One way for testing a processor is to connect the processor to a probing device that is then electrically coupled to a logic analyzer. One problem with such a probing device is that it may not be capable of accurately probing processors operating above a certain frequency (e.g., over 1 GHz). Based on the foregoing, it should be understood that there is a need for systems and methods that address this and/or other perceived shortcomings of the prior art.
An embodiment of a signal probing system includes: a socket configured to be electrically coupled to a processor, a printed circuit board (PCB), a separation layer that is located between the socket and the PCB, compensation circuits that each include a resistor and a capacitor coupled in parallel, and an adapter that is attached to the PCB and that is configured to be electrically coupled to a motherboard, wherein the PCB is configured to route respective probed signals through the compensation circuits, the respective probed signals being responsive to respective signals traveling between the processor and the motherboard.
An embodiment of a method for manufacturing a signal probing system includes: attaching compensation circuits to a PCB, each of the compensation circuits including a resistor and a capacitor coupled in parallel, attaching a separation layer to the printed circuit board (PCB), the separation layer being adjacent to the compensation circuits, attaching a socket to the separation layer, the socket being configured to be electrically coupled to a processor, the socket being attached to the separation layer such that the compensation circuits are located between the socket and the PCB, attaching an adapter to the PCB, the adapter being configured to be electrically coupled to a motherboard, wherein the PCB is configured to respectively route probed signals to the compensation circuits, the probed signal being responsive to respective signals traveling between the processor and the motherboard.
Other systems, methods, features and/or advantages will be or may become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and/or advantages be included within this description and be protected by the accompanying claims.
In the drawings, like reference numerals designate corresponding parts throughout the several views. Furthermore, the components in the drawings are not drawn to scale.
As will be described in more detail, a separation layer of a signal probing system separates a processor socket from a printed circuit board. This separation layer enables compensation circuits to be located closer to probing points located on respective signal paths between a processor and a motherboard. As a result, the signal probing system is capable of more accurately probing higher frequency signals traveling along such signal paths.
The connector board(s) 202 is/are configured to be coupled (directly or indirectly) to the testing instrument 104 (
The PCB 303 includes buried resistors (not shown in
The processor socket 301 is preferably a zero-insertion-force (ZIF) socket, and the pin receptacle 314 is preferably a ZIF pin receptacle. The processor socket 301 is attached to the separation layer 302 via BGA solder balls 313 (only one ball 313 is shown). The separation layer 302 is attached to the PCB 303 via, for example, a lamination process. The PCB 303 is attached to the BGA/PGA adapter 304 using BGA solder balls 316 (only one ball 316 is shown).
A conductor-plated via 315 is formed within the separation layer 302 and the PCB 303. The conductor-plated via 315 may be formed by drilling a via into the separation layer 302 and the PCB 303, plating the via with a conductor (e.g., copper), filling the plated via with an epoxy material, and then sealing the via at both ends with a conductor pad (e.g., comprising gold).
A signal may travel between the processor 102 (
The separation layer 302 enables a compensation circuit 306 to be located closer to a probing point 317 located on a signal path between the processor 102 and the motherboard 103. Locating the compensation circuit 306 closer to the probing point 317 increases the operating bandwidth of the signal probing system 101 (i.e., enables the signal probing system 101 (
Certain motherboards may have one or more components that are in such close proximity to a processor that conventional processor-socket adapters may not be successfully coupled to the motherboards for the purpose of testing such processor. Locating compensation circuits 306 closer to respective probing points 317 allows the size of the PCB 303 to be reduced. This prevents the PCB 303 from colliding with components of a motherboard 103 that surround the designated location of a processor 102 as a user attempts to couple the PCB 303 to such designated location. As a result, the processor-socket adapter 201 may be used in conjunction with a wider variety of motherboards 103.
The compensation circuit 306 comprises a capacitor C1 and a resistor R1 coupled in parallel. The resistor R2 may be coupled to the compensation circuit 306 circuit through a conductor-plated via 309 and a solder pad 310-1. The compensation circuit 306 circuit may be coupled to the solder pad 307 through a solder pad 310-2, conductor-plated vias 311-1 and 311-2, and a conducting trace 312.
A separation layer 302 (
Resistors R1 and capacitors C1 (
A processor socket 301 is attached to a separation layer 302, and a BGA-PGA adapter 304 is attached to the PCB 303, as indicated in blocks 505 and 506, respectively. The steps depicted in blocks 505 and 506 may be performed using, for example, BGA solder balls. The processor socket 301 is configured to receive processor pins corresponding to a processor 102 (
One or more coaxial cable ribbons (
Note that some of the steps depicted in
It should be emphasized that the above-described embodiments are merely possible examples, among others, of the implementations. Many variations and modifications may be made to the above-described embodiments. All such modifications and variations are intended to be included herein within the scope of the disclosure and protected by the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 6593763 | Weber | Jul 2003 | B1 |
| 6887109 | Hofmeister et al. | May 2005 | B1 |
| 20020011863 | Takahashi et al. | Jan 2002 | A1 |
| 20030122566 | Takahashi et al. | Jul 2003 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20040221199 A1 | Nov 2004 | US |