 2000 | A |
6091496 | Hill | Jul 2000 | A |
6094591 | Foltz et al. | Jul 2000 | A |
6095976 | Nachtomy et al. | Aug 2000 | A |
6097755 | Guenther, Jr. et al. | Aug 2000 | A |
6099471 | Torp et al. | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6102938 | Evans et al. | Aug 2000 | A |
6106476 | Corl et al. | Aug 2000 | A |
6120445 | Grunwald | Sep 2000 | A |
6123673 | Eberle et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6141089 | Thoma et al. | Oct 2000 | A |
6146328 | Chiao et al. | Nov 2000 | A |
6148095 | Prause et al. | Nov 2000 | A |
6151433 | Dower et al. | Nov 2000 | A |
6152877 | Masters | Nov 2000 | A |
6152878 | Nachtomy et al. | Nov 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6176842 | Tachibana et al. | Jan 2001 | B1 |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6186949 | Hatfield et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6200266 | Shokrollahi et al. | Mar 2001 | B1 |
6200268 | Vince et al. | Mar 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6210332 | Chiao et al. | Apr 2001 | B1 |
6210339 | Kiepen et al. | Apr 2001 | B1 |
6212308 | Donald | Apr 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6245066 | Morgan et al. | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6254543 | Grunwald et al. | Jul 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6258052 | Milo | Jul 2001 | B1 |
6261246 | Pantages et al. | Jul 2001 | B1 |
6275628 | Jones et al. | Aug 2001 | B1 |
6283921 | Nix et al. | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6295308 | Zah | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6312384 | Chiao | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328696 | Fraser | Dec 2001 | B1 |
6343168 | Murphy et al. | Jan 2002 | B1 |
6343178 | Burns et al. | Jan 2002 | B1 |
6350240 | Song et al. | Feb 2002 | B1 |
6364841 | White et al. | Apr 2002 | B1 |
6366722 | Murphy et al. | Apr 2002 | B1 |
6367984 | Stephenson et al. | Apr 2002 | B1 |
6373970 | Dong et al. | Apr 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6375618 | Chiao et al. | Apr 2002 | B1 |
6375628 | Zadno-Azizi et al. | Apr 2002 | B1 |
6376830 | Froggatt et al. | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6381350 | Klingensmith et al. | Apr 2002 | B1 |
6387124 | Buscemi et al. | May 2002 | B1 |
6396976 | Little et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6417948 | Chowdhury et al. | Jul 2002 | B1 |
6419644 | White et al. | Jul 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6423012 | Kato et al. | Jul 2002 | B1 |
6426796 | Pulliam et al. | Jul 2002 | B1 |
6428041 | Wohllebe et al. | Aug 2002 | B1 |
6428498 | Uflacker | Aug 2002 | B2 |
6429421 | Meller et al. | Aug 2002 | B1 |
6440077 | Jung et al. | Aug 2002 | B1 |
6443903 | White et al. | Sep 2002 | B1 |
6450964 | Webler | Sep 2002 | B1 |
6457365 | Stephens et al. | Oct 2002 | B1 |
6459844 | Pan | Oct 2002 | B1 |
6468290 | Weldon et al. | Oct 2002 | B1 |
6475149 | Sumanaweera | Nov 2002 | B1 |
6480285 | Hill | Nov 2002 | B1 |
6491631 | Chiao et al. | Dec 2002 | B2 |
6491636 | Chenal et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6504286 | Porat et al. | Jan 2003 | B1 |
6508824 | Flaherty et al. | Jan 2003 | B1 |
6514237 | Maseda | Feb 2003 | B1 |
6520269 | Geiger et al. | Feb 2003 | B2 |
6520677 | Iizuka | Feb 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6538778 | Leckel et al. | Mar 2003 | B1 |
6544217 | Gulachenski | Apr 2003 | B1 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6545760 | Froggatt et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551250 | Khalil | Apr 2003 | B2 |
6566648 | Froggatt | May 2003 | B1 |
6570894 | Anderson | May 2003 | B2 |
6572555 | White et al. | Jun 2003 | B2 |
6577789 | Wang | Jun 2003 | B1 |
6579311 | Makower | Jun 2003 | B1 |
6584335 | Haar et al. | Jun 2003 | B1 |
6592612 | Samson et al. | Jul 2003 | B1 |
6594448 | Herman et al. | Jul 2003 | B2 |
6602241 | Makower et al. | Aug 2003 | B2 |
6611322 | Nakayama et al. | Aug 2003 | B1 |
6611720 | Hata et al. | Aug 2003 | B2 |
6612992 | Hossack et al. | Sep 2003 | B1 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6615072 | Izatt et al. | Sep 2003 | B1 |
6621562 | Durston | Sep 2003 | B2 |
6631284 | Nutt et al. | Oct 2003 | B2 |
6638227 | Bae | Oct 2003 | B2 |
6645152 | Jung et al. | Nov 2003 | B1 |
6646745 | Verma et al. | Nov 2003 | B2 |
6655386 | Makower et al. | Dec 2003 | B1 |
6659957 | Vardi et al. | Dec 2003 | B1 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6663565 | Kawagishi et al. | Dec 2003 | B2 |
6665456 | Dave et al. | Dec 2003 | B2 |
6669716 | Gilson et al. | Dec 2003 | B1 |
6671055 | Wavering et al. | Dec 2003 | B1 |
6673015 | Glover et al. | Jan 2004 | B1 |
6673064 | Rentrop | Jan 2004 | B1 |
6678087 | Masuda et al. | Jan 2004 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6689144 | Gerberding | Feb 2004 | B2 |
6696173 | Naundorf et al. | Feb 2004 | B1 |
6701044 | Arbore et al. | Mar 2004 | B2 |
6701176 | Halperin et al. | Mar 2004 | B1 |
6709444 | Makower | Mar 2004 | B1 |
6712836 | Berg et al. | Mar 2004 | B1 |
6714703 | Lee et al. | Mar 2004 | B2 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6725073 | Motamedi et al. | Apr 2004 | B1 |
6726677 | Flaherty et al. | Apr 2004 | B1 |
6730107 | Kelley et al. | May 2004 | B2 |
6733474 | Kusleika | May 2004 | B2 |
6738144 | Dogariu | May 2004 | B1 |
6740113 | Vrba | May 2004 | B2 |
6746464 | Makower | Jun 2004 | B1 |
6780157 | Stephens et al. | Aug 2004 | B2 |
6795188 | Ruck et al. | Sep 2004 | B2 |
6795196 | Funakawa | Sep 2004 | B2 |
6798522 | Stolte et al. | Sep 2004 | B2 |
6822798 | Wu et al. | Nov 2004 | B2 |
6830559 | Schock | Dec 2004 | B2 |
6832024 | Gerstenberger et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6847449 | Bashkansky et al. | Jan 2005 | B2 |
6855115 | Fonseca et al. | Feb 2005 | B2 |
6856138 | Bohley | Feb 2005 | B2 |
6856400 | Froggatt | Feb 2005 | B1 |
6856472 | Herman et al. | Feb 2005 | B2 |
6860867 | Seward et al. | Mar 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6878113 | Miwa et al. | Apr 2005 | B2 |
6886411 | Kjellman et al. | May 2005 | B2 |
6891984 | Petersen et al. | May 2005 | B2 |
6895106 | Wang et al. | May 2005 | B2 |
6898337 | Averett et al. | May 2005 | B2 |
6900897 | Froggatt | May 2005 | B2 |
6912051 | Jensen | Jun 2005 | B2 |
6916329 | Zhao | Jul 2005 | B1 |
6922498 | Shah | Jul 2005 | B2 |
6937346 | Nebendahl et al. | Aug 2005 | B2 |
6937696 | Mostafavi | Aug 2005 | B1 |
6943939 | DiJaili et al. | Sep 2005 | B1 |
6947147 | Motamedi et al. | Sep 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6949094 | Yaron | Sep 2005 | B2 |
6952603 | Gerber et al. | Oct 2005 | B2 |
6954737 | Kalantar et al. | Oct 2005 | B2 |
6958042 | Honda | Oct 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6966891 | Ookubo et al. | Nov 2005 | B2 |
6969293 | Thai | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6985234 | Anderson | Jan 2006 | B2 |
7004963 | Wang et al. | Feb 2006 | B2 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
7010458 | Wilt | Mar 2006 | B2 |
7024025 | Sathyanarayana | Apr 2006 | B2 |
7027211 | Ruffa | Apr 2006 | B1 |
7027743 | Tucker et al. | Apr 2006 | B1 |
7033347 | Appling | Apr 2006 | B2 |
7035484 | Silberberg et al. | Apr 2006 | B2 |
7037269 | Nix et al. | May 2006 | B2 |
7042573 | Froggatt | May 2006 | B2 |
7044915 | White et al. | May 2006 | B2 |
7044964 | Jang et al. | May 2006 | B2 |
7048711 | Rosenman et al. | May 2006 | B2 |
7049306 | Konradi et al. | May 2006 | B2 |
7058239 | Singh et al. | Jun 2006 | B2 |
7060033 | White et al. | Jun 2006 | B2 |
7060421 | Naundorf et al. | Jun 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7068852 | Braica | Jun 2006 | B2 |
7074188 | Nair et al. | Jul 2006 | B2 |
7095493 | Harres | Aug 2006 | B2 |
7110119 | Maestle | Sep 2006 | B2 |
7113875 | Terashima et al. | Sep 2006 | B2 |
7123777 | Rondinelli et al. | Oct 2006 | B2 |
7130054 | Ostrovsky et al. | Oct 2006 | B2 |
7139440 | Rondinelli et al. | Nov 2006 | B2 |
7153299 | Tu et al. | Dec 2006 | B1 |
7171078 | Sasaki et al. | Jan 2007 | B2 |
7175597 | Vince et al. | Feb 2007 | B2 |
7177491 | Dave et al. | Feb 2007 | B2 |
7190464 | Alphonse | Mar 2007 | B2 |
7215802 | Klingensmith et al. | May 2007 | B2 |
7218811 | Shigenaga et al. | May 2007 | B2 |
7236812 | Ballerstadt et al. | Jun 2007 | B1 |
7245125 | Harer et al. | Jul 2007 | B2 |
7245789 | Bates et al. | Jul 2007 | B2 |
7249357 | Landman et al. | Jul 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7292715 | Furnish | Nov 2007 | B2 |
7292885 | Scott et al. | Nov 2007 | B2 |
7294124 | Eidenschink | Nov 2007 | B2 |
7300460 | Levine et al. | Nov 2007 | B2 |
7335161 | Von Arx et al. | Feb 2008 | B2 |
7337079 | Park et al. | Feb 2008 | B2 |
7355716 | de Boer et al. | Apr 2008 | B2 |
7356367 | Liang et al. | Apr 2008 | B2 |
7358921 | Snyder et al. | Apr 2008 | B2 |
7359062 | Chen et al. | Apr 2008 | B2 |
7359554 | Klingensmith et al. | Apr 2008 | B2 |
7363927 | Ravikumar | Apr 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7387636 | Cohn et al. | Jun 2008 | B2 |
7391520 | Zhou et al. | Jun 2008 | B2 |
7397935 | Kimmel et al. | Jul 2008 | B2 |
7399095 | Rondinelli | Jul 2008 | B2 |
7408648 | Kleen et al. | Aug 2008 | B2 |
7414779 | Huber et al. | Aug 2008 | B2 |
7440087 | Froggatt et al. | Oct 2008 | B2 |
7447388 | Bates et al. | Nov 2008 | B2 |
7449821 | Dausch | Nov 2008 | B2 |
7450165 | Ahiska | Nov 2008 | B2 |
RE40608 | Glover et al. | Dec 2008 | E |
7458967 | Appling et al. | Dec 2008 | B2 |
7463362 | Lasker et al. | Dec 2008 | B2 |
7463759 | Klingensmith et al. | Dec 2008 | B2 |
7491226 | Palmaz et al. | Feb 2009 | B2 |
7515276 | Froggatt et al. | Apr 2009 | B2 |
7527594 | Vardi et al. | May 2009 | B2 |
7534251 | WasDyke | May 2009 | B2 |
7535797 | Peng et al. | May 2009 | B2 |
7547304 | Johnson | Jun 2009 | B2 |
7564949 | Sattler et al. | Jul 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583857 | Xu et al. | Sep 2009 | B2 |
7603165 | Townsend et al. | Oct 2009 | B2 |
7612773 | Magnin et al. | Nov 2009 | B2 |
7633627 | Choma et al. | Dec 2009 | B2 |
7645229 | Armstrong | Jan 2010 | B2 |
7658715 | Park et al. | Feb 2010 | B2 |
7660452 | Zwirn et al. | Feb 2010 | B2 |
7660492 | Bates et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7672790 | McGraw et al. | Mar 2010 | B2 |
7680247 | Atzinger et al. | Mar 2010 | B2 |
7684991 | Stohr et al. | Mar 2010 | B2 |
7711413 | Feldman et al. | May 2010 | B2 |
7720322 | Prisco | May 2010 | B2 |
7728986 | Lasker et al. | Jun 2010 | B2 |
7734009 | Brunner et al. | Jun 2010 | B2 |
7736317 | Stephens et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7743189 | Brown et al. | Jun 2010 | B2 |
7762954 | Nix et al. | Jul 2010 | B2 |
7766896 | Kornkven Volk et al. | Aug 2010 | B2 |
7773792 | Kimmel et al. | Aug 2010 | B2 |
7775981 | Guracar et al. | Aug 2010 | B1 |
7777399 | Eidenschink et al. | Aug 2010 | B2 |
7781724 | Childers et al. | Aug 2010 | B2 |
7783337 | Feldman et al. | Aug 2010 | B2 |
7787127 | Galle et al. | Aug 2010 | B2 |
7792342 | Barbu et al. | Sep 2010 | B2 |
7801343 | Unal et al. | Sep 2010 | B2 |
7801590 | Feldman et al. | Sep 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7831081 | Li | Nov 2010 | B2 |
7846101 | Eberle et al. | Dec 2010 | B2 |
7853104 | Oota et al. | Dec 2010 | B2 |
7853316 | Milner et al. | Dec 2010 | B2 |
7860555 | Saadat | Dec 2010 | B2 |
7862508 | Davies et al. | Jan 2011 | B2 |
7872759 | Tearney et al. | Jan 2011 | B2 |
7880868 | Aoki | Feb 2011 | B2 |
7881763 | Brauker et al. | Feb 2011 | B2 |
7909844 | Alkhatib et al. | Mar 2011 | B2 |
7921854 | Hennings et al. | Apr 2011 | B2 |
7927784 | Simpson | Apr 2011 | B2 |
7929148 | Kemp | Apr 2011 | B2 |
7930014 | Huennekens et al. | Apr 2011 | B2 |
7930104 | Baker et al. | Apr 2011 | B2 |
7936462 | Jiang et al. | May 2011 | B2 |
7942852 | Mas et al. | May 2011 | B2 |
7947012 | Spurchise et al. | May 2011 | B2 |
7951186 | Eidenschink et al. | May 2011 | B2 |
7952719 | Brennan, III | May 2011 | B2 |
7972353 | Hendriksen et al. | Jul 2011 | B2 |
7976492 | Brauker et al. | Jul 2011 | B2 |
7977950 | Maslen | Jul 2011 | B2 |
7978916 | Klingensmith et al. | Jul 2011 | B2 |
7981041 | McGahan | Jul 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
7983737 | Feldman et al. | Jul 2011 | B2 |
7993333 | Oral et al. | Aug 2011 | B2 |
7995210 | Tearney et al. | Aug 2011 | B2 |
7996060 | Trofimov et al. | Aug 2011 | B2 |
7999938 | Wang | Aug 2011 | B2 |
8021377 | Eskuri | Sep 2011 | B2 |
8021420 | Dolan | Sep 2011 | B2 |
8036732 | Milner | Oct 2011 | B2 |
8040586 | Smith et al. | Oct 2011 | B2 |
8047996 | Goodnow et al. | Nov 2011 | B2 |
8049900 | Kemp et al. | Nov 2011 | B2 |
8050478 | Li et al. | Nov 2011 | B2 |
8050523 | Younge et al. | Nov 2011 | B2 |
8052605 | Muller et al. | Nov 2011 | B2 |
8057394 | Dala-Krishna | Nov 2011 | B2 |
8059923 | Bates et al. | Nov 2011 | B2 |
8070800 | Lock et al. | Dec 2011 | B2 |
8080800 | Hoctor et al. | Dec 2011 | B2 |
8088102 | Adams et al. | Jan 2012 | B2 |
8100838 | Wright et al. | Jan 2012 | B2 |
8104479 | Glynn et al. | Jan 2012 | B2 |
8108030 | Castella et al. | Jan 2012 | B2 |
8114102 | Galdonik et al. | Feb 2012 | B2 |
8116605 | Petersen et al. | Feb 2012 | B2 |
8125648 | Milner et al. | Feb 2012 | B2 |
8126239 | Sun et al. | Feb 2012 | B2 |
8133199 | Weber et al. | Mar 2012 | B2 |
8133269 | Flechsenhar et al. | Mar 2012 | B2 |
8140708 | Zaharia et al. | Mar 2012 | B2 |
8148877 | Jiang et al. | Apr 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8172757 | Jaffe et al. | May 2012 | B2 |
8177809 | Mavani et al. | May 2012 | B2 |
8187191 | Hancock et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
8187830 | Hu et al. | May 2012 | B2 |
8199218 | Lee et al. | Jun 2012 | B2 |
8206429 | Gregorich et al. | Jun 2012 | B2 |
8208995 | Tearney et al. | Jun 2012 | B2 |
8222906 | Wyar et al. | Jul 2012 | B2 |
8233681 | Aylward et al. | Jul 2012 | B2 |
8233718 | Klingensmith et al. | Jul 2012 | B2 |
8238624 | Doi et al. | Aug 2012 | B2 |
8239938 | Simeral et al. | Aug 2012 | B2 |
8277386 | Ahmed et al. | Oct 2012 | B2 |
8280470 | Milner et al. | Oct 2012 | B2 |
8289284 | Glynn et al. | Oct 2012 | B2 |
8289522 | Tearney et al. | Oct 2012 | B2 |
8298147 | Huennekens et al. | Oct 2012 | B2 |
8298149 | Hastings et al. | Oct 2012 | B2 |
8301000 | Sillard et al. | Oct 2012 | B2 |
8309428 | Lemmerhirt et al. | Nov 2012 | B2 |
8317713 | Davies et al. | Nov 2012 | B2 |
8323201 | Towfiq et al. | Dec 2012 | B2 |
8329053 | Martin et al. | Dec 2012 | B2 |
8336643 | Harleman | Dec 2012 | B2 |
8349000 | Schreck | Jan 2013 | B2 |
8353945 | Andreas et al. | Jan 2013 | B2 |
8353954 | Cai et al. | Jan 2013 | B2 |
8357981 | Martin et al. | Jan 2013 | B2 |
8361097 | Patel et al. | Jan 2013 | B2 |
8386560 | Ma et al. | Feb 2013 | B2 |
8398591 | Mas et al. | Mar 2013 | B2 |
8412312 | Judell et al. | Apr 2013 | B2 |
8417491 | Trovato et al. | Apr 2013 | B2 |
8449465 | Nair et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8475522 | Jimenez et al. | Jul 2013 | B2 |
8478384 | Schmitt et al. | Jul 2013 | B2 |
8486062 | Belhe et al. | Jul 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8491567 | Magnin et al. | Jul 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8550911 | Sylla | Oct 2013 | B2 |
8594757 | Boppart et al. | Nov 2013 | B2 |
8597349 | Alkhatib | Dec 2013 | B2 |
8600477 | Beyar et al. | Dec 2013 | B2 |
8600917 | Schimert et al. | Dec 2013 | B1 |
8601056 | Lauwers et al. | Dec 2013 | B2 |
8620055 | Barratt et al. | Dec 2013 | B2 |
8644910 | Rousso et al. | Feb 2014 | B2 |
20010007940 | Tu et al. | Jul 2001 | A1 |
20010029337 | Pantages et al. | Oct 2001 | A1 |
20010037073 | White et al. | Nov 2001 | A1 |
20010046345 | Snyder et al. | Nov 2001 | A1 |
20010049548 | Vardi et al. | Dec 2001 | A1 |
20020034276 | Hu et al. | Mar 2002 | A1 |
20020041723 | Ronnekleiv et al. | Apr 2002 | A1 |
20020069676 | Kopp et al. | Jun 2002 | A1 |
20020089335 | Williams | Jul 2002 | A1 |
20020099289 | Crowley | Jul 2002 | A1 |
20020163646 | Anderson | Nov 2002 | A1 |
20020186818 | Arnaud et al. | Dec 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020197456 | Pope | Dec 2002 | A1 |
20030004412 | Izatt et al. | Jan 2003 | A1 |
20030016604 | Hanes | Jan 2003 | A1 |
20030018273 | Corl et al. | Jan 2003 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030032886 | Dgany et al. | Feb 2003 | A1 |
20030050871 | Broughton | Mar 2003 | A1 |
20030065371 | Satake | Apr 2003 | A1 |
20030069723 | Hegde | Apr 2003 | A1 |
20030077043 | Hamm et al. | Apr 2003 | A1 |
20030085635 | Davidsen | May 2003 | A1 |
20030090753 | Takeyama et al. | May 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030093059 | Griffin et al. | May 2003 | A1 |
20030103212 | Westphal et al. | Jun 2003 | A1 |
20030152259 | Belykh et al. | Aug 2003 | A1 |
20030181802 | Ogawa | Sep 2003 | A1 |
20030187369 | Lewis et al. | Oct 2003 | A1 |
20030194165 | Silberberg et al. | Oct 2003 | A1 |
20030195419 | Harada | Oct 2003 | A1 |
20030208116 | Liang et al. | Nov 2003 | A1 |
20030212491 | Mitchell et al. | Nov 2003 | A1 |
20030219202 | Loeb et al. | Nov 2003 | A1 |
20030220749 | Chen et al. | Nov 2003 | A1 |
20030228039 | Green | Dec 2003 | A1 |
20040015065 | Panescu et al. | Jan 2004 | A1 |
20040023317 | Motamedi et al. | Feb 2004 | A1 |
20040028333 | Lomas | Feb 2004 | A1 |
20040037742 | Jen et al. | Feb 2004 | A1 |
20040042066 | Kinoshita et al. | Mar 2004 | A1 |
20040054287 | Stephens | Mar 2004 | A1 |
20040067000 | Bates et al. | Apr 2004 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040082844 | Vardi et al. | Apr 2004 | A1 |
20040092830 | Scott et al. | May 2004 | A1 |
20040106853 | Moriyama | Jun 2004 | A1 |
20040111552 | Arimilli et al. | Jun 2004 | A1 |
20040126048 | Dave et al. | Jul 2004 | A1 |
20040143160 | Couvillon | Jul 2004 | A1 |
20040146546 | Gravett et al. | Jul 2004 | A1 |
20040186369 | Lam | Sep 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040195512 | Crosetto | Oct 2004 | A1 |
20040220606 | Goshgarian | Nov 2004 | A1 |
20040225220 | Rich | Nov 2004 | A1 |
20040239938 | Izatt | Dec 2004 | A1 |
20040242990 | Brister et al. | Dec 2004 | A1 |
20040248439 | Gernhardt et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050013778 | Green et al. | Jan 2005 | A1 |
20050031176 | Hertel et al. | Feb 2005 | A1 |
20050036150 | Izatt et al. | Feb 2005 | A1 |
20050078317 | Law et al. | Apr 2005 | A1 |
20050101859 | Maschke | May 2005 | A1 |
20050140582 | Lee et al. | Jun 2005 | A1 |
20050140682 | Sumanaweera et al. | Jun 2005 | A1 |
20050140981 | Waelti | Jun 2005 | A1 |
20050140984 | Hitzenberger | Jun 2005 | A1 |
20050147303 | Zhou et al. | Jul 2005 | A1 |
20050165439 | Weber et al. | Jul 2005 | A1 |
20050171433 | Boppart et al. | Aug 2005 | A1 |
20050171438 | Chen et al. | Aug 2005 | A1 |
20050182297 | Gravenstein et al. | Aug 2005 | A1 |
20050196028 | Kleen et al. | Sep 2005 | A1 |
20050197585 | Brockway et al. | Sep 2005 | A1 |
20050213103 | Everett et al. | Sep 2005 | A1 |
20050215942 | Abrahamson et al. | Sep 2005 | A1 |
20050234445 | Conquergood et al. | Oct 2005 | A1 |
20050243322 | Lasker et al. | Nov 2005 | A1 |
20050249391 | Kimmel et al. | Nov 2005 | A1 |
20050251567 | Ballew et al. | Nov 2005 | A1 |
20050254059 | Alphonse | Nov 2005 | A1 |
20050264823 | Zhu et al. | Dec 2005 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060015126 | Sher | Jan 2006 | A1 |
20060024066 | Fujiwara et al. | Feb 2006 | A1 |
20060029634 | Berg et al. | Feb 2006 | A1 |
20060036167 | Shina | Feb 2006 | A1 |
20060038115 | Maas | Feb 2006 | A1 |
20060039004 | de Boer et al. | Feb 2006 | A1 |
20060041180 | Viswanathan et al. | Feb 2006 | A1 |
20060045536 | Arahira | Mar 2006 | A1 |
20060055936 | Yun et al. | Mar 2006 | A1 |
20060058622 | Tearney et al. | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060067620 | Shishkov et al. | Mar 2006 | A1 |
20060072808 | Grimm et al. | Apr 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060098927 | Schmidt et al. | May 2006 | A1 |
20060100694 | Globerman | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060132790 | Gutin | Jun 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060142703 | Carter et al. | Jun 2006 | A1 |
20060142733 | Forsberg | Jun 2006 | A1 |
20060173299 | Romley et al. | Aug 2006 | A1 |
20060179255 | Yamazaki | Aug 2006 | A1 |
20060184048 | Saadat | Aug 2006 | A1 |
20060187537 | Huber et al. | Aug 2006 | A1 |
20060195269 | Yeatman et al. | Aug 2006 | A1 |
20060204119 | Feng et al. | Sep 2006 | A1 |
20060229591 | Lee | Oct 2006 | A1 |
20060239312 | Kewitsch et al. | Oct 2006 | A1 |
20060241342 | Macaulay et al. | Oct 2006 | A1 |
20060241465 | Huennekens et al. | Oct 2006 | A1 |
20060241492 | Boese | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060258895 | Maschke | Nov 2006 | A1 |
20060264743 | Kleen et al. | Nov 2006 | A1 |
20060267756 | Kates | Nov 2006 | A1 |
20060270976 | Savage et al. | Nov 2006 | A1 |
20060276709 | Khamene et al. | Dec 2006 | A1 |
20060279742 | Tearney et al. | Dec 2006 | A1 |
20060279743 | Boesser et al. | Dec 2006 | A1 |
20060285638 | Boese et al. | Dec 2006 | A1 |
20060287595 | Maschke | Dec 2006 | A1 |
20060293597 | Johnson et al. | Dec 2006 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070016029 | Donaldson et al. | Jan 2007 | A1 |
20070016034 | Donaldson | Jan 2007 | A1 |
20070016062 | Park et al. | Jan 2007 | A1 |
20070027390 | Maschke et al. | Feb 2007 | A1 |
20070036417 | Argiro et al. | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038121 | Feldman et al. | Feb 2007 | A1 |
20070038125 | Kleen et al. | Feb 2007 | A1 |
20070043292 | Camus et al. | Feb 2007 | A1 |
20070043597 | Donaldson | Feb 2007 | A1 |
20070049847 | Osborne | Mar 2007 | A1 |
20070060973 | Ludvig et al. | Mar 2007 | A1 |
20070065077 | Childers et al. | Mar 2007 | A1 |
20070066888 | Maschke | Mar 2007 | A1 |
20070066890 | Maschke | Mar 2007 | A1 |
20070066983 | Maschke | Mar 2007 | A1 |
20070084995 | Newton et al. | Apr 2007 | A1 |
20070100226 | Yankelevitz et al. | May 2007 | A1 |
20070135887 | Maschke | Jun 2007 | A1 |
20070142707 | Wiklof et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070161893 | Milner et al. | Jul 2007 | A1 |
20070161896 | Adachi et al. | Jul 2007 | A1 |
20070161963 | Smalling | Jul 2007 | A1 |
20070162860 | Muralidharan et al. | Jul 2007 | A1 |
20070165141 | Srinivas et al. | Jul 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070167804 | Park et al. | Jul 2007 | A1 |
20070191682 | Rolland et al. | Aug 2007 | A1 |
20070201127 | Maeda | Aug 2007 | A1 |
20070201736 | Klingensmith et al. | Aug 2007 | A1 |
20070206193 | Pesach | Sep 2007 | A1 |
20070208276 | Kornkven Volk et al. | Sep 2007 | A1 |
20070225220 | Ming et al. | Sep 2007 | A1 |
20070225590 | Ramos | Sep 2007 | A1 |
20070229801 | Tearney et al. | Oct 2007 | A1 |
20070232872 | Prough et al. | Oct 2007 | A1 |
20070232874 | Ince | Oct 2007 | A1 |
20070232890 | Hirota | Oct 2007 | A1 |
20070232891 | Hirota | Oct 2007 | A1 |
20070232892 | Hirota | Oct 2007 | A1 |
20070232893 | Tanioka | Oct 2007 | A1 |
20070232933 | Gille et al. | Oct 2007 | A1 |
20070238957 | Yared | Oct 2007 | A1 |
20070247033 | Eidenschink et al. | Oct 2007 | A1 |
20070250000 | Magnin et al. | Oct 2007 | A1 |
20070250036 | Volk et al. | Oct 2007 | A1 |
20070258094 | Izatt et al. | Nov 2007 | A1 |
20070260138 | Feldman et al. | Nov 2007 | A1 |
20070278389 | Ajgaonkar et al. | Dec 2007 | A1 |
20070287914 | Cohen | Dec 2007 | A1 |
20080002183 | Yatagai et al. | Jan 2008 | A1 |
20080013093 | Izatt et al. | Jan 2008 | A1 |
20080021275 | Tearney et al. | Jan 2008 | A1 |
20080027481 | Gilson et al. | Jan 2008 | A1 |
20080043024 | Schiwietz et al. | Feb 2008 | A1 |
20080045842 | Furnish | Feb 2008 | A1 |
20080051660 | Kakadaris et al. | Feb 2008 | A1 |
20080063304 | Russak et al. | Mar 2008 | A1 |
20080085041 | Breeuwer | Apr 2008 | A1 |
20080095465 | Mullick et al. | Apr 2008 | A1 |
20080095714 | Castella et al. | Apr 2008 | A1 |
20080097194 | Milner | Apr 2008 | A1 |
20080101667 | Begelman et al. | May 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080114254 | Matcovitch et al. | May 2008 | A1 |
20080119739 | Vardi et al. | May 2008 | A1 |
20080124495 | Horn et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080143707 | Mitchell | Jun 2008 | A1 |
20080146941 | Dala-Krishna | Jun 2008 | A1 |
20080147111 | Johnson et al. | Jun 2008 | A1 |
20080154128 | Milner | Jun 2008 | A1 |
20080161696 | Schmitt et al. | Jul 2008 | A1 |
20080171944 | Brenneman et al. | Jul 2008 | A1 |
20080175465 | Jiang et al. | Jul 2008 | A1 |
20080177183 | Courtney et al. | Jul 2008 | A1 |
20080180683 | Kemp | Jul 2008 | A1 |
20080181477 | Izatt et al. | Jul 2008 | A1 |
20080187201 | Liang et al. | Aug 2008 | A1 |
20080228086 | Ilegbusi et al. | Sep 2008 | A1 |
20080247622 | Aylward et al. | Oct 2008 | A1 |
20080247716 | Thomas et al. | Oct 2008 | A1 |
20080262470 | Lee et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080269599 | Csavoy et al. | Oct 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20080281248 | Angheloiu et al. | Nov 2008 | A1 |
20080285043 | Fercher et al. | Nov 2008 | A1 |
20080287795 | Klingensmith et al. | Nov 2008 | A1 |
20080291463 | Milner et al. | Nov 2008 | A1 |
20080292173 | Hsieh et al. | Nov 2008 | A1 |
20080294034 | Krueger et al. | Nov 2008 | A1 |
20080298655 | Edwards | Dec 2008 | A1 |
20080306766 | Ozeki et al. | Dec 2008 | A1 |
20090009801 | Tabuki | Jan 2009 | A1 |
20090018393 | Dick et al. | Jan 2009 | A1 |
20090021724 | Mahadevan-Jansen | Jan 2009 | A1 |
20090034813 | Dikmen et al. | Feb 2009 | A1 |
20090043191 | Castella et al. | Feb 2009 | A1 |
20090046295 | Kemp et al. | Feb 2009 | A1 |
20090052614 | Hempel et al. | Feb 2009 | A1 |
20090069843 | Agnew | Mar 2009 | A1 |
20090079993 | Yatagai et al. | Mar 2009 | A1 |
20090088650 | Corl | Apr 2009 | A1 |
20090093980 | Kemp et al. | Apr 2009 | A1 |
20090122320 | Petersen et al. | May 2009 | A1 |
20090138544 | Wegenkittl et al. | May 2009 | A1 |
20090149739 | Maschke | Jun 2009 | A9 |
20090156941 | Moore | Jun 2009 | A1 |
20090174886 | Inoue | Jul 2009 | A1 |
20090174931 | Huber et al. | Jul 2009 | A1 |
20090177090 | Grunwald et al. | Jul 2009 | A1 |
20090177183 | Pinkernell et al. | Jul 2009 | A1 |
20090195514 | Glynn et al. | Aug 2009 | A1 |
20090196470 | Carl et al. | Aug 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090203991 | Papaioannou et al. | Aug 2009 | A1 |
20090264768 | Courtney et al. | Oct 2009 | A1 |
20090269014 | Winberg et al. | Oct 2009 | A1 |
20090270695 | McEowen | Oct 2009 | A1 |
20090284322 | Harrison et al. | Nov 2009 | A1 |
20090284332 | Moore et al. | Nov 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090290167 | Flanders et al. | Nov 2009 | A1 |
20090292048 | Li et al. | Nov 2009 | A1 |
20090299195 | Muller et al. | Dec 2009 | A1 |
20090299284 | Holman et al. | Dec 2009 | A1 |
20090318951 | Kashkarov et al. | Dec 2009 | A1 |
20090326634 | Vardi | Dec 2009 | A1 |
20100007669 | Bethune et al. | Jan 2010 | A1 |
20100030042 | Denninghoff et al. | Feb 2010 | A1 |
20100061611 | Xu et al. | Mar 2010 | A1 |
20100063400 | Hall et al. | Mar 2010 | A1 |
20100087732 | Eberle et al. | Apr 2010 | A1 |
20100094125 | Younge et al. | Apr 2010 | A1 |
20100094127 | Xu | Apr 2010 | A1 |
20100094135 | Fang-Yen et al. | Apr 2010 | A1 |
20100094143 | Mahapatra et al. | Apr 2010 | A1 |
20100097614 | Kourogi et al. | Apr 2010 | A1 |
20100113919 | Maschke | May 2010 | A1 |
20100125238 | Lye et al. | May 2010 | A1 |
20100125268 | Gustus et al. | May 2010 | A1 |
20100125648 | Zaharia et al. | May 2010 | A1 |
20100128348 | Taverner | May 2010 | A1 |
20100152717 | Keeler | Jun 2010 | A1 |
20100160788 | Davies et al. | Jun 2010 | A1 |
20100161023 | Cohen et al. | Jun 2010 | A1 |
20100168714 | Burke et al. | Jul 2010 | A1 |
20100179421 | Tupin | Jul 2010 | A1 |
20100179426 | Davies et al. | Jul 2010 | A1 |
20100220334 | Condit et al. | Sep 2010 | A1 |
20100226607 | Zhang et al. | Sep 2010 | A1 |
20100234736 | Corl | Sep 2010 | A1 |
20100249601 | Courtney | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100272432 | Johnson | Oct 2010 | A1 |
20100284590 | Peng et al. | Nov 2010 | A1 |
20100290693 | Cohen et al. | Nov 2010 | A1 |
20100331950 | Strommer | Dec 2010 | A1 |
20110010925 | Nix et al. | Jan 2011 | A1 |
20110021926 | Spencer et al. | Jan 2011 | A1 |
20110025853 | Richardson | Feb 2011 | A1 |
20110026797 | Declerck et al. | Feb 2011 | A1 |
20110032533 | Izatt et al. | Feb 2011 | A1 |
20110034801 | Baumgart | Feb 2011 | A1 |
20110044546 | Pan et al. | Feb 2011 | A1 |
20110051143 | Flanders et al. | Mar 2011 | A1 |
20110066073 | Kuiper et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110072405 | Chen et al. | Mar 2011 | A1 |
20110077528 | Kemp et al. | Mar 2011 | A1 |
20110080591 | Johnson et al. | Apr 2011 | A1 |
20110087104 | Moore et al. | Apr 2011 | A1 |
20110137140 | Tearney et al. | Jun 2011 | A1 |
20110144502 | Zhou et al. | Jun 2011 | A1 |
20110152771 | Milner et al. | Jun 2011 | A1 |
20110157597 | Lu et al. | Jun 2011 | A1 |
20110157686 | Huber et al. | Jun 2011 | A1 |
20110160586 | Li et al. | Jun 2011 | A1 |
20110178413 | Schmitt et al. | Jul 2011 | A1 |
20110190586 | Kemp | Aug 2011 | A1 |
20110216378 | Poon et al. | Sep 2011 | A1 |
20110220985 | Son et al. | Sep 2011 | A1 |
20110238061 | van der Weide et al. | Sep 2011 | A1 |
20110238083 | Moll et al. | Sep 2011 | A1 |
20110245669 | Zhang | Oct 2011 | A1 |
20110249094 | Wang et al. | Oct 2011 | A1 |
20110257545 | Suri | Oct 2011 | A1 |
20110264125 | Wilson et al. | Oct 2011 | A1 |
20110274329 | Mathew et al. | Nov 2011 | A1 |
20110282334 | Groenhoff | Nov 2011 | A1 |
20110301684 | Fischell et al. | Dec 2011 | A1 |
20110306995 | Moberg | Dec 2011 | A1 |
20110319752 | Steinberg et al. | Dec 2011 | A1 |
20120004529 | Tolkowsky et al. | Jan 2012 | A1 |
20120004668 | Wallace et al. | Jan 2012 | A1 |
20120013914 | Kemp et al. | Jan 2012 | A1 |
20120016344 | Kusakabe | Jan 2012 | A1 |
20120016395 | Olson | Jan 2012 | A1 |
20120022360 | Kemp | Jan 2012 | A1 |
20120026503 | Lewandowski et al. | Feb 2012 | A1 |
20120029007 | Graham et al. | Feb 2012 | A1 |
20120059253 | Wang et al. | Mar 2012 | A1 |
20120059368 | Takaoka et al. | Mar 2012 | A1 |
20120062843 | Ferguson et al. | Mar 2012 | A1 |
20120065481 | Hunter et al. | Mar 2012 | A1 |
20120071823 | Chen | Mar 2012 | A1 |
20120071838 | Fojtik | Mar 2012 | A1 |
20120075638 | Rollins et al. | Mar 2012 | A1 |
20120083696 | Kitamura | Apr 2012 | A1 |
20120095340 | Smith | Apr 2012 | A1 |
20120095372 | Sverdlik et al. | Apr 2012 | A1 |
20120108943 | Bates et al. | May 2012 | A1 |
20120113108 | Dala-Krishna | May 2012 | A1 |
20120116353 | Arnold et al. | May 2012 | A1 |
20120130243 | Balocco et al. | May 2012 | A1 |
20120130247 | Waters et al. | May 2012 | A1 |
20120136259 | Milner et al. | May 2012 | A1 |
20120136427 | Palmaz et al. | May 2012 | A1 |
20120137075 | Vorbach | May 2012 | A1 |
20120155734 | Barratt et al. | Jun 2012 | A1 |
20120158101 | Stone et al. | Jun 2012 | A1 |
20120162660 | Kemp | Jun 2012 | A1 |
20120165661 | Kemp et al. | Jun 2012 | A1 |
20120170848 | Kemp et al. | Jul 2012 | A1 |
20120172698 | Teo et al. | Jul 2012 | A1 |
20120176607 | Ott | Jul 2012 | A1 |
20120184853 | Waters | Jul 2012 | A1 |
20120184859 | Shah et al. | Jul 2012 | A1 |
20120184977 | Wolf | Jul 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120220836 | Alpert et al. | Aug 2012 | A1 |
20120220851 | Razansky et al. | Aug 2012 | A1 |
20120220865 | Brown et al. | Aug 2012 | A1 |
20120220874 | Hancock et al. | Aug 2012 | A1 |
20120220883 | Manstrom et al. | Aug 2012 | A1 |
20120224751 | Kemp et al. | Sep 2012 | A1 |
20120226153 | Brown et al. | Sep 2012 | A1 |
20120230565 | Steinberg et al. | Sep 2012 | A1 |
20120232400 | Dickinson et al. | Sep 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120238956 | Yamada et al. | Sep 2012 | A1 |
20120244043 | Leblanc et al. | Sep 2012 | A1 |
20120250028 | Schmitt et al. | Oct 2012 | A1 |
20120253186 | Simpson et al. | Oct 2012 | A1 |
20120253192 | Cressman | Oct 2012 | A1 |
20120253276 | Govari et al. | Oct 2012 | A1 |
20120257210 | Whitney et al. | Oct 2012 | A1 |
20120262720 | Brown et al. | Oct 2012 | A1 |
20120265077 | Gille et al. | Oct 2012 | A1 |
20120265268 | Blum et al. | Oct 2012 | A1 |
20120265296 | McNamara et al. | Oct 2012 | A1 |
20120271170 | Emelianov et al. | Oct 2012 | A1 |
20120271175 | Moore et al. | Oct 2012 | A1 |
20120271339 | O'Beirne et al. | Oct 2012 | A1 |
20120274338 | Baks et al. | Nov 2012 | A1 |
20120276390 | Ji et al. | Nov 2012 | A1 |
20120277722 | Gerber et al. | Nov 2012 | A1 |
20120279764 | Jiang et al. | Nov 2012 | A1 |
20120283758 | Miller et al. | Nov 2012 | A1 |
20120289987 | Wilson et al. | Nov 2012 | A1 |
20120299439 | Huang | Nov 2012 | A1 |
20120310081 | Adler et al. | Dec 2012 | A1 |
20120310332 | Murray et al. | Dec 2012 | A1 |
20120319535 | Dausch | Dec 2012 | A1 |
20120323075 | Younge et al. | Dec 2012 | A1 |
20120323127 | Boyden et al. | Dec 2012 | A1 |
20120330141 | Brown et al. | Dec 2012 | A1 |
20130015975 | Huennekens et al. | Jan 2013 | A1 |
20130023762 | Huennekens et al. | Jan 2013 | A1 |
20130023763 | Huennekens et al. | Jan 2013 | A1 |
20130026655 | Lee et al. | Jan 2013 | A1 |
20130030295 | Huennekens et al. | Jan 2013 | A1 |
20130030303 | Ahmed et al. | Jan 2013 | A1 |
20130030410 | Drasler et al. | Jan 2013 | A1 |
20130053949 | Pintor et al. | Feb 2013 | A1 |
20130109958 | Baumgart et al. | May 2013 | A1 |
20130109959 | Baumgart et al. | May 2013 | A1 |
20130137980 | Waters et al. | May 2013 | A1 |
20130150716 | Stigall et al. | Jun 2013 | A1 |
20130158594 | Carrison et al. | Jun 2013 | A1 |
20130218201 | Obermiller et al. | Aug 2013 | A1 |
20130218267 | Braido et al. | Aug 2013 | A1 |
20130223789 | Lee et al. | Aug 2013 | A1 |
20130223798 | Jenner et al. | Aug 2013 | A1 |
20130296704 | Magnin et al. | Nov 2013 | A1 |
20130303907 | Corl | Nov 2013 | A1 |
20130303920 | Corl | Nov 2013 | A1 |
20130310698 | Judell et al. | Nov 2013 | A1 |
20130331820 | Itou et al. | Dec 2013 | A1 |
20130338766 | Hastings et al. | Dec 2013 | A1 |
20130339958 | Droste et al. | Dec 2013 | A1 |
20140039294 | Jiang | Feb 2014 | A1 |
20140180067 | Stigall et al. | Jun 2014 | A1 |
20140180128 | Corl | Jun 2014 | A1 |
20140200438 | Millett et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
1041373 | Oct 2000 | EP |
01172637 | Jan 2002 | EP |
2438877 | Apr 2012 | EP |
2280261 | Jan 1995 | GB |
2000-262461 | Sep 2000 | JP |
2000-292260 | Oct 2000 | JP |
2001-125009 | May 2001 | JP |
2001-272331 | Oct 2001 | JP |
2002-374034 | Dec 2002 | JP |
2003-143783 | May 2003 | JP |
2003-172690 | Jun 2003 | JP |
2003-256876 | Sep 2003 | JP |
2003-287534 | Oct 2003 | JP |
2005-274380 | Oct 2005 | JP |
2006-184284 | Jul 2006 | JP |
2006-266797 | Oct 2006 | JP |
2006-313158 | Nov 2006 | JP |
2007-024677 | Feb 2007 | JP |
2009-233001 | Oct 2009 | JP |
2011-56786 | Mar 2011 | JP |
9101156 | Feb 1991 | WO |
9216865 | Oct 1992 | WO |
9306213 | Apr 1993 | WO |
9308829 | May 1993 | WO |
9838907 | Sep 1998 | WO |
9857583 | Dec 1998 | WO |
0011511 | Mar 2000 | WO |
0044296 | Aug 2000 | WO |
0111409 | Feb 2001 | WO |
03062802 | Jul 2003 | WO |
03073950 | Sep 2003 | WO |
2004010856 | Feb 2004 | WO |
2004023992 | Mar 2004 | WO |
2004096049 | Nov 2004 | WO |
2005047813 | May 2005 | WO |
2005106695 | Nov 2005 | WO |
2006029634 | Mar 2006 | WO |
2006037132 | Apr 2006 | WO |
2006039091 | Apr 2006 | WO |
2006061829 | Jun 2006 | WO |
2006068875 | Jun 2006 | WO |
2006111704 | Oct 2006 | WO |
2006119416 | Nov 2006 | WO |
2006121851 | Nov 2006 | WO |
2006130802 | Dec 2006 | WO |
2007002685 | Jan 2007 | WO |
2007025230 | Mar 2007 | WO |
2007045690 | Apr 2007 | WO |
2007058895 | May 2007 | WO |
2007067323 | Jun 2007 | WO |
2007084995 | Jul 2007 | WO |
2008058084 | May 2008 | WO |
2008069991 | Jun 2008 | WO |
2008107905 | Sep 2008 | WO |
2009009799 | Jan 2009 | WO |
2009009801 | Jan 2009 | WO |
2009046431 | Apr 2009 | WO |
2009121067 | Oct 2009 | WO |
2009137704 | Nov 2009 | WO |
201106886 | Jan 2011 | WO |
2011038048 | Mar 2011 | WO |
2011081688 | Jul 2011 | WO |
2012003369 | Jan 2012 | WO |
2012061935 | May 2012 | WO |
2012071388 | May 2012 | WO |
2012087818 | Jun 2012 | WO |
2012098194 | Jul 2012 | WO |
2012109676 | Aug 2012 | WO |
2012130289 | Oct 2012 | WO |
2012154767 | Nov 2012 | WO |
2012155040 | Nov 2012 | WO |
2013033414 | Mar 2013 | WO |
2013033415 | Mar 2013 | WO |
2013033418 | Mar 2013 | WO |
2013033489 | Mar 2013 | WO |
2013033490 | Mar 2013 | WO |
2013033592 | Mar 2013 | WO |
2013126390 | Aug 2013 | WO |
2014109879 | Jul 2014 | WO |
Entry |
---|
Sihan et al., 2008, A novel approach to quantitative analysis of intraluminal optical coherence tomography imaging, Comput. Cardiol:1089-1092. |
Siwy et al., 2003, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Applied Physics A: Materials Science & Processing 76:781-785. |
Smith et al., 1989, Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer, Applied Optics, 28(16):3339-3342. |
Smith, 1997, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA:432-436. |
Soller, 2003, Polarization diverse optical frequency domain interferonnetry:All coupler implementation, Bragg Grating, Photosensitivity, and Poling in Glass Waveguides Conference MB4:30-32. |
Song et al., 2012, Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography, Optics Express, 20(21):23414-23421. |
Stenqvist et al., 1983, Stiffness of central venous catheters, Acta Anaesthesiol Scand., 2:153-157. |
Strickland, 1970, Time-Domain Reflectometer Measurements, Tektronix, Beaverton, OR, (107 pages). |
Strobl et al., 2009, An Introduction to Recursive Partitioning:Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests, Psychol Methods., 14(4):323-348. |
Sutcliffe et al., 1986, Dynamics of UV laser ablation of organic polymer surfaces, Journal of Applied Physics, 60 (9):3315-3322. |
Suzuki, 2013, A novel guidewire approach for handling acute-angle bifurcations, J Inv Cardiol 25(1):48-54. |
Tanimoto et al., 2008, A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection, Cathet Cardiovascular Intervent, 72(2):228-235. |
Tearney et al., 1997, In vivo Endoscopic Optical Biopsy with Optical Coherence Tomography, Science, 276:2037-2039. |
Tonino et al., 2009, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention, The New England Journal of Medicine, 360:213-224. |
Toregeani et al., 2008, Evaluation of hemodialysis arteriovenous fistula maturation by color-flow Doppler ultrasound, J Vasc. Bras. 7(3):203-213. |
Translation of Notice of Reason(s) for Refusal dated Apr. 30, 2014, for Japanese Patent Application No. 2011-508677, (5 pages). |
Translation of Notice of Reason(s) for Refusal dated May 25, 2012, for Japanese Patent Application No. 2009-536425, (3 pages). |
Translation of Notice of Reason(s) for Refusal dated Nov. 22, 2012, for Japanese Patent Application No. 2010-516304, (6 pages). |
Traunecker et al., 1991, Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells, EMBO J., 10:3655-3659. |
Trolier-McKinstry et. al., 2004, Thin Film Piezoelectric for MEMS, Journal of Electroceramics 12:7-17. |
Tuniz et al., 2010, Weaving the invisible thread: design of an optically invisible metamaterial fibre, Optics Express 18(17):18095-18105. |
Turk et al., 1991, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3(1):71-86. |
Tuzel et al., 2006, Region Covariance: A Fast Descriptor for Detection and Classification, European Conference on Computer Vision (ECCV). |
Urban et al., 2010, Design of a Pressure Sensor Based on Optical Bragg Grating Lateral Deformation, Sensors (Basel), 10(12):11212-11225. |
Vakhtin et al., 2003, Common-path interferometer for frequency-domain optical coherence tomography, Applied Optics, 42(34):6953-6958. |
Vakoc et al., 2005, Phase-Resolved Optical Frequency Domain Imaging, Optics Express 13(14):5483-5493. |
Verhoeyen et al., 1988, Reshaping human antibodies: grafting an antilysozyme activity, Science, 239:1534-1536. |
Villard et al., 2002, Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography, Circulation, 105:1843-1849. |
Wang et al., 2002, Optimizing the Beam Patten of a Forward-Viewing Ring-Annular Ultrasound Array for Intravascular Imaging, Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(12). |
Wang et al., 2006, Multiple biomarkers for the prediction of first major cardiovascular events and death, The New England Journal of Medicine, 355(25):2631-2639. |
Wang et al., 2009, Robust Guidewire Tracking in Fluoroscopy, IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2009:691-698. |
Wang et al., 2011, In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation, J. Biomed. Opt. 0001 16(11):110505-1 (3 pages). |
Waterhouse et. al., 1993, Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires, Nucleic Acids Res., 21:2265-2266. |
Wegener, 2011, 3D Photonic Metamaterials and Invisibility Cloaks: The Method of Making, MEMS 2011, Cancun, Mexico, Jan. 23-27, 2011. |
West et al., 1991, Arterial insufficiency in hemodialysis access procedures: correction by banding technique, Transpl Proc 23(2):1838-40. |
Wyawahare et al., 2009, Image registration techniques: an overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3):11-28. |
Yaqoob et al., 2006, Methods and application areas of endoscopic optical coherence tomography, J. Biomed. Opt., 11, 063001-1-063001-19. |
Yasuno et al., 2004, Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples, Applied Physics Letters 85(15):3023-3025. |
Zhang et al., 2004, Full range polarization-sensitive Fourier domain optical coherence tomography, Optics Express, 12 (24):6033-6039. |
Zitova et al., 2003, Image registration methods: A survey. Image and Vision Computing, 21(11):977-1000. |
Little et al., 1991, The underlying coronary lesion in myocardial infarction:implications for coronary angiography, Clinical Cardiology, 14(11):868-874. |
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40. |
Machine translation of JP 2000-097846. |
Machine translation of JP 2000-321034. |
Machine translation of JP 2000-329534. |
Machine translation of JP 2004-004080. |
Maintz et al., 1998, An Overview of Medical Image Registration Methods, Technical Report UU-CS, (22 pages). |
Mamas et al., 2010, Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve, Journal of Invasive Cardiology 22(6):260-265. |
Marks et al., 1991, By-passing Immunization Human Antibodies from V-gene Libraries Displayed on Phage, J. Mol. Biol. 222:581-597. |
Marks et al., 1992, By-Passing Immunization:Building High Affinity Human Antibodies by Chain Shuffling, BioTechnol., 10:779-783. |
Maruno et al., 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148. |
McCafferty et al., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552-554. |
Mendieta et al., 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46. |
Mickley, 2008, Steal Syndrome-strategies to preserve vascular access and extremity, Nephrol Dial Transplant 23:19-24. |
Miller et al., 2010, The MILLER banding procedure is an effective method for treating dialysis-associated steal syndrome, Kidney International 77:359-366. |
Milstein et al., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540. |
Mindlin et al., 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202. |
Morrison et al., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855. |
Munson et al., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239. |
Nezam, 2008, High Speed Polygon-Scanner-Based Wavelength-Swept Laser Source in the Telescope-Less Configurations with Application in Optical Coherence Tomography, Optics Letters 33(15):1741-1743. |
Nissen, 2001, Coronary Angiography and Intravascular Ultrasound, American Journal of Cardiology, 87 (suppl):15A-20A. |
Nitenberg et al., 1995, Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results, Eur Heart J. 16(Suppl 1):7-21. |
Notice of Reason(s) for Refusal dated Apr. 30, 2013, for Japanese Patent Application No. 2011-508677 for Optical Imaging Catheter for Aberation Balancing to Volcano Corporation, which application is a Japanese national stage entry of PCT/US2009/043181 with international filed May 7, 2009, of the same title, published on Nov. 12, 2009, as WO 2009/137704, and accompanying English translation of the Notice of Reason(s) for Refusal and machine translations of JP11-56786 and JP2004-290548 (56 pages). |
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412. |
Oesterle et al., 1986, Angioplasty at coronary bifurcations: single-guide, two-wire technique, Cathet Cardiovasc Diagn., 12:57-63. |
Okuno et al., 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30. |
Oldenburg et al., 1998, Nanoengineering of Optical Resonances, Chemical Physics Letters 288:243-247. |
Oldenburg et al., 2003, Fast-Fourier-Domain Delay Line for In Vivo Optical Coherence Tomography with a Polygonal Scanner, Applied Optics, 42(22):4606-4611. |
Othonos, 1997, Fiber Bragg gratings, Review of Scientific Instruments 68(12):4309-4341. |
Owens et al., 2007, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum 26 (1):80-113. |
Pain et al., 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30. |
Park et al., 2005, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um., Optics Express 13(11):3931-3944. |
Pasquesi et al., 2006, In vivo detection of exercise induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography, Optics Express 14(4)1 547-1556. |
Pepe et al., 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890. |
Persson et al., 1985, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics, 23(2):83-89. |
Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Medical Physics 39(1):4-17. |
Rabbani et al., 1999, Review: Strategies to achieve coronary arterial plaque stabilization, Cardiovascular Research 41:402-417. |
Radvany et al., 2008, Plaque Excision in Management of Lower Extremity Peripheral Arterial Disease with the SilverHawk Atherectomy Catheter, Seminars in Interventional Radiology, 25(1):11-19. |
Reddy et al., 1996, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE Transaction on Image Processing 5(8):1266-1271. |
Riechmann et al., 1988, Reshaping human antibodies for therapy, Nature, 332:323-327. |
Rivers et al., 1992, Correction of steal syndrome secondary to hemodialysis access fistulas: a simplified quantitative technique, Surgery, 112(3):593-7. |
Robbin et al., 2002, Hemodialysis Arteriovenous Fistula Maturity: US Evaluation, Radiology 225:59-64. |
Rollins et al., 1998, In vivo video rate optical coherence tomography, Optics Express 3:219-229. |
Sarunic et al., 2005, Instantaneous Complex Conjugate Resolved Spectral Domain and Swept-Source OCT Using 3x3 Fiber Couplers, Optics Express 13(3):957-967. |
Satiani et al., 2009, Predicted Shortage of Vascular Surgeons in the United States, J. Vascular Surgery 50:946-952. |
Schneider et al., 2006, T-banding: A technique for flow reduction of a hyper-functioning arteriovenous fistula, J Vase Surg. 43(2):402-405. |
Sen et al., 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402. |
Setta et al., 2005, Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis, Human Reproduction, 20(11):3114-3121. |
Seward et al., 1996, Ultrasound Cardioscopy: Embarking on New Journey, Mayo Clinic Proceedings 71(7):629-635. |
Shen et al., 2006, Eigengene-based linear discriminant model for tumor classification using gene expression microarray data, Bioinformatics 22(21):2635-2642. |
Abdi et al., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2:433-459. |
Adler et al., 2007, Phase-Sensitive Optical Coherence Tomography at up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers, Optics Letters, 32(6):626-628. |
Agresti, 1996, Models for Matched Pairs, Chapter 8, An Introduction to Categorical Data Analysis, Wiley-Interscience A John Wiley & Sons, Inc., Publication, Hoboken, New Jersey. |
Akasheh et al., 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287. |
Amini et al., 1990, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855-867. |
Bail et al., 1996, Optical coherence tomography with the “Spectral Radar”—Fast optical analysis in volume scatterers by short coherence interferometry, Optics Letters 21(14):1087-1089. |
Bain, 2011, Privacy protection and face recognition, Chapter 3, Handbook of Face Recognition, Stan et al., Springer-Verlag. |
Barnea et al., 1972, A class of algorithms for fast digital image registration, IEEE Trans. Computers, 21(2):179-186. |
Blanchet et al., 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721. |
Bonnema, 2008, Imaging Tissue Engineered Blood Vessel Mimics with Optical Tomography, College of Optical Sciences dissertation, University of Arizona (252 pages). |
Bouma et al., 1999, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters, 24(8):531-533. |
Breiman, 2001, Random forests, Machine Learning 45:5-32. |
Brown, 1992, A survey of image registration techniques, ACM Computing Surveys 24(4):325-376. |
Bruining et al., 2009, Intravascular Ultrasound Registration/Integration with Coronary Angiography, Cardiology Clinics, 27(3):531-540. |
Brummer, 1997, An euclidean distance measure between covariance matrices of speechcepstra for text-independent speaker recognition, in Proc. South African Symp. Communications and Signal Processing:167-172. |
Burr et al., 2005, Searching for the Center of an Ellipse in Proceedings of the 17th Canadian Conference on Computational Geometry:260-263. |
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698. |
Cavalli et al., 2010, Nanosponge formulations as oxygen delivery systems, International Journal of Pharmaceutics 402:254-257. |
Choma et al., 2003, Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography, Optics Express 11(18):2183-2189. |
Clarke et al., 1995, Hypoxia and myocardial ischaemia during peripheral angioplasty, Clinical Radiology, 50(5):301-303. |
Collins, 1993, Coronary flow reserve, British Heart Journal 69:279-281. |
Communication Mechanisms for Distributed Real-Time Applications, NI Developer Zone, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007. |
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35. |
D'Agostino et al., 2001, Validation of the Framingham coronary heart disease prediction score: results of a multiple ethnic group investigation, JAMA 286:180-187. |
David et al., 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021. |
Davies et al., 1985, Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, British Heart Journal 53:363-373. |
Davies et al., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, British Heart Journal 69:377-381. |
Deterministic Data Streaming in Distributed Data Acquisition Systems, NI Developer Zone, “What is Developer Zone?”, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007. |
Eigenwillig, 2008, K-Space Linear Fourier Domain Mode Locked Laser and Applications for Optical Coherence Tomography, Optics Express 16(12):8916-8937. |
Elghanian et al., 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080. |
Ergun et al., 2003, Capacitive Micromachined Ultrasonic Transducers:Theory and Technology, Journal of Aerospace Engineering, 16(2):76-84. |
Evans et al., 2006, Optical coherence tomography to identify intramucosa carcinoma and high-grade dysplasia in Barrett's esophagus, Clin Gast Hepat 4(1):38-43. |
Fatemi et al., 1999, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, PNAS U.S.A., 96(12):6603-6608. |
Felzenszwalb et al., 2005, Pictorial Structures for Object Recognition, International Journal of Computer Vision, 61 (1):55-79. |
Ferring et al., 2008, Vasculature ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence, Nephrol. Dial. Transplant. 23(6):1809-1815. |
Fischler et al., 1973, The representation and matching of pictorial structures, IEEE Transactions on Computer 22:67-92. |
Fleming et al., 2010, Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter, Journal of Biomedical Optics 15 (3):030516-1 (3 pages). |
Fookes et al., 2002, Rigid and non-rigid image registration and its association with mutual information:A review, Technical Report ISBN:1 86435 569 7, RCCVA, QUT. |
Forstner & Moonen, 1999, A metric for covariance matrices, In Technical Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, 113-128. |
Goel et al., 2006, Minimally Invasive Limited Ligation Endoluminal-assisted Revision (MILLER) for treatment of dialysis access-associated steal syndrome, Kidney Int 70(4):765-70. |
Gotzinger et al., 2005, High speed spectral domain polarization sensitive optical coherence tomography of the human retina, Optics Express 13(25):10217-10229. |
Gould et al., 1974, Physiologic basis for assessing critical coronary stenosis, American Journal of Cardiology, 33:87-94. |
Griffiths et al., 1993, Human anti-self antibodies with high specificity from phage display libraries, The EMBO Journal, 12:725-734. |
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, The EMBO Journal, 13(14):3245-3260. |
Grund et al., 2010, Analysis of biomarker data:logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479. |
Harrison et al., 2011, Guidewire Stiffness: What's in a name?, J Endovasc Ther, 18(6):797-801. |
Huber et al., 2005, Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles, Optics Express 13(9):3513-3528. |
Huber et al., 2006, Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography, Optics Express 14(8):3225-3237. |
International Search Report and Written Opinion mailed Mar. 11, 2014, for International Patent Application No. PCT/US13/75675, filed Dec. 17, 2013 (7 pages). |
International Search Report and Written Opinion mailed Mar. 19, 2014, for International Patent Application No. PCT/US13/075353, filed Dec. 16, 2013 (8 pages). |
International Search Report and Written Opinion mailed Nov. 2, 2012, for International Patent Application No. PCT/US12/53168, filed Aug. 30, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Apr. 14, 2014, for International Patent Application No. PCT/US2013/076148, filed Dec. 18, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Apr. 21, 2014, for International Patent Application No. PCT/US2013/076015, filed Dec. 18, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Apr. 23, 2014, for International Patent Application No. PCT/US2013/075328, filed Dec. 16, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Apr. 29, 2014, for International Patent Application No. PCT/US13/76093, filed Dec. 18, 2013 (6 pages). |
International Search Report and Written Opinion mailed on Apr. 9, 2014, for International Patent Application No. PCT/US13/75089, filed Dec. 13, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Feb. 21, 2014, for International Patent Application No. PCT/US13/76053, filed Dec. 18, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Feb. 21, 2014, for International Patent Application No. PCT/US2013/076965, filed Dec. 20, 2013 (6 pages). |
International Search Report and Written Opinion mailed on Feb. 27, 2014, for International Patent Application No. PCT/US13/75416, filed Dec. 16, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Feb. 28, 2014, for International Patent Application No. PCT/US13/75653, filed Dec. 17, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Feb. 28, 2014, for International Patent Application No. PCT/US13/75990, filed Dec. 18, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Jan. 16, 2009, for International Patent Application No. PCT/US08/78963 filed on Oct. 6, 2008 (7 pages). |
International Search Report and Written Opinion mailed on Jul. 30, 2014, for International Patent Application No. PCT/US14/21659, filed Mar. 7, 2014 (15 pages). |
International Search Report and Written Opinion mailed on Mar. 10, 2014, for International Patent Application No. PCT/US2013/076212, filed Dec. 18, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Mar. 11, 2014, for International Patent Application No. PCT/US13/76173, filed Dec. 16, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Mar. 11, 2014, for International Patent Application No. PCT/US13/76449, filed Dec. 19, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Mar. 18, 2014, for International Patent Application No. PCT/US2013/076502, filed Dec. 19, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Mar. 18, 2014, for International Patent Application No. PCT/US2013/076788, filed Dec. 20, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US13/75349, filed Dec. 16, 2013 (10 pages). |
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US2013/076587, filed Dec. 19, 2013 (10 pages). |
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US2013/076909, filed Dec. 20, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076304, filed Dec. 18, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076480, filed Dec. 19, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076512, filed Dec. 19, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076531, filed Dec. 19, 2013 (10 pages). |
Jakobovits et al., 1993, Analysis of homozygous mutant chimeric mice:deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255. |
Jakobovits et al., 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258. |
Jang et al., 2002, Visualization of Coronary Atherosclerotic Plaques in Patients Using Optical Coherence Tomography: Comparison With Intravascular Ultrasound, Journal of the American College of Cardiology 39:604-609. |
Jiang et al., 1992, Image registration of multimodality 3-D medical images by chamfer matching, Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, 356-366. |
Johnson et al., 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571. |
Jones et al., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525. |
Juviler et al., 2008, Anorectal sepsis and fistula-in-ano, Surgical Technology International, 17:139-149. |
Karapatis et al., 1998, Direct rapid tooling:a review of current research, Rapid Prototyping Journal, 4(2):77-89. |
Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470. |
Kelly et al., 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336. |
Kemp et al., 2005, Depth Resolved Optic Axis Orientation in Multiple Layered Anisotropic Tissues Measured with Enhanced Polarization Sensitive Optical Coherence Tomography, Optics Express 13(12):4507-4518. |
Kersey et al., 1991, Polarization insensitive fiber optic Michelson interferometer, Electron. Lett. 27:518-520. |
Kheir et al., 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages). |
Khuri-Yakub et al., 2011, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, J Micromech Microeng. 21(5):054004-054014. |
Kirkman, 1991, Technique for flow reduction in dialysis access fistulas, Surg Gyn Obstet, 172(3):231-3. |
Kohler et al., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7. |
Koo et al., 2011, Diagnosis of IschemiaCausing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms, J Am Coll Cardiol 58(19):1989-1997. |
Kozbor et al., 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005. |
Kruth et al., 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371. |
Kumagai et al., 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852. |
Larin et al., 2002, Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography: a pilot study in human subjects, Diabetes Care, 25(12):2263-7. |
Larin et al., 2004, Measurement of Refractive Index Variation of Physiological Analytes using Differential Phase OCT, Proc of SPIE 5325:31-34. |
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162. |
Lefevre et al., 2001, Stenting of bifurcation lesions:a rational approach, J. Interv. Cardiol., 14(6):573-585. |
Li et al., 2000, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, 32(12):921-930. |
International Search Report and Written Opinion mailed on Apr. 16, 2014, for International Patent Application No. PCT/US2013/075636, filed Dec. 17, 2013 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20140177237 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61745270 | Dec 2012 | US |