Systems and methods for planning a patient-specific spinal correction

Information

  • Patent Grant
  • 12318144
  • Patent Number
    12,318,144
  • Date Filed
    Wednesday, June 23, 2021
    4 years ago
  • Date Issued
    Tuesday, June 3, 2025
    a month ago
Abstract
Systems and methods are provided to plan a spinal correction surgery. The method includes measuring parameters of a spine in a two-dimensional (2D) spinal image including a thoracic Cobb angle and a thoracic kyphosis (TK) and transforming the 2D image to a three-dimensional (3D), spinal image representation. The transforming includes performing segmentation of spine elements in the 2D image, and applying a formula based on the thoracic Cobb angle and the TK to the spine elements. The method includes identifying a TK goal having a post-operative TK value to selected spine elements, transforming a gap of the spine elements representative of a difference between the pre-operative TK in 3D spinal image representation and the TK goal to create a 3D post-operative spinal image representation, and determining a first rod design based on the 3D post-operative spinal image representation to achieve the post-operative TK value in the spine elements.
Description
FIELD

The present technology is generally related to systems and methods for planning a patient-specific spinal correction surgery and/or conducting a surgery.


BACKGROUND

Spinal disorders such as adolescent idiopathic scoliosis, degenerative disc disease, disc herniation, osteoporosis, spondylolisthesis, stenosis, scoliosis, kyphosis and other curvature abnormalities, tumor, and fracture may result from factors including trauma, disease and degenerative conditions caused by injury and aging. Spinal disorders or deformities typically result in symptoms including pain, nerve damage, and partial or complete loss of mobility, at a minimum. In adolescence, spinal deformity may affect lung capacity and other bodily functions.


Spinal surgery may involve implantation of one or more spinal implants, such as a spinal rod, to correct the curvature of the spine of a patient and to prevent further deterioration. In adolescent idiopathic scoliosis, concaved and convex spinal rods of particular curvatures are used. These spinal rods, however, can deform based on in vivo impact forces. The spinal rod curvature can be a key factor in the treatment of a spinal deformity.


This disclosure describes an improvement over these prior art technologies.


SUMMARY

The techniques of this disclosure generally relate to systems and methods for planning a patient-specific spinal correction that may include designing a patient-specific spinal implant based on a three-dimensional (3D) nature of a deformity, for example, to correct a patient-specific adolescent idiopathic scoliosis (AIS) deformity, such as by designing a rod contour that accounts for rod deformation and/or bending out to achieve a thoracic kyphosis goal for use in treating the deformity.


In one aspect, the present disclosure provides a method to plan a spinal correction surgery. The method includes, for example, measuring spinal parameters of a spine in a two-dimensional (2D) pre-operative spinal image including at least a pre-operative thoracic Cobb angle and a pre-operative thoracic kyphosis and transforming the 2D pre-operative spinal image to a three-dimensional (3D), pre-operative spinal image representation. The transforming may include performing segmentation of spine elements in the 2D pre-operative spinal image, and applying a mathematical formula based on the thoracic Cobb angle and the thoracic kyphosis to the spine elements. The method includes identifying a thoracic kyphosis goal having a post-operative thoracic kyphosis value to a selected set of the spine elements, transforming a gap of the spine elements representative of a difference between the pre-operative thoracic kyphosis in 3D pre-operative spinal image representation and the thoracic kyphosis goal to create a 3D post-operative spinal image representation, and determining a first rod design based on the 3D post-operative spinal image representation to achieve the post-operative thoracic kyphosis value in the selected set of spine elements.


In another aspect, the disclosure provides a system that includes, for example, at least one processor and a non-transitory and tangible computer readable storage medium having programming instructions stored thereon, which when executed cause the at least one processor to measure spinal parameters of a spine in a two-dimensional (2D) pre-operative spinal image including at least a pre-operative thoracic Cobb angle and a pre-operative thoracic kyphosis; and transform the 2D pre-operative spinal image to a three-dimensional (3D), pre-operative spinal image representation. The processor may, for example, transform the 2D image by: performing segmentation of spine elements in the 2D pre-operative spinal image; and applying a mathematical formula based on the thoracic Cobb angle and the thoracic kyphosis to the spine elements. The processor, for example, may also identify a thoracic kyphosis goal having a post-operative thoracic kyphosis value to a selected set of the spine elements, transform a gap of the spine elements representative of a difference between the pre-operative thoracic kyphosis in 3D pre-operative spinal image representation and the thoracic kyphosis goal to create a 3D post-operative spinal image representation, and determine a first rod design based on the 3D post-operative spinal image representation to achieve the post-operative thoracic kyphosis value in the selected set of spine elements.


In another aspect, the disclosure provides a method, for example, that includes planning a surgery to correct a spinal deformity and obtaining a rod formed of biocompatible material configured to approximate a first rod design. The method may include during surgery, bending the rod with a rod bending device to create the first rod design; and implanting the bent rod.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a flowchart that illustrates an example method for planning a patient-specific spinal correction.



FIG. 2 is a flowchart that illustrates an example method for three-dimensional (3D) transformation from the two-dimensional (2D) spinal representation to a 3D spinal representation.



FIG. 3 is a flowchart that illustrates an example method for designing a patient-specific first rod geometry.



FIG. 4 is a flowchart that illustrates an example method for creating a rod geometry.



FIG. 5 is an example illustration of a spine.



FIG. 6A is an example illustration of a graphical user interface (GUI) displaying a 2D patient image of the spine.



FIG. 6B is an example illustration of a graphical user interface (GUI) displaying 3D patient image of the spine.



FIG. 7A is an example illustration of a graphical user interface (GUI) displaying a measurement of a pre-operative thoracic kyphosis.



FIG. 7B is an example illustration of a graphical user interface (GUI) displaying a thoracic kyphosis goal.



FIG. 8 is an example illustration of a graphical user interface (GUI) displaying resultant 3D image of a 3D gap transformation to the goal.



FIG. 9 is an example illustration of a design of a first rod geometry overlaid on a spine in an image of the patient.



FIG. 10 is an example illustration of designs of first and second rod geometries overlaid on a spine in an image of the patient.



FIG. 11 illustrates an example of internal hardware that is included in any of the electronic components of an external electronic device.





DETAILED DESCRIPTION

The embodiments described herein relate to systems and methods for planning a patient-specific spinal correction that may include designing a patient-specific spinal implant based on a three-dimensional (3D) nature of a deformity, for example, to correct a patient-specific adolescent idiopathic scoliosis (AIS) deformity, such as by designing a rod contour that accounts for rod deformation and/or bending out to achieve a thoracic kyphosis goal for use in treating the deformity.


In particular, some embodiments described herein are directed to the design and/or manufacture of patient-specific spinal rods. In some embodiments, the systems and methods described herein may be configured to design and/or produce a patient-specific spinal rod for use in a surgical procedure to correct a spinal deformity.


The planning system of the present disclosure may be understood more readily by reference to the following detailed description of the embodiments taken in connection with the accompanying drawing figures that form a part of this disclosure. It is to be understood that this application is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting. Also, in some embodiments, as used in the specification and including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It is also understood that all spatial references, such as, for example, horizontal, vertical, top, upper, lower, bottom, front, back, left and right, are for illustrative purposes only and can be varied within the scope of the disclosure. For example, the references “upper” and “lower” are relative and used only in the context to the other, and are not necessarily “superior” and “inferior”.


Further, as used in the specification and including the appended claims, “treating” or “treatment” of a disease or condition may refer to planning for and performing a procedure that may include administering one or more drugs to a patient (human or other mammal), employing implantable devices, and/or employing instruments that treat the disease, such as, for example, instruments used to implant bone constructs, pedicle screws, and spinal rods, for example.


Alleviation can occur prior to signs or symptoms of the disease or condition appearing, as well as after their appearance. Thus, treating or treatment includes preventing or prevention of and/or reducing the likelihood of a certain disease or undesirable condition (e.g., preventing or reducing the likelihood of the disease from occurring in a patient, who may be predisposed to the disease but has not yet been diagnosed as having it). In addition, treating or treatment does not require complete alleviation of signs or symptoms, does not require a cure, and specifically includes procedures that have only a marginal effect on the patient. Treatment can include inhibiting the disease, e.g., arresting its development, or relieving the disease, e.g., causing regression of the disease. For example, treatment can include reducing acute or chronic inflammation; alleviating pain and mitigating and inducing re-growth of new ligament, bone and other tissues; as an adjunct in surgery; and/or any repair procedure. Also, as used in the specification and including the appended claims, the term “tissue” includes soft tissue, ligaments, tendons, cartilage and/or bone unless specifically referred to otherwise.


The following disclosure includes a description of a computing system for generating a model of a three-dimensional (3D) nature of a patient-specific deformity, planning a correction of the patient-specific deformity and/or for designing a rod contour with a degree of bending out. The following disclosure includes a description of computer-implemented methods of employing the computing system in accordance with the principles of the present disclosure. Alternate embodiments are also disclosed. Reference is made in detail to the exemplary embodiments of the present disclosure, which are illustrated in the accompanying figures.


The designed implant rod may be fabricated from biologically acceptable materials suitable for medical applications, including computer aided metals, computer aided plastics, metals, synthetic polymers, ceramics and bone material and/or their composites. For example, the rod may be fabricated from materials such as stainless steel alloys, aluminum, commercially pure titanium, titanium alloys, Grade 5 titanium, superelastic titanium alloys, cobalt-chrome alloys, stainless steel alloys, superelastic metallic alloys (e.g., Nitinol, super elasto-plastic metals, such as GUM METAL® manufactured by Toyota Material Incorporated of Japan), ceramics and composites thereof such as calcium phosphate (e.g., SKELITE™ manufactured by Biologic, Inc.), thermoplastics such as polyaryletherketone (PAEK) including polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and polyetherketone (PEK), carbon-PEEK composites, PEEK-BaSO4 polymeric rubbers, polyethylene terephthalate (PET), fabric, silicone, polyurethane, silicone-polyurethane copolymers, polymeric rubbers, polyolefin rubbers, hydrogels, semi-rigid and rigid materials, elastomers, rubbers, thermoplastic elastomers, thermoset elastomers, elastomeric composites, rigid polymers including polyphenylene, polyamide, polyimide, polyetherimide, polyethylene, epoxy, and tissue growth or differentiation factors, partially resorbable materials, such as, for example, composites of metals and calcium-based ceramics, composites of PEEK and calcium based ceramics, composites of PEEK with resorbable polymers, totally resorbable materials, such as, for example, calcium based ceramics such as calcium phosphate, tri-calcium phosphate (TCP), hydroxyapatite (HA)-TCP, calcium sulfate, or other resorbable polymers such as polyaetide, polyglycolide, polytyrosine carbonate, polycaroplaetohe and their combinations.


The rod may have material composites, including the above materials, to achieve various desired characteristics such as strength, rigidity, elasticity, compliance, biomechanical performance, durability and radiolucency or imaging preference. The rod may also be fabricated from a heterogeneous material such as a combination of two or more of the above-described materials. The rod may be monolithically formed.


This disclosure incorporates herein by reference in its entirety U.S. Ser. No. 17/130,492, entitled “SYSTEMS, METHODS, AND DEVICES FOR DEVELOPING PATIENT-SPECIFIC SPINAL IMPLANTS, TREATMENTS, OPERATIONS, AND/OR PROCEDURES.”


The method steps described herein may be performed in the order shown or a different order. One or more method steps may be performed contemporaneously. One or more method steps may be added or deleted.



FIG. 1 is a flowchart that illustrates an example method 100 for planning a patient-specific spinal correction of a deformity. The method may be a computer-implemented method with one or more graphical user interfaces (GUIs) that may be configured to interact with the user and display on a display device (FIG. 11) the resultant output data, for example, as will be described in relation to FIGS. 6A-10. The method 100 will be described also in relation to the surgery planning system described in more detail in FIG. 11.


The method 100 may include (at 102) receiving, by at least one processor 1105 (FIG. 11), a selected two-dimensional (2D) patient image. One or more medical imaging techniques may be used to capture a patient's spinal deformity or disease, for example. The imaging technique may include a 2D imaging technique, such as, fluoroscopy, computerized tomography (CT) scan and magnetic resonance imaging (MRI), for example. The surgery planner (hereinafter referred to as “user”) selects a 2D patient image of the spine for which to begin the planning a surgical procedure for a spinal correction. The 2D patient image may be selected from one or more 2D patient images of the coronal plane and/or sagittal plane, by way of non-limiting example, of the spine. The 2D images may include lateral views and anteroposterior view, for example. The method 100 may include (at 102) receiving more than one selected 2D patient image. The 2D patient images may be displayed to the user for selecting using a user interface, such as a keyboard, a touchscreen display, a mouse, or a stylus.


The method 100 may include (at 104) determining, by at least one processor 1105, 2D spine measurements based on the 2D patient image. For example, the 2D measurements may include one or more of pre-op values, such as, sagittal Cobb (SCobb) angle, coronal Cobb (CCobb) angle, thoracic Cobb (TCobb) angle, lumbar Lordis (LL), pelvic incidence (PI), thoracic kyphosis (TK), sacaral slope (SS) and pelvic tilt (PT), for example. The 2D spine measurements are pre-operation (pre-op) measurements. The 2D spine measurements may include a sagittal vertical axis (SVA) pre-op value, for example. The image data may be analyzed using machine-learning algorithms 1123 to perform one or more spine measurements 1161 (FIG. 11).



FIG. 5 is an example illustration of a spine 500. The spine 500 may include cervical vertebra C1-C8, a thoracic vertebra TH1-TH12, a lumbar vertebra L1-L5, a sacral vertebra S1-S4 or other part along the vertebral column of the patient. The reference nomenclature “C #” includes a C to denote the cervical section of the spine and # represents the level of the cervical section. The reference nomenclature “TH #” includes a TH to denote the thoracic section of the spine and # represents the level of the thoracic section. The reference nomenclature “L #” includes a L to denote the lumbar section of the spine and # represents the level of the lumbar section. The reference nomenclature “S #” includes a S to denote the sacral section of the spine and # represents the level of the sacral section.


When performing 2D spine measurements based on the 2D patient image (at 104), the at least one processor 1105, may be configured to perform segmentation 1160 (FIG. 11) of objects in the 2D image, label or classify the objects and define the objects boundaries. Segmentation of objects is generally understood by one skilled in the art, may be to label or identify objects within the image, such as, each level of the spine.


In some embodiments, the at least one processor 1105 when performing one or more steps, such as without limitation, segmentation of images, may be configured to utilize machine-learning algorithms 1123 (FIG. 11) stored in memory device 1120 (FIG. 11). The machine-learning algorithms 1123 may include one or more of a Generative Adversarial Network (GAN) algorithm, a Convolutional Neural Network (CNN) algorithm, and/or a Recurrent Neural Network (RNN) algorithm, linear regression, Support Vector Machine (SVM) algorithm, Support Vector Machine-Regression (SVR) algorithm, and/or any combination thereof. For example, in some embodiments, the at least one processor 1105 may be configured to utilize a combination of a CNN algorithm with an SVM algorithm.



FIG. 6A is an example illustration of a GUI 600A displayed on a display device 602 and a selected 2D patient image 606A of the spine 608A. The GUI 600A may include a list of patient file names 604 associated with at least one uploaded 2D patient image. In this example, there are three uploaded 2D patient images. The displayed image 606A may be an anteroposterior standing view of the patient. The second entry in the list is selected, as denoted by a dotted-hatched box. In this view, the 2D patient image 606A may be represented as a segmented spinal column with each vertebra segmented. The sacral section may also be segmented.


In some embodiments, when determining pre-op spine measurements (at 104), the at least one processor 1105 may be configured to receive, access, and/or obtain one or more other pre-op radiographic parameters or values as well, such as Central Sacral Vertical Line (CSVL), C2TH1 Pelvic Angle)(CTPA,°), C2C7 SVA (mm) (Sagittal Vertical Axis), Cervical Lordosis, Lenke Classification, Proximal Junctional Kyphosis (PJK), sacral slope (SS), TH1 Slope)(TH1S,°) TH1 Tilt Angle and Direction, TH1O-L2 angle, TH12-S1 Lumbar Lordosis (LL), TH1-TH12, TH2-TH12, TH2-TH5, TH5-TH12 Thoracic Kyphosis, Thoracic (TH) Apex, Th Curves/Cobb angles, TH Curve Levels, (TH/L Lumbar Apex, TH/L Lumbar Curve, TH/L Lumbar Curve Direction of curve, TH/L Lumbar Curve Levels), TH1 Pelvic Angle (TPA), Anatomical Kyphosis, Anatomical Lordosis, Cobb Angles, Coordinates of all vertebra corners in the sagittal and/or coronal planes and the femoral heads, and any other pre-operative data like, Computerized tomography Performed, Tri-Radiate Cartilage, External Auditory Meadus, Pelvic Obliquity, Acetabular Index, and/or the like.


The method 100 may include (at 106) performing, by at least one processor 1105, a 3D transformation of the 2D spinal image representation to a 3D spinal image representation, such as for display on a display device. FIG. 6B is an example illustration of a GUI 600B displaying 3D spinal image 606B representation of the spine 608B.


When performing the 3D transformation (at 106), the at least one processor 1105 may be configured to apply a mathematical formula representative of a 3D transformation to the 2D spinal image representation and generate the 3D spinal image 606B representation, as will be described in more detail in relation to FIG. 2. The method 100 may include (at 106) repeating the performing a 3D transformation of the 2D spinal image representation to a 3D spinal representation, for each received 2D patient image. For example, the received 2D patient image may include a selection of a plurality of 2D patient images to be used in determining the thoracic kyphosis goal and/or for 3D transformation. The at least one processor 1105 may be configured to output and cause display of the 3D transformation indicative of the 3D spinal image 606B representation in the GUI 600B.



FIG. 2 is a flowchart that illustrates an example method for 3D transformation from the two-dimensional (2D) spinal representation to a 3D spinal representation (hereinafter sometimes referred to as 2D-to-3D transformation). The method 104 may include (at 202) retrieving the calculated 2D thoracic Cobb (2D TCobb) angle and (at 204) retrieve the calculated 2D thoracic kyphosis (2D TK). An example, 2D thoracic kyphosis between TH5-TH12 is shown in FIG. 7A. Cobb angles may be determined based on other combination of thoracic vertebrae, cervical vertebrae, lumbar vertebrae and/or sacral vertebrae, as is generally understood in the art. The method 104 may include (at 206) estimating the 3D transformation from a standard 2D measurement in degree. In some embodiments, the 3D transformation estimation may be expressed in equation (EQ1) defined as:

18.1+(0.81*2D TK)−(0.54*2D TCobb angle)  EQ1,

as described in “Predicting 3D Thoracic Kyphosis Using Traditional 2D Radiographic Measurements in Adolescent Idiopathic Scoliosis,” by Kevin Parvaresh, MD, Spine Deformity 5 (2017) 159-165, incorporated herein by reference in its entirety.


In certain embodiments, the method may include receiving, accessing, and/or obtaining one or more radiographic parameters, such as for example, pre-operative data such as TH4-TH12 Thoracic Kyphosis (TK), L1-S1 Lumbar Lordosis (LL), Sagittal Vertical Axis (SVA), Pelvic Tilt (PT), Pelvic Incidence (PI), Lordosis, and/or the like.


In some embodiments, a first set of input values for pre-operative and/or post-operative data may include one or more of the following: TH4-TH12 TK, L1-S1 LL, SVA, Lowermost Instrumented Vertebrae (LIV), Uppermost Instrumented Vertebrae (UIV), Pelvic Tilt, Age at the time of surgery, and/or Pelvic Incidence (PI). The at least one processor 1105 may be configured to perform the 2D-to-3D transformation 1162 using one or more machine-learning algorithms described herein.



FIG. 7A is an example illustration of a GUI 700A displaying on a display device 702 a measurement of a pre-operative thoracic kyphosis (TK), denoted as angle θ1. The thoracic kyphosis may be measured as an angle of intersection of a selected or identified set of thoracic vertebrae. The GUI 700A includes a list of spinal sections 704 for the illustrated 2D spinal image representation 706A. The thoracic section is shown selected, as denoted by the dotted hatched box. Below the thoracic section there includes a menu for selecting, for example, thoracic vertebrae TH2-TH12 and TH5-TH12, for example. In this example, the levels 5-12 of the thoracic section are selected, as denoted by a dotted hatched box. The at least one processor 1105 may be configured to cause the display device 702 to display other pre-op measurements. The GUI 700A may include buttons 710 for selecting, by a user, a pre-operative measurement, such as without limitation, CCobb angle, SCobb angle, TCobb angle, LL, PI, SS, PT, TK and SVA. In this example, the TK angle θ1 is selected and displayed. The levels may be selected by a user or automatically by the at least one processor.


The method may include (at 108), by at least one processor 1105, determining a thoracic kyphosis goal, and example is shown in FIG. 7B. In some embodiments, the thoracic kyphosis goal may be identified by the surgeon or by a set of identified preferences of a surgeon. The thoracic kyphosis goal may be used to plan the surgery to achieve the spine correction goal. The thoracic kyphosis goal may be measured as an angle of intersection with a selected set of thoracic vertebrae. For example, the goal may correct TH5-TH12. In other example, the goal may correct a combination of vertebrae from TH2-TH12.



FIG. 7B is an example illustration of a GUI 700B displaying a thoracic kyphosis goal of θ2. In this example, the thoracic kyphosis goal may be entered via the GUI 700B using data field 712. In other embodiments, a range may be provided to the user using the GUI 700B from which a goal may be selected. The thoracic kyphosis goal of θ2 may be identified in an image 706B on the GUI 700B. The image 706B illustrates the thoracic kyphosis goal as a function of the selected vertebrae for correction, such as TH5-TH12, for example.


In some embodiments, when determining a thoracic kyphosis goal, at least one processor 1105, (at 108) may be configured to select one or more input parameters, for example, age, PI pre-op value, PT pre-op value, LL pre-op value, TK pre-op value, SVA pre-op value, lower instrumented level, upper instrumented level, LL post-op target value, surgeon, weight, shape of the pre-operative spline, pre-operative x-ray, or the like. In some embodiments, the at least one processor 1105 may be configured to standardize the range of input parameters and/or utilize a scaling methodology for displaying on a display device using one or more GUIs. The at least one processor 1105 may be configured to allow a vertebrae range to be selected either by input fields or by selecting (marking) first and second locations on the image representative of the selected set of vertebrae to achieve the thoracic kyphosis goal.


The thoracic kyphosis goal may be determined using machine-learning algorithms 1123, by at least one processor 1105. In some embodiments, the method 100, when determining a thoracic kyphosis goal (at 108), may include generating, by the at least one processor 1105, a predictive model for determining post-operative parameters, such as for example thoracic kyphosis and/or pelvic tilt, using a thoracic kyphosis goal module 1166 and datasets 1127, for example. The generating may include accessing a dataset 1127 (FIG. 11) in an electronic database, the dataset 1127 may include data about the patient (for example, an X-ray images or clinical information) and the surgery strategy (for example, upper instrumented vertebra, lower instrumented vertebra, bending device, rod cutting parameter, or the like). In some embodiments, method 100 may include defining in the dataset 1127, which parameters should be inputs of the model and which parameters should be outputs of the model. For example, outputs of the model may include the parameters that the system (e.g., at least one processor 1105) may be configured to predict the thoracic kyphosis goal for the treatment of the patient based on the pre-op spine measurements.


The method may include (at 110), by at least one processor 1105, performing a gap 3D transform to represent the patient's 3D model of the spine corrected to the thoracic kyphosis goal. In some embodiments, the total mean thoracic kyphosis may be 47° for adults, for example, as described in “Compensatory Spinopelvic Balance Over the Hip Axis and Better Reliability in Measuring Lordosis to the Pelvic Radius on Standing Lateral Radiographs of Adult Volunteers and Patients,” Roger P. Jackson MD, et al., SPINE Vol. 23, No. 16, pp. 1750-1767, copyright 1998, Lippincott Williams & Wilkins, incorporated herein by reference in its entirety. By way of non-limiting example, the adolescent patient may be corrected to conform to an adult total thoracic kyphosis. The total mean thoracic kyphosis in degrees may be calculated based on the total kyphosis from TH1-TH12 based on the Cobb method.


The gap 3D transformation may be determined using machine-learning algorithms 1123, by at least one processor 1105, using a predicted model of the gap transformation 1163 and related datasets 1127. The datasets 1127 may be trained based on radiological analysis of patients having a similar deformity. The dataset 1127 may include training data to train the machine-learning algorithms.



FIG. 8 is an example illustration of a GUI 800 displaying a resultant 3D image 806 of a 3D gap transformation to the goal by a display device 802. The method 100, when performing a gap 3D transform to the goal (at 110), may include, by at least one processor 1105, analyzing one or more 3D pre-operative medical images of a spine of a patient, as shown in FIG. 6B, to determine one or more pre-operative spinopelvic parameters. The one or more spinopelvic parameters may include one or more of lumbar lordosis (LL), pre-operative thoracic kyphosis (TK), pelvic incidence (PI), pelvic tilt (PT), or sagittal vertical axis (SVA) for one or more vertebrae. The system may be configured to train a predictive model and/or generate one or more post-operative predictions, for example using one or more machine learning techniques or neural networks. In FIG. 8, the pre-operative spine may be transformed to the post-operative spine in a 3D image representation. The resultant goals of the spinal column is shown. The goals include post-operative measurements for a TK from levels 1-12, a TK from levels 4-12, a LL, SS, PT, PI and sagittal balance (SB). The sagittal vertical axis may be used in lieu of the sagittal balance.


The 3D transforming, by the at least one processor 1105, may include determining one or more 3D pre-operative spinopelvic parameters to obtain one or more pre-operative spinopelvic parameters in a frequency domain. The transforming may include applying a Fourier transformation to the determined one or more pre-operative spinopelvic parameters, filtering, using at least one processor 1105, the one or more pre-operative spinopelvic parameters in the frequency domain. The filtering may include filtering out one or more of the one or more pre-operative spinopelvic parameters in the frequency domain including a frequency level above a predetermined threshold. The transforming may include applying, using at least one processor 1105, one or more predictive models to generate a predicted surgical outcome in the frequency domain based at least in part on the filtered one or more pre-operative spinopelvic parameters in the frequency domain and the one or more pre-operative non-imaging data of the subject. The one or more predictive models may include one or more of a generative adversarial network (GAN) algorithm, convolutional neural network (CNN) algorithm, or recurrent neural network (RNN) algorithm. The transforming, using at least one processor 1105, may transform the generated predicted surgical outcome in the frequency domain to obtain a generated predictive surgical outcome in a spatial domain. The transforming of the generated predicted surgical outcome in the frequency domain may include applying an inverse Fourier transformation to the generated predicted surgical outcome in the frequency domain, and generating a patient-specific spinal treatment based at least in part on the generated predictive surgical outcome in the spatial domain. The generated patient-specific spinal treatment may include one or more patient-specific spinal surgical procedures.


The method 100 may include (at 112) determining or generating, by at least one processor 1105, spinal surgical strategies including one or more surgical data parameters, such as Instrumentation Material, Instrumentation Size, Instrumentation Type, Minimal Invasive Surgery (MIS) options, Number of instrumented Levels, Osteotomies Performed, Rod Bending shapes and/or Angles, Rod Cutting Parameters, Uppermost Instrumented Parameters, Upper Instrumented Vertebrae (UIV), Lower Instrumented Vertebrae (LIV), Surgeon, surgical techniques (in some embodiments, using one or more machine learning algorithms to analyze surgeon's surgical techniques to be able to simulate the surgery and the rod that will match surgeon's expectations), radiography as an image, scanner, MRI (image or set of images), and/or the like. The machine-learning algorithms 1123, for surgical strategies 1165 may employ supervised machine learning, semi-supervised machine learning, unsupervised machine learning, deep learning and/or reinforcement machine learning. Each of these listed types of machine-learning algorithms is well known in the art.


In various embodiments computer-aided design programming applications may be used to draw or trace a rod geometric design. The particular type of drawing software utilized is not dependent on the system as the system may, irrespective of the particular platform or software utilized, generate manufacture or machine drawings to manufacture a rod.


The method 100 may include (at 112) creating, by at least one processor 1105, a first rod geometry (at 114) and/or a second rod geometry (at 116), as will be described in more detail in relation to FIGS. 3 and 4. The method 100 may include (at 118) displaying, by at least one processor 1105, the first rod geometry and/or the second rod geometry on an image of the spine of the patient, such as a pre-operative image, as shown in FIGS. 9-10.



FIG. 9 is an example illustration of a design of a first rod geometry 902 overlaid on a spine in an image 906 of the patient. FIG. 10 is an example illustration of designs of first and second rod geometries 902 and 1002 overlaid on a spine in an image 1006 of the patient. FIG. 9 illustrates a GUI 900 configured to display an image 1006 on a display device 902. The GUI 900 may be configured to output the first rod geometry 902 representative of a first rod, for example, to plan a location for implantation during surgery. In FIG. 10, the GUI 1000 may be configured to output the first rod geometry 902 representative of a first rod and second rod geometry 1002 representative of the second rod, for example, to plan the locations for implantation during surgery.


The method 100 may include (at 116) creating a second rod geometry by performing difference bending of a patient-specific second rod that may be configured to be a compliment to the first rod for the treatment to correct the spine in a patient.



FIG. 3 is a flowchart that illustrates an example method 114 for designing a patient-specific first rod geometry. For example, the method 114 may include (at 302), by at least one processor 1105, generating a drawing of a spinal rod having a plurality of spline segments is disclosed in U.S. Ser. No. 17/130,492, entitled “SYSTEMS, METHODS, AND DEVICES FOR DEVELOPING PATIENT-SPECIFIC SPINAL IMPLANTS, TREATMENTS, OPERATIONS, AND/OR PROCEDURES,” incorporated herein in its entirety.


The method 114 may include (at 304), by at least one processor 1105, approximating a bend out in a first rod geometry, for example. An example process to determine a bend out of a concave rod is described in “Postoperative Changes in Spinal Rod Contour in Adolescent Idiopathic Scoliosis, An in Vivo Deformation Study,” by Krishna R. Cidambi, M D et al., SPINE Vol. 37, No. 18, pp. 1566-1572, copyright 2012, Lippincott Williams & Wilkins, incorporated herein by reference in its entirety. For example, in some embodiments, a overbending or overcontouring by approximately 20° for a concaved rod may provide a minimal amount of loss in sagittal alignment. The bend out to effectuate an increase kyphosis may be determined using machine-learning algorithms 1123 for rod designing 1164 based on trained data between pre-operative and post-operative rod contours, and specifically based on the material used to manufacture the rod. Material properties of biocompatible materials, described above, may each have a deformation signature response to the in vivo deforming forces. The deformation signature response may be a function of the rod length, the rod diameter, the rod material, by way of non-limiting example. The trained data (i.e., datasets 1127) may be determined based on 2D image data, for example, between pre-operative and post-operative rod contours of rods made of varying materials. The process to approximate the bend out of a patient-specific first rod, will be described in more detail in FIG. 4.


The planning of the bend out may also require knowledge of surgery strategies, as determined, for example, by algorithms for surgical strategies 1165 and datasets 1127, based on preferences of the surgeon, actual surgical cases, surgical case simulation or robotic surgery system. For example, bend out may be based on in situ rod bending techniques and/or bending devices. The bend out may be based on instrumentation or processes for rod implantation.


The bending of the rod geometry may be a function of the maximal deflection of the rod with greatest deformation due to bending and an angle of intersection of tangents to the rod end points. The rod geometry generates a first approximation for bending the rod geometry for treatment of the deformity. The second approximation for bending the rod geometry may be an overbending for a concave rod or underbending for a convex rod. The second approximation may be configured to compensate for the deformation signature response of the rod to the in vivo deforming forces.


The method 114 may include (at 306), by at least one processor 1105, performing a difference bending procedure for designing or creating the second rod geometry (at 116).



FIG. 4 is a flowchart that illustrates an example method 302 for designing a rod geometry. In this example, the rod geometry is for a first rod geometry. The method 302 may include (at 402), by at least one processor 1105, determining rod material and/or (at 404) determining a rod diameter. The method 302 may include (at 406), by at least one processor 1105, determining a rod length and/or (at 408) determining rod cutting parameters. The method 302 may include (at 410) obtaining training data correlated to rod design parameters. The method 302 may include (at 412) obtaining training data from datasets 1127 correlated to surgeon techniques and/or surgery strategies. By way of non-limiting example, the surgeon techniques may include in situ rod bending techniques to cut the final first rod geometry and/or type of bending device to bend a manufactured rod to conform to the final first rod geometry.


The method steps 402, 404, 406 and 408, for example, may be used for developing a deformation signature response of the implanted rod, as certain materials may have a different bending strengths and performance.


The surgery planning system described herein may be part of a navigation processor system 1178 (FIG. 11) may, according to various embodiments include those disclosed in U.S. Pat. Nos. RE44,305; 7,697,972; 8,644,907; and 8,842,893; and U.S. Pat. App. Pub. No. 2004/0199072, all incorporated herein by reference, or may also include the commercially available StealthStation® or Fusion™ surgical navigation systems sold by Medtronic Navigation, Inc. having a place of business in Louisville, Colo.


Before surgery, at least one rod made of biocompatible material may be made to the specification that approximates the at least one rod geometry. The final bent rods may be individually bent by the surgeon using a bending device during surgery. The rods may be bent so that the rods conform to the final rod geometries. Thereafter, using the navigation processor system 1178, the surgeon may proceed to implant each rod according to the planned surgery.



FIG. 11 depicts an example of internal hardware that may be included in any of the electronic components of an electronic device or computing system 1100 as described in this disclosure such as, for example, a computing device, a remote server, cloud computing system, external electronic device and/or any other integrated system and/or hardware that may be used to contain or implement program instructions. The computing system 1100 may be a surgery planning system.


A bus 1110 serves as the main information highway interconnecting the other illustrated components of the hardware. Processor(s) 1105 may be the central processing unit (CPU) of the computing system, performing machine-learning algorithms, calculations and logic operations as may be required to execute a program. CPU 1105, alone or in conjunction with one or more of the other elements disclosed in FIG. 11, is an example of a processor as such term is used within this disclosure. Read only memory (ROM) and random access memory (RAM) constitute examples of tangible and non-transitory computer-readable storage media, memory devices 1120 or data stores as such terms are used within this disclosure. The memory device 1120 may store an operating system (OS) of the computing device, a server or for the platform of the electronic device. The memory device 1120 may include surgery navigation interface 1175 to interface with the (surgery) navigation processor system 1178.


Program instructions 1122, software or interactive modules for providing the interface and performing any querying and analysis. The analysis may include interfacing machine-learning algorithms 1123 be stored in the computer-readable storage media (e.g., memory device 1120). The machine-learning algorithms 1123 includes algorithms for image segmentation 1160, spinal measurements 1161, 2D-to-3D transformation 1163, gap transformation 1163, rod designing 1164, thoracic kyphosis goal module 1166 and surgical strategies 1165 associated with one or more datasets 1127 stored in the computer-readable storage media (e.g., memory device 1120). Optionally, the program instructions may be stored on a tangible, non-transitory computer-readable medium such as a compact disk, a digital disk, flash memory, a memory card, a universal serial bus (USB) drive, an optical disc storage medium and/or other recording medium.


An optional display interface 1130 may permit information from the bus 1110 to be displayed on the display device 1135, such as display device 602, 702, 802, 902 or 1002, in audio, visual, graphic or alphanumeric format. Electronic communication with external devices may occur using various communication ports 1140. A communication port 1140 may be attached to a communications network, such as the Internet or an intranet. In various embodiments, electronic communications with external devices may occur via one or more short range communication protocols. The communication port or devices 1140 may include communication devices for wired or wireless communications and may communicate with a remote server 1190. By way of non-limiting example, the computing system 1100 may receive 2D images 1195 of the patient from a remote server 1190 via communication devices 1140.


The hardware may also include a user interface 1145 that allows for receipt of data from input devices, such as a keyboard or other input device 1150 such as a mouse, a joystick, a touch screen, a remote control, a pointing device, a video input device and/or an audio input device. The GUIs 1170, described herein, may be displayed using a browser application being executed by an electronic device, computing system 1100 and/or served by a remote server (1190). For example, hypertext markup language (HTML) (i.e., programming instructions) may be used for designing the GUI with HTML tags to the images of the patient and other information stored in or served from memory of the server. The GUIs 1170 may include the GUIs 600A, 600B, 700A, 700B, 800, 900 and 1000, for example.


In this document, “electronic communication” refers to the transmission of data via one or more signals between two or more electronic devices, whether through a wired or wireless network, and whether directly or indirectly via one or more intermediary devices. Devices are “communicatively connected” if the devices are able to send and/or receive data via electronic communication.


It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device or system.


In one or more examples, the described techniques and methods may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer).


Instructions may be executed by one or more processors 1105, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements.

Claims
  • 1. A method, comprising: by at least one processor: measuring spinal parameters of a spine in a two-dimensional (2D) pre-operative spinal image including at least a pre-operative thoracic Cobb angle and a pre-operative thoracic kyphosis;transforming the 2D pre-operative spinal image to a three-dimensional (3D), pre-operative spinal image representation by: performing segmentation of spine elements in the 2D pre-operative spinal image, andapplying a mathematical formula based on the pre-operative thoracic Cobb angle and the pre-operative thoracic kyphosis to the spine elements;identifying a thoracic kyphosis goal having a post-operative thoracic kyphosis value to a selected set of the spine elements;transforming a gap of the spine elements representative of a difference between the pre-operative thoracic kyphosis in the 3D pre-operative spinal image representation and the thoracic kyphosis goal to create a 3D post-operative spinal image representation using a predictive model of gap transformation, the predictive model including machine-learning algorithms trained on medical images of other patients having a thoracic kyphosis; anddetermining a first rod design based on the 3D post-operative spinal image representation to achieve the post-operative thoracic kyphosis value in the selected set of spine elements;determining a deformation signature response of a rod contoured to a geometry of the first rod design based on a material the rod is made of; anddetermining a second rod design based on the first rod design, the second rod design configured to compensate for the deformation signature response of the rod.
  • 2. The method of claim 1, further comprising, by the at least one processor: displaying a graphical user interface including an image representative of the first rod geometry and the second rod geometry relative to the spine.
  • 3. The method of claim 1, further comprising, by the at least one processor: determining a surgical strategy; andwhile determining the surgical strategy, performing at least one of: determining rod cutting parameters to cut the second rod geometry,determining in situ rod bending techniques to cut the second rod geometry, orbending a rod to conform to the second rod geometry.
  • 4. The method of claim 1, wherein identifying the thoracic kyphosis goal having the post-operative thoracic kyphosis value to the selected set of the spine elements comprises selecting the set of spine elements to treat an adolescent idiopathic scoliosis deformity.
  • 5. The method of claim 1, further comprising, by the at least one processor: segmenting the 2D pre-operative spinal image; andidentifying levels of vertebrae in the segmented 2D pre-operative spinal image,wherein the measuring of the spinal parameters of the spine is based on the identified levels of the vertebrae.
  • 6. A system, comprising: at least one processor; anda non-transitory and tangible computer readable storage medium having programming instructions stored thereon, which when executed are configured to cause the at least one processor to: measure spinal parameters of a spine in a two-dimensional (2D) pre-operative spinal image including at least a pre-operative thoracic Cobb angle and a pre-operative thoracic kyphosis;transform the 2D pre-operative spinal image to a three-dimensional (3D), pre-operative spinal image representation by: performing segmentation of spine elements in the 2D pre-operative spinal image, andapplying a mathematical formula based on the pre-operative thoracic Cobb angle and the pre-operative thoracic kyphosis to the spine elements;identify a thoracic kyphosis goal having a post-operative thoracic kyphosis value to a selected set of the spine elements;transform a gap of the spine elements representative of a difference between the pre-operative thoracic kyphosis in the 3D pre-operative spinal image representation and the thoracic kyphosis goal to create a 3D post-operative spinal image representation using a predictive model of gap transformation, the predictive model including machine-learning algorithms trained on medical images of other patients having a thoracic kyphosis;determine a first rod design based on the 3D post-operative spinal image representation to achieve the post-operative thoracic kyphosis value in the selected set of spine elements;determine a deformation signature response of a rod contoured to a geometry of the first rod design based on a material the rod is made of; anddetermine a second rod design based on the first rod design, the second rod design configured to compensate for the deformation signature response of the rod.
  • 7. The system of claim 6, further comprising programming instructions, which when executed are configured to cause the at least one processor to: display a graphical user interface comprising: an image representative of the first rod geometry and the second rod geometry relative to the spine.
  • 8. The system of claim 6, further comprising programming instructions, which when executed are configured to cause the at least one processor to: determine a surgical strategy; andwhile determining the surgical strategy, perform at least one of: determine rod cutting parameters to cut the second rod geometry,determine in situ rod bending techniques to cut the second rod geometry, orbending a rod to conform to the second rod geometry.
  • 9. The system of claim 6, wherein the selected set of the spine elements are selected to treat an adolescent idiopathic scoliosis deformity.
  • 10. The system of claim 6, further comprising programming instructions, which when executed are configured to cause the at least one processor to: segment the 2D pre-operative spinal image; andidentify levels of vertebrae in the segmented 2D pre-operative spinal image,wherein the measuring of the spinal parameters of the spine is based on the identified levels of the vertebrae.
  • 11. A method, comprising: planning a surgery to correct a spinal deformity according to the method of claim 1;obtaining a rod formed of biocompatible material configured to approximate the second a first-rod design;during the surgery, bending the rod to create a bent rod conforming to the second first-rod design; andimplanting the bent rod.
  • 12. The method of claim 11, wherein implanting the bent rod includes affixing the bent rod to a selected set of spine elements, wherein the selected set of spine elements are selected to treat an adolescent idiopathic scoliosis deformity.
  • 13. The method of claim 1, wherein determining the deformation signature response of the rod comprises determining the deformation signature response based on rod diameter and/or rod length.
  • 14. The method of claim 1, wherein determining the deformation signature response of the rod comprises using a machine-learning algorithm trained on pre-operative and post-operative contours of rods made of the material.
  • 15. The method of claim 14, wherein using the machine-learning algorithm trained on pre-operative and post-operative contours comprises using a machine-learning algorithm trained on 2D image data of pre-operative and post-operative rod contours.
  • 16. The method of claim 1, wherein determining the second rod design comprises configuring the second rod design to compensate for the deformation signature response of the rod due to in vivo deforming forces.
  • 17. The method of claim 16, wherein determining the second rod design comprises configuring the second rod design to compensate for overbending due to in vivo deforming forces.
  • 18. The system of claim 6, wherein the programming instructions that are configured to cause the at least one processor to determine the deformation signature response of the rod comprise programming instructions that are configured to cause the at least one processor to determine the deformation signature response based on rod diameter and/or rod length.
  • 19. The system of claim 6, wherein the programming instructions that are configured to cause the at least one processor to determine the deformation signature response of the rod comprise programming instructions that are configured to cause the at least one processor to use a machine-learning algorithm trained on pre-operative and post-operative contours of rods made of the material.
  • 20. The system of claim 19, wherein the programming instructions that are configured to cause the at least one processor to use the machine-learning algorithm trained on pre-operative and post-operative contours comprises programming instructions that are configured to cause the at least one processor to use a machine-learning algorithm trained on 2D image data of pre-operative and post-operative rod contours.
  • 21. The system of claim 6, wherein the programming instructions that are configured to cause the at least one processor to determine the second rod design comprises programming instructions that are configured to cause the at least one processor to configure the second rod design to compensate for the deformation signature response of the rod due to in vivo deforming forces.
US Referenced Citations (498)
Number Name Date Kind
4382438 Jacobs May 1983 A
5006984 Steele Apr 1991 A
5163440 DeLuca et al. Nov 1992 A
5209752 Ashman et al. May 1993 A
5224035 Yamashita et al. Jun 1993 A
5251127 Raab Oct 1993 A
5291901 Graf Mar 1994 A
5305203 Raab Apr 1994 A
5312405 Korotko et al. May 1994 A
5413116 Radke et al. May 1995 A
5514180 Heggeness et al. May 1996 A
5667506 Sutterlin Sep 1997 A
5748767 Raab May 1998 A
5785663 Sarvazyan Jul 1998 A
6015409 Jackson Jan 2000 A
6213958 Winder Apr 2001 B1
6282437 Franck et al. Aug 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6364849 Wilcox Apr 2002 B1
6385475 Cinquin et al. May 2002 B1
6409684 Wilk Jun 2002 B1
6443953 Perra et al. Sep 2002 B1
6499488 Hunter et al. Dec 2002 B1
6565519 Benesh May 2003 B2
6585666 Suh et al. Jul 2003 B2
6711432 Krause et al. Mar 2004 B1
6715213 Richter Apr 2004 B2
6716213 Shitoto Apr 2004 B2
6746449 Jones et al. Jun 2004 B2
6786930 Biscup Sep 2004 B2
7066938 Slivka et al. Jun 2006 B2
7338526 Steinberg Mar 2008 B2
7509183 Lin et al. Mar 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7570791 Frank et al. Aug 2009 B2
7606613 Simon et al. Oct 2009 B2
7611522 Gorek Nov 2009 B2
7618451 Berez et al. Nov 2009 B2
7634119 Tsougarakis et al. Dec 2009 B2
7635367 Groiso Dec 2009 B2
7639866 Pomero et al. Dec 2009 B2
7660623 Hunter et al. Feb 2010 B2
7674293 Kuiper et al. Mar 2010 B2
7715602 Richard May 2010 B2
7763054 Clement et al. Jul 2010 B2
7824413 Varieur et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7862593 Clement et al. Jan 2011 B2
7918887 Roche Apr 2011 B2
7953471 Clayton et al. May 2011 B2
7974677 Mire et al. Jul 2011 B2
7981158 Fitz et al. Jul 2011 B2
7996061 Mollard et al. Aug 2011 B2
7996064 Simon et al. Aug 2011 B2
8000926 Roche et al. Aug 2011 B2
8036441 Frank et al. Oct 2011 B2
8038716 Duggal et al. Oct 2011 B2
8046050 Govari et al. Oct 2011 B2
8066708 Lang et al. Nov 2011 B2
8077950 Tsougarakis et al. Dec 2011 B2
8083778 Clement et al. Dec 2011 B2
8105330 Fitz et al. Jan 2012 B2
8142842 Sugita et al. Mar 2012 B2
8196825 Turner et al. Jun 2012 B2
8211109 Groiso Jul 2012 B2
8211153 Shaolian et al. Jul 2012 B2
8234097 Steines et al. Jul 2012 B2
8241296 Wasielewski Aug 2012 B2
8246680 Betz et al. Aug 2012 B2
8265790 Amiot et al. Sep 2012 B2
8270253 Roche et al. Sep 2012 B1
8275594 Lin et al. Sep 2012 B2
8308772 Clement et al. Nov 2012 B2
8308775 Clement et al. Nov 2012 B2
8337501 Fitz et al. Dec 2012 B2
8357111 Caillouette et al. Jan 2013 B2
8357166 Aram et al. Jan 2013 B2
8372075 Groiso Feb 2013 B2
8377073 Wasielewski Feb 2013 B2
8394142 Bertagnoli et al. Mar 2013 B2
8398681 Augostino et al. Mar 2013 B2
8400312 Hotokebuchi et al. Mar 2013 B2
8414592 Quimno Apr 2013 B2
8442621 Gorek et al. May 2013 B2
8457930 Schroeder Jun 2013 B2
8465527 Clement Jun 2013 B2
8494805 Roche et al. Jul 2013 B2
8506632 Ganem et al. Aug 2013 B2
8532806 Masson Sep 2013 B1
8535337 Chang et al. Sep 2013 B2
8549888 Isaacs Oct 2013 B2
8556983 Bojarski et al. Oct 2013 B2
8588892 Hladio et al. Nov 2013 B2
8636776 Rosenberg et al. Jan 2014 B2
8672948 Lemaitre Mar 2014 B2
8685093 Anderson et al. Apr 2014 B2
8690888 Stein et al. Apr 2014 B2
8705829 Frank et al. Apr 2014 B2
8718820 Amiot et al. May 2014 B2
8758357 Frey Jun 2014 B2
8775133 Schroeder Jul 2014 B2
8777877 Stein et al. Jul 2014 B2
8784339 Stein et al. Jul 2014 B2
8801786 Bernard et al. Aug 2014 B2
8814877 Wasielewski Aug 2014 B2
8814915 Hess et al. Aug 2014 B2
8852237 Kalfas et al. Oct 2014 B2
8855389 Hoffmann et al. Oct 2014 B1
8864764 Groiso Oct 2014 B2
8870889 Frey Oct 2014 B2
8900316 Lenz et al. Dec 2014 B2
8911448 Stein Dec 2014 B2
8926673 Clement et al. Jan 2015 B2
8945133 Stein et al. Feb 2015 B2
8956416 McCarthy Feb 2015 B2
8974467 Stone Mar 2015 B2
8983813 Miles et al. Mar 2015 B2
8998962 Birch Apr 2015 B2
9011448 Roche et al. Apr 2015 B2
9034037 Fiere et al. May 2015 B2
9039772 Park et al. May 2015 B2
9056017 Kotlus Jun 2015 B2
9066701 Finley et al. Jun 2015 B1
9066734 Schoenefeld et al. Jun 2015 B2
9078755 Mahfouz Jul 2015 B2
9101492 Mangione et al. Aug 2015 B2
9115998 Proulx et al. Aug 2015 B2
9119572 Gorek et al. Sep 2015 B2
9119671 Kast Sep 2015 B2
9125680 Kostrzewski et al. Sep 2015 B2
9144440 Aminian Sep 2015 B2
9144470 Proulx et al. Sep 2015 B2
9168153 Bettenga Oct 2015 B2
9173661 Metzger et al. Nov 2015 B2
9180015 Fitz et al. Nov 2015 B2
9192412 Meyrat et al. Nov 2015 B2
9198678 Frey et al. Dec 2015 B2
9232955 Bonin, Jr. et al. Jan 2016 B2
9233001 Miles et al. Jan 2016 B2
9237952 Kurtz Jan 2016 B2
9248023 Ries et al. Feb 2016 B2
9250620 Kotlus Feb 2016 B2
9278010 Gibson et al. Mar 2016 B2
9283048 Kostrzewski et al. Mar 2016 B2
9289221 Gelaude et al. Mar 2016 B2
9289270 Gielen et al. Mar 2016 B2
9295482 Fitz et al. Mar 2016 B2
9295497 Schoenefeld et al. Mar 2016 B2
9295561 Ball et al. Mar 2016 B2
9301768 Buza et al. Apr 2016 B2
9308050 Kostrzewski et al. Apr 2016 B2
9308091 Lang Apr 2016 B2
9314275 Clement et al. Apr 2016 B2
9314343 Parisi et al. Apr 2016 B2
9320547 Augostino Apr 2016 B2
9320604 Miles et al. Apr 2016 B2
9326780 Wong et al. May 2016 B2
9339277 Jansen et al. May 2016 B2
9345492 Stein et al. May 2016 B2
9358051 Sournac et al. Jun 2016 B2
9358130 Livorsi et al. Jun 2016 B2
9358136 Stein et al. Jun 2016 B2
9364370 Kuhnel Jun 2016 B2
9381085 Axelson, Jr. et al. Jul 2016 B2
9387015 Taylor Jul 2016 B2
9392953 Gharib Jul 2016 B1
9393052 Berg et al. Jul 2016 B2
9398962 Steinberg Jul 2016 B2
9402726 Linderman et al. Aug 2016 B2
9408615 Fitz et al. Aug 2016 B2
9408642 Wong et al. Aug 2016 B2
9408698 Miles et al. Aug 2016 B2
9414940 Stein et al. Aug 2016 B2
9433443 Montello et al. Sep 2016 B2
9439659 Schoenefeld et al. Sep 2016 B2
9439767 Bojarski et al. Sep 2016 B2
9439781 Gibson Sep 2016 B2
9445913 Donner et al. Sep 2016 B2
9452022 McIntosh et al. Sep 2016 B2
9452023 Boillot et al. Sep 2016 B2
9452050 Miles et al. Sep 2016 B2
9452064 Trautwein et al. Sep 2016 B2
9468436 Groiso Oct 2016 B2
9468502 Wiebe, III et al. Oct 2016 B2
9491415 Deitz et al. Nov 2016 B2
9492183 Wilkinson et al. Nov 2016 B2
9495483 Steines et al. Nov 2016 B2
9495509 Amiot et al. Nov 2016 B2
9498260 Funk et al. Nov 2016 B2
9504502 Kuiper et al. Nov 2016 B2
9510771 Finley et al. Dec 2016 B1
9510864 Devito Dec 2016 B2
9517134 Lang Dec 2016 B2
9517143 Prevost et al. Dec 2016 B2
9526514 Kelley et al. Dec 2016 B2
9532730 Wasielewski Jan 2017 B2
9539031 Fauth Jan 2017 B2
9539116 Claypool et al. Jan 2017 B2
9539760 Stahl et al. Jan 2017 B2
9547897 Parent et al. Jan 2017 B2
9549782 Park et al. Jan 2017 B2
9554411 Hall et al. Jan 2017 B1
9554910 Vanasse et al. Jan 2017 B2
9561115 Elahinia et al. Feb 2017 B2
9566075 Carroll et al. Feb 2017 B2
9579043 Chien et al. Feb 2017 B2
9585597 McCaulley et al. Mar 2017 B2
9597096 Aghazadeh Mar 2017 B2
9597156 Amiot et al. Mar 2017 B2
9603613 Schoenefeld et al. Mar 2017 B2
9603623 Brooks et al. Mar 2017 B2
9603711 Bojarski et al. Mar 2017 B2
9610086 Park et al. Apr 2017 B2
9615834 Agnihotri et al. Apr 2017 B2
9622712 Munro et al. Apr 2017 B2
9629723 Parisi et al. Apr 2017 B2
9636181 Isaacs May 2017 B2
9642633 Frey et al. May 2017 B2
9649170 Park et al. May 2017 B2
9655729 Parisi et al. May 2017 B2
9662214 Li et al. May 2017 B2
9668748 McKinnon et al. Jun 2017 B2
9668873 Winslow et al. Jun 2017 B2
9675471 Bojarski et al. Jun 2017 B2
9693831 Mosnier et al. Jul 2017 B2
9715563 Schroeder Jul 2017 B1
9757072 Urbalejo Sep 2017 B1
9782228 Mosnier et al. Oct 2017 B2
9788966 Steinberg Oct 2017 B2
9827109 Steinberg Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9968408 Casey et al. May 2018 B1
9987048 Mosnier et al. Jun 2018 B2
9993177 Chien et al. Jun 2018 B2
10010426 Kuiper et al. Jul 2018 B2
10045824 Mosnier et al. Aug 2018 B2
10052135 Berg et al. Aug 2018 B2
10064743 Funk et al. Sep 2018 B2
10092412 Drochner et al. Oct 2018 B2
10098671 Augostino Oct 2018 B2
10188480 Scholl et al. Jan 2019 B2
10201320 Saget et al. Feb 2019 B2
10219865 Jansen et al. Mar 2019 B2
10292770 Ryan et al. May 2019 B2
10314657 Mosnier et al. Jun 2019 B2
10318655 Mosnier et al. Jun 2019 B2
10376182 Herrmann Aug 2019 B2
10413365 Mosnier et al. Sep 2019 B1
10420615 Mosnier et al. Sep 2019 B1
10433893 Scholl et al. Oct 2019 B1
10433912 Mosnier et al. Oct 2019 B1
10433913 Mosnier et al. Oct 2019 B2
10441363 Mosnier et al. Oct 2019 B1
10456211 McAfee Oct 2019 B2
10463433 Turner et al. Nov 2019 B2
10517680 Moctezuma et al. Dec 2019 B2
10595941 Herrmann et al. Mar 2020 B2
10736699 Ronen et al. Aug 2020 B2
10777315 Zehavi et al. Sep 2020 B2
10874460 Schmidt et al. Dec 2020 B2
20020035321 Bucholz et al. Mar 2002 A1
20020038118 Shoham Mar 2002 A1
20020045812 Ben-Haim et al. Apr 2002 A1
20020103432 Kawchuk Aug 2002 A1
20030191383 Ben-Haim et al. Oct 2003 A1
20030204189 Cragg Oct 2003 A1
20040120781 Luca et al. Jun 2004 A1
20040143243 Wahrburg Jul 2004 A1
20040152972 Hunter Aug 2004 A1
20040167637 Biscup Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040172020 Beaurain et al. Sep 2004 A1
20040215190 Nguyen et al. Oct 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040267279 Casutt et al. Dec 2004 A1
20050149050 Stifter et al. Jul 2005 A1
20050177239 Steinberg Aug 2005 A1
20050182320 Stifter et al. Aug 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050203531 Lakin et al. Sep 2005 A1
20050203532 Ferguson Sep 2005 A1
20050262911 Dankowicz et al. Dec 2005 A1
20060015018 Jutras et al. Jan 2006 A1
20060015030 Poulin et al. Jan 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060069324 Block et al. Mar 2006 A1
20060074431 Sutton et al. Apr 2006 A1
20060136058 Pietrzak Jun 2006 A1
20060142657 Quaid et al. Jun 2006 A1
20060285991 McKinley Dec 2006 A1
20060287627 Johnson Dec 2006 A1
20070021682 Gharib et al. Jan 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070225731 Couture et al. Sep 2007 A1
20080058945 Hajaj et al. Mar 2008 A1
20080108991 von Jako May 2008 A1
20080177203 von Jako Jul 2008 A1
20080255575 Justis et al. Oct 2008 A1
20080281332 Taylor Nov 2008 A1
20090024164 Neubardt Jan 2009 A1
20090076615 Duggal et al. Mar 2009 A1
20090157083 Park et al. Jun 2009 A1
20090194206 Jeon et al. Aug 2009 A1
20090204159 Justis et al. Aug 2009 A1
20090248080 Wilcox et al. Oct 2009 A1
20090249851 Isaacs Oct 2009 A1
20090254326 Isaacs Oct 2009 A1
20100042157 Trieu Feb 2010 A1
20100100011 Roche Apr 2010 A1
20100191071 Anderson et al. Jul 2010 A1
20100191088 Anderson et al. Jul 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100217336 Crawford et al. Aug 2010 A1
20110004309 Holm Jan 2011 A9
20110071802 Bojarski et al. Mar 2011 A1
20110118740 Rabiner et al. May 2011 A1
20110172566 Kawchuk Jul 2011 A1
20110214279 Park et al. Sep 2011 A1
20110224796 Weiland et al. Sep 2011 A1
20110257653 Hughes et al. Oct 2011 A1
20110257657 Turner et al. Oct 2011 A1
20110295159 Shachar et al. Dec 2011 A1
20110306873 Shenai et al. Dec 2011 A1
20120022357 Chang et al. Jan 2012 A1
20120027261 Frank et al. Feb 2012 A1
20120035611 Kave Feb 2012 A1
20120123301 Connor et al. May 2012 A1
20120143090 Hay et al. Jun 2012 A1
20120150243 Crawford et al. Jun 2012 A9
20120172884 Zheng et al. Jul 2012 A1
20120203289 Beerens et al. Aug 2012 A1
20130079678 Stein et al. Mar 2013 A1
20130079679 Roche et al. Mar 2013 A1
20130079790 Stein et al. Mar 2013 A1
20130131486 Copf et al. May 2013 A1
20130211531 Steines et al. Aug 2013 A1
20130245631 Bettenga Sep 2013 A1
20130253599 Gorek et al. Sep 2013 A1
20130268007 Rezach et al. Oct 2013 A1
20130303883 Zehavi et al. Nov 2013 A1
20130345718 Crawford et al. Dec 2013 A1
20140058407 Tsekos et al. Feb 2014 A1
20140100579 Kelman et al. Apr 2014 A1
20140135658 Hladio et al. May 2014 A1
20140180415 Koss Jun 2014 A1
20140194889 Chang et al. Jul 2014 A1
20140228670 Justis et al. Aug 2014 A1
20140228860 Steines et al. Aug 2014 A1
20140244220 McKinnon et al. Aug 2014 A1
20140257402 Barsoum Sep 2014 A1
20140272881 Barsoum Sep 2014 A1
20140277149 Rooney et al. Sep 2014 A1
20140296860 Stein et al. Oct 2014 A1
20140303672 Tran et al. Oct 2014 A1
20140316468 Keiser et al. Oct 2014 A1
20150057756 Lang et al. Feb 2015 A1
20150066145 Rogers et al. Mar 2015 A1
20150080901 Stein Mar 2015 A1
20150081029 Bojarski et al. Mar 2015 A1
20150088030 Taylor Mar 2015 A1
20150100066 Kostrzewski et al. Apr 2015 A1
20150100091 Tohmeh et al. Apr 2015 A1
20150105782 D'Lima et al. Apr 2015 A1
20150127055 Dvorak et al. May 2015 A1
20150150646 Pryor et al. Jun 2015 A1
20150164657 Miles et al. Jun 2015 A1
20150182292 Hladio et al. Jul 2015 A1
20150223900 Wiebe, III et al. Aug 2015 A1
20150245844 Kennedy et al. Sep 2015 A1
20150250597 Lang et al. Sep 2015 A1
20150265291 Wilkinson Sep 2015 A1
20150305878 O'Neil et al. Oct 2015 A1
20150305891 Bergin et al. Oct 2015 A1
20150313723 Jansen et al. Nov 2015 A1
20150328004 Mafhouz Nov 2015 A1
20150366630 Gorek et al. Dec 2015 A1
20160000571 Mahfouz Jan 2016 A1
20160007983 Frey et al. Jan 2016 A1
20160015465 Steines et al. Jan 2016 A1
20160022176 Le Huec et al. Jan 2016 A1
20160022370 Pavlovskaia et al. Jan 2016 A1
20160038161 Gibson Feb 2016 A1
20160038238 Kostrzewski et al. Feb 2016 A1
20160038242 Lo Iacono et al. Feb 2016 A1
20160038293 Slamin et al. Feb 2016 A1
20160038307 Bettenga Feb 2016 A1
20160045230 Lowery et al. Feb 2016 A1
20160045317 Lang et al. Feb 2016 A1
20160045326 Hansen et al. Feb 2016 A1
20160058320 Chien et al. Mar 2016 A1
20160058523 Chien et al. Mar 2016 A1
20160074052 Keppler et al. Mar 2016 A1
20160074202 Reed et al. Mar 2016 A1
20160081754 Kostrzewski et al. Mar 2016 A1
20160095710 Juszczyk et al. Apr 2016 A1
20160100907 Gomes Apr 2016 A1
20160106483 Mayer et al. Apr 2016 A1
20160128847 Kurtaliaj et al. May 2016 A1
20160143744 Bojarski et al. May 2016 A1
20160157751 Mahfouz Jun 2016 A1
20160199101 Sharifi-Mehr et al. Jul 2016 A1
20160228192 Jansen et al. Aug 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160235493 LeBoeuf, II et al. Aug 2016 A1
20160242819 Simpson et al. Aug 2016 A1
20160242857 Scholl Aug 2016 A1
20160242934 van der Walt et al. Aug 2016 A1
20160256279 Sanders et al. Sep 2016 A1
20160256285 Jansen Sep 2016 A1
20160262800 Scholl et al. Sep 2016 A1
20160262895 Shea et al. Sep 2016 A1
20160270802 Fang et al. Sep 2016 A1
20160270931 Trieu Sep 2016 A1
20160274571 Lavallee et al. Sep 2016 A1
20160283676 Lyon et al. Sep 2016 A1
20160287395 Khalili et al. Oct 2016 A1
20160296285 Chaoui et al. Oct 2016 A1
20160310221 Bar et al. Oct 2016 A1
20160331417 Trautwein et al. Nov 2016 A1
20160354009 Schroeder Dec 2016 A1
20160354161 Deitz Dec 2016 A1
20160360997 Yadav et al. Dec 2016 A1
20170000568 O'Neil et al. Jan 2017 A1
20170007145 Gharib et al. Jan 2017 A1
20170007328 Cattin et al. Jan 2017 A1
20170007408 Fitz et al. Jan 2017 A1
20170027590 Amiot et al. Feb 2017 A1
20170027617 Strnad Feb 2017 A1
20170035580 Murphy Feb 2017 A1
20170056179 Lorio Mar 2017 A1
20170056196 Kuiper et al. Mar 2017 A1
20170071503 Wasielewski Mar 2017 A1
20170119316 Herrmann et al. May 2017 A1
20170119472 Herrmann et al. May 2017 A1
20170132389 McCaulley et al. May 2017 A1
20170135706 Frey et al. May 2017 A1
20170135707 Frey et al. May 2017 A9
20170135770 Scholl et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170143494 Mahfouz May 2017 A1
20170143502 Yadin et al. May 2017 A1
20170156798 Wasielewski Jun 2017 A1
20170189121 Frasier et al. Jul 2017 A1
20170231709 Gupta et al. Aug 2017 A1
20170252107 Turner et al. Sep 2017 A1
20170273718 Metzger et al. Sep 2017 A1
20170323037 Schroeder Nov 2017 A1
20170360493 Zucker et al. Dec 2017 A1
20180092699 Finley Apr 2018 A1
20180178148 Mazor et al. Jun 2018 A1
20180256067 Chien et al. Sep 2018 A1
20180289396 McGahan et al. Oct 2018 A1
20180295584 Gliner et al. Oct 2018 A1
20180301213 Zehavi et al. Oct 2018 A1
20180303552 Ryan Oct 2018 A1
20180310993 Hobeika Nov 2018 A1
20180349519 Schroeder Dec 2018 A1
20190015136 Kraemer Jan 2019 A1
20190046269 Hedblom et al. Feb 2019 A1
20190046287 Fallin et al. Feb 2019 A1
20190059951 Barrus Feb 2019 A1
20190060086 Krause et al. Feb 2019 A1
20190083144 Sharifi-Mehr et al. Mar 2019 A1
20190103190 Schmidt et al. Apr 2019 A1
20190110819 Triplett et al. Apr 2019 A1
20190117278 Chin Apr 2019 A1
20190122364 Zhang et al. Apr 2019 A1
20190142599 Thibodeau May 2019 A1
20190167314 Mosnier et al. Jun 2019 A1
20190167435 Cordonnier Jun 2019 A1
20190201013 Siccardi et al. Jul 2019 A1
20190201155 Gupta et al. Jul 2019 A1
20190209080 Gullotti et al. Jul 2019 A1
20190209212 Scholl et al. Jul 2019 A1
20190223916 Barrus et al. Jul 2019 A1
20190231443 McGinley et al. Aug 2019 A1
20190231557 Sutterlin, III et al. Aug 2019 A1
20190239935 Willis et al. Aug 2019 A1
20190247100 Mundis, Jr. et al. Aug 2019 A1
20190254769 Scholl et al. Aug 2019 A1
20190262015 Siccardi et al. Aug 2019 A1
20190269463 Mosnier et al. Sep 2019 A1
20190343587 Mosnier et al. Nov 2019 A1
20190362028 Mosnier et al. Nov 2019 A1
20190380782 McAfee et al. Dec 2019 A1
20200038109 Steinberg Feb 2020 A1
20200060768 Mosnier et al. Feb 2020 A1
20200121394 Mosnier et al. Apr 2020 A1
20200297424 Helm et al. Sep 2020 A1
20200297425 Helm et al. Sep 2020 A1
20200315708 Mosnier et al. Oct 2020 A1
20200345420 Hobeika et al. Nov 2020 A1
20210059822 Casey et al. Mar 2021 A1
20210145518 Mosnier et al. May 2021 A1
20210244447 Schroeder Aug 2021 A1
20220160428 Murray May 2022 A1
Foreign Referenced Citations (6)
Number Date Country
2017064719 Apr 2017 WO
2018131045 Jul 2018 WO
2019043426 Mar 2019 WO
2019148154 Aug 2019 WO
2019217824 Nov 2019 WO
2022269345 Dec 2022 WO
Non-Patent Literature Citations (6)
Entry
International Search Report in Application No. PCT/IB2022/000331 mailed Nov. 25, 2022.
Written Opinion in Application No. PCT/IB2022/000331 mailed Nov. 25, 2022.
“Predicting 3D Thoracic Kyphosis Using Traditional 2D Radiographic Measurements in Adolecent Idiopathic Scoliosis,” by Kevin Parvaresh, MD, Spine Deformity 5 (2017) 159-165.
“Compensatory Spinopelvic Balance Over the Hip Axis and Better Reliability in Measuring Lordosis to the Pelvic Radius on Standing Lateral Radiographs of Adult Volunteers and Patients,” Roger P. Jackson MD, et al., Spine vol. 23, No. 16, pp. 1750-1767, copyright 1998, Lippincott Williams & Wilkins.
“Postoperative Changes in Spinal Rod Contour in Adolescent Idiopathic Scoliosis, An in Vivo Deformtion Study,” by Krishna R. Cidambi, MD et al., Spine vol. 37, No. 18, pp. 1566-1572, copyright 2012, Lippincott Williams & Wilkins.
Renaud Lafage, et al., Surgical Planning for Adult Spinal Deformity: Anticipated Sagittal Alignment Corrections Accordings to the Surgical Level, Global Spine Journal, sagepub.com/journals-permissions, DOI: 10.177/2192568220988504 journals.sagepub.com/home/gsj © The Authors(s) 2021, pp. 1-9.
Related Publications (1)
Number Date Country
20220409279 A1 Dec 2022 US