1. Field of the Invention
The present invention relates to a system and method for the welding of drill bits using robotic apparatus.
2. State of the Art
In the exploration of oil, gas, and geothermal energy, wells or boreholes in the earth are created in drilling operations using various types of drill bits. These operations typically employ rotary and percussion drilling techniques. In rotary drilling, the borehole is created by rotating a drill string having a drill bit secured to its lower end. As the drill bit drills the well bore, segments of drill pipe are added to the top of the drill string. While drilling, a drilling fluid is continually pumped into the drilling string from surface pumping equipment. The drilling fluid is transported through the center of the hollow drill string and through the drill bit. The drilling fluid exits the drill bit through one or more nozzles in the drill bit. The drilling fluid then returns to the surface by traveling up the annular space between the well bore and the outside of the drill string. The drilling fluid transports cuttings out of the well bore as well as cooling and lubricating the drill bit.
The type of drill bit used to drill the well will depend largely on the hardness of the formation being drilled. One type of rotary rock drill is a drag bit. Early designs for a drag bit included hard facing applied to various portions of the bit. Currently, designs for drag bits have extremely hard cutting elements, such as natural or synthetic diamonds, mounted to a bit body. As the drag bit is rotated, the cutting elements form the bottom and sides of the well bore
Another typical type of rotary drill bit is the tri-cone roller drill bit that has roller cones mounted on the body of the drill bit, which rotate as the drill bit is rotated. Cutting elements, or teeth, protrude from the roller cones. The angles at which the roller cones are mounted are mounted on the bit body determine the amount of cut or bite of the bit with respect to the well bore. As the roller cones of the drill bit roll on the bottom of the hole being drilled, the teeth or carbide inserts apply a high compressive and shear loading to the formation causing fracturing of the formation into debris. The cutting action of roller cones comprises a combination of crushing, chipping and scraping. The cuttings from a roller cone drill bit typically comprise a mixture of chips and fine particles.
There are two general types of roller cone drill bits; TCI bits and milled-tooth bits. “TCI” is an abbreviation for Tungsten Carbide Insert. TCI roller cone drill bits have roller cones having a plurality of tungsten carbide or similar inserts of high hardness that protrude from the surface of the roller cone. Numerous styles of TCI drill bits are designed for various types of formations, in which the shape, number and protrusion of the tungsten carbide inserts on the roller cones of the drill bit will vary, along with roller cone angles on the drill bit.
Milled-tooth roller cone drill bits are also referred to as milled-tooth bits because the steel teeth of the roller cones are formed by a milling machine. However, in larger bits, it is also known to cast the steel teeth and, therefore, “milled-tooth” is the better reference. A milled-tooth roller cone drill bit uses roller cones each having an integral body of hardened steel with teeth formed on the periphery. There are numerous styles of milled-tooth roller cone drill bits designed for formations of varying hardness in which the shape, number and protrusion of the teeth will vary, along with roller cone angles on the drill bit.
Conventional welding techniques used to attach a circular plug to the leg of a milled-tooth or TCI roller cone drill bits that may include arc welding, oxyacetylene welding (OAW) and atomic hydrogen welding (AHW). Currently, manual welding is typically used in the commercial production of roller cone rock bits. Bit legs having roller cones are mounted on a positioning table while a welding torch and welding rod are used to manually weld the plug to the bit leg while either the bit leg or the welder moves from various positions to complete the welding of the plug on the bit leg. The welding process for attaching the plug to a bit leg is difficult due to the circular weld to be made attaching the plug to the bit leg.
Typically, the skill of the individual applying hardfacing determines the quality of the weld. The quality of weld between drill bits varies. Limited availability of qualified welders has aggravated the problem because the welding of the plug to the bit leg is extremely tedious, repetitive, skill-dependent, time-consuming, and expensive.
U.S. Pat. No. 6,392,190 provides a description of the use of a robotic arm in the hardfacing of roller cones, in which the torch is held by a robotic arm and the roller cones are moved on a positioning table. A manual welder is replaced with a robotic arm for holding the torch. The robotic arm and a positioning table are combined to have more than five movable axes in the system for applying hardfacing.
Therefore, there is a need to develop a system and method for welding plugs to bit arms of drill bit consistent with the material and application quality standards obtainable by manual welding.
A system and method for the welding of drill bits using an automated robot or robots.
The objects and features of the invention will become more readily understood from the following detailed description and appended claims when read in conjunction with the accompanying drawings in which like numerals represent like elements.
The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms. It is to be understood that in some instances various aspects of the invention may be shown exaggerated or enlarged to facilitate an understanding of the invention.
The systems and methods of the present invention relate to automatic welding of a plug, a first member, in a bit leg, a second member, such as a ball plug for sealing a hole in a bit leg through which ball bearings may be introduced to an interface between a roller cone and a bearing pin on which the roller cone is rotatably mounted. In embodiments of the systems and methods of the present invention, a robotic system may be used to manipulate a welding torch, such as an arc welding torch, an oxyacetylene welding (OAW) torch, an atomic hydrogen welding (AHW) torch, or a plasma transfer arc (PTA) welding torch, all of which are collectively referred to herein as a “torch.” The robotic system may comprise a multi-axis robotic arm (e.g., a five-axis or a six-axis robotic arm). The robotic arm may be program-controllable for movement relative to the multiple axis in three-dimensional space. Power, shielding, plasma, and transport gases may be supplied to the torch through electrically controllable flow valves.
In some embodiments, a bit body or bit leg may be mounted on a fixture on a workpiece holder or positioner, such as a rotatable platen. The rotatable platen may have a plurality of stations mounted circumferentially around an upper rotatable surface of the platen, such that a plurality of bit bodies or bit legs may be mounted on the rotatable surface of the platen.
In some embodiments, another robot having program controllable movement of an articulated arm may be used. A chuck adapter may be attached to the arm of the robot, and any desired style chuck may be attached to the chuck adapter. The chuck is capable of securely holding a bit leg in any desired position to weld the plug to the bit leg.
Embodiments of welding systems of the present invention may comprise a first sensor that is positioned, oriented, and configured for determining a location or position of a portion of a bit body or bit leg (e.g., a ball plug) in at least one dimension of three-dimensional space. The first position sensor may comprise, for example, a laser range finder. The first sensor may be used for determining a position of a ball plug in a bit body or bit leg relative to at least one dimension in three-dimensional space, such as, for example, the Z-direction (i.e., the vertical direction with respect to the orientation of the gravitational field). For example, a distance between a ball plug in a bit body or bit leg mounted over a surface of a rotatable platen and the surface of the platen may be determined using the first position sensor, or a distance between a ball plug in a bit body or bit leg and the sensor itself may be determined using the first position sensor. Information relating to the position of the ball plug relative to the at least one dimension in three-dimensional space (e.g., a distance between the ball plug and a reference point in three-dimensional space) may be sent electronically to a computer or controller of the welding system.
Embodiments of welding systems of the present invention also may comprise a second sensor for determining a position of the ball plug and/or a size of a ball plug in a bit body or a bit leg. For example, a camera may be used to take a picture or image of the ball plug in the bit body or bit leg, and a computer device may be configured under control of a computer program to electronically analyze the picture or image, identify a boundary of the ball plug in the picture or image, and to measure an average diameter of the ball plug using the picture or image. The computer device may further be configured under control of a computer program to determine a location of the center of the ball plug such as, for example, a location of the center of the ball plug in the XY plane (i.e., the plane oriented transverse to the Z-axis and the gravitational field). Information relating to the position of the center of the ball plug (e.g., a location of the center of the ball plug in the XY plane) and the size (e.g., average diameter) of the ball plug may be sent electronically to a computer or controller of the welding system.
After the position of the ball plug in three-dimensional space has been determined using at least one position sensor, and after a size of the ball plug has been determined using at least one sensor, the computer or controller of the welding system may be used to identify and select an appropriate welding program from a predefined set of welding programs (each of which may be configured for use in welding different sizes of ball plugs, such as different sized ball plugs used in different sized bit bodies or bit legs). The selected welding program then may be used to control movement of the robot and the torch attached thereto to weld an interface between a ball plug and the surrounding surfaces of the bit body or bit leg. In additional embodiments, the selected welding program may be used to control movement of the robot and the torch attached thereto to build up a ball plug in the access hole for the ball bearings at least substantially entirely from filler material deposited during the welding process. In other words, a prefabricated ball plug may not be positioned in the hole and welded to the bit body or bit leg, but rather the ball plug may be at least substantially entirely formed during the welding process in some embodiments of the invention.
In some embodiments of the present invention, the welding torch may be caused to perform a single rotational welding pass circumferentially three hundred and sixty degrees around the ball plug, to allow the ball plug to cool, and then to later perform one or more additional rotational welding passes circumferentially three hundred and sixty degrees around the ball plug to complete the welding process. For example, a pre-fabricated ball plug may be recessed within the ball access hole prior to welding. The welding process may be used to weld the pre-fabricated ball plug to the surrounding surfaces of the bit body or bit leg, and filler material deposited during the welding process may be deposited within the recess to at least substantially fill the recess until it is at least generally flush with the outer surface of the bit body or bit leg.
In some embodiments of the present invention, the welding torch may comprise a metal inert gas (MIG) welding torch having a consumable electrode. In other embodiments, the welding torch may comprise a tungsten inert gas (TIG) welding torch having a non-consumable electrode. In yet additional embodiments, the welding torch may comprise a plasma transferred arc (PTA) welding torch.
As previously discussed, filler material may be deposited in some embodiments of the present invention. The filler material may comprise a metal material such as, for example, an INCONEL® metal alloy (e.g., a nickel-based metal alloy containing approximately 60% nickel by weight, and further including chromium, molybdenum, and niobium). In additional embodiments, the filler material may comprise any one of an iron-based alloy (e.g., a steel alloy), a cobalt-based alloy, or a nickel-based alloy.
In additional embodiments of the present invention, either the bit leg or the torch may be moved independently or simultaneously during welding of the plug to the bit leg.
An advantage of the system and method of the present invention is that it automates the welding of the ball plug to the bit leg, which increases the consistency and quality of the welding, and thus the reliability, performance, and cost efficiency bit leg used to form a drill bit. Another advantage of the system and method of present invention is that it reduces manufacturing cost and reliance on skilled laborers. Another advantage system and method of the present invention is that by decreasing production time, product inventory levels can be reduced. Another advantage system and method of the present invention is that it facilitates the automated collection of welding data, from which further process controls and process design improvements can be made.
Another advantage of the system and method of the present invention is that utilization of the robotic arm to manipulate the bit leg improves the opportunity to integrate sensors for providing feedback.
As referred to hereinabove, the “system and method of the present invention” refers to one or more embodiments of the invention. The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Embodiments of the present invention relate not only to roller cone drill bits having milled-teeth, such as the roller cone drill bit 1 shown in
The bit legs 516 also include a ball plug 19 in a hole or passageway 18, as previously described with reference to the drill bit 1. As the bit legs 516 are highly stressed during the drilling of wells using drill bit 510, the manner in which any ball plug 19 is attached to a bit leg 516 is significant as the ball plug 19 must remain on or in the bit leg 516. Further, the attachment of a ball plug 19 should not weaken the bit leg 516.
Robot 100 may have a handling capacity of 125 kg or more, and articulated arm 104 may have a wrist torque rating of 750 Nm or more. Robot 100 has six independently controllable axes of movement between base 102 and distal end 106 of arm 104. Examples of such industrial robots that are commercially available include models IRB 6600/IRB 6500, which are available from ABB Robotics, Inc., 125 Brown Road, Auburn Hills, MI, USA, 48326-1507.
An adapter 110 is attached to distal end 106. Adapter 110 has a ground connector 112 for attachment to an electrical ground cable (not shown). A chuck 120 is attached to adapter 110. Chuck 120 securely grips the bit leg 516, drill bit 510, bit leg 12, or drill bit 1.
A heat sink, or thermal barrier, may be provided between adapter 110 and bit leg 516, bit leg 12, drill bit 1, or drill bit 510 to prevent heat from causing premature failure of the rotating axis at distal end 106 of articulated arm 104. The thermal barrier is an insulating spacer (not shown) located between bit leg 516 or drill bit 510 and distal end 106 of robot 100. Alternately, bit leg 516, bit leg 12, drill bit 1, or drill bit 510 may be gripped in a manner that provides an air space between the distal end 106 of robot 100 and the bit leg 516, bit leg 12, drill bit 1, or drill bit 510 to dissipate heat.
A robot controller 130 is electrically connected to robot 100 for programmed manipulation of robot 100, including movement of articulated arm 104. An operator pendant 137 may be provided as electrically connected to robot controller 130 for convenient operator interface with robot 100. A sensor controller 140 is electrically connected to robot controller 130. Sensor controller 140 may also be electrically connected to a programmable logic controller 150.
A plurality of sensors 142 are electrically connected to sensor controller 140. Sensors 142 may include a camera 144 and/or a contact probe 146. Alternately, sensors 142 include a suitable laser proximity sensor 148. Other types of sensors 142 may also be used. Sensors 142 provide interactive information to robot controller 130, such as the distance between the torch 300 and the bit leg 516, drill bit 510, bit leg 12, or drill bit 1.
A programmable logic controller 150 is electrically connected to robot controller 130. Programmable logic controller (PLC) 150 provides instructions to auxiliary controllable devices that operate in coordinated and programmed sequence with robot 100.
A powder dosage system 160 may be provided for dispensing powder if a plasma transferred arc welding process is used to weld the ball plug 19 to the bit leg 516 or bit leg 12. A driver 162 is electrically connected to PLC 150 for dispensing the powder at a predetermined, desired rate.
A pilot arc power source 170 and a main arc power source 172 are electrically connected to PLC 150. A cooling unit 174 is electrically connected to PLC 150. A data-recording device 190 may be electrically connected to PLC 150.
A gas dispensing system 180 is provided. A transport gas source 182 supplies transport gas through a flow controller 184 to carry or transport welding powder, if plasma transferred arc welding is used, to torch 300. Flow controller 184 is electrically connected to PLC 150, which controls the operation of flow controller 184 and the flow and flow rate of the transport gas. A plasma gas source 186 supplies gas for plasma formation through a flow controller 188. Flow controller 188 is electrically connected to PLC 150, which controls the operation of flow controller 188 and the flow and flow rate of the plasma gas. Similarly, a shielding gas source 192 supplies shielding gas through a flow controller 194 for any welding process requiring a shielding gas. Flow controller 194 is electrically connected to PLC 150, which controls the operation of flow controller 194 and the flow and flow rate of the shielding gas. It is known to utilize a single gas source for more than one purpose, e.g., plasma, shielding, and transport. Thus, different, multiple flow controllers connected in series alignment can control the flow and flow rate of gas from a single gas source.
The torch 300 may comprise, for example, a metal inert gas (MIG) arc welding torch, a tungsten inert gas (TIG) arc welding torch, a plasma transferred arc (PTA) welding torch, an oxyacetylene welding (OAW) torch, or an atomic hydrogen welding (AHW) using a plasma transfer arc (PTA), all of which are collectively referred to herein as a “torch.” A welding wire, welding rod, or welding powder may be supplied to the torch 300, and plasma, transport, and shielding gases may be supplied to the torch 300 as necessary or desirable from their respective supplies and controllers in gas dispensing system 180. Torch 300 may be secured to a positioner or positioning table 200, which grips and manipulates torch 300. In some embodiments, the positioner 200 may be capable of programmed positioning of torch 300 in three-dimensional space. A positioner 200 may include a vertical drive 202 and a horizontal drive 204. Drives 202 and 204 may be toothed belts, ball screws, a toothed rack, pneumatic, or other means. If additional embodiments, an industrial robot 100 having multiple (e.g., five or six) independently controllable axes of movement between base 102 and a welding tip of a torch 300 attached thereto as described herein may be used as the positioner 200 having the torch 300 mounted thereon.
Adapter 110 is aligned by indicator with articulated arm 104. Adapter 110 is aligned to run substantially true with a programmable axis of movement of robot 100. A chuck 120 is attached to adapter 110 and indicator aligned to within 0.005 inch of true center rotation, or any desired amount. Bit leg 516 is held by chuck 120 and also centered by indicator alignment. Bit leg 516 may include grooves that permit location and calibration of the position of the end of torch 300.
As illustrated in
Robot arm 104 moves in response to program control from robot controller 130 and (or) PLC 150. As stated, torch 300 is mounted to positioner 200 having two controllable axes in a substantially vertical plane. As previously mentioned, a physical indicator, such as a notch or groove, may be formed on bit leg 516 to be engaged by torch 300 to ensure proper initial orientation between torch 300, robot arm 100, and bit leg 516. Additionally, at least one position indicator is electrically connected to PLC 150 for determining location and orientation of bit leg 516 and ball plug 19 therein to be welded using the robot 100.
After initial orientation and positioning, any transfer, plasma and shielding gas to be used are supplied to torch 300 by their respective sources 182, 186, 192, through their respective flow controllers 184, 188, 194.
Torch 300 is ignited by provision of current from pilot arc power source 170 and main arc power source 172. Igniting pilot arc circuit 330 reduces the resistance to an arc jumping between bit leg 516 and electrode 304 when voltage is applied to main arc circuit 332.
Flow of welding wire, weld rod, or hardfacing powder is provided by dosage system 160 dispensing controlled amounts of hardfacing powder into a conduit of flowing transport gas from transport gas source 182, having a flow rate controlled by flow controller 184. Then relative movement may be provided between the bit leg 516 and the torch 300 is obtained by movement of robot arm 100 and positioner 200, permitting automated welding of the ball plug 19 to the bit leg 516 using welding wire or welding rod in response to programming from robot controller 130 and PLC 150.
An imaging sensor 142 or camera 144 may be provided for identifying a specific bit leg 516 or portion thereof. The imaging sensor 142 or camera also may be used for measuring the ball plug 19 to be welded therein. A laser sensor 142 (
Robot controller 130 is primarily responsible for control of robot arm 100, while PLC 150 and data recorder 190 may provide sensor 142 data collection and processing, data analysis and process adjustment, adjustments in robot 100 movement, torch 300 movements, and torch 300 operation, including power, gas flow rates and material feed rates.
In additional embodiments of welding systems of the present invention, the torch 300 may be mounted to the end of an articulated arm of a multi-axis robot 100, as shown in
Embodiments of welding systems of the present invention may comprise a first laser proximity sensor 148 (i.e., a laser range finder) or another type of distance sensor that is positioned, oriented, and configured for determining a location or position of a portion of a bit body or bit leg 12 (e.g., a ball plug 19) in at least one dimension of three-dimensional space. The laser proximity sensor 148 may be used for determining a position of a ball plug 19 in a bit body or bit leg 12 relative to at least one dimension in three-dimensional space, such as, for example, the Z-direction (i.e., the vertical direction with respect to the orientation of the gravitational field). For example, a distance between a surface of a platen 32 and a ball plug 19 in a bit body or bit leg 12 mounted over the surface of the rotatable platen 32 may be determined using the laser proximity sensor 148, or a distance between a ball plug 19 in a bit body or bit leg 12 and the laser proximity sensor 148 itself may be determined using the first position sensor. Information relating to the position of the ball plug 19 relative to the at least one dimension in three-dimensional space (e.g., a distance between the ball plug 19 and a reference point in three-dimensional space) may be sent electronically to the sensor controller 140 and/or the robot controller 130 (
Embodiments of welding systems of the present invention also may comprise a camera 144 for determining a position of the ball plug 19 and/or a size of a ball plug 19 in a bit body or a bit leg 12. For example, a camera 144 may be used to take a picture or image of the ball plug 19 in the bit body or bit leg 12, and the sensor controller 140 and/or the robot controller 130 may be configured under control of a computer program to electronically analyze the picture or image, identify a boundary of the ball plug 19 in the picture or image, and to measure an average diameter of the ball plug 19 using the picture or image. The sensor controller 140 and/or the robot controller 130 may further be configured under control of a computer program to determine a location of the center of the ball plug 19 such as, for example, a location of the center of the ball plug 19 in the XY plane (i.e., the plane oriented transverse to the Z-axis and the gravitational field). Information relating to the position of the center of the ball plug 19 (e.g., a location of the center of the ball plug 19 in the XY plane) and the size (e.g., average diameter) of the ball plug 19 may be sent electronically to the sensor controller 140 and/or the robot controller 130 of the welding system.
After the position of the ball plug 19 in three-dimensional space has been determined, and after a size of the ball plug 19 has been determined, the sensor controller 140 and/or the robot controller 130 of the welding system may be used to identify and select an appropriate welding computer program from a predefined set of welding computer programs (each of which may be configured for use in welding different sizes of ball plugs 19, such as different sized ball plugs 19 used in different sized bit bodies or bit legs 12). The selected welding computer program then may be used to control movement of the robot 100 and the torch 300 attached thereto to weld an interface between a ball plug 19 and the surrounding surfaces of the bit body or bit leg 12. In additional embodiments, the selected welding program may be used to control movement of the robot 100 and the torch 300 attached thereto to build up a ball plug 19 in the access hole 18 for the ball bearings at least partially from filler material deposited during the welding process. In other words, a prefabricated ball plug may not be positioned in the hole 18 and welded to the bit body or bit leg 12, but rather the ball plug 19 may be at least substantially entirely formed during the welding process in some embodiments of the invention.
In some embodiments of the present invention, the welding torch 300 may be caused to perform a single rotational welding pass circumferentially three hundred and sixty degrees around the ball plug 19, to then allow the ball plug 19 and bit leg 12 to cool, and then to later perform one or more additional rotational welding passes circumferentially three hundred and sixty degrees around the ball plug 19 to complete the welding process. For example, a pre-fabricated ball plug 19 may be recessed within the ball access hole 18 prior to welding. The welding process may be used to weld the pre-fabricated ball plug 19 to the surrounding surfaces of the bit body or bit leg 12, and filler material deposited during the welding process may be deposited within the recess to at least substantially fill the recess until it is at least generally flush with the outer surface of the bit body or bit leg 12.
In some embodiments of the present invention, the welding torch 300 may comprise a metal inert gas (MIG) welding torch having a consumable electrode. In other embodiments, the welding torch 300 may comprise a tungsten inert gas (TIG) welding torch having a non-consumable electrode. In yet additional embodiments, the welding torch 300 may comprise a plasma transferred arc (PTA) welding torch.
As previously discussed, filler material may be deposited in some embodiments of the present invention. The filler material may comprise a metal material such as, for example, an INCONEL® metal alloy (e.g., a nickel-based metal alloy containing approximately 60% nickel by weight, and further including chromium, molybdenum, and niobium). In additional embodiments, the filler material may comprise any one of an iron-based alloy (e.g., a steel alloy), a cobalt-based alloy, or a nickel-based alloy.
Furthermore, the platen 32 may be situated in a work environment such that an operator of the system places bit legs 12 or bit bodies of drill bits 1 onto the fixtures 30 in the work stations 33A-33F in preparation for welding from a particular position relative to the robot 100. For example, the platen 32 may be situated in a work environment such that an operator of the system places bit legs 12 or bit bodies of drill bits 1 onto the fixtures 30 in the work stations 33A-33F in preparation for welding from a side of the platen 32 opposite the robot 100. Referring to
With continued reference to
In some embodiments, cooling gas may be directed onto selected locations of the bit leg 12 during the welding process to prevent overheating of pressure sensitive elements or components of the drill bit (such as, for example, polymeric bearing seals).
In some embodiments, each work station 33A-33F may be loaded with bit legs 12 prior to welding any of the ball plugs 19 thereof. In other embodiments, an operator may be unloading a previously welded bit leg 12 from a fixture and loading another bit leg 12 in the fixture 30 for welding as other ball plugs 19 are being measured by the laser proximity sensor 148 and the camera 144 and/or being welded by the robot 100. Furthermore, as previously mentioned, in some embodiments, the robot may be configured to perform a single welding pass on the ball plug 19 of each of the bit legs 12 in each of the work stations 33A-33F prior to performing a second welding pass on any of the ball plugs 19, which may allow the bit legs 12 and ball plugs 19 to cool between welding passes, thereby preventing any damage to the ball plugs 19 and/or bit legs 12 that might occur due to overheating were the ball plugs 19 to be completely welded with multiple welding passes in a single uninterrupted sequence.
As the terms are used in this specification and claims, the words “generally” and “substantially” are used as descriptors of approximation, and not words of magnitude. Thus, they are to be interpreted as meaning “largely, but not necessarily entirely.”
It will be readily apparent to those skilled in the art that the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention.
Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
This application claims the benefit of the filing date of U.S. patent application Ser. No. 61/109,427, filed Oct. 29, 2008, for “METHOD AND APPARATUS FOR ROBOTIC WELDING OF DRILL BITS.” This application is also related to U.S. patent application Ser. No. 12/257,219, filed Oct. 23, 2008, now U.S. Pat. No. 8,450,637, issued May 28, 2013, for “APPARATUS FOR AUTOMATED APPLICATION OF HARDFACING MATERIAL TO DRILL BITS”; U.S. patent application Ser. No. 12/341,595, filed Dec. 22, 2008, for “ROBOTICALLY APPLIED HARDFACING WITH PRE-HEAT; U.S. patent application Ser. No. 12/562,797, filed Sep. 18, 2009, now U.S. Pat. No. 8,698,038, issued Apr. 15, 2014, for “METHOD AND APPARATUS FOR THE AUTOMATED APPLICATION OF HARDFACING MATERIAL TO ROLLING CUTTERS OF EARTH-BORING DRILL BITS”; and to U.S. patent application Ser. No. 12/651,113, filed Dec. 31, 2009, for “METHOD AND APPARATUS FOR AUTOMATED APPLICATION OF HARDFACING MATERIAL TO ROLLING CUTTERS OF HYBRID-TYPE EARTH BORING DRILL BITS, HYBRID DRILL BITS COMPRISING SUCH HARDFACED STEEL-TOOTHED CUTTING ELEMENTS, AND METHODS OF USE THEREOF.”
Number | Name | Date | Kind |
---|---|---|---|
930759 | Hughes | Aug 1909 | A |
1874066 | Scott et al. | Aug 1932 | A |
1879127 | Schlumpf | Sep 1932 | A |
1932487 | Scott | Oct 1933 | A |
2030722 | Scott | Feb 1936 | A |
2198849 | Waxler | Apr 1940 | A |
2297157 | McClinton | Sep 1942 | A |
2719026 | Boice | Sep 1955 | A |
3010708 | Lundquist | Nov 1961 | A |
3055443 | Edwards | Sep 1962 | A |
3174564 | Morlan | Mar 1965 | A |
3269469 | Kelly, Jr. | Aug 1966 | A |
3424258 | Nakyama | Jan 1969 | A |
3777115 | Kazlauskas | Dec 1973 | A |
3865525 | Dunn | Feb 1975 | A |
RE28625 | Cunningham | Nov 1975 | E |
4006788 | Garner | Feb 1977 | A |
4104505 | Rayment | Aug 1978 | A |
4140189 | Garner | Feb 1979 | A |
4162389 | Shimdada et al. | Jul 1979 | A |
4182394 | Cason, Jr. | Jan 1980 | A |
4190126 | Kabashima | Feb 1980 | A |
4228339 | Scales et al. | Oct 1980 | A |
4270812 | Thomas | Jun 1981 | A |
4285409 | Allen | Aug 1981 | A |
4293048 | Kloesel | Oct 1981 | A |
4309587 | Nakano et al. | Jan 1982 | A |
4320808 | Garrett | Mar 1982 | A |
4343371 | Baker et al. | Aug 1982 | A |
4358471 | Derkacs et al. | Nov 1982 | A |
4359112 | Garner et al. | Nov 1982 | A |
4369849 | Parrish | Jan 1983 | A |
4373128 | Asai et al. | Feb 1983 | A |
4396077 | Radtke | Aug 1983 | A |
4410284 | Herrick | Oct 1983 | A |
4411935 | Anderson | Oct 1983 | A |
4444281 | Schumacher et al. | Apr 1984 | A |
4527637 | Bodine et al. | Jul 1985 | A |
4546902 | Anderson | Oct 1985 | A |
4567343 | Sullivan et al. | Jan 1986 | A |
4572306 | Dorosz | Feb 1986 | A |
4598778 | Highsmith | Jul 1986 | A |
4664705 | Horton et al. | May 1987 | A |
4689463 | Shubert | Aug 1987 | A |
4690228 | Voelz et al. | Sep 1987 | A |
4726718 | Meskin et al. | Feb 1988 | A |
4727942 | Galle et al. | Mar 1988 | A |
4738322 | Hall et al. | Apr 1988 | A |
4763736 | Varel, Sr. | Aug 1988 | A |
4765205 | Higdon | Aug 1988 | A |
4814234 | Bird | Mar 1989 | A |
4835357 | Schalk et al. | May 1989 | A |
4836307 | Keshavan et al. | Jun 1989 | A |
4864094 | Saltzman et al. | Sep 1989 | A |
4866241 | Doherty et al. | Sep 1989 | A |
4874047 | Hixon | Oct 1989 | A |
4875532 | Langford | Oct 1989 | A |
4892159 | Holster | Jan 1990 | A |
4923511 | Krizan et al. | May 1990 | A |
4932484 | Warren et al. | Jun 1990 | A |
4936398 | Auty | Jun 1990 | A |
4943488 | Sung et al. | Jul 1990 | A |
4953641 | Pessier et al. | Sep 1990 | A |
4984643 | Isbell et al. | Jan 1991 | A |
4991671 | Pearce et al. | Feb 1991 | A |
5010225 | Carlin | Apr 1991 | A |
5016718 | Tandberg | May 1991 | A |
5027912 | Juergens | Jul 1991 | A |
5028177 | Meskin et al. | Jul 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5038640 | Sullivan et al. | Aug 1991 | A |
5049164 | Horton et al. | Sep 1991 | A |
5116568 | Sung et al. | May 1992 | A |
5145017 | Holster et al. | Sep 1992 | A |
5152194 | Keshavan et al. | Oct 1992 | A |
5176212 | Tandberg | Jan 1993 | A |
5224560 | Fernandez | Jul 1993 | A |
5226977 | Kitaguchi et al. | Jul 1993 | A |
5233150 | Schneebeli et al. | Aug 1993 | A |
5238074 | Tibbitts et al. | Aug 1993 | A |
5254923 | Kanitani | Oct 1993 | A |
5287936 | Grimes et al. | Feb 1994 | A |
5289889 | Gearhart et al. | Mar 1994 | A |
5293026 | Dennis et al. | Mar 1994 | A |
5314722 | Kobayashi | May 1994 | A |
5337843 | Torgrimsen et al. | Aug 1994 | A |
5346026 | Pessier et al. | Sep 1994 | A |
5429200 | Blackman et al. | Jul 1995 | A |
5439068 | Huffstutler et al. | Aug 1995 | A |
5452771 | Blackman et al. | Sep 1995 | A |
5467836 | Grimes et al. | Nov 1995 | A |
5513715 | Dysart | May 1996 | A |
5518077 | Blackman et al. | May 1996 | A |
5524510 | Davies et al. | Jun 1996 | A |
5535838 | Keshavan et al. | Jul 1996 | A |
5547033 | Campos, Jr. | Aug 1996 | A |
5553681 | Huffstutler et al. | Sep 1996 | A |
5558170 | Thigpen et al. | Sep 1996 | A |
5570750 | Williams | Nov 1996 | A |
5593231 | Ippolito | Jan 1997 | A |
5606895 | Huffstutler | Mar 1997 | A |
5624002 | Huffstutler | Apr 1997 | A |
5624588 | Terawaki et al. | Apr 1997 | A |
5641029 | Beaton et al. | Jun 1997 | A |
5644956 | Blackman et al. | Jul 1997 | A |
5645896 | Mills | Jul 1997 | A |
5655612 | Grimes et al. | Aug 1997 | A |
D384084 | Huffstutler et al. | Sep 1997 | S |
5695018 | Pessier et al. | Dec 1997 | A |
5695019 | Shamburger, Jr. | Dec 1997 | A |
5710405 | Solomon et al. | Jan 1998 | A |
5740872 | Smith | Apr 1998 | A |
5755297 | Young et al. | May 1998 | A |
5755298 | Langford, Jr. et al. | May 1998 | A |
5755299 | Langford, Jr. et al. | May 1998 | A |
5853815 | Muehlberger | Dec 1998 | A |
5866872 | Lu et al. | Feb 1999 | A |
5868502 | Cariveau et al. | Feb 1999 | A |
5873422 | Hansen et al. | Feb 1999 | A |
5893204 | Symonds | Apr 1999 | A |
5900272 | Goodman | May 1999 | A |
5921330 | Sue et al. | Jul 1999 | A |
5935350 | Raghu et al. | Aug 1999 | A |
5941322 | Stephenson et al. | Aug 1999 | A |
5942289 | Jackson | Aug 1999 | A |
5944125 | Byrd | Aug 1999 | A |
5967246 | Caraway et al. | Oct 1999 | A |
5979576 | Hansen et al. | Nov 1999 | A |
5988303 | Arfele | Nov 1999 | A |
5992542 | Rives | Nov 1999 | A |
5996713 | Pessier et al. | Dec 1999 | A |
6023044 | Kosaka et al. | Feb 2000 | A |
6046431 | Beattie | Apr 2000 | A |
6084196 | Flowers et al. | Jul 2000 | A |
6092613 | Caraway et al. | Jul 2000 | A |
6095265 | Alsup | Aug 2000 | A |
6109375 | Tso | Aug 2000 | A |
6124564 | Sue et al. | Sep 2000 | A |
6138779 | Boyce | Oct 2000 | A |
6173797 | Dystra et al. | Jan 2001 | B1 |
6214420 | Girardin et al. | Apr 2001 | B1 |
6220374 | Crawford | Apr 2001 | B1 |
6260635 | Crawford | Jul 2001 | B1 |
6279671 | Panigrahi et al. | Aug 2001 | B1 |
6283233 | Lamine et al. | Sep 2001 | B1 |
6296069 | Lamine et al. | Oct 2001 | B1 |
RE37450 | Deken et al. | Nov 2001 | E |
6360831 | Akesson et al. | Mar 2002 | B1 |
6375895 | Daemen | Apr 2002 | B1 |
6376801 | Farrell et al. | Apr 2002 | B1 |
6380512 | Emer | Apr 2002 | B1 |
6386302 | Beaton | May 2002 | B1 |
6392190 | Sue et al. | May 2002 | B1 |
6401844 | Doster et al. | Jun 2002 | B1 |
6408958 | Isbell et al. | Jun 2002 | B1 |
6415687 | Saxman | Jul 2002 | B2 |
6439326 | Huang et al. | Aug 2002 | B1 |
6446739 | Richman et al. | Sep 2002 | B1 |
6450270 | Saxton | Sep 2002 | B1 |
6474424 | Saxman | Nov 2002 | B1 |
6510906 | Richert et al. | Jan 2003 | B1 |
6510909 | Portwood et al. | Jan 2003 | B2 |
6527066 | Rives | Mar 2003 | B1 |
6533051 | Singh et al. | Mar 2003 | B1 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
6568490 | Tso et al. | May 2003 | B1 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6601475 | Davies et al. | Aug 2003 | B2 |
6601661 | Baker et al. | Aug 2003 | B2 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6615936 | Mourik et al. | Sep 2003 | B1 |
6649682 | Breton et al. | Nov 2003 | B1 |
6684967 | Mensa-Wilmot et al. | Feb 2004 | B2 |
6698098 | Griffo et al. | Mar 2004 | B2 |
6729418 | Slaughter, Jr. et al. | May 2004 | B2 |
6739214 | Griffin et al. | May 2004 | B2 |
6742607 | Beaton | Jun 2004 | B2 |
6749033 | Griffin et al. | Jun 2004 | B2 |
6766870 | Overstreet | Jul 2004 | B2 |
6772849 | Oldham et al. | Aug 2004 | B2 |
6797326 | Griffin et al. | Sep 2004 | B2 |
6843333 | Richert et al. | Jan 2005 | B2 |
6861098 | Griffin et al. | Mar 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6861612 | Bolton et al. | Mar 2005 | B2 |
6878447 | Griffin et al. | Apr 2005 | B2 |
6883623 | McCormick et al. | Apr 2005 | B2 |
6927390 | Mickael | Aug 2005 | B2 |
6986395 | Chen | Jan 2006 | B2 |
6988569 | Lockstedt et al. | Jan 2006 | B2 |
7034262 | Fischer et al. | Apr 2006 | B2 |
7041936 | Oberzaucher et al. | May 2006 | B2 |
7049540 | Sanders et al. | May 2006 | B2 |
7096978 | Dykstra et al. | Aug 2006 | B2 |
7111694 | Beaton | Sep 2006 | B2 |
7137460 | Slaughter, Jr. et al. | Nov 2006 | B2 |
7152702 | Bhome et al. | Dec 2006 | B1 |
7210377 | Griffo et al. | May 2007 | B2 |
7234550 | Azar et al. | Jun 2007 | B2 |
7262240 | Breton et al. | Aug 2007 | B1 |
7350568 | Mandal et al. | Apr 2008 | B2 |
7350601 | Belnap et al. | Apr 2008 | B2 |
7360612 | Chen et al. | Apr 2008 | B2 |
7361411 | Daemen et al. | Apr 2008 | B2 |
7377341 | Middlemiss et al. | May 2008 | B2 |
7387177 | Zahradnik et al. | Jun 2008 | B2 |
7392862 | Zahradnik et al. | Jul 2008 | B2 |
7398837 | Hall et al. | Jul 2008 | B2 |
7416036 | Forstner et al. | Aug 2008 | B2 |
7435478 | Keshavan | Oct 2008 | B2 |
7462003 | Middlemiss | Dec 2008 | B2 |
7473287 | Belnap et al. | Jan 2009 | B2 |
7493973 | Keshavan et al. | Feb 2009 | B2 |
7517589 | Eyre | Apr 2009 | B2 |
7533740 | Zhang et al. | May 2009 | B2 |
7568534 | Griffin et al. | Aug 2009 | B2 |
20020017402 | Bird | Feb 2002 | A1 |
20040108145 | Siracki | Jun 2004 | A1 |
20040173384 | Yong et al. | Sep 2004 | A1 |
20050077090 | Viswanadham et al. | Apr 2005 | A1 |
20050087370 | Ledgerwood | Apr 2005 | A1 |
20050178587 | Witman et al. | Aug 2005 | A1 |
20050183892 | Oldham et al. | Aug 2005 | A1 |
20050263328 | Middlemiss | Dec 2005 | A1 |
20050273301 | Huang | Dec 2005 | A1 |
20060032674 | Chen et al. | Feb 2006 | A1 |
20060032677 | Azar et al. | Feb 2006 | A1 |
20060162969 | Belnap et al. | Jul 2006 | A1 |
20060177689 | Muir et al. | Aug 2006 | A1 |
20060196699 | Estes et al. | Sep 2006 | A1 |
20060213693 | Zahradnik et al. | Sep 2006 | A1 |
20060254830 | Radtke | Nov 2006 | A1 |
20060266558 | Middlemiss et al. | Nov 2006 | A1 |
20060266559 | Keshavan et al. | Nov 2006 | A1 |
20060278442 | Kristensen | Dec 2006 | A1 |
20060283640 | Estes et al. | Dec 2006 | A1 |
20070000698 | Viswanadham | Jan 2007 | A1 |
20070029114 | Middlemiss | Feb 2007 | A1 |
20070032905 | Nagatsuka et al. | Feb 2007 | A1 |
20070062736 | Cariveau et al. | Mar 2007 | A1 |
20070079994 | Middlemiss | Apr 2007 | A1 |
20070187155 | Middlemiss | Aug 2007 | A1 |
20070243794 | Mundt | Oct 2007 | A1 |
20080066970 | Zahradnik et al. | Mar 2008 | A1 |
20080145686 | Mirchandani et al. | Jun 2008 | A1 |
20080181366 | Bamola | Jul 2008 | A1 |
20080264695 | Zahradnik et al. | Oct 2008 | A1 |
20080296068 | Zahradnik et al. | Dec 2008 | A1 |
20090032310 | Stevens et al. | Feb 2009 | A1 |
20090039062 | Cretegny et al. | Feb 2009 | A1 |
20090114454 | Belnap et al. | May 2009 | A1 |
20090126998 | Zahradnik et al. | May 2009 | A1 |
20090159338 | Buske | Jun 2009 | A1 |
20090159341 | Pessier et al. | Jun 2009 | A1 |
20090166093 | Pessier et al. | Jul 2009 | A1 |
20090178855 | Zhang et al. | Jul 2009 | A1 |
20090183925 | Zhang et al. | Jul 2009 | A1 |
20100065337 | Luce et al. | Mar 2010 | A1 |
20100078224 | Steel et al. | Apr 2010 | A1 |
20100104736 | Luce et al. | Apr 2010 | A1 |
20100159157 | Stevens et al. | Jun 2010 | A1 |
20100181292 | Stauffer et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
2458158 | Feb 2004 | CA |
0049899 | Apr 1982 | EP |
0194050 | Sep 1986 | EP |
0225101 | Jun 1987 | EP |
0157278 | Nov 1989 | EP |
0351039 | Jan 1990 | EP |
0496181 | Jul 1992 | EP |
0496181 | Jul 1992 | EP |
0573135 | Dec 1993 | EP |
0391683 | Jan 1996 | EP |
2089187 | Aug 2009 | EP |
1323672 | Jul 1973 | GB |
2183694 | Jun 1987 | GB |
2276886 | Oct 1994 | GB |
2293615 | Apr 1996 | GB |
2295157 | May 1996 | GB |
2311085 | Sep 1997 | GB |
05131289 | May 1993 | JP |
08141744 | Jun 1996 | JP |
2005524533 | Aug 2005 | JP |
8502223 | May 1985 | WO |
9706339 | Feb 1997 | WO |
2008124572 | Oct 2008 | WO |
WO2009043369 | Apr 2009 | WO |
Entry |
---|
Kimura et al.; “Welding robot system for gas pipe, water pipe, comprises specific information processor for setting up welding program from several programs stored in memory unit based on information of objects to be welded”; Aug. 21, 2001; Derwent; AccNo. 2001-600344; pp. 1-2. |
International Search Report for International Application No. PCT/US2009/061632 mailed May 10, 2010, 3 pages. |
International Written Opinion for International Application No. PCT/US2009/061632 mailed May 10, 2010, 3 pages. |
Berge, James M., “Automating the Welding Process, Successful Implementation of Automated Welding Systems,” Copyright 1994 by Industrial Press Inc., New York, NY. |
Cary, Howard B., “Arc Welding Automation,” Copyright 1995 by Marcel Dekker, Inc., New York, NY, Chapters 1-20 and Appendixes. (submitted in six parts). |
“EZCase Casing Bit System,” © 2007 Baker Hughes Incorporated, www.HCCbits.com, 2 pages. |
“EZReam Casing/Liner Shoe,” © 2007 Baker Hughes Incorporated, www.HCCbits.com, 2 pages. |
“GaugePro XPR Expandable Reamer,” © 2008 Baker Hughes Incorporated, www.HCCbits.com, 2 pages. |
Creating E&P Value, inDepth TM, vol. 10, No. 1, 2004, © 2004 Baker Hughes Incorporated, pp. 6-60. |
Ream-While-Drilling Technology Operations Manual (RWD2), © 2007 Baker Hughes Incorporated, pp. 6-148.Reann While-Drilling Technology Operations Manual (RWD2), © 2007 Baker Hughes Incorporated, pp. 6-148. |
Buske et al., Performance Pardigm Shift: Drilling Vertical and directional Sections Through Abrasive Formations with Roller Cone Bits, Society of Petroleum Engineers—ISPE 114975, CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Canada, Jun. 16-19, 2008. |
Ersoy et al., Wear Charateristics of PDC Pin and Hybrid Core Bits in Rock Drilling, Wear 188, Elesevier Science S. A., Mar. 1995, pp. 150-165. |
Gatto et al., Plasma Transferred Arc Deposition of Powdered High Performances Alloys: Process Parameters Optimization as a Function of Alloy and Geometrical Configuration, Surface & Coatings Technology, vol. 187 (2-3), pp. 265-271 (2004). |
George et al., Significant Cost Savings Achieved Through the Use of PDC Bits in Compressed Air/Foam Applications, Society of Petroleum Engineers—SPE 116118, 2008 SPE Annual Technical Conference and Exhibition, Denver, Colorado, Sep. 21-24, 2008. |
Mills Machine Company, Inc., Rotary Hole Openers—Section 8, http://www.millsmachine.com/pages/home—page/mills—catalog/cat—holeopen/cat—holeopen.pdf, retrieved Apr. 27, 2009. |
Pessier et al., Hybrid Bits Offer Distinct Advantages in Selected Roller Cone and PDC Bit Applications, IADC/SPE Drilling Conference and Exhibition, Feb. 2-4, 2010, New Orleans. |
Sheppard et al., Rock Drilling—Hybrid Bit Success for Syndax3 Pins, Industrial Diamond Review, Jun. 1993, pp. 309-311. |
Smith Services, Hole Opener—Model 6980 Hole Opener, http://www.siismithservices.com/b—products/product—page.asp?ID=589, retrieved May 7, 2008. |
Tomlinson et al., Rock Drilling—Syndax3 Pins-New Concepts in PCD Drilling, Industrial Diamond Review, Mar. 1992, pp. 109-114. |
Warren et al., PDC Bits, What's Needed to Meet Tomorrow's Challenge, SPE 27978, University of Tulsa Centennial Petroleum Engineering Symposium, Aug. 1994, pp. 207-214. |
Wells et al., Bit Balling Mitigation in PDC Bit Design, International Association of Drilling Contractors/Society of Petroleum Engineers—IADC/SPE 114673, IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Indonesia, Aug. 25-27, 2008. |
Williams et al., An Analysis of the Performance of PDC Hybrid Drill Bits, SPE/IADC 16117, SPE/IADC Drilling Conference, Mar. 1987, pp. 585-594. |
Number | Date | Country | |
---|---|---|---|
20100106285 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61109427 | Oct 2008 | US |