This invention relates to the provision of inter-circuit control signals and more particularly to systems and methods for providing distributed control signal redundancy among electronic circuits.
In multiple-circuit electronic systems it is often necessary to send control signals, such as, for example, clock signals, to control system timing among the various physically separated circuits. These circuits are usually contained on separate electronic boards all in electronic communication. In many situations, it is desirable that timing signals from a single clock control the circuitry on all of the boards. This, then, argues for a single clock source positioned physically on one of the boards (the clock-control board) with these signals then interconnected, by a signal transmission system, such as a cable, to all of the other boards.
For reliability, it has become common practice to provide dual redundancy for these clock signals. Thus, two clocks are typically provided on the clock control board and two cables are provided among the boards. Thus, if a clock fails, a second clock is available to provide the timing signals. If one of the signal transmission cables fails, then the other transmission cable distributes the clock signals from the clock board.
However, if the power to the clock board fails (a single failure) both clocks on that board fail causing, in effect, a dual failure. Thus, a single failure effectively brings down the entire system. Also, when one of the clocks fails, the system is thereafter vulnerable to a single clock failure until the failed clock is replaced. Replacing the failed clock without removing the clock board, or at least without removing the power to the clock board, is not usually possible.
In one embodiment, a distributed redundant control signal distribution system comprises a first control signal source co-located with a first set of control signal controlled circuit elements, at least one second control signal source co-located with a second set of control signal controlled circuit elements, at least one controller for providing control signals from the first control signal source to control both the first and second sets of controlled circuit elements, the controller operable for substituting signals from the second control signal source for signals from the first signal control source if the signals from the first control signal source become unavailable to either the first or second circuit elements.
Referring now to
Note that the transmission path may be cables or could be wireless, microwave, etc. Backplane BP1 is constructed almost exactly as is backplane BP0, except that secondary clock source 12 is connected to the D input of mux 13-1 instead of to the A input as was primary clock source 11 in backplane BP0. Control 17-0 (and control 17-1) receive primary and secondary clock signals as shown. Since there is no A input to mux 13-1, the B input from cable 101 is switched to the mux output and to control signal controlled circuits 16-11 to 16-1N. These same signals (the primary clock signal from board BP0) is fed back via cable 102 to the B and C inputs to mux 13-0. This has no effect on the system, since mux 13-0, under control of control 17-0 continues to have the A input (primary signal source) switched to the output of mux 13-0.
One embodiment 60 utilized by processors 17-01 and 17-11 in control circuits 17-0 and 17-1 for controlling mux 13-0 and 13-1 is shown in
If the primary clock source fails (or is not valid) then process 603 determines if the secondary clock source is valid. If the secondary clock source is valid, then the hierarchical order is D, C, B, A. Again, this procedure is followed in all backplanes (boards) having a clock.
Turning now to
As shown in
As discussed above, and as shown on
Turning now to
The system could be designed having more paths interconnecting the various backplanes (and move mux inputs) thereby providing higher redundancy levels if desired.
Turning now to
Number | Name | Date | Kind |
---|---|---|---|
3751685 | Jaeger | Aug 1973 | A |
5065454 | Binz et al. | Nov 1991 | A |
5249206 | Appelbaum et al. | Sep 1993 | A |
5422915 | Byers et al. | Jun 1995 | A |
5642069 | Waite | Jun 1997 | A |
5886557 | Wilcox | Mar 1999 | A |
6194969 | Doblar | Feb 2001 | B1 |
6310895 | Lundh et al. | Oct 2001 | B1 |
6516422 | Doblar et al. | Feb 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050200394 A1 | Sep 2005 | US |