This disclosure relates to redox flow battery systems and, more particularly, to redox flow battery systems having modular reactant storage capabilities.
Non-limiting and non-exhaustive embodiments of the disclosure are described, including various embodiments of the disclosure with reference to the figures, in which:
The embodiments of the disclosure will be best understood by reference to the drawings. It will be readily understood that the components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor need the steps be executed only once, unless otherwise specified.
In some cases, well-known features, structures or operations are not shown or described in detail. Furthermore, the described features, structures, or operations may be combined in any suitable manner in one or more embodiments. It will also be readily understood that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations.
Energy storage systems such as rechargeable batteries are an important part of electrical power systems, particularly electrical power systems supplied by wind turbine generators, photovoltaic cells, or the like. Energy storage systems may also be utilized to enable energy arbitrage for selling and buying power during off peak conditions, as uninterruptible power sources (UPS), in power quality applications, and to provide backup power. Redox flow battery energy storage systems and, particularly, vanadium redox flow battery energy storage systems (VRB-ESS), may be used in such electrical power systems. A redox flow battery energy storage system may respond quickly to changing loads, as is conventionally required in UPS and power quality applications, and may further be configured to have a large capacity, as is conventionally required in energy arbitrage and backup power applications.
A redox flow battery energy storage system generates electrical power by passing anolyte and catholyte electrolyte solutions through reactor cells. Anolyte and catholyte solutions may be collectively described herein as reactants or reactant electrolytes. A redox flow battery energy storage system may include one or more reactor cells depending on the power demands of the system and, consistent with embodiments disclosed herein, may utilize varying amounts of electrolyte solution based on the energy capacity needs of the system. In certain embodiments, the number and cross-sectional area of the reactors cells within the redox flow battery energy storage system may determine the amount of instantaneous power the system is capable of producing. Further, the volume of anolyte and catholyte electrolytic solutions available to the redox flow battery energy storage system may determine its power storage and production capacity.
Each cell 102 of the redox flow battery energy storage system 100 may include an ionically conducting separator 118 (e.g., a membrane) disposed between the positive and negative compartments 104, 110 and in contact with the anolyte and catholyte solutions 114, 116 to provide ionic communication therebetween. In certain embodiments, the separator 118 may serve as a proton exchange membrane and may include a carbon material.
In some embodiments, additional anolyte solution 114 may be held in an anolyte storage reservoir 120 that is in fluid communication with the negative compartment 104 through an anolyte supply line 122 and an anolyte return line 124. The anolyte storage reservoir 120 may include a tank, bladder, or any other similar storage container. The anolyte supply line 122 may communicate with a pump 126 and a heat exchanger 128. The pump 126 may enable fluid movement of the anolyte solution 114 through the anolyte reservoir 120 supply line 122, negative compartment 104, and return line 124. In some embodiments, the pump 126 may have a variable speed to allow variance in the generated flow rate. The heat exchanger 128 may be configured to transfer heat generated from the anolyte solution 114 to a fluid or gas medium. In some embodiments, the supply line 122 may include one or more supply line valves 130 to control the volumetric flow of the anolyte solution 114. The return line 124 may communicate with one or more return line valves 132 that control the return volumetric flow.
In some embodiments, additional catholyte solution 116 may be held in a catholyte storage reservoir 134 that is in fluid communication with the positive compartment 110 through a catholyte supply line 136 and a catholyte return line 138. The catholyte supply line 136 may communicate with a pump 140 and a heat exchanger 142. The pump 140, which in some embodiments may be a variable speed pump to allow variance in the generated flow rate, may enable fluid movement of the catholyte solution 116 through the catholyte reservoir 134, supply line 136, positive compartment 110, and return line 138. The heat exchanger 142 may be configured to transfer heat generated from the catholyte solution 116 to a fluid or gas medium. In some embodiments, the supply line 136 may include one or more supply line valves 144 to control the volumetric flow of catholyte solution 116. The return line 138 may communicate with one or more return line valves 146 that control the return volumetric flow.
The negative and positive electrodes 108, 112 may be in electrical communication with a power source 148 and a load 150. A power source switch 152 may be disposed in series between the power source 148 and each negative electrode 108. Likewise, a load switch 154 may be disposed in series between the load 150 and each negative electrode 108. Alternative configurations are possible, and the specific configuration of the redox flow battery energy storage system 100 illustrated in
While the redox flow battery energy storage system 100 is charging, the power source switch 152 may be closed and the load switch 154 may be opened. Pump 128 may pump the anolyte solution 114 through the negative compartment 104 and anolyte storage reservoir 120 via anolyte supply and return lines 122, 124. Simultaneously, pump 140 may pump the catholyte solution 116 through the positive compartment 110 and catholyte storage reservoir 134 via catholyte supply and return lines 136, 138. Each cell 102 of the redox flow battery energy storage system 100 may be charged by delivering electrical energy from the power source 148 to negative and positive electrodes 108, 112, by, for example, deriving divalent vanadium ions in the anolyte solution 104 and equivalent vanadium ions in the catholyte solution 110.
Electricity may be drawn from each reactor cell 102 of the redox flow battery energy storage system 100 by closing load switch 154 and opening power source switch 152. This causes the load 150, which is in electrical communication with negative and positive electrodes 108, 112, to withdraw electrical energy when anolyte and catholyte solution is pumped respectively through the cell 102. In certain embodiments, operation of the various components of the redox flow battery energy storage system 100 may be controlled by an electronic control and monitoring system (not shown). Further, power withdrawn from the redox flow battery energy storage system 100 may be conditioned using power conditioning equipment (not shown) prior to being provided to the load 150. In certain embodiments, a power conversation system (not shown) may also be incorporated to convert DC power output from the reactor cell 102 to AC power required by the load 154.
Modular reactant storage reservoirs 204-210 may be associated with modular distribution piping 212-218 configured to provide fluid communication between reactant electrolyte (e.g., anolyte or catholyte) stored in tanks included in the modular reactant storage reservoirs 204 and the reactor cells 202, thereby enabling operation of the redox flow battery energy storage system 200 similar to that described in reference to
In certain embodiments, a centralized distribution piping system (not shown) such as a centralized manifold piping system may be used in conjunction with modular distribution piping 212-218. For example, modular distribution piping 212 may interface with a centralized distribution piping system to fluid communication of reactant electrolyte from storage reservoir 204 to the reactor cells 202. Other modular distribution piping 214-218 may be similarly configured. In certain embodiments, modular distribution piping (e.g., modular distribution piping 212) associated with a particular reactant storage reservoir (e.g., modular reactant storage reservoir 204) may be configured to be in direct fluid communication with reactor cells 202 without interfacing with modular distribution piping associated with a different storage reservoir and/or a centralized distribution piping system. In certain embodiments, reactant in storage reservoirs 204-210 may be in fluid communication with the reactor cells 202 in a parallel configuration, a series configuration, or any combination thereof.
Consistent with the general operation of a redox flow battery energy storage system described in reference to
Modular reactant storage reservoirs 204-210 may include a discrete enclosure (e.g., a frame with a weather proofing exterior and the like), thereby reducing the need to construct an enclosure, building, or shelter to house the entire redox flow battery energy storage system 200 and easing the scaling of the reactant storage capacity of redox flow battery energy storage system 200 based on system requirements. In some embodiments, modular reactant storage reservoirs 204-210 may each include a thermal management system configured to manage thermal conditions within the modular reactant storage reservoir they are associated with, thereby reducing the need to construct an entire redox flow battery energy storage system 200 thermal management system or construct an enclosure for the entire system that includes, chilling, heating, ventilation, and/or air conditioning capabilities. In other embodiments, the thermal management system may be configured to manage thermal conditions within more than one modular reactant storage reservoir. Modular reactant storage reservoirs 204-210 and/or reactor cells 202 may further include an enclosure configured to contain leaks and/or spills of reactant within the reservoirs and/or reactor cells.
In certain embodiments, modular reactant storage reservoirs 204-210 may include internal pumping mechanisms (not shown) to enable fluid communication between the modular reactant storage reservoirs 204-210 and the reactor cells 202 when the redox flow battery energy storage system 200 is operating. Internal pumping mechanisms may include pumps, values, piping, and the like. In other embodiments, more centralized pumping mechanisms (i.e., mechanisms not included in each of modules 204-206) may be used by the redox flow battery energy storage system 200 to enable fluid communication between one or more of the storage reservoirs 204-210 and reactor cells 202. The modular reactant storage reservoirs 204-210 may also include a system (not shown) which monitors and manages pump and valve control within the individual reservoirs 204. In some embodiments, this system may include electrical control components (e.g., sensors, control lines, and the like). Like the modular distribution piping, the modular monitoring and control system may be associated with individual modules, allowing for scalability of the system without significant alterations to existing monitoring and control systems associated with interfacing a monitoring and control systems associated with a new (i.e., additional) reservoir to that of an existing reservoir. In certain embodiments, a centralized system (not shown) for managing and controlling internal pumping mechanisms of the individual reservoirs 204-210 may manage pump and valve control in conjunction with or in lieu of pump and value control systems associated with individual reservoirs 204.
In certain embodiments, the modules of the redox flow battery energy storage system 400 may be configured to utilize standardized interface types and locations for modular reactant distribution piping (not shown). Further, the modules of the redox flow battery energy storage system 400 may be configured to utilize standard interface types and locations for pump and value monitoring and management systems (not shown) integrated in the modules. By utilizing standardized interface types and locations between the modules included in the redox flow battery energy storage system 400, the system may be flexibly scaled and/or reconfigured. For example, an additional module (e.g., a reactant storage reservoir module) may be added to the system. Standardized interfaces at the additional module and another module integrated with the existing system may interface the reactant distribution piping and monitoring and control systems of the additional module with the piping and monitoring and control systems of the existing system.
The modules 402-416 may be housed in a discrete enclosure or frame. In certain embodiments, the modules may include an intermodal container (e.g., a shipping container) or an intermodal container frame which may be modified to enclose the components of the modules 402-416. Standardized mechanical interfaces (e.g., a twistlock and corner casting) on the frames may allow modules to be rigidly secured to each other in a variety of configurations. In addition, by utilizing intermodal containers, reactant storage reservoirs modules may be shipped to a system location already filled with reactant, thereby reducing the need to fill reactant takes from different shipping tanks during system installation.
Many changes may be made to the details of the above-described embodiments without departing from the underlying principles of this disclosure. The scope of the present invention should, therefore, be determined only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3279949 | Schaefer et al. | Oct 1966 | A |
3530003 | Warszawski et al. | Sep 1970 | A |
3666561 | Chiku | May 1972 | A |
3996064 | Thaller | Dec 1976 | A |
4018508 | McDermott et al. | Apr 1977 | A |
4181777 | Spaziante | Jan 1980 | A |
4287465 | Godard et al. | Sep 1981 | A |
4312735 | Grimes et al. | Jan 1982 | A |
4362791 | Kaneko et al. | Dec 1982 | A |
4371433 | Balko et al. | Feb 1983 | A |
4410606 | Loutfy et al. | Oct 1983 | A |
4786567 | Skyllas-Kazacos et al. | Nov 1988 | A |
4797566 | Nozaki et al. | Jan 1989 | A |
4908281 | O'Callaghan | Mar 1990 | A |
4927509 | Mathur et al. | May 1990 | A |
4956244 | Shimizu et al. | Sep 1990 | A |
5225712 | Erdman | Jul 1993 | A |
5250158 | Kaneko et al. | Oct 1993 | A |
5308718 | Eidler et al. | May 1994 | A |
5318865 | Kaneko et al. | Jun 1994 | A |
5368762 | Sato et al. | Nov 1994 | A |
5484666 | Gibb et al. | Jan 1996 | A |
5486430 | Gorbell et al. | Jan 1996 | A |
5512787 | Dederick | Apr 1996 | A |
5587132 | Nakajima et al. | Dec 1996 | A |
5601943 | Eidler et al. | Feb 1997 | A |
5656390 | Kageyama et al. | Aug 1997 | A |
5665212 | Zhong et al. | Sep 1997 | A |
5734255 | Thompson et al. | Mar 1998 | A |
5759711 | Miyabayashi et al. | Jun 1998 | A |
5851694 | Miyabayashi et al. | Dec 1998 | A |
6143443 | Kazacos et al. | Nov 2000 | A |
6219623 | Wills | Apr 2001 | B1 |
6242125 | Eidler et al. | Jun 2001 | B1 |
6261714 | Eidler et al. | Jul 2001 | B1 |
6414653 | Kobayashi | Jul 2002 | B1 |
6416653 | Barben, II et al. | Jul 2002 | B1 |
6461772 | Miyake et al. | Oct 2002 | B1 |
6468688 | Kazacos et al. | Oct 2002 | B2 |
6475661 | Pellegri et al. | Nov 2002 | B1 |
6519041 | Berthold | Feb 2003 | B1 |
6524452 | Clark et al. | Feb 2003 | B1 |
6544679 | Petillo et al. | Apr 2003 | B1 |
6555267 | Broman et al. | Apr 2003 | B1 |
6558833 | McCoy | May 2003 | B2 |
6562514 | Kazacos et al. | May 2003 | B1 |
6563234 | Hasegawa et al. | May 2003 | B2 |
6609081 | de Varennes et al. | Aug 2003 | B1 |
6613298 | Tanaka et al. | Sep 2003 | B2 |
6670721 | Lof et al. | Dec 2003 | B2 |
6680547 | Dailey | Jan 2004 | B1 |
6761945 | Adachi et al. | Jul 2004 | B1 |
6764789 | Sekiguchi et al. | Jul 2004 | B1 |
6809431 | Schippmann | Oct 2004 | B1 |
6858953 | Stahlkopf | Feb 2005 | B2 |
6875535 | Ye et al. | Apr 2005 | B2 |
6916579 | Gorchkov et al. | Jul 2005 | B2 |
7052796 | Sabin et al. | May 2006 | B2 |
7061205 | Shigematsu et al. | Jun 2006 | B2 |
7078123 | Kazacos et al. | Jul 2006 | B2 |
7083875 | Lillis et al. | Aug 2006 | B2 |
7181183 | Hennessy | Feb 2007 | B1 |
7184903 | Williams et al. | Feb 2007 | B1 |
7199550 | Tsutsui et al. | Apr 2007 | B2 |
7220515 | Ito et al. | May 2007 | B2 |
7227275 | Hennessy et al. | Jun 2007 | B2 |
7258947 | Kubata et al. | Aug 2007 | B2 |
7265456 | Hennessy | Sep 2007 | B2 |
7353083 | Hennessy | Apr 2008 | B2 |
7361427 | Dow et al. | Apr 2008 | B1 |
7389189 | Williams et al. | Jun 2008 | B2 |
7517608 | Brereton et al. | Apr 2009 | B2 |
7682728 | Harper | Mar 2010 | B2 |
7687193 | Harper | Mar 2010 | B2 |
7704634 | Deguchi et al. | Apr 2010 | B2 |
7740977 | Lepp et al. | Jun 2010 | B2 |
8026013 | Valensa et al. | Sep 2011 | B2 |
8048555 | Darcy et al. | Nov 2011 | B2 |
8277964 | Hennessy | Oct 2012 | B2 |
20010028977 | Kazacos et al. | Oct 2001 | A1 |
20030087156 | Broman et al. | May 2003 | A1 |
20030143456 | Kazacos et al. | Jul 2003 | A1 |
20040036360 | McCombs | Feb 2004 | A1 |
20040044442 | Bayoumi et al. | Mar 2004 | A1 |
20040113431 | Huang | Jun 2004 | A1 |
20040121204 | Adelman et al. | Jun 2004 | A1 |
20040151953 | Kirk et al. | Aug 2004 | A1 |
20040158417 | Bonet | Aug 2004 | A1 |
20040169493 | Tsutsui et al. | Sep 2004 | A1 |
20040172943 | Buelow et al. | Sep 2004 | A1 |
20040191623 | Kubata et al. | Sep 2004 | A1 |
20040241544 | Nakaishi et al. | Dec 2004 | A1 |
20050004716 | Lillis et al. | Jan 2005 | A1 |
20050012395 | Eckroad et al. | Jan 2005 | A1 |
20050074665 | Spaziante et al. | Apr 2005 | A1 |
20050077252 | Shih et al. | Apr 2005 | A1 |
20050147871 | Shigematsu et al. | Jul 2005 | A1 |
20050156432 | Hennessy | Jul 2005 | A1 |
20050158614 | Hennessy | Jul 2005 | A1 |
20050158615 | Samuel et al. | Jul 2005 | A1 |
20060142899 | Wobben | Jun 2006 | A1 |
20060171086 | Hennessy et al. | Aug 2006 | A1 |
20060273595 | Avagliano et al. | Dec 2006 | A1 |
20070001461 | Hopewell | Jan 2007 | A1 |
20070035135 | Yoshida | Feb 2007 | A1 |
20070072067 | Symons et al. | Mar 2007 | A1 |
20070202385 | Minamiura et al. | Aug 2007 | A1 |
20070258784 | Looker | Nov 2007 | A1 |
20080081247 | Nakaishi et al. | Apr 2008 | A1 |
20080182157 | Visco et al. | Jul 2008 | A1 |
20080220318 | Brereton et al. | Sep 2008 | A1 |
20080241643 | Lepp et al. | Oct 2008 | A1 |
20090004536 | Knauer et al. | Jan 2009 | A1 |
20090047570 | Harper | Feb 2009 | A1 |
20090047571 | Harper | Feb 2009 | A1 |
20090311559 | Levine et al. | Dec 2009 | A1 |
20100003545 | Horne et al. | Jan 2010 | A1 |
20100003586 | Sahu | Jan 2010 | A1 |
20100021805 | Winter | Jan 2010 | A1 |
20100136455 | Winter | Jun 2010 | A1 |
20110311896 | Harper | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
509 888 | Dec 2011 | AT |
5556286 | Aug 1987 | AU |
8586291 | Oct 1991 | AU |
0 246 649 | Nov 1987 | EP |
0 517 217 | Dec 1992 | EP |
0 566 019 | Oct 1993 | EP |
0814527 | Dec 1997 | EP |
0 889 571 | Jan 1999 | EP |
1284513 | Feb 2003 | EP |
1385226 | Jan 2004 | EP |
1 536 506 | Jun 2005 | EP |
2.034.755 | Dec 1970 | FR |
GB2030349 | Apr 1980 | GB |
GB2085475 | Apr 1982 | GB |
54138502 | Oct 1979 | JP |
5642970 | Apr 1981 | JP |
579072 | Jan 1982 | JP |
579073 | Jan 1982 | JP |
60225366 | Nov 1985 | JP |
63069151 | Mar 1988 | JP |
07153477 | Dec 1993 | JP |
714617 | Jan 1995 | JP |
7192776 | Jul 1995 | JP |
87913 | Jan 1996 | JP |
819179 | Jan 1996 | JP |
9283169 | Oct 1997 | JP |
11299106 | Oct 1999 | JP |
200317763 | Nov 2003 | JP |
2004319341 | Nov 2004 | JP |
WO 8905363 | Jun 1989 | WO |
WO 8905528 | Jun 1989 | WO |
WO9003666 | Apr 1990 | WO |
WO 9512219 | May 1995 | WO |
WO9939397 | Aug 1999 | WO |
WO 9950945 | Oct 1999 | WO |
WO 03092109 | Nov 2003 | WO |
WO 2004054065 | Jun 2004 | WO |
WO 2006089415 | Feb 2006 | WO |
WO2006081514 | Aug 2006 | WO |
WO2006129635 | Dec 2006 | WO |
WO 2010118060 | Apr 2010 | WO |
WO 2011114094 | Sep 2011 | WO |
WO 2011154306 | Dec 2011 | WO |
WO 2011154306 | Dec 2011 | WO |
Entry |
---|
Sheri Nevins, et al., Article entitled “Flow Battery Solution for Smart Grid Renewable Energy Applications”, Ktech Corporation, 2010 DOE Energy Storage Program Review, Nov. 10, 2010 (14 pgs.). |
Office Action mailed May 10, 2013, for U.S. Appl. No. 12/820,972, filed Jun. 22, 2010. |
Office Action for U.S. Appl. No. 12/820,972, filed Jun. 22, 2010 and mailed from the USPTO on Dec. 20, 2012, 22 pgs. |
Close, Tullis; “Energy storage—a key technology for global energy sustainability”, Journal of Power Sources 100, Feb. 17, 2001 (16 pgs.). |
Shigematsu, T.; Kumamoto T.; Deguchi, H.; and Hara, T.; “Applications of a Vanadium Redox-Flow Batter to Maintain Power Quality”, Sumitomo Electric Industries, Ltd., IEEE 2002 (6 pgs.). |
Barton, John P. and Infield, David G.; Énergy Storage and Its Use with Intermittent Renewable Energy, IEEE Transactions on Energy Conversion, vol. 19, No. 2, Jun. 2004 (8 pgs.). |
Hagedorn, Mark, et al., “NASA Redox Cell Stack Shunt Current, Pumping Power, and Cell Performance Tradeoffs,” National Aeronautics and Space Administration, Lewis Research Center, Feb. 1982, 30 pgs. |
Hawkins, J.M, et at., “A field of a Vanadium Energy Storage System,” INTELC 2001, Oct. 2001, pp. 652-656, Conference Publication No. 484. |
“Flow Battery,” Flow Battery Solutions, Mar 15, 2013, <http://www.arbin.com/ products/flow-battery?gclid=CKvNqLXD7bUCFed1Ogod-jcAkQ>. |
International Search Report and Written Opinion for PCT/US2011/060526 filed Nov. 14, 2011 and mailed May 16, 2012, 8 pgs. |
IPRP for PCT/US2011/060526 filed Nov. 14, 2011, and mailed from IB on Jun. 25, 2013, 5 pgs. |
Office Action for U.S. Appl. No. 11/234,778 from USPTO mailed Sep. 19, 2007, 16 pgs. |
Bartolozzi, M., “Development of Redox Flow Batteries. A Historical Bibliography,” Journal of Power Sources, 27 (1989), pp. 219/234. |
Sum, et al., “A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications,” Journal of power Sources, 15 (1985), pp. 179/190. |
Skyllas/Kazacos et al., “Characteristics and performance of 1 kW UNSW vanadium redox battery,” Journal of Power Sources, 35 (1991) pp. 399/404. |
Skyllas/Kazacos et al., “Vanadium redox battery prototype: design & development,” University of New South Wales, Department of Minerals and Energy, Jan. 1991, 254 pgs. |
Skyllas/Kazacos et al., “Development of Redox Cell for Remote Area Energy Storage,” School of Chemical Engineering & Industrial Chemistry, University of New South Wales, 200 pgs. |
Kazacos et al., “Vanadium redox cell electrolyte optimization studies,” Journal of Applied Electrochemistry, 1990, 20, pp. 463/467. |
Kazacos, Michael, “Electrolyte Optimization and Electrode Material Evaluation for the Vanadium Redox Battery,” a thesis submitted as part of the requirements for the degree of Master of Science, School of Chemical Engineering and Industrial Chemistry, The University of New South Wales, Feb. 1989, 250 pgs. |
Definition of “Load” retrieved from Dictionary.com on Aug. 12, 2010. |
Definition of “Electrical Power” retrieved from Dictionary.com on Aug. 12, 2010. |
Liu, Galasco, and Savinell, “Enhancing Performance of the Ti(III)/Ti(IV) Couple for Redox Battery Applications,” Journal of Electrochemical Society, 1981, downloaded Feb. 6, 2012, pp. 1755/1757. |
Chen et al., “Solution Redox Couples for Electrochemical Energy Storage,” Journal of Electrochemical Society Energy Storage (128), downloaded Feb. 6, 2012, pp. 1460/1467. |
Chen et al., “Solution Redox Couples for Electrochemical Energy Storage,” Journal of Electrochemical Society Energy Storage (1982), 129(1), downloaded Feb. 6, 2012, pp. 61/66. |
Murthy et al., “Fe(III)/Fe(II)—Ligand Systems for Use as Negative Half/Cells in Redox/Flow Cells,” Journal of Power Sources, 1989, 27(2), pp. 119/126. |
6001 Chemical Abstract, 1989, No. 22, 111:198495s, printed Feb. 6, 2012, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20120164498 A1 | Jun 2012 | US |