Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique

Information

  • Patent Grant
  • 12076095
  • Patent Number
    12,076,095
  • Date Filed
    Monday, January 31, 2022
    3 years ago
  • Date Issued
    Tuesday, September 3, 2024
    5 months ago
Abstract
Described herein are systems, apparatus, and methods for precise placement and guidance of tools during surgery, particularly spinal surgery, using minimally invasive surgical techniques. Several minimally invasive approaches to spinal surgeries were conceived, percutaneous technique being one of them. This procedures looks to establish a skin opening as small as possible by accessing inner organs via needle-puncture of the skin. The percutaneous technique is used in conjunction with a robotic surgical system to further enhance advantages of manual percutaneous techniques by improving precision, usability and/or shortening surgery time by removal of redundant steps.
Description
BACKGROUND OF THE INVENTION

Robotic-assisted surgical systems have been developed to improve surgical precision and enable the implementation of new surgical procedures. For example, robotic systems have been developed to sense a surgeon's hand movements and translate them to scaled-down micro-movements and filter out unintentional tremors for precise microsurgical techniques in organ transplants, reconstructions, and minimally invasive surgeries. Other robotic systems are directed to telemanipulation of surgical tools such that the surgeon does not have to be present in the operating room, thereby facilitating remote surgery. Feedback-controlled robotic systems have also been developed to provide smoother manipulation of a surgical tool during a procedure than could be achieved by an unaided surgeon.


However, widespread acceptance of robotic systems by surgeons and hospitals is limited for a variety of reasons. Current systems are expensive to own and maintain. They often require extensive preoperative surgical planning prior to use, and they extend the required preparation time in the operating room. They are physically intrusive, possibly obscuring portions of a surgeon's field of view and blocking certain areas around the operating table, such that a surgeon and/or surgical assistants are relegated to one side of the operating table. Current systems may also be non-intuitive or otherwise cumbersome to use, particularly for surgeons who have developed a special skill or “feel” for performing certain maneuvers during surgery and who find that such skill cannot be implemented using the robotic system. Finally, robotic surgical systems may be vulnerable to malfunction or operator error, despite safety interlocks and power backups.


Spinal surgeries often require precision drilling and placement of screws or other implements in relation to the spine, and there may be constrained access to the vertebrae during surgery that makes such maneuvers difficult. Catastrophic damage or death may result from improper drilling or maneuvering of the body during spinal surgery, due to the proximity of the spinal cord and arteries. Common spinal surgical procedures include a discectomy for removal of all or part of a disk, a foraminotomy for widening of the opening where nerve roots leave the spinal column, a laminectomy for removal of the lamina or bone spurs in the back, and spinal fusion for fusing of two vertebrae or vertebral segments together to eliminate pain caused by movement of the vertebrae.


Spinal surgeries that involve screw placement require preparation of holes in bone (e.g., vertebral segments) prior to placement of the screws. Where such procedures are performed manually, in some implementations, a surgeon judges a drill trajectory for subsequent screw placement on the basis of pre-operative CT scans. Other manual methods which do not involve usage of the pre-operative CT scans, such as fluoroscopy, 3D fluoroscopy or natural landmark-based, may be used to determine the trajectory for preparing holes in bone prior to placement of the screws. In some implementations, the surgeon holds the drill in his hand while drilling, and fluoroscopic images are obtained to verify if the trajectory is correct. Some surgical techniques involve usage of different tools, such as a pedicle finder or K-wires. Such procedures rely strongly on the expertise of the surgeon, and there is significant variation in success rate among different surgeons. Screw misplacement is a common problem in such surgical procedures.


Image-guided spinal surgeries involve optical tracking to aid in screw placement. However, such procedures are currently performed manually, and surgical tools can be inaccurately positioned despite virtual tracking. A surgeon is required to coordinate his real-world, manual manipulation of surgical tools using images displayed on a two dimensional screen. Such procedures can be non-intuitive and require training, since the surgeon's eye must constantly scan both the surgical site and the screen to confirm alignment. Furthermore, procedural error can result in registration inaccuracy of the image-guiding system, rendering it useless, or even misleading.


Certain force feedback systems are used by surgeons in certain procedures; however such systems have a large footprint and take up valuable, limited space in the operating room. These systems also require the use of surgical tools that are specially adapted for use with the force feedback system, and the training required by surgeons to operate such systems can be significant. Moreover, surgeons may not be able to use expertise they have developed in performing spinal surgeries when adapting to use of the current force feedback systems. Such systems, while precise, may require more surgical time and more operating room preparation time to ready placement of the equipment for surgery.


Traditional open surgery techniques for spinal surgeries are very invasive for the patient. They require relatively big openings which increases the risk of infections, tissue destruction and recovery time. Scar may be large and reduce patient's confort and appreciation of the procedure. Thus, there is a need for systems, apparatus, and methods that provide enhanced precision in performing surgeries such as spinal surgeries.


SUMMARY OF THE INVENTION

Described herein are systems, apparatus, and methods for precise placement and guidance of tools during surgery, particularly spinal surgery, using minimally invasive surgical techniques. Several minimally invasive approaches to spinal surgeries were conceived, percutaneous technique being one of them. This procedures looks to establish a skin opening as small as possible by accessing inner organs via needle-puncture of the skin. The percutaneous technique is used in conjunction with a robotic surgical system to further enhance advantages of manual percutaneous techniques by improving precision, usability and/or shortening surgery time by removal of redundant steps.


The system, in certain embodiments, features a portable robot arm with end effector for precise positioning of a surgical tool. Minimally invasive surgical techniques are used to obtain access to vertebrae while protecting soft tissues in the surrounding area. These techniques minimize blood loss, postoperative pain, and scaring while providing for faster recoveries.


The disclosed technology, in certain embodiments, includes a method of performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique. The method includes, in certain embodiments, detecting, by a force sensor (e.g., on a robotic arm; e.g., between a robotic arm and an end effector), movement (e.g., by a surgeon) of a surgical instrument guide attached to a robotic arm of the robotic surgical system. The surgical instrument guide, in certain embodiments, defines a trajectory comprising a location and an orientation (e.g., a 3-dimensional vector) for insertion of a medical implant (e.g., screw) in a vertebra of a patient.


The method may include storing, by a processor of a computer device, a planned trajectory based on the trajectory of the surgical instrument guide at a defined time (e.g., upon receiving instruction to store the trajectory as the planned trajectory; e.g., when the surgeon is satisfied with the trajectory) (e.g., wherein the planned trajectory defines the place for an incision). In certain embodiments, after the planned trajectory is defined, the method includes detecting, by the force sensor, movement of the surgical instrument guide towards the vertebra.


In certain embodiments, the method includes constraining and/or maintaining, by the processor, an orientation of the surgical instrument guide along the planned trajectory as the surgical instrument guide is moved (e.g., by a surgeon; e.g., by a surgeon physically touching a portion of the robotic arm and/or end effector) through an incision to (e.g., adjacent or near) a surface of the vertebra.


In certain embodiments, the method includes maintaining, by the processor, a position of the surgical instrument guide as a surgeon passes a drill through the surgical instrument guide and drills a hole in the vertebra. In certain embodiments, the method includes constraining and/or maintaining, by the processor, an orientation of the surgical instrument guide along the planned trajectory as the surgical instrument guide is moved (e.g., by a surgeon; e.g., by a surgeon physically touching a portion of the robotic arm and/or end effector) away from the vertebra (e.g., such that a medical implant (e.g., screw) can be inserted into the hole in the vertebra).


In certain embodiments, the method includes maintaining, by the processor, a position of the surgical instrument guide as a k-wire (e.g., flexible k-wire) is inserted into the hole in the vertebrae (e.g., along the planned trajectory such that the orientation of the k-wire substantially represents the planned trajectory) (e.g., thereby saving the trajectory for future retrieval (e.g., after the surgical instrument guide is removed).


In certain embodiments, the disclosed technology includes an adaptive tube sized and shaped to fit in the surgical instrument guide and receive a k-wire therethrough (e.g., to guide the k-wire into the hole in the vertebra).


In certain embodiments, the method includes providing, by the processor, for display on a graphical user interface, a composite image comprising a visual representation of the trajectory superimposed with a medical image of the vertebra of the patient;


In certain embodiments, the method includes, after the surgical instrument guide is moved through the incision, detecting, by a force sensor, movement of the surgical instrument guide (e.g., as a surgeon adjusts (e.g., fine adjustment) the planned trajectory); and storing, by the processor, an updated planned trajectory (e.g., as the planned trajectory).


In certain embodiments, the surgeon decouples a translation movement of the surgical instrument guide from a rotation movement of the surgical instrument guide.


In certain embodiments, the method includes maintaining a position of the surgical instrument guide as a surgeon passes a tap through the surgical instrument guide and taps the hole in the vertebra. In certain embodiments, the method includes tapping, by a surgeon, the hole in the vertebra (e.g., by sliding a tap along the k-wire to orient the k-wire relative to the hole).


In certain embodiments, the method includes placing, by the surgeon, the screw in the hole in the vertebra (e.g., wherein the hole is tapped or untapped) (e.g., using a screw driver that is slide along the k-wire; e.g., using a navigation system to guide the surgeon (e.g., without a k-wire)). In certain embodiments, the method includes the medical implant is a screw. In certain embodiments, the method includes the medical implant is a screw, and an extensor is attached to the back of the screw.


In certain embodiments, the method includes inserting, by a surgeon, along the trajectory, a medical implant (e.g., a screw) into the hole in the vertebra. In certain embodiments, the method includes, before the surgical instrument guide is moved through the incision, cutting, by a surgeon, at least one of the patient's muscles and skin, thereby creating a working channel.


In certain embodiments, the method includes maneuvering a first dilator to access a vertebrae of a patient through the patient's muscles and skin, wherein the dilator defines a working channel for accessing the vertebrae; and increasing the size of the working channel (e.g., using one or more dilators subsequent to the first dilator, whereby a subsequent dilator is temporarily secured in the patient tissue).


In certain embodiments, the method includes removing one or more dilators prior to inserting the medical implant (e.g., screw).


During minimally invasive surgical procedures, dilators may be used to create a working channel through which an operation is performed. The dilators may be a set of tubes with increasing diameters which are inserted into a small incision one at a time until the desired diameter of the working channel is achieved. The dilators may be used with a robotic surgical system (e.g., attached to the robotic arm) to perform a minimally invasive surgery. This allows the usage, in certain embodiments, of standard dilators and a robotic surgical system to provide precise guidance of surgical tools through a dilator and greater flexibility. The dilator may be held by the robot and automatically repositioned when the surgeon adjusts the trajectory along which, for example, a hole is prepared in a vertebra. Adjustment of the end effector of the robotic surgical system automatically adjusts an angle and/or position of the dilator attached to the robot with respect to the vertebrae and aligns an axis defined by the dilator with a desired trajectory during a surgical procedure without removal of the dilator from the patient tissue during the repositioning.


For example, first dilator may be used to access a vertebrae of a patient through the patient's muscles and skin, thereby defining a working channel for accessing the vertebrae. One or more subsequent dilators may be slid over the first dilator. Each of the one or more subsequent dilators are configured to be positioned over the preceding dilators and increase the size of the working channel. Each dilator except the last added dilator is configured to be removed from the patient thereby leaving the last added dilator. The last added dilator is configured to be attached to an end effector of a robotic arm using a dilator fixator. A manipulator is configured to allow robotically-assisted or unassisted positioning and/or movement of the last added dilator by a user with at least four degrees of freedom to align an axis defined by the last added dilator with respect to the vertebrae. Adjustment of the manipulator automatically adjusts an angle and/or position of the attached dilator with respect to the vertebrae and aligns an axis defined by the attached dilator with a desired trajectory during a surgical procedure without removal of the attached dilator from the patient tissue during the repositioning.


The system requires only minimal training by surgeons/operators, is intuitive to use, and has a small footprint with significantly reduced obstruction of the operating table. The system works with existing, standard surgical tools, does not require increased surgical time or preparatory time, and safely provides the enhanced precision achievable by robotic-assisted systems. Moreover, the system allows for a desired trajectory (e.g., for a drill guide during spinal surgery) to be set in a variety of manners based on the circumstances of the surgery. For example, some surgical procedures are planned pre-operatively with the surgeon defining the desired position of an implant using imaging technology, such as CT images (e.g., 3D CT images). The desired position of the implant may also be determined and proposed by the system. In the operating room the surgeon may be guided by the robotic system (e.g., robotic guidance of the surgical tools) to accurately execute the planning.


A mobile cart houses a robot arm with an end effector that holds various standard surgical tools/implants, such as a drill or screw. Positioning such surgical tools with precision is critical. The robot arm provides more precise, stable placement of such tools than can be achieved manually, where placement is guided, yet intuitive. The mobile cart permits easy set-up and use of the system. Once stabilization is engaged, the mobile cart is secured in place on the operating room floor and cannot move. In certain embodiments, the robot cart houses the robot, robot controller, supervisor interlock system, power system, riding system, and interface to the navigation system.


The disclosed technology, in certain embodiments, includes a method of performing minimally invasive spinal surgery with a robotic surgical system. The method may include: maneuvering a first dilator (defining a working channel for accessing the vertebrae) to access a vertebrae of a patient through the patient's muscles and skin; increasing the size of the working channel (e.g., using one or more dilators subsequent to the first dilator, whereby a subsequent dilator is temporarily secured in the patient tissue); attaching the first dilator or a subsequent dilator to the end effector of the robotic arm using a dilator fixator; and following attachment of the first or a subsequent dilator to the end effector, repositioning the end effector thereby automatically adjusting an angle and/or position of the attached dilator with respect to the vertebrae and aligning an axis defined by the attached dilator with a desired trajectory during a surgical procedure without removal of the attached dilator from the patient tissue during the repositioning.


Increasing the size of the working channel may include maneuvering a second dilator over the first dilator, wherein the second dilator is sized and shaped to slide over the first dilator and increase the size of the working channel; and, after positioning the second dilator over the first dilator (and/or after positioning one or more subsequent dilators over the preceding dilators), removing the first dilator (and/or other previous dilators except the final added dilator) from the patient, thereby leaving the last added dilator, wherein the attached dilator is the last added dilator. In certain embodiments, the attached dilator is the dilator with largest circumference.


In certain embodiment, increasing the size of the working channel includes expanding the diameter of the first dilator thereby increasing the diameter of the working channel, wherein the dilator attached to the end effector is the first dilator.


The method, in certain embodiments, includes placing a surgical instrument guide inside of the attached dilator, wherein the surgical instrument guide is sized and shaped to fit at least partially inside the attached dilator along an axis defined by said dilator. The end effector may include a surgical instrument guide attached thereto, configured to hold and/or restrict movement of a surgical instrument therethrough. The surgical instrument guide may include at least one of a drill bit guide, tap guide, screwdriver guide, screw guide, awl guide, and implant guide. The surgical instrument may be at least one of a drill bit, tap, screwdriver, screw, implant, and awl, wherein the surgical instrument is configured to slide through the surgical instrument guide. The attached dilator may be configured to hold and/or restrict movement of a surgical instrument therethrough.


The method, in certain embodiments, includes registering the patient, wherein registering the patient comprises identifying the transformation between the actual patient anatomy and one or more medical images; maneuvering the end effector towards the vertebrae on which the surgeon will operate; determining, by a processor of a computing device, an ideal implant trajectory; and providing, by the processor, for display on a graphical user interface, the ideal implant trajectory for review by the surgeon, wherein (i) the surgeon may adapt the ideal implant trajectory if needed using hands-on planning, and (ii) the surgeon acknowledges the ideal implant trajectory or the adapted trajectory thereby causing the acknowledged trajectory to be stored as the desired trajectory.


The method may include, prior to maneuvering the attached dilator: moving a mobile cart transporting a robotic surgical system comprising a robotic arm in proximity to an operating table, wherein the robotic arm has an end effector; and stabilizing the mobile cart.


The disclosed technology, in certain embodiments, includes a robotic surgical system for performing minimally invasive surgery. The system may include: a robotic arm with an end effector; a first dilator to access a vertebrae of a patient through the patient's muscles and skin, wherein the first dilator defines a working channel for accessing the vertebrae; one or more subsequent dilators sized and shaped to slide over the first dilator and/or one or more of the one or more subsequent dilators. The one or more subsequent dilators may include a last added dilator, and each of the one or more subsequent dilators are configured to be positioned over the preceding dilators and increase the size of the working channel. Each dilator except the last added dilator may be configured to be removed from the patient thereby leaving the last added dilator, and the last added dilator may be configured to be attached to the end effector of the robotic arm using a dilator fixator.


The system may include a manipulator configured to allow robotically-assisted or unassisted positioning and/or movement of the end effector by a user with at least four degrees of freedom thereby automatically adjusting an angle and/or position of the last added dilator with respect to the vertebrae and aligning an axis defined by the last added dilator with a desired trajectory during a surgical procedure without removal of the last added dilator from the patient tissue during the repositioning.


Each one or more subsequent dilators may have a circumference larger than the circumference of the first dilator, and the one or more subsequent dilators increase the size of the working channel as each subsequent dilator is added.


The system may include a surgical instrument guide configured to be placed inside of the attached dilator, wherein the surgical instrument guide is sized and shaped to fit at least partially inside the attached dilator along an axis defined by the dilator. The end effector may include the surgical instrument guide attached thereto, configured to hold and/or restrict movement of a surgical instrument therethrough. The surgical instrument guide is may be a drill bit guide, tap guide, screwdriver guide, screw guide, awl guide, and implant guide. The surgical instrument may be a drill bit, tap, screwdriver, screw, implant, and awl, wherein the surgical instrument is configured to slide through the surgical instrument guide.


The attached dilator may be the dilator with largest circumference. The attached dilator may be configured to hold and/or restrict movement of a surgical instrument therethrough.


In certain embodiments, the system includes: a processor; and a memory, the memory storing instructions that, when executed by the processor, cause the processor to: store a transformation between the actual patient anatomy and one or more medical images; determine an ideal implant trajectory; and provide, for display on a graphical user interface, the ideal implant trajectory for review by the surgeon, wherein (i) the surgeon may adapt the ideal implant trajectory if needed using hands-on planning, and (ii) the surgeon acknowledges the ideal implant trajectory or the adapted trajectory thereby causing the acknowledged trajectory to be stored as the desired trajectory.


The disclosed technology, in certain embodiments, may include a robotic surgical system for performing minimally invasive surgery with a robotic arm with an end effector; a dilator to access a vertebrae of a patient through the patient's muscles and skin; and a manipulator configured to allow robotically-assisted or unassisted positioning and/or movement of the end effector by a user with at least four degrees of freedom thereby automatically adjusting an angle and/or position of the dilator with respect to the vertebrae and aligning an axis defined by the dilator with a desired trajectory during a surgical procedure without removal of the dilator from the patient tissue during the repositioning. The dilator may define a working channel for accessing the vertebrae. The dilator may be configured to be expanded to increase the size of the working channel and be attached to an end effector of a robotic arm using a dilator fixator.


The system may include a surgical instrument guide configured to be placed inside of the dilator. The surgical instrument guide is sized and shaped to fit at least partially inside the dilator along an axis defined by the dilator. The end effector may include the surgical instrument guide attached thereto, configured to hold and/or restrict movement of a surgical instrument therethrough.


The robotic arm may be configured to be maneuvered to a desired position to align an axis defined by the surgical instrument guide at a desired trajectory in relation to the vertebrae. The dilator connected to the end effector of the robotic arm may be automatically positioned as the robotic arm is maneuvered to adjust to the desired trajectory. The dilator is configured to hold and/or restrict movement of a surgical instrument therethrough.


The system may include a processor; and a memory, the memory storing instructions that, when executed by the processor, cause the processor to: store a transformation between the actual patient anatomy and one or more medical images; determine an ideal implant trajectory; and provide, for display on a graphical user interface, the ideal implant trajectory for review by the surgeon, wherein (i) the surgeon may adapt the ideal implant trajectory if needed using hands-on planning, and (ii) the surgeon acknowledges the ideal implant trajectory or the adapted trajectory thereby causing the acknowledged trajectory to be stored as the desired trajectory.


In one aspect, the disclosed technology includes a robotic surgical system including a processor programmed to: detect, via a force sensor (e.g., on a robotic arm; e.g., between a robotic arm and an end effector), movement (e.g., by a surgeon) of a surgical instrument guide attached to a robotic arm of the robotic surgical system, wherein the surgical instrument guide defines a trajectory comprising a location and an orientation (e.g., a 3-dimensional vector) for insertion of a medical implant (e.g., screw) in a vertebra of a patient; store, a planned trajectory based on the trajectory of the surgical instrument guide at a defined time (e.g., upon receiving instruction to store the trajectory as the planned trajectory; e.g., when the surgeon is satisfied with the trajectory) (e.g., wherein the planned trajectory defines the place for an incision); after the planned trajectory is defined, detect, via the force sensor, movement of the surgical instrument guide towards the vertebra; constrain and/or maintain an orientation of the surgical instrument guide along the planned trajectory as the surgical instrument guide is moved (e.g., by a surgeon; e.g., by a surgeon physically touching a portion of the robotic arm and/or end effector) through an incision to (e.g., adjacent or near) a surface of the vertebra; maintain a position of the surgical instrument guide as a surgeon passes a drill through the surgical instrument guide and drills a hole in the vertebra; and constrain and/or maintain an orientation of the surgical instrument guide along the planned trajectory as the surgical instrument guide is moved (e.g., by a surgeon; e.g., by a surgeon physically touching a portion of the robotic arm and/or end effector) away from the vertebra (e.g., such that a medical implant (e.g., screw) can be inserted into the hole in the vertebra).


In certain embodiments, the processor is programmed to: maintain a position of the surgical instrument guide as a k-wire (e.g., flexible k-wire) is inserted into the hole in the vertebrae (e.g., along the planned trajectory such that the orientation of the k-wire substantially represents the planned trajectory) (e.g., thereby saving the trajectory for future retrieval (e.g., after the surgical instrument guide is removed).


In certain embodiments, the system includes an adaptive tube sized and shaped to fit in the surgical instrument guide and receive a k-wire therethrough (e.g., to guide the k-wire into the hole in the vertebra).


In certain embodiments, the system includes a graphical user interface for display of a composite image comprising a visual representation of the trajectory superimposed with a medical image of the vertebra of the patient.


In certain embodiments, the processor is programmed to: after the surgical instrument guide is moved through the incision, detect, via a force sensor, movement of the surgical instrument guide (e.g., as a surgeon adjusts (e.g., fine adjustment) the planned trajectory); and store an updated planned trajectory (e.g., as the planned trajectory).


In certain embodiments, the processor is programmed to permit a translation movement of the surgical instrument guide (e.g., by a surgeon) decoupled from a rotation movement of the surgical instrument guide.


In certain embodiments, the processor is programmed to: maintain a position of the surgical instrument guide as a surgeon passes a tap through the surgical instrument guide and taps the hole in the vertebra.


In certain embodiments, the system includes one or more members selected from the group consisting of the robotic arm, the force sensor, the end effector, and the surgical instrument guide.


In certain embodiments, the incision is from 1 mm to 25 mm, 5 mm to 20 mm, or 10 mm to 15 mm.


In another aspect, the disclosed technology includes a method of operating a robotic surgical system, the method including: detecting, by a force sensor (e.g., on a robotic arm; e.g., between a robotic arm and an end effector), movement (e.g., by a surgeon) of a surgical instrument guide attached to a robotic arm of the robotic surgical system, wherein the surgical instrument guide defines a trajectory comprising a location and an orientation (e.g., a 3-dimensional vector) for insertion of a medical implant (e.g., screw) in a vertebra of a patient; storing, by a processor of a computer device, a planned trajectory based on the trajectory of the surgical instrument guide at a defined time (e.g., upon receiving instruction to store the trajectory as the planned trajectory; e.g., when the surgeon is satisfied with the trajectory) (e.g., wherein the planned trajectory defines the place for an incision); after the planned trajectory is defined, detecting, by the force sensor, movement of the surgical instrument guide towards the vertebra; constraining and/or maintaining, by the processor, an orientation of the surgical instrument guide along the planned trajectory as the surgical instrument guide is moved (e.g., by a surgeon; e.g., by a surgeon physically touching a portion of the robotic arm and/or end effector) through an incision to (e.g., adjacent or near) a surface of the vertebra; maintaining, by the processor, a position of the surgical instrument guide as a surgeon passes a drill through the surgical instrument guide and drills a hole in the vertebra; and constraining and/or maintaining, by the processor, an orientation of the surgical instrument guide along the planned trajectory as the surgical instrument guide is moved (e.g., by a surgeon; e.g., by a surgeon physically touching a portion of the robotic arm and/or end effector) away from the vertebra (e.g., such that a medical implant (e.g., screw) can be inserted into the hole in the vertebra).


In certain embodiments, the method includes maintaining, by the processor, a position of the surgical instrument guide as a k-wire (e.g., flexible k-wire) is inserted into the hole in the vertebrae (e.g., along the planned trajectory such that the orientation of the k-wire substantially represents the planned trajectory) (e.g., thereby saving the trajectory for future retrieval (e.g., after the surgical instrument guide is removed).


In certain embodiments, the system includes an adaptive tube sized and shaped to fit in the surgical instrument guide and receive a k-wire therethrough (e.g., to guide the k-wire into the hole in the vertebra).


In certain embodiments, the method includes providing, by the processor, for display on a graphical user interface, a composite image comprising a visual representation of the trajectory superimposed with a medical image of the vertebra of the patient.


In certain embodiments, the method includes, after the surgical instrument guide is moved through the incision, detecting, by a force sensor, movement of the surgical instrument guide (e.g., as a surgeon adjusts (e.g., fine adjustment) the planned trajectory); and storing, by the processor, an updated planned trajectory (e.g., as the planned trajectory).


In certain embodiments, the surgeon decouples a translation movement of the surgical instrument guide from a rotation movement of the surgical instrument guide.


In certain embodiments, the method includes maintaining a position of the surgical instrument guide as a surgeon passes a tap through the surgical instrument guide and taps the hole in the vertebra.


In certain embodiments, the method includes tapping, by a surgeon, the hole in the vertebra (e.g., by sliding a tap along the k-wire to orient the k-wire relative to the hole).


In certain embodiments, the method includes placing, by the surgeon, the screw in the hole in the vertebra (e.g., wherein the hole is tapped or untapped) (e.g., using a screw driver that is slid along the k-wire; e.g., using a navigation system to guide the surgeon (e.g., without a k-wire)).


In certain embodiments, the medical implant comprises a screw.


In certain embodiments, the medical implant comprises a screw, and an extensor is attached to the back of the screw.


In certain embodiments, the method includes inserting, by a surgeon, along the trajectory, a medical implant (e.g., a screw) into the hole in the vertebra.


In certain embodiments, the method includes, before the surgical instrument guide is moved through the incision, cutting, by a surgeon, at least one of the patient's muscles and skin, thereby creating a working channel.


In certain embodiments, the method includes maneuvering a first dilator to access a vertebra of a patient through the patient's muscles and skin, wherein the dilator defines a working channel for accessing the vertebra; and increasing the size of the working channel (e.g., using one or more dilators subsequent to the first dilator, whereby a subsequent dilator is temporarily secured in the patient tissue).


In certain embodiments, the method includes removing one or more dilators prior to inserting the medical implant (e.g., screw).


In certain embodiments, the incision is from 1 mm to 25 mm, 5 mm to 20 mm, or 10 mm to 15 mm.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a diagram of an operating room in which a mobile cart housing a robotic system for a robotic-assisted spinal surgical procedure is positioned, in accordance with various embodiments of the disclosed technology;



FIGS. 2A-B are illustrations of an example set of dilators used for performing a minimally invasive surgical procedure;



FIG. 3 is an illustration of an example robotic surgical system using a dilator;



FIG. 4 is an illustration of an example robotic surgical system for performing minimally invasive surgery using a guided dilator;



FIG. 5 is a flowchart of an example method of performing minimally invasive spinal surgery with a robotic surgical system;



FIG. 6 is a flowchart of an example method for performing minimally invasive surgery using minimally invasive surgical techniques;



FIG. 7 is a flowchart of an example method for performing minimally invasive surgery using minimally invasive surgical techniques;



FIG. 8 is an illustration of an example dilator fixation for attaching a dilator to a robotic arm;



FIGS. 9A-B illustrate a block diagram of an example method of performing minimally invasive spinal surgery with a robotic surgical system;



FIG. 10 is an intraoperative medical image showing a vertebrae before placing screws therein;



FIG. 11 is a postoperative medical image showing vertebrae with screws in place;



FIG. 12 is a volumetric medical image showing small skin incisions after percutaneous screw placement;



FIG. 13 is a volumetric medical image showing screws placed in the vertebrae;



FIG. 14 illustrates a block diagram of an exemplary cloud computing environment; and



FIG. 15 is a block diagram of a computing device and a mobile computing device.





The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.


DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates an example surgical robotic system in an operating room 100. In some implementations, one or more surgeons, surgical assistants, surgical technologists and/or other technicians, (106a-c) perform an operation on a patient 104 using a robotic-assisted surgical system. In certain embodiments, the operation may comprise insertion of one or more medical implants (e.g., screws) into the spine of a patient. The robotic system comprises an end effector which can be used to precisely define a trajectory (e.g., intraoperatively. For example, a surgeon may grab the end effector (e.g., a surgical instrument tube or a handle) and move the end effector such a desired trajectory is defined by the end effector (e.g., surgical instrument). Specifically, in the context of a surgical instrument guide, the surgeon may move the guide such that the trajectory along the length of the guide (e.g., the center of the guide) is in the desired position.


The trajectory can be displayed on a computer screen, thereby providing a surgeon with the ability to precisely orient the trajectory. The robotic surgical system assists the surgeon in precisely perform various steps in the surgery, such as drilling, tapping, dilating, and insertion of the screw (e.g., by maintaining the position of a surgical instrument guide relative to a vertebra—in some implementations, the guide moves to track movement of the vertebra).


Moreover, when desired (e.g., once the desired trajectory has been identified), the robot is prevented from moving in any direction but along the trajectory. As a surgeon maneuvers the surgical instrument guide, the control unit of the robotic surgical system restricts the movement of the surgical instrument guide to the defined trajectory. The surgeon can maneuver the surgical instrument guide closely to the patient's skin and pause the movement. The surgeon then cuts the muscle and skin tissue of the patient. The surgeon may entire a fine tuning mode such that very fine, precise adjustments can be made as the surgical instrument guide approaches the vertebra or when the guide is at/near the vertebra. Thus the surgeon can progress the surgical instrument guide through the muscle and skin of the patient along the new trajectory, thereby increasing the precision of the insertion.


One or more dilators may be used with the robotic surgical system to perform a minimally invasive surgery. The dilators may be used to provide a working channel through which the operation is performed. Standard dilators may be used with a robotic surgical system to provide precise guidance of surgical tools. A dilator may be held by the robot and automatically repositioned when the surgeon adjusts the trajectory for performing the surgery. The dilator itself may be used as a surgical instrument guide along with dilator adaptors that adjust the diameter of a portion of the dilator to allow for different sized tools to be guided by the dilator. Surgical instrument guides may also be held by the robotic arm such that tools are guided by a surgical instrument guide through the dilator to perform a medical procedure. Throughout this specification, the terms surgical instrument guide and dilator may be used interchangeably when related to the function of guiding or constraining the robotic-assisted surgical system or a surgical instrument.


For example, first dilator may be used to access a vertebrae of a patient through the patient's muscles and skin. Subsequent dilators are configured to be positioned over the preceding dilators and increase the size of the working channel. Each dilator except the last added dilator is configured to be removed from the patient thereby leaving the last added dilator. The last added dilator is configured to be attached to an end effector of a robotic arm using a dilator fixator. In another example, the dilator inserted into the patient may be designed to expand thereby increasing the diameter of the working channel without adding additional dilators.


A manipulator is configured to allow robotically-assisted or unassisted positioning and/or movement of the surgical instrument guide by a user with at least four degrees of freedom to align an axis defined by the surgical instrument guide with respect to the vertebrae. Adjustment of the manipulator automatically adjusts an angle and/or position of the attached surgical instrument guide with respect to the vertebrae and aligns an axis defined by the attached surgical instrument guide with a desired trajectory during a surgical procedure without removal of the attached surgical instrument guide from the patient tissue during the repositioning.


In some implementations, the surgical robotic system includes a surgical robot 102 on a mobile cart. The surgical robot 102 may be positioned in proximity to an operating table 112 without being attached to the operating table, thereby providing maximum operating area and mobility to surgeons around the operating table and reducing clutter on the operating table. In alternative embodiments, the surgical robot (or cart) is securable to the operating table. In certain embodiments, both the operating table and the cart are secured to a common base to prevent any movement of the cart or table in relation to each other, even in the event of an earth tremor.


In some implementations, the footprint of the mobile cart is small (for example, no greater than 682 millimeters by 770 millimeters), thereby permitting improved access by a surgeon of both sides of an operating table at which the mobile cart is positioned during an operation.


The mobile cart may permit a user (operator) 106a, such as a technician, nurse, surgeon, or any other medical personnel in the operating room, to move the surgical robot 102 to different locations before, during, and/or after a surgical procedure. The mobile cart enables the surgical robot 102 to be easily transported into and out of the operating room 100. For example, a user 106a may move the surgical robot into the operating room from a storage location. In some implementations, the mobile cart may include wheels, a track system, such as a continuous track propulsion system, or other similar mobility systems for translocation of the cart. The mobile cart may include an attached or embedded handle for locomotion of the mobile cart by an operator.


In some implementations, the wheels include a locking mechanism that prevents the cart from moving. The stabilizing, braking, and/or locking mechanism may be activated when the machine is turned on. In some implementations, the mobile cart includes multiple stabilizing, braking, and/or locking mechanisms. In some implementations, the stabilizing mechanism is electro-mechanical with electronic activation. The stabilizing, braking, and/or locking mechanism(s) may be entirely mechanical. The stabilizing, braking, and/or locking mechanism(s) may be electronically activated and deactivated.


In some implementations, the surgical robot 102 includes a robotic arm mounted on a mobile cart. An actuator may move the robotic arm. The robotic arm may include a force control end-effector configured to hold a surgical tool. The robot may be configured to control and/or allow positioning and/or movement of the end-effector with at least four degrees of freedom (e.g., six degrees of freedom, three translations and three rotations).


In some implementations, the robotic arm is configured to releasably hold a surgical tool, allowing the surgical tool to be removed and replaced with a second surgical tool. The system may allow the surgical tools to be swapped without re-registration, or with automatic or semi-automatic re-registration of the position of the end-effector. Registration spatially aligns the robot, patient (e.g., spine) and the desired trajectory. A marker may be coupled or associated with a vertebrae or other bone to assist with the registration process. The location of the marker is determined by the system. The system stores this position. The position of the vertebrae is thus known. The position of other bones may also be determined with reference to the marker. Once the registration is complete, tracking and/or immobilization ensure that the registration (e.g., spatial orientation) is maintained. Immobilization typically fixes the patient or bone (e.g., spine) with respect to the robot. In contrast, tracking system tracks the position of the patient or the bone (e.g., by tracking the movement of the marker or position of the marker relative to the robot) as described in relation to FIGS. 1 and 3.


In some implementations, the surgical robot 102 includes a robotic arm comprising joints allowing the arm to be automatically positioned upon user command into various different predetermined configurations convenient for various preparatory, readying, and storage procedures. For example, the surgical robot 102 may be arranged in a standby configuration. In a standby configuration, the robotic arm of surgical robot 102 may be arranged in a compacted standby configuration that, for example, facilitates easy and compact storage of surgical robot 102 when it is not in use. Other configurations may include a drape configuration in which the robot arm is extended to facilitate placement of a sterile surgical drape over the robot and cart, and a preparation configuration in which the robot arm is positioned prior to movement to the operating table whereupon more precise movement of the robot arm will be performed for alignment of the trajectory of the end effector (surgical tool holder).


In some implementations, the surgical system includes a surgical robot 102, a tracking detector 108 that captures the position of the patient and different components of the surgical robot 102, and a display screen 110 that displays, for example, real time patient data and/or real time surgical robot trajectories.


In some implementations, when the surgical robot 102 is powered on, robot 102 switches from the standby configuration to another configuration, e.g., a preparation configuration. In some implementations, preset positions of the robotic arm and the arrangement of each moveable portion of the robotic arm of surgical robot 102 may be stored in a memory of the surgical system.


In some implementations, the mobile cart includes a power source for powering the robotic system, including, for example, the actuator. The power source may include a battery and/or a battery backup. In some implementations, the mobile cart is charged and/or powered by an electrical socket in the operating room. The mobile cart may be capable of being powered by a battery on the cart and/or via an electrical outlet. In some implementations, power is provided via an electrical outlet during the surgical procedure. A battery may be used to provide power to the system when the system is being moved or in case of a power cut.


In some implementations, different elements of the surgical system work in tandem by communicating with each other wirelessly. In some implementations, a tracking detector 108 monitors the location of patient 104 and the surgical robot 102. The tracking detector may be a camera, a video camera, an infrared detector, field generator and sensors for electro-magnetic tracking or any other motion detecting apparatus. In some implementation, based on the patient and robot position, the display screen displays a projected trajectory and/or a proposed trajectory for the robotic arm of robot 102 from its current location to a patient operation site. By continuously monitoring the patient and robotic arm positions, using tracking detector 108, the surgical system can calculate updated trajectories and visually display these trajectories on display screen 110 to inform and guide surgeons and/or technicians in the operating room using the surgical robot. In addition, in certain embodiments, the surgical robot 102 may also change its position and automatically position itself based on trajectories calculated from the real time patient and robotic arm positions captured using the tracking detector 108. For instance, the trajectory of the end-effector can be automatically adjusted in real time to account for movement of the vertebrae or other part of the patient during the surgical procedure.


For safety reasons, the mobile cart is provided with a stabilization system that may be used during a surgical procedure performed with a surgical robot. The stabilization mechanism increases the global stiffness of the mobile cart relative to the floor in order to ensure the accuracy of the surgical procedure.



FIGS. 2A-B are illustrations of an example set of dilators 202 used for performing a minimally invasive surgical procedure. Dilators 202 may be used to achieve a working channel for surgical instruments. The dilators may be inserted manually by a surgeon one by one until the surgeon obtains the required diameter of the working channel. For example, a first dilator 202a may be inserted at the access point. The first dilator 202 may be a hollow tube-like device (similar to the other dilators 202b-d) or it may be a solid tube-like device for marking the access point. The second dilator 202b maybe added over the first dilator 202a. Similarly, the third dilator 202c may be added over the second dilator 202b to further increase the size of the working channel. Each dilator added after the first dilator 202a increases the size of the working channel. In this example, the fourth dilator 202d is added over the third dilator 202c. In some implementations, dilators may be removed after the next dilator is added. For example, the second dilator 202b may be removed after the third dilator 202c is added. In some implementations, dilators may be removed after the last dilator is added. For example, previously added dilators may be removed after the last dilator 202d is added, thereby leaving a working channel the diameter of the forth dilator 202d.


The dilators may be used with a robotic surgical system, for example, as shown in FIG. 3. FIG. 3 is an illustration of an example robotic surgical system 300 using a dilator 314. The surgeon may manually obtain access to the vertebrae 302 through the skin and muscles. After applying the dilators as described in relation to FIGS. 2A-B, the internal dilators may be removed, leaving the largest one 314. The robot 306 may be moved closer to the patient and attached to the dilator 314 using the dilator fixation 304. In some implementations, a tool guide 310 held by a tool holder 312 fits inside the dilator 314. The tool guide 310 may be used to guide a surgical instrument 308 to access the vertebrae 302 via the working channel formed by the dilator 314. For example, the tool guide 310 may be used to prepare a hole in vertebrae of a patient. The tool holder 312 may be attached to the may be attached to the robot 306 via a tool holder attachment 316. In some implementations, the dilator 314 itself acts as a tool guide.


In some implementations, standard dilators may be used with the robotic surgical system to provide a precise solution to guide surgical tools. For example, in contrast to surgeries using passive arms to hold the dilator, the dilator may be held by the robotic surgical system and the dilator may be automatically repositioned in response to the surgeon changing the trajectory 318.


A manipulator of the robotic surgical system is configured to allow robotically-assisted or unassisted positioning and/or movement of the dilator attached to the end effector (e.g., the last added dilator) by a user with at least four degrees of freedom to align an axis defined by the dilator attached to the end effector with respect to the vertebrae. The robotic arm is configured to be maneuvered to a desired position to align an axis defined by the surgical instrument guide at a desired trajectory in relation to the vertebrae. The dilator connected to the end effector of the robotic arm is automatically positioned as the robotic arm is maneuvered to adjust to the desired trajectory. Adjustment of the manipulator automatically adjusts an angle and/or position of the attached dilator with respect to the vertebrae and aligns an axis defined by the attached dilator with a desired trajectory during a surgical procedure without removal of the attached dilator from the patient tissue during the repositioning.



FIG. 4 is an illustration of an example robotic surgical system for performing a minimally invasive surgery using a guided dilator. The surgeon may manually obtain access to the vertebrae 402 through the skin and muscles. After applying the dilators as described in relation to FIGS. 2A-B, the internal dilators may be removed, leaving the largest one 408. The robot 406 may be moved closer to the patient and attached to the dilator 408 using the dilator fixation 404. The dilator 408 is designed to guide a surgical tool 412. A dilator adapter 410 may be used to allow different size tools to be used with the dilator 408. In some implementations, standard dilators may be used with the robotic surgical system to provide a precise solution to guide surgical tools. For example, in contrast to surgeries using passive arms to hold the dilator, the dilator may be held by the robotic surgical system and the dilator may be automatically repositioned in response to the surgeon changing the trajectory 414.



FIG. 5 is a flowchart of an example method 500 of performing minimally invasive spinal surgery with a robotic surgical system. In some implementations, the method may include positioning a mobile cart (502) transporting a robotic surgical system. The robotic surgical system may include a robotic arm in proximity to an operating table. The robotic arm may have an end effector. After positioning the mobile cart, the mobile cart may be stabilized (504).


The method 500 may include maneuvering a dilator to access a vertebrae of a patient through the patient's muscles and skin (506). The dilator may define a working channel for accessing the vertebrae. Additional dilators may be placed over earlier placed dilator(s) (508) to increase the size of the working channel. All dilators except the last added dilator may be removed (510) thereby leaving a working channel of a desired diameter for the surgery.


For example, a second dilator may be maneuvered to slide over the dilator. The second dilator may be sized and shaped to slide over the dilator and increase the size of the working channel. After positioning the second dilator over the dilator (and/or after positioning one or more subsequent dilators over the preceding dilators), the dilator (and/or other dilators except the final added dilator) may be removed from the patient, thereby leaving the last added dilator.


The method 500 may include attaching a dilator to the end effector of the robotic arm using a dilator fixator (512). In some implementations, the dilator attached (or to be attached) to the end effector is the dilator with largest circumference. Following attachment of the dilator to the end effector, the end effector may be repositioned to adjust the angle and/or position of the attached dilator with respect to the vertebrae (514). The robotic arm may be maneuvered to a desired position to align an axis defined by the surgical instrument guide at a desired trajectory in relation to the vertebrae. This causes the dilator connected to the end effector of the robotic arm to be automatically positioned as the robotic arm is maneuvered to adjust to the desired trajectory.


In some implementations, a surgical instrument guide is placed inside of the dilator attached (or to be attached) to the end effector. The surgical instrument guide (e.g., drill bit guide, tap guide, screwdriver guide, screw guide, awl guide, and implant guide) is sized and shaped to fit at least partially inside the dilator along an axis defined by the dilator and is configured to hold and/or restrict movement of a surgical instrument (e.g., drill bit, pedicle finder, screw-based implant, awl, surface-pointing device, screw based implant, screw driver, tap, implants, implants with extenders, or other similar instruments) therethrough. The surgical instrument may be, for example, a tap such as the StealthStation® CR Horizon Legacy Taps from Medtronic, Inc. of Minneapolis, MN or a universal surgical tools system (e.g., Medtronic's NavLock system). In some implementations, the dilator itself is used as a surgical instrument guide. The dilator may be configured to hold and/or restrict movement of a surgical instrument. Dilator adapters may be used to allow different size instruments to be guided by the dilator.



FIG. 6 is a flowchart of an example method 600 for performing minimally invasive surgery. In some implementations, the method may include positioning a mobile cart (602) transporting a robotic surgical system. The robotic surgical system may include a robotic arm in proximity to an operating table. The robotic arm may have an end effector. After positioning the mobile cart, the mobile cart may be stabilized (604).


The method 600 may include maneuvering a dilator to access a vertebrae of a patient through the patient's muscles and skin (606). The dilator may define a working channel for accessing the vertebrae. The diameter of the working channel of the dilator may be expanded (608). For example, the dilator may be configured such that the diameter of the dilator may be increased. Thus, the size of the working channel may be increased without the use of multiple dilators.


The method 600 may include attaching the dilator to the end effector of the robotic arm using a dilator fixator (610). Following attachment of the dilator to the end effector, the end effector may be repositioned to adjust the angle and/or position of the attached dilator with respect to the vertebrae (612).



FIG. 7 is a flowchart of an example method 700 for performing minimally invasive surgery using minimally invasive surgical techniques. In some implementations, the method may include positioning a mobile cart (702) transporting a robotic surgical system. The robotic surgical system may include a robotic arm in proximity to an operating table. The robotic arm may have an end effector. After positioning the mobile cart, the mobile cart may be stabilized (704).


The method 700 may include registering the patient (706). Registering the patient may include identifying the transformation between the actual patient anatomy and one or more medical images. Registering the patient may include identifying a correlation between the surgical anatomy of the patient in the “real world” and a medical image (e.g., an image acquisition during surgery). Registration may also be accomplished using co-registration (e.g., former studies). The robotic arm may be maneuvered towards the vertebrae on which the surgeon will operate (708). In some implementations, the robotic surgical system will recognize the vertebra on which the surgeon wishes to operate as the robotic arm is maneuvered towards the vertebra. A processor of a computing device may determine an ideal implant trajectory (710). The system allows for a desired trajectory (e.g., for a drill guide during spinal surgery) to be set in a variety of manners based on the circumstances of the surgery. For example, some surgical procedures are planned pre-operatively with the surgeon defining the desired position of an implant using imaging technology, such as CT images (e.g., 3D CT images). The desired position of the implant may also be determined and proposed by the system. In the operating room the surgeon may be guided by the robotic system (e.g., robotic guidance of the surgical tools) to accurately execute the planning.


The ideal implant trajectory may be displayed on a graphical user interface for review by the surgeon (712). The surgeon may adapt the ideal implant trajectory if needed using hands-on planning. The surgeon acknowledges the ideal implant trajectory or the adapted trajectory thereby causing the acknowledged trajectory to be stored as the desired trajectory.


The method 700 may include maneuvering a dilator to access a vertebrae of a patient through the patient's muscles and skin (714). The dilator may define a working channel for accessing the vertebrae. The diameter of the working channel may be expanded (716) using the techniques as described in relation to FIGS. 5 and 6. The method 700 may include attaching the dilator to the end effector of the robotic arm using a dilator fixator (718). Following attachment of the dilator to the end effector, the end effector may be repositioned to adjust the angle and/or position of the attached dilator with respect to the vertebrae (720). Having described various embodiments of the disclose technology, it will now become apparent to one of skill in the art that other embodiments incorporating the concepts may be used. It is felt, therefore, that these embodiments should not be limited to the disclosed embodiments, but rather should be limited only by the spirit and scope of the following claims.



FIG. 8 is an illustration of an example dilator fixation 802 for attaching a dilator 804 to a robotic arm 806. The dilator fixation 802 may be mechanically coupled to the robotic arm 806 such that the dilator fixation is rigidly coupled to the robotic arm 806. For example, the dilator fixation 802 maybe bolted to the robotic arm 806 such that the dilator fixation 802 will not move relative to the robotic arm 806 thereby allowing the robot to always knows the position of the dilator fixation 802. The dilator fixation 802 may provide a quick-release mechanism to rigidly secure the dilator or surgical instrument guide 804 to the robotic arm 806. In some implementations, the dilator or surgical instrument guide 804 and dilator fixation 802 are formed as one piece and attached to the robotic arm 806 via a bolt, screw, or quick-release mechanism. The attachment system may be designed such that the dilator or surgical instrument guide 804 may be removed quickly and easily (e.g., toollessly).



FIGS. 9A-B are a flowchart of an example method for performing minimally invasive spinal surgery with a robotic surgical system. The robotic system is prepared and brought to the operating table in accordance with the methods of the present disclosure (902). The patient is prepared for the surgery (904). The surgeon brings the surgical instrument guide to the region of interest above the anatomy that will be operated on (906). Once in position and before incision, the surgeon plans a trajectory (908). The trajectory is set by maneuvering the surgical instrument guide by the surgeon. The surgeon, in certain embodiments, may physically grab the surgical instrument guide or a handle on the end effector and move the surgical instrument guide until it is aligned with the desired trajectory (e.g., as determined by the surgeon). The robot can control the rate at which the surgeon moves the surgical instrument guide to assist the surgeon in precise movements, however, in certain embodiments, the surgeon may freely move the surgical instrument guide to align it with the desired trajectory.


In some implementations, the surgeon observes the current trajectory on a navigation screen. In certain embodiments, a composite image comprising a visual representation of the trajectory superimposed with a medical image of the patient's vertebrae is displayed on the navigation screen.


After setting a trajectory the surgeon cuts through the patient's muscle and skin thereby exposing the vertebrae (910). In some embodiments, once a trajectory has been set, the motion of the surgical instrument guide is constrained to the trajectory.


The surgical instrument guide is moved to the surface of the vertebrae along the trajectory. At this point, the surgeon may readjust the trajectory (e.g., fine tune the trajectory) right at the surface of the vertebrae (912). In some embodiments, the surgeon decouples translation movement (for finding the entry point) from rotation movement (i.e., around the tip of the surgical instrument guide or other tool defining trajectory direction). The surgeon then drills, through the surgical instrument guide, a hole into the vertebrae of the patient (914)


The surgeon places a k-wire into the hole (916). In certain embodiments, the k-wire (e.g., a flexible k-wire), due to sticking out of and being constrained by the previously drilled hole, provides a physical representation of the trajectory. This allows the surgeon to physically preserve the trajectory for future retrieval. In some embodiments, the surgeon removes a portion of the surgical instrument guide (e.g., an outer or inner tube of the surgical instrument guide) to change the diameter of the guide for the drilling and k-wire steps. In certain embodiments, a k-wire is not used and the trajectory is instead preserved within the memory of a computing device. The surgeon then retracts the surgical instrument guide (918). In some embodiments, the surgeon can reverse the motion of the surgical instrument guide along the trajectory, thereby decreasing incidental stresses on the k-wire. In certain embodiments, the k-wire is a flexible k-wire, which assists in removal of the surgical guide. The flexible k-wire allows the k-wire to bend while the surgical instrument guide is retracted, and the k-wire returns to the trajectory position once the surgical instrument guide has been fully retracted.


After or prior to insertion of the k-wire, the surgeon may expand the working channel by placing progressively larger dilators around the k-wire and/or surgical instrument guide (920), as described in the present disclosure. The surgeon then taps the hole in the vertebrae sliding the tap along (e.g., over) the k-wire (922). In certain embodiments, the tapping step may be omitted. In other embodiments, if a k-wire is not used, the surgeon can locate the hole by retrieving the trajectory stored in computer memory and displaying the trajectory to the surgeon on the navigation display. At this stage, the dilators may be removed (924), or they may be removed at any other convenient point (e.g., any time after drilling). The screw is then placed by sliding the screw driver along (e.g., over) the k-wire (926). In certain embodiments, if a k-wire is not used, the surgeon can locate the hole by retrieving the trajectory stored in computer memory and displaying the trajectory to the surgeon on the navigation display. In some embodiments, the screw comprises an extensor attached to the back of the screw. This simplifies finding the screw later when placing rods. The screwdriver is removed from the patient while the screw remains in the patient (928). If desired, additional screws may be inserted by repeating the procedure at the appropriate location (930).



FIG. 10 is an intraoperative medical image showing a vertebrae before placing the screw. FIG. 11 is a postoperative medical image showing vertebrae with screws in place. FIG. 12 is a volumetric medical image showing small skin incisions after percutaneous screw placement, according to an embodiment of the present disclosure. FIG. 13 is a volumetric medical image showing screws placed in the vertebrae, according to an embodiment of the present disclosure.


As shown in FIG. 14, an implementation of a network environment 1400 for use in performing minimally invasive surgical techniques is shown and described. In brief overview, referring now to FIG. 14, a block diagram of an exemplary cloud computing environment 1400 is shown and described. The cloud computing environment 1400 may include one or more resource providers 1402a, 1402b, 1402c (collectively, 1402). Each resource provider 1402 may include computing resources. In some implementations, computing resources may include any hardware and/or software used to process data. For example, computing resources may include hardware and/or software capable of executing algorithms, computer programs, and/or computer applications. In some implementations, exemplary computing resources may include application servers and/or databases with storage and retrieval capabilities. Each resource provider 1402 may be connected to any other resource provider 1402 in the cloud computing environment 1400. In some implementations, the resource providers 1402 may be connected over a computer network 1408. Each resource provider 1402 may be connected to one or more computing device 1404a, 1404b, 1404c (collectively, 1404), over the computer network 1408.


The cloud computing environment 1400 may include a resource manager 1406. The resource manager 1406 may be connected to the resource providers 1402 and the computing devices 1404 over the computer network 1408. In some implementations, the resource manager 1406 may facilitate the provision of computing resources by one or more resource providers 1402 to one or more computing devices 1404. The resource manager 1406 may receive a request for a computing resource from a particular computing device 1404. The resource manager 1406 may identify one or more resource providers 1402 capable of providing the computing resource requested by the computing device 1404. The resource manager 1406 may select a resource provider 1402 to provide the computing resource. The resource manager 1406 may facilitate a connection between the resource provider 1402 and a particular computing device 1404. In some implementations, the resource manager 1406 may establish a connection between a particular resource provider 1402 and a particular computing device 1404. In some implementations, the resource manager 1406 may redirect a particular computing device 1404 to a particular resource provider 1402 with the requested computing resource.



FIG. 15 shows an example of a computing device 1500 and a mobile computing device 1550 that can be used to implement the techniques described in this disclosure. The computing device 1500 is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other appropriate computers. The mobile computing device 1550 is intended to represent various forms of mobile devices, such as personal digital assistants, cellular telephones, smart-phones, and other similar computing devices. The components shown here, their connections and relationships, and their functions, are meant to be examples only, and are not meant to be limiting.


The computing device 1500 includes a processor 1502, a memory 1504, a storage device 1506, a high-speed interface 1508 connecting to the memory 1504 and multiple high-speed expansion ports 1510, and a low-speed interface 1512 connecting to a low-speed expansion port 1514 and the storage device 1506. Each of the processor 1502, the memory 1504, the storage device 1506, the high-speed interface 1508, the high-speed expansion ports 1510, and the low-speed interface 1512, are interconnected using various busses, and may be mounted on a common motherboard or in other manners as appropriate. The processor 1502 can process instructions for execution within the computing device 1500, including instructions stored in the memory 1504 or on the storage device 1506 to display graphical information for a GUI on an external input/output device, such as a display 1516 coupled to the high-speed interface 1508. In other implementations, multiple processors and/or multiple buses may be used, as appropriate, along with multiple memories and types of memory. Also, multiple computing devices may be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor system).


The memory 1504 stores information within the computing device 1500. In some implementations, the memory 1504 is a volatile memory unit or units. In some implementations, the memory 1504 is a non-volatile memory unit or units. The memory 1504 may also be another form of computer-readable medium, such as a magnetic or optical disk.


The storage device 1506 is capable of providing mass storage for the computing device 1500. In some implementations, the storage device 1506 may be or contain a computer-readable medium, such as a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations. Instructions can be stored in an information carrier. The instructions, when executed by one or more processing devices (for example, processor 1502), perform one or more methods, such as those described above. The instructions can also be stored by one or more storage devices such as computer- or machine-readable mediums (for example, the memory 1504, the storage device 1506, or memory on the processor 1502).


The high-speed interface 1508 manages bandwidth-intensive operations for the computing device 1500, while the low-speed interface 1512 manages lower bandwidth-intensive operations. Such allocation of functions is an example only. In some implementations, the high-speed interface 1508 is coupled to the memory 1504, the display 1516 (e.g., through a graphics processor or accelerator), and to the high-speed expansion ports 1510, which may accept various expansion cards (not shown). In the implementation, the low-speed interface 1512 is coupled to the storage device 1506 and the low-speed expansion port 1514. The low-speed expansion port 1514, which may include various communication ports (e.g., USB, Bluetooth®, Ethernet, wireless Ethernet) may be coupled to one or more input/output devices, such as a keyboard, a pointing device, a scanner, or a networking device such as a switch or router, e.g., through a network adapter.


The computing device 1500 may be implemented in a number of different forms, as shown in the figure. For example, it may be implemented as a standard server 1520, or multiple times in a group of such servers. In addition, it may be implemented in a personal computer such as a laptop computer 1522. It may also be implemented as part of a rack server system 1524. Alternatively, components from the computing device 1500 may be combined with other components in a mobile device (not shown), such as a mobile computing device 1550. Each of such devices may contain one or more of the computing device 1500 and the mobile computing device 1550, and an entire system may be made up of multiple computing devices communicating with each other.


The mobile computing device 1550 includes a processor 1552, a memory 1564, an input/output device such as a display 1554, a communication interface 1566, and a transceiver 1568, among other components. The mobile computing device 1550 may also be provided with a storage device, such as a micro-drive or other device, to provide additional storage. Each of the processor 1552, the memory 1564, the display 1554, the communication interface 1566, and the transceiver 1568, are interconnected using various buses, and several of the components may be mounted on a common motherboard or in other manners as appropriate.


The processor 1552 can execute instructions within the mobile computing device 1550, including instructions stored in the memory 1564. The processor 1552 may be implemented as a chipset of chips that include separate and multiple analog and digital processors. The processor 1552 may provide, for example, for coordination of the other components of the mobile computing device 1550, such as control of user interfaces, applications run by the mobile computing device 1550, and wireless communication by the mobile computing device 1550.


The processor 1552 may communicate with a user through a control interface 1558 and a display interface 1556 coupled to the display 1554. The display 1554 may be, for example, a TFT (Thin-Film-Transistor Liquid Crystal Display) display or an OLED (Organic Light Emitting Diode) display, or other appropriate display technology. The display interface 1556 may comprise appropriate circuitry for driving the display 1554 to present graphical and other information to a user. The control interface 1558 may receive commands from a user and convert them for submission to the processor 1552. In addition, an external interface 1562 may provide communication with the processor 1552, so as to enable near area communication of the mobile computing device 1550 with other devices. The external interface 1562 may provide, for example, for wired communication in some implementations, or for wireless communication in other implementations, and multiple interfaces may also be used.


The memory 1564 stores information within the mobile computing device 1550. The memory 1564 can be implemented as one or more of a computer-readable medium or media, a volatile memory unit or units, or a non-volatile memory unit or units. An expansion memory 1574 may also be provided and connected to the mobile computing device 1550 through an expansion interface 1572, which may include, for example, a SIMM (Single In Line Memory Module) card interface. The expansion memory 1574 may provide extra storage space for the mobile computing device 1550, or may also store applications or other information for the mobile computing device 1550. Specifically, the expansion memory 1574 may include instructions to carry out or supplement the processes described above, and may include secure information also. Thus, for example, the expansion memory 1574 may be provided as a security module for the mobile computing device 1550, and may be programmed with instructions that permit secure use of the mobile computing device 1550. In addition, secure applications may be provided via the SIMM cards, along with additional information, such as placing identifying information on the SIMM card in a non-hackable manner.


The memory may include, for example, flash memory and/or NVRAM memory (non-volatile random access memory), as discussed below. In some implementations, instructions are stored in an information carrier and, when executed by one or more processing devices (for example, processor 1552), perform one or more methods, such as those described above. The instructions can also be stored by one or more storage devices, such as one or more computer- or machine-readable mediums (for example, the memory 1564, the expansion memory 1574, or memory on the processor 1552). In some implementations, the instructions can be received in a propagated signal, for example, over the transceiver 1568 or the external interface 1562.


The mobile computing device 1550 may communicate wirelessly through the communication interface 1566, which may include digital signal processing circuitry where necessary. The communication interface 1566 may provide for communications under various modes or protocols, such as GSM voice calls (Global System for Mobile communications), SMS (Short Message Service), EMS (Enhanced Messaging Service), or MMS messaging (Multimedia Messaging Service), CDMA (code division multiple access), TDMA (time division multiple access), PDC (Personal Digital Cellular), WCDMA (Wideband Code Division Multiple Access), CDMA2000, or GPRS (General Packet Radio Service), among others. Such communication may occur, for example, through the transceiver 1568 using a radio-frequency. In addition, short-range communication may occur, such as using a Bluetooth®, Wi-Fi™, or other such transceiver (not shown). In addition, a GPS (Global Positioning System) receiver module 1570 may provide additional navigation- and location-related wireless data to the mobile computing device 1550, which may be used as appropriate by applications running on the mobile computing device 1550.


The mobile computing device 1550 may also communicate audibly using an audio codec 1560, which may receive spoken information from a user and convert it to usable digital information. The audio codec 1560 may likewise generate audible sound for a user, such as through a speaker, e.g., in a handset of the mobile computing device 1550. Such sound may include sound from voice telephone calls, may include recorded sound (e.g., voice messages, music files, etc.) and may also include sound generated by applications operating on the mobile computing device 1550.


The mobile computing device 1550 may be implemented in a number of different forms, as shown in the figure. For example, it may be implemented as a cellular telephone 1580. It may also be implemented as part of a smart-phone 1582, personal digital assistant, or other similar mobile device.


Various implementations of the systems and techniques described here can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.


These computer programs (also known as programs, software, software applications or code) include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the terms machine-readable medium and computer-readable medium refer to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.


To provide for interaction with a user, the systems and techniques described here can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user and a keyboard and a pointing device (e.g., a mouse or a trackball) by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic, speech, or tactile input.


The systems and techniques described here can be implemented in a computing system that includes a back end component (e.g., as a data server), or that includes a middleware component (e.g., an application server), or that includes a front end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the systems and techniques described here), or any combination of such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network (LAN), a wide area network (WAN), and the Internet.


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


In view of the structure, functions and apparatus of the systems and methods described here, in some implementations, a system and method for performing minimally invasive surgical techniques are provided. Having described certain implementations of methods and apparatus for supporting minimally invasive surgical techniques, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the disclosure should not be limited to certain implementations, but rather should be limited only by the spirit and scope of the following claims.


Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.


It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions may be conducted simultaneously.

Claims
  • 1. A method of operating a robotic surgical system comprising: storing, by a processor of a computer device, a planned trajectory of a surgical instrument;sequentially inserting a plurality of dilators through a patient skin for successively enlarging a surgical incision to access a vertebra of the patient, wherein the last inserted dilator defines a working channel for accessing the vertebra;removing all dilators while leaving the last inserted dilator with the largest circumference in place as a working dilator; andafter the removing step, rigidly attaching the working dilator and only the working dilator to an end effector of the robotic surgical system through a dilator fixation which is rigidly secured to a robot arm such that the robotic surgical system always knows the position of the dilator fixation;repositioning the trajectory of the surgical instrument after the working dilator has been attached to the end effector.
  • 2. The method of claim 1, wherein repositioning includes repositioning the end effector to adjust the trajectory of the working dilator automatically by the robotic surgical system.
  • 3. The method of claim 1, wherein repositioning includes repositioning the end effector to adjust the trajectory of the working dilator automatically by the robotic surgical system when a surgeon adjusts the trajectory of the surgical instrument.
  • 4. The method of claim 1, further comprising inserting a surgical instrument guide in the working dilator.
  • 5. The method of claim 1, further comprising maintaining, by a processor of the robotic surgical system, a position of a surgical instrument guide attached to the end effector as a surgeon passes a drill through the surgical instrument guide and drills a hole in the vertebra.
  • 6. The method of claim 1, further comprising detecting by a force sensor movement of a surgical instrument guide attached to the end effector.
  • 7. The method of claim 1, further comprising automatically repositioning the end effector to adjust a surgical instrument guide attached to the end effector, thereby automatically adjusting an angle and position of the working dilator with respect to the vertebrae and align an axis defined by the working dilator with a desired trajectory without removal of the working dilator from the patient tissue during the repositioning.
  • 8. The method of claim 1, further comprising continuously updating and displaying on a display device a visual representation of the trajectory of the surgical instrument superimposed with a medical image of the patient based on output of a tracking detector adapted to detect the 3-dimensional position and orientation of the patient and a surgical instrument guide attached to the end effector relative to the patient.
  • 9. The method of claim 1, further comprising maintaining, by a processor of the robotic surgical system, a position of a surgical instrument guide attached to the end effector as a k-wire is inserted into the vertebrae such that the orientation of the k-wire substantially represents the planned trajectory.
  • 10. The method of claim 9, further comprising inserting into a surgical instrument guide attached to the end effector an adaptive tube and receiving the k-wire therethrough.
  • 11. A method of operating a robotic surgical system comprising: providing the robotic surgical system including a processor, display coupled to the processor, a base, a robot arm coupled to the base and an end effector attached to the robot arm;storing, by the processor, a planned trajectory based on a trajectory of a surgical instrument;sequentially inserting a plurality of dilators for successively enlarging a surgical incision; andremoving all dilators while leaving the last inserted dilator with the largest circumference in place as a working dilator;after the removing step, rigidly attaching the working dilator and only the working dilator to the end effector attached to the robot arm through a dilator fixation which is rigidly secured to the robot arm such that the robotic surgical system always knows the position of the dilator fixation;automatically repositioning the end effector of the robotic surgical system to adjust the trajectory of the surgical instrument after the working dilator has been attached to the end effector.
  • 12. The method of claim 11, wherein automatically repositioning includes repositioning the end effector to adjust the trajectory of the working dilator automatically by the robotic surgical system when a surgeon adjusts the trajectory of the surgical instrument.
  • 13. The method of claim 11, further comprising inserting a surgical instrument guide in the working dilator.
  • 14. The method of claim 11, further comprising maintaining, by the processor of the robotic surgical system, a position of a surgical instrument guide attached to the end effector as a surgeon passes a drill through the surgical instrument guide and drills a hole in the vertebra.
  • 15. The method of claim 11, further comprising detecting by a force sensor movement of a surgical instrument guide attached to the end effector.
  • 16. The method of claim 11, wherein automatically repositioning the end effector of the robotic surgical system includes automatically adjusting an angle and position of the working dilator with respect to the vertebrae and aligning an axis defined by the working dilator with a desired trajectory without removal of the working dilator from the patient tissue during the repositioning.
  • 17. The method of claim 11, further comprising continuously updating and displaying on a display device a visual representation of the trajectory of the surgical instrument superimposed with a medical image of the patient based on output of a tracking detector adapted to detect the 3-dimensional position and orientation of the patient and a surgical instrument guide attached to the end effector relative to the patient.
  • 18. The method of claim 11, further comprising maintaining, by a processor of the robotic surgical system, a position of a surgical instrument guide attached to the end effector as a k-wire is inserted into the vertebrae such that the orientation of the k-wire substantially represents the planned trajectory.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 16/720,187 filed on Dec. 19, 2019, issued as U.S. Pat. No. 11,266,470, which is a continuation of U.S. patent application Ser. No. 15/047,277 filed on Feb. 18, 2016, issued as U.S. Pat. No. 10,555,782, which claims priority to U.S. provisional patent application No. 62/117,919, filed on Feb. 18, 2015, all of which are incorporate herein by reference.

US Referenced Citations (684)
Number Name Date Kind
4150293 Franke Apr 1979 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Arkin et al. Apr 2011 B2
7935130 Williams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jenser Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Arkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Green et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 Von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Tott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Tott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9782229 Crawford Oct 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
10485617 Crawford Nov 2019 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20040106997 Lieberson Jun 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345718 Crawford Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucher et al. Dec 2017 A1
Non-Patent Literature Citations (1)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Related Publications (1)
Number Date Country
20220249179 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
62117919 Feb 2015 US
Continuations (2)
Number Date Country
Parent 16720187 Dec 2019 US
Child 17588992 US
Parent 15047277 Feb 2016 US
Child 16720187 US