Systems and methods for seamless host migration

Information

  • Patent Grant
  • 11228638
  • Patent Number
    11,228,638
  • Date Filed
    Monday, January 27, 2020
    4 years ago
  • Date Issued
    Tuesday, January 18, 2022
    2 years ago
Abstract
Systems and methods of the present invention for maintaining network data distribution are provided. Network data may be distributed in such as manner as to allow a network session to weather interrupted communications between host and clients without significant loss of data. Embodiments of the present invention provide for one or more clients to serve as backup host(s) for the network session. When the other clients transmit data to the host, they may also transmit the data to one or more backup hosts if there are any indications of interrupted communication.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to networks. More specifically, the present invention relates to data distribution in networks.


Description of Related Art

A network may include a group of computing devices connected together by a communications system. A computer in the network may communicate, exchange data, and share resources with the other computers in the network. Examples of networks include a personal area network (PAN), local area network (LAN), and wide area network (WAN).


Various network configurations are known in the art. The traditional client-server network illustrated in FIG. 1A includes a host 110 connected to clients 120A-D. The host 110 establishes the network session 130, controls which and how many clients may join the network session 130 and how the clients 120A-D interact with each other once they have joined network session 130. Because the host 110 generally has large amounts of bandwidth and processing power, the host 110 is may be capable of managing and distributing data to and from all the clients 120A-D in the network session 130. In such a configuration, data from a particular client (e.g., client 120D) may be distributed to other clients (e.g., clients 120A-C) through the host 110. For example, client 120D may transmit data to the host 110. When another client, such as client 120A, requests that data, the host 110 transmits that data to client 120A.


By virtue of being connected to the host, a client may request only the data that the client needs (via the host) so that the client does not have to manage otherwise unneeded data. Such an arrangement may be common amongst clients that do not have the ability to effectively manage all the data exchanged within a network session. These clients may require a host to manage and distribute the data.


A disadvantage of having the host manage and distribute data in a network session is that data can be lost when there are connectivity issues affecting communications between the host and any one of the session clients. In such an instance, the data from a particular client cannot be transmitted to the host. That data would also be unavailable to the other clients in the network. For example, client 120D may suddenly become disconnected from the host 110. Information that client 120D would have sent to the host 110 never reaches the host 110 and, as a consequence, the information cannot be transmitted to the rest of the network (i.e., clients 120A-C). The missing information may cause a disruption to the network session 130, possibly affecting the operations of the other clients. This may be especially true in the context of interactive network game play.


There is, therefore, a need in the art for improved systems and methods for network data distribution that addresses problems related to network session connectivity and maintaining an uninterrupted exchange of data in the session.


SUMMARY OF THE INVENTION

Systems and methods of the present invention provide for maintaining network data distribution that would allow a network session to weather interrupted communication between a host and clients without any loss of data. Host functions migrate to a client seamlessly and without significant loss of data. Embodiments of the present invention provide for one or more clients to serve as a backup host for the network session. When the other clients transmit data to the host, they may also transmit the data to one or more backup hosts. For example, a client that sends data to the host may not receive acknowledgement of the data within a certain period of time. That client may re-transmit the data to the host, as well transmit the data to the backup host.


Various embodiments of the present invention include methods for network data distribution. Such methods include connecting a host to clients, determining whether a client is capable of serving as a backup host, and if so, transmitting to that client certain information that would allow the client serve as the backup host. Serving as the backup hosts includes receiving information from other clients when those other clients cannot communicate with the host. In some embodiments of the present invention, the method further provides for indicating that communications between a host and a client are interrupted and for terminating the connection between the host and the particular client.


Various embodiments of the present invention include systems for network data distribution. Such systems may include a host, a first client capable of serving as a backup host, and a second client capable of transmitting data to the first client when communications between the host and the second client is interrupted. In some embodiments of the present invention, the second client may also serve as a backup host. Some embodiments of the present invention may include a plurality of clients, each configured to serve as backup hosts.


A host system for use in network distribution systems may also be provided by embodiments of the present invention. Such host systems may include an acknowledgement module to acknowledge client communications upon receipt, a negotiation module to negotiate whether a particular client is capable of serving as a backup host, and a backup application module to deliver to the client an application providing host information. Some embodiments of the present invention further include a host information database and a timer.


Some embodiments of the present invention include computer storage media and instructions for network data distribution. Such instructions may provide for connecting a host to clients, negotiating with a client capable of serving as a backup host, and transmitting host information to the client so that it may begin serving as a backup host.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates a client-server network configuration as it is known in the art.



FIG. 1B illustrates an exemplary system for network data distribution with one backup host.



FIG. 1C illustrates an exemplary system for network data distribution with several backup hosts.



FIG. 2 illustrates an exemplary configuration for a computing device offering seamless host migration in a network data distribution system.



FIG. 3A illustrates an implementation of an exemplary system for network data distribution.



FIG. 3B illustrates an alternate implementation of an exemplary system for network data distribution.



FIG. 4 depicts an exemplary method for network data distribution.





DETAILED DESCRIPTION

The present invention includes systems and methods for network data distribution. Embodiments of the present invention may allow host migration to occur seamlessly. A network session may continue without significant loss of data in the event of interrupted communication between a host and a client. A host of a network session may be connected to a number of clients. One (or more) of these clients may be capable of serving as a backup host. Backup viability is negotiated with a client and host information is transmitted to the client, which may then act as a backup host. The backup host may then connect to and receive data from the other clients in the network session. Thereafter, if communication between the host and a particular client is interrupted, that particular client may transmit its data to the backup host allowing the network session to continue without any loss of data.


The elements identified throughout are exemplary and may include various alternatives, equivalents, or derivations thereof. Various combinations of hardware, software, and computer-executable instructions may be utilized. Program modules and engines may include routines, programs, objects, components, and data structures that effectuate the performance of particular tasks when executed by a processor, which may be general purpose or application specific. Computer-executable instructions and associated data structures stored in a computer-readable medium represent examples of programming means for executing the steps of the methods and/or implementing particular system configurations disclosed herein.


In the client-server network configuration illustrated in FIG. 1A and as discussed in detail above, each client does not have to process all the data in a network session. Instead, each client receives and processes only the data that is necessary for the client to participate in the network session. Some clients are not capable of managing all the data efficiently due to, for example, lack of bandwidth or lack of processing power. Some clients, however, do have the ability to manage all the data in a network session. These particular clients may act as backup hosts, storing some or all of the data from the network session.


In contrast to the system configuration of FIG. 1A, FIG. 1B illustrates an exemplary system for network data distribution with one backup host, client 160A. A backup host may be any client capable of performing some or all of the functions of a host of a network session. When the host 140 of the network session 150 cannot or does not perform, some or all of the hosting responsibilities may migrate to a backup host. To qualify as a backup host requires the candidate host (client) to exhibit backup viability. Exhibiting backup viability may involve meeting one or more requirements concerning, for example, bandwidth, processing power, memory, hardware or software configurations, or quality of service. A client's backup viability may be determined through negotiation with the host.


After completing negotiations concerning and confirming backup viability, host information may be transmitted between host 140 and client 160A through network session 150. The host information may include the network name, the internet protocol (IP) addresses of the clients in the network, firewall information, and information concerning specific responsibilities should client 160A need to takeover certain host responsibilities. Using the host information, client 160A may be able to act as a backup host in the event that one or more connections between the host 140 and the other clients 160B-D become interrupted. For example, if client 160B becomes disconnected from host 140, client 160B may transfer data to client 160A as will be illustrated in the context of FIG. 3A and FIG. 3B. By migrating host responsibilities from host 140 to client 160A, information from client 160B is not completely lost to the network session 150.


In some embodiments, more than one client may be capable of serving as backup hosts. FIG. 1C illustrates an exemplary system for network data distribution with several backup hosts—clients 190A-D. Each client in the network session 180 of FIG. 1C may be responsible for particular backup host responsibilities should original host 170 become unavailable. For example, client 190A may be responsible for scorekeeping while client 190B may be responsible for state changes in the game environment. Client 190C may be responsible for admissions criteria (e.g., who may participate in the game) whereas client 190D may be responsible for chat functionality. Alternatively, client 190A may be responsible for all of the aforementioned tasks and clients 190B-D take over those tasks should client 190A subsequently fail.



FIG. 2 illustrates an exemplary configuration 200 for a computing device offering seamless host migration in a network data distribution system. The host 200, which may act as a central communications hub in a network, may be a computing device such as a server. A computing device typically reserved for client operations may also exhibit some or all of the configurations of host 200 due to the fact that a client may, at some point, become a backup host. Host 200 may include a network interface 210, acknowledgement module 220, negotiation module 230, host information database 240, backup application module 250, polling module 260, and timer 270.


A module (or application), as referenced in the present invention, is a collection of routines that perform various system-level functions. A module may be dynamically loaded and unloaded by hardware and device drivers as required. The modular software components described herein may also be incorporated as part of a larger software platform or integrated as part of an application specific component.


Network interface 210 may be any of a variety of hardware and/or software components configured to allow for communication between the host and other computing devices in the network. Network interface 210 may include components for communicating over wired, wireless, and/or Internet-based communications networks.


Acknowledgement module 220 allows for verification that information transmitted by a client was received by the host 200. When host 200 receives information from a client through network interface 210, acknowledgement module 220 may transmit an acknowledgement of receipt (ACK) to the client sending the information. For example, if a client sends information concerning a change in game state data to host 200, acknowledgement module 220 may transmit an ACK reply to the transmitting client indicating that information was received. The ACK reply sent by acknowledgement module 220 may further include an indication of what information was received and how much of that information was received and/or if any of that information was corrupted or otherwise incomplete.


Non-receipt of an ACK with respect to a particular data transmission by the transmitting client may indicate that the data transmission was never received by the host 200. Non-receipt of the data transmission (or a portion thereof) by the host 200 may indicate a problem with the connection between the host 200 and the client that sent the data transmission or the host 200 in and of itself. If a particular number of data transmissions fail to receive an ACK reply from the host 200, the transmitting client may invoke a migration operation whereby some or all of the host functionalities are migrated to a backup host.


Negotiation module 230 negotiates the backup viability of a client based on a variety of parameters. For example, a viable backup host/client candidate may be required to have a certain amount of available bandwidth. The bandwidth of the client may need to be sufficient to allow the client to manage all the data in the network session. Backup viability may require that the client conform to various quality of service standards as they relate to, for example, ping rate, packet loss, available memory, processor speed, and the like.


Negotiation module 230 may further determine whether the client candidate is capable of connecting to each of the other clients in the network. A viable backup host may need to be able to connect to and receive information from each of the other clients in the network. The parameters for backup viability may be determined by the type of network session. For example, a particular gaming network session may require a certain amount of bandwidth and processor speed for backup viability due to the number of state changes that may occur in the game environment. Less complex transactions, such as simple file transfers, may require less bandwidth and/or processing power.


Negotiation module 230 may be configured to negotiate backup viability with multiple clients thereby resulting in a series of backup hosts. Alternatively, the negotiation module 230 may be configured to allocate backup responsibilities for particular tasks amongst a group of clients. By providing for a series of backup hosts, hosting duties may migrate seamlessly from a host to a first backup host to a second backup host and so on as network or host/client conditions warrant. An order of backup host responsibilities and/or the particular responsibilities may be assigned based on the order in which the clients connected to the host. Alternatively, order and/or responsibilities may be based on other factors such as bandwidth or quality of service.


Host information database 240 may store information concerning the host, the clients, or the network session. The information stored in host information database 240 may allow for a computing device to perform certain hosting duties, such as connecting to the other clients in the network session. Such host information may include the network name, the Internet protocol (IP) addresses of the clients in the network, and firewall information. Host information database 240 may be updated when events such as a client disconnecting from the network or a new client joining the network occur. The IP addresses of the new clients would, for example, need to be added to the host information database 240.


Operating in conjunction with host information database 240, backup application module 250 generates an application that may be downloaded, installed, and executed on the client. This application provides a client with certain operational functionality that may be required of the client in order for it to serve as a backup host in addition to satisfying underlying viability requirements. The application may configure the client for connecting to and for exchanging data with other clients in the network session.


Optional polling module 260 may be configured to poll all the clients in a network session. Polling module 260 may be used to poll clients for connectivity. Polling for connectivity may include sending small packets of data to each client in the network session, receiving replies/acknowledgments from clients that have received the data packets, and determining which clients have problems communicating with the host 200.


Polling module 260 may automatically poll clients at periodic intervals. Polling module 260 may also be configured to poll clients when certain events occur, such as a new client joining the network session or an indication of interrupted communication (e.g., a client does not acknowledge data sent by host 200). The polling operation of polling module 260 may be akin to a periodic heartbeat like that described in U.S. patent publication number 2003-0204566 for a “Multi-User Application Program Interface,” the disclosure of which has previously been incorporated by reference.


Host 200 may also include a timer 270. Timer 270 may be configured to measure how much time has elapsed after an event. Host 200 may use timer 270 to determine the time between a data transmission like that generated by polling module 260 and acknowledgement of that data transmission. Such information may be used to determine whether to terminate a connection to a particular client. If host 200 receives no acknowledgment or no poll response from a particular client for a period of time, as measured by timer 270, host 200 may terminate the connection with that client.


The application generated by the backup application module 250 may further include certain functionality similar to that of polling module 260 and timer 270. Unlike the host 200 that may be seeking to determine whether to eject a particular client from the network session, this ‘heartbeat’ functionality may be used by a client designated as a backup host to determine when the host 200 is no longer capable or has continuously failed to fulfill certain host duties. The inability or failure of a host 200 to fulfill certain duties may be indicated by a continued lack of receipt of an ACK or heartbeat as may be generated by acknowledgment module 220.



FIG. 3A illustrates an implementation of an exemplary system 300 for network data distribution. Host 200 is connected to a plurality of clients 310A-D. Client 310A has successfully negotiated backup viability with host 200 and received host information through connection 320. Using the host information, client 310A connects to the other clients in the network, namely, clients 310B-D. Connections 330 allow for clients 310B-D to communicate directly (i.e., not through host 200) with client 310A. Clients 310B-D may use the connections 330 to exchange data with client 310A if each respective client has difficulty transmitting that data to the host 200. Clients 310B-D may also transmit data to client 310A automatically, irrespective of any difficulties with data transmissions to the host 200.



FIG. 3B illustrates an alternate implementation of an exemplary system for network data distribution. In particular, FIG. 3B illustrates an exemplary system for network data distribution where communications between a host 200 and a client 310D are interrupted. Specifically, the illustrated data transmission 340 between host 200 and client 310D is shown as being unsuccessful. While client 310D is attempting to send data transmission 340 to the host 200, a faulty connection prevents the transmission from ever being received by the host 200.


Because client 310A is a backup host for the network session, client 310D can send the same data intended for the host 200 in a backup data transmission 350 directly to client 310A (i.e., not through host 200). Client 310A may then send that data in a data transmission 360 to the host 200. Client 310A, in this particular embodiment, acts as a proxy between client 310D and host 200 due to the faulty connection separating client 310D and host 200. Host 200 may then distribute the data from client 310D to clients 310B and 310C albeit received via client 310A. Alternatively, client 310A may send the data to clients 310B or 310C if, for example, host 200 was unable to maintain host duties versus the connection between client 310D and host 200 simply being defective.


Because communications between the host 200 and client 310D has been disrupted, client 310D may need to obtain session data through client 310A. Client 310A may act as an intermediary for both the receipt and transmission of data with respect to host 200 and client 310D in addition to making requests for data on the behalf of either computing device.



FIG. 4 is a flowchart depicting an exemplary method 400 for network data distribution. The steps identified in FIG. 4 (and the order thereof) are exemplary and may include various alternatives, equivalents, or derivations thereof including but not limited to the order of execution of the same. The steps of the process of FIG. 4 (and its various alternatives) may be embodied in hardware or software including a machine-readable or computer-readable storage medium (e.g., optical disc, memory card, or hard drive) including instructions executable by a processor.


In step 410, a host (e.g., host 200) establishes a network session. The host may set certain parameters for who may join the network session, as well as various aspects of how the network session will proceed. A host may establish a private network session that only certain clients or invited clients may join. Alternatively, the host may establish a network session that is open to the public and any client may join.


In step 420, multiple clients join the network session by connecting to the host. If the host has set certain parameters concerning who may join the network session, the clients may need to satisfy those parameters before being allowed to connect the host or to participate in the network session.


In step 430, backup viability is negotiated via the negotiation module 220 of FIG. 2. One or more clients may be viable backup hosts with the capacity and resources to serve as a backup hosts. Backup viability may be negotiated as soon as a client joins the network session. Various aspects of backup viability, including bandwidth and quality of service, may be evaluated to determine whether a particular client is capable of serving as a backup host. Depending on the requirements of negotiation module 220, there may be one, more than one, or no viable backup hosts among the clients in the network session. Backup responsibilities may also be distributed.


In step 440, backup responsibility is allocated. Where there are multiple clients that are viable backup hosts, backup responsibility may need to be allocated among those clients with respect to order and/or particular responsibilities. Clients in the network session may transmit their data to the first viable backup host as may have been identified by the host or the first deemed backup through a broadcast or other communication as exemplified in U.S. patent publication number 2003-0217135 for “Dynamic Player Management,” the disclosure of which has previously been incorporated by reference. If the first viable backup host is or becomes incapable of serving as a backup host, the other clients may transmit their data to the second viable backup host to join the network session. The need to communicate with a secondary backup host may be indicated utilizing means as disclosed herein and/or the aforementioned “Dynamic Player Management” application.


In step 450, it is determined whether a particular client can connect to each of the other clients in the network session. A backup host needs to be able to connect to each and every other client in the session. If a first client cannot connect to a second client, that first client cannot serve as a backup host for the network session. For example, the first client may have firewall issues that would prevent the first client from making certain types of connections. If a potential backup host cannot connect to another client for any reason, the method may return to step 440 and re-allocate backup responsibility.


Once it has been determined that a client is a viable backup host and can connect to all of the other clients in the network session, the method proceeds to step 460. In step 460, backup information is downloaded to a viable backup host. By providing the backup information to a backup host, the host can drop out of the network, and the backup host is capable of providing any information required by the other clients in the network session. Backup information may be provided as a part of the download and installation of an application facilitating seamless host transitions as discussed in the context of backup application module 250 of FIG. 2.


In step 470, network data distribution may commence. As illustrated in FIG. 3A, the data transmissions may occur between a host and a client. As FIG. 3B further illustrates, data transmission may also occur between two clients, from a client with host connectivity issues to a client capable of acting as a backup host. Further, that backup host may forward that data on to the host or directly to the other clients upon request. Through whatever connection(s) the data must be relayed, the data is provided to those computing devices that require that data.


While the present invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the true spirit and scope of the present invention. In addition, modifications may be made without departing from the essential teachings of the present invention. Various alternative systems may be utilized to implement the various methodologies described herein and various methods may be used to achieve certain results from the aforementioned systems.

Claims
  • 1. A method for managing host responsibilities, the method comprising: evaluating a plurality of clients within a network to identify at least one of the clients satisfying backup viability criteria;designating the identified client as a backup host to a current host within the network in relation to an identified host responsibility, the client being designated in accordance with a backup order for the identified host responsibility;transmitting network information regarding the identified responsibility of the current host to the backup host, wherein transmitting the network information to the backup host includes downloading backup information to the backup host regarding the identified host responsibility;identifying via the backup host that the current host has failed to perform one or more of the host responsibilities; andreplacing the current host with the backup host identified as next in the backup order of the identified host responsibility and a different backup host identified as next in a different backup order of a different host responsibility, wherein the backup host performs the identified host responsibility based on the network information before the current host is dropped out of the network, and wherein the different backup host performs at least the different host responsibility.
  • 2. The method of claim 1, wherein the backup viability criteria include a requirement regarding at least one of bandwidth, processing power, memory, hardware configurations, software configurations, quality of service metrics of each of the clients, and ability to connect with each other client in the network.
  • 3. The method of claim 1, wherein the network information includes a network name, internet protocol addresses of the plurality of clients in the network, and firewall information.
  • 4. The method of claim 1, wherein identifying that the current host has failed to perform one of the host responsibilities is based on a failure by the current host to provide a heartbeat signal or acknowledgement of receipt.
  • 5. The method of claim 1, further comprising continuously polling the current host at periodic intervals for an indication of interrupted communication, wherein identifying that the current host has failed to perform one of the host responsibilities is based on the polling.
  • 6. The method of claim 1, wherein downloading the backup information to the backup host includes installing an application that includes the backup information.
  • 7. The method of claim 1, wherein replacing the current host with the backup host is based on the backup order of the identified host responsibility, and further comprising identifying the backup order of the identified host responsibility based on at least one of order of connection to the current host, bandwidth, and quality of service.
  • 8. The method of claim 1, wherein different host responsibilities are assigned to different backup hosts.
  • 9. A system of allocating hosts for network data distribution, the system comprising: a plurality of client devices in a network; anda server that is designated a current host for the plurality of client devices, wherein the server comprises: memory that maintains information regarding backup viability criteria for the plurality of clients,a communication interface that transmits information regarding host responsibilities responsibility to a group of the clients that satisfy the backup viability criteria, anda processor that executes instructions stored in memory, wherein execution of the instructions by the processor: evaluates a plurality of clients within a network to identify at least one of the clients satisfying backup viability criteria;designates the identified client as a backup host to a current host within the network in relation to an identified host responsibility, the client being designated in accordance with a backup order for the identified host responsibility;transmits network information regarding the identified responsibility of a current host to the backup host, wherein the network information to the backup host includes backup information to the backup host regarding the identified host responsibility;identifies via the backup host that the current host has failed to perform one or more of the host responsibilities; andreplaces the current host with the backup host identified as next in the backup order of the identified host responsibility and a different backup host identified as next in a different backup order of a different host responsibility, wherein the backup host performs the identified host responsibility based on the network information before the current host is dropped out of the network, and wherein the different backup host performs at least the different host responsibility.
  • 10. The system of claim 9, wherein the backup viability criteria include a requirement regarding at least one of bandwidth, processing power, memory, hardware configurations, software configurations, quality of service metrics of each of the clients, and ability to connect with each other client in the network.
  • 11. The system of claim 9, wherein the network information includes a network name, internet protocol addresses of the plurality of clients in the network, and firewall information.
  • 12. The system of claim 9, wherein the server identifies that the current host has failed to perform one of the host responsibilities based on a failure by the current host to provide a heartbeat signal or acknowledgement of receipt.
  • 13. The system of claim 9, wherein the server further continuously polls the current host at periodic intervals for an indication of interrupted communication, wherein the server identifies that the current host has failed to perform one of the host responsibilities based on the poll.
  • 14. The system of claim 9, wherein the server downloads the backup information to the backup host by installing an application that includes the backup information.
  • 15. The system of claim 9, wherein the server replaces the current host with the backup host based on the backup order of the identified host responsibility, and wherein the server further identifies the backup order of the identified host responsibility based on at least one of order of connection to the current host, bandwidth, and quality of service.
  • 16. The system of claim 9, wherein different host responsibilities are assigned to different backup.
  • 17. A non-transitory computer-readable storage medium having embodied thereon a program, the program being executable by a processor to perform a method for allocating hosts in a network data distribution, the method comprising: evaluating a plurality of clients within a network to identify at least one of the clients satisfying backup viability criteria;designating the identified client as a backup host to a current host within the network in relation to an identified host responsibility, the client being designated in accordance with a backup order for the identified host responsibility;transmitting network information regarding the identified responsibility of the current host to the backup host, wherein transmitting the network information to the backup host includes downloading backup information to the backup host regarding the identified host responsibility;identifying via the backup host that the current host has failed to perform one or more of the host responsibilities; andreplacing the current host with the backup host identified as next in the backup order of the identified host responsibility and a different backup host identified as next in a different backup order of a different host responsibility, wherein the backup host performs the identified host responsibility based on the network information before the current host is dropped out of the network, and wherein the different backup host performs at least the different host responsibility.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 16/048,065 filed Jul. 27, 2018, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 15/672,113 filed Aug. 8, 2017, now U.S. Pat. No. 10,547,670, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 14/637,182 filed Mar. 3, 2015, now U.S. Pat. No. 9,729,621, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 13/412,361, filed Mar. 5, 2012, now U.S. Pat. No. 8,972,548, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 12/049,954 filed Mar. 17, 2008, now U.S. Pat. No. 8,131,802, which claims the priority benefit of U.S. provisional patent application No. 60/997,918 filed Oct. 5, 2007, the disclosures of which are incorporated herein by reference. The present invention application is related to U.S. patent application Ser. No. 10/211,128 filed Jul. 31, 2002 and entitled “Dynamic Player Management,” the disclosure of which is incorporated herein by reference. The present application is further related to U.S. patent application Ser. No. 10/359,359 filed Feb. 4, 2003 and entitled “Multi-User Application Program Interface,” the disclosure of which is incorporated herein by reference.

US Referenced Citations (228)
Number Name Date Kind
5630757 Gagin et al. May 1997 A
5634129 Dickinson May 1997 A
5682139 Pradeep Oct 1997 A
5704032 Badovinatz et al. Nov 1997 A
5823879 Goldberg Oct 1998 A
5826085 Bennet Oct 1998 A
5838909 Roy et al. Nov 1998 A
5841980 Waters et al. Nov 1998 A
5862339 Bonnaure Jan 1999 A
5893106 Brobst et al. Apr 1999 A
5941947 Brown Aug 1999 A
5956485 Perlman Sep 1999 A
5984787 Redpath Nov 1999 A
5987376 Olson et al. Nov 1999 A
6038599 Black Mar 2000 A
6041312 Bickerton et al. Mar 2000 A
6050898 Vange Apr 2000 A
6098091 Kisor Aug 2000 A
6106569 Bohrer Aug 2000 A
6108569 Shen Aug 2000 A
6142472 Kliebisch Nov 2000 A
6151632 Chaddha et al. Nov 2000 A
6152824 Rothschild et al. Nov 2000 A
6154782 Kawaguchi et al. Nov 2000 A
6203433 Kume Mar 2001 B1
6219045 Leahy et al. Apr 2001 B1
6247017 Martin Jun 2001 B1
6311209 Olson et al. Oct 2001 B1
6345297 Grimm Feb 2002 B1
6352479 Sparks Mar 2002 B1
6363416 Naeimi Mar 2002 B1
6446113 Ozzie et al. Sep 2002 B1
6470022 Rochberger Oct 2002 B1
6487583 Harvey Nov 2002 B1
6487678 Briskey et al. Nov 2002 B1
6519629 Harvey Feb 2003 B2
6530840 Cuomo Mar 2003 B1
6539494 Abramson et al. Mar 2003 B1
6549946 Fisher Apr 2003 B1
6560636 Cohen et al. May 2003 B2
6561811 Rapoza et al. May 2003 B2
6577628 Hejza Jun 2003 B1
6587874 Golla Jul 2003 B1
6607444 Takahashi et al. Aug 2003 B2
6631412 Glasser et al. Oct 2003 B1
6654831 Otterness et al. Nov 2003 B1
6676521 La Mura et al. Jan 2004 B1
6704885 Salas-Meza et al. Mar 2004 B1
6748420 Quatrano et al. Jun 2004 B1
6755743 Yamashita et al. Jun 2004 B1
6761636 Chung et al. Jul 2004 B2
6763371 Jandel Jul 2004 B1
6766364 Moyer Jul 2004 B2
6769990 Cohen Aug 2004 B2
6799255 Blumenau Sep 2004 B1
6839435 Lijima et al. Jan 2005 B1
6844893 Miller et al. Jan 2005 B1
6931446 Cox et al. Aug 2005 B1
7003550 Cleasby et al. Feb 2006 B1
7016942 Odom Mar 2006 B1
7018295 Sakaguchi et al. Mar 2006 B2
7025675 Fogel Apr 2006 B2
7035919 Lee et al. Apr 2006 B1
7056217 Pelkey et al. Jun 2006 B1
7089301 Labio et al. Aug 2006 B1
7107312 Hackbarth et al. Sep 2006 B2
7155515 Brown et al. Dec 2006 B1
7165107 Pouyoul et al. Jan 2007 B2
7177950 Narayan et al. Feb 2007 B2
7188145 Lowery et al. Mar 2007 B2
7203755 Zhu et al. Apr 2007 B2
7290264 Powers et al. Oct 2007 B1
7366185 Bush Apr 2008 B2
7454458 Islam et al. Nov 2008 B2
7523163 Zhu et al. Apr 2009 B2
7539216 Johns et al. May 2009 B2
7587465 Muchow Sep 2009 B1
7613800 Dhupelia Nov 2009 B2
7640298 Berg Dec 2009 B2
7680908 Gates, III et al. Mar 2010 B2
7711847 Dhupelia May 2010 B2
7720908 Newson et al. May 2010 B1
7730206 Newson et al. Jun 2010 B2
7792902 Chatani Sep 2010 B2
7822809 Dhupelia Oct 2010 B2
7831666 Chatani et al. Nov 2010 B2
7877509 Dhupelia Jan 2011 B2
7899017 Yu et al. Mar 2011 B2
7908393 Marr et al. Mar 2011 B2
7930345 Dhupelia Apr 2011 B2
7962549 Dhupelia Jun 2011 B2
8032619 Kato et al. Oct 2011 B2
8050272 Chaturvedi et al. Nov 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8131802 Jacob Mar 2012 B2
8214489 Ballette et al. Jul 2012 B2
8335813 Sun et al. Dec 2012 B2
8402124 Barillaud et al. Mar 2013 B1
8549150 Roseman Oct 2013 B1
8554842 Maehiro Oct 2013 B2
8560707 Jacob Oct 2013 B2
8719143 Meijer May 2014 B2
8719375 Hildreth et al. May 2014 B2
8725874 Keohane et al. May 2014 B2
8856233 Lacapra et al. Oct 2014 B2
8965978 Chandranmenon et al. Feb 2015 B2
8972548 Jacob Mar 2015 B2
8990305 Barkley Mar 2015 B2
9032248 Petty et al. May 2015 B1
9318003 Nilsson Apr 2016 B2
9369540 Lowery et al. Jun 2016 B2
9516068 Jacob Dec 2016 B2
9729621 Jacob Aug 2017 B2
9762631 Chatani Sep 2017 B2
10063631 Jacob Aug 2018 B2
10547670 Jacob Jan 2020 B2
10659500 Chatani May 2020 B2
20010009868 Sakaguchi et al. Jul 2001 A1
20010024974 Cohen Sep 2001 A1
20010037466 Fukutake et al. Nov 2001 A1
20010044339 Cordero et al. Nov 2001 A1
20020023117 Bernardin et al. Feb 2002 A1
20020035604 Cohen et al. Mar 2002 A1
20020042830 Bose et al. Apr 2002 A1
20020049086 Otsu Apr 2002 A1
20020062348 Maehiro May 2002 A1
20020075844 Hagen Jun 2002 A1
20020075940 Haartsen Jun 2002 A1
20020082077 Johnson Jun 2002 A1
20020082086 Scallie Jun 2002 A1
20020086732 Kirmse et al. Jul 2002 A1
20020107934 Lowery et al. Aug 2002 A1
20020107935 Lowery et al. Aug 2002 A1
20020115488 Berry Aug 2002 A1
20020133707 Newcombe Sep 2002 A1
20020142842 Easley et al. Oct 2002 A1
20020156917 Nye Oct 2002 A1
20020169889 Yang et al. Nov 2002 A1
20020178260 Chang Nov 2002 A1
20020184070 Chen et al. Dec 2002 A1
20030018719 Ruths Jan 2003 A1
20030073494 Kalpakian et al. Apr 2003 A1
20030093669 Morals et al. May 2003 A1
20030126245 Feltin et al. Jul 2003 A1
20030167343 Furuno Sep 2003 A1
20030190960 Jokipii Oct 2003 A1
20030204566 Dhupelia Oct 2003 A1
20030204593 Brown et al. Oct 2003 A1
20030214943 Engstrom et al. Nov 2003 A1
20030216181 Daniell et al. Nov 2003 A1
20030217135 Chatani Nov 2003 A1
20030217158 van Datta Nov 2003 A1
20030233537 Wohlgemuth et al. Dec 2003 A1
20040001476 Islam et al. Jan 2004 A1
20040002384 Multerer et al. Jan 2004 A1
20040024879 Dingman Feb 2004 A1
20040030787 Jandel Feb 2004 A1
20040031052 Wannamaker et al. Feb 2004 A1
20040053690 Fogel Mar 2004 A1
20040059711 Jandel Mar 2004 A1
20040117443 Barsness Jun 2004 A1
20040139228 Takeda Jul 2004 A1
20050038836 Wang Feb 2005 A1
20050068894 Yu et al. Mar 2005 A1
20050105526 Stiemerling May 2005 A1
20050144521 Werner Jun 2005 A1
20050181878 Danieli et al. Aug 2005 A1
20050245317 Arthur et al. Nov 2005 A1
20050251577 Guo Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262411 Vertes Nov 2005 A1
20060015560 MacAuley et al. Jan 2006 A1
20060047836 Rao et al. Mar 2006 A1
20060075127 Juncker Apr 2006 A1
20060085792 Traut Apr 2006 A1
20060092942 Newson et al. May 2006 A1
20060100020 Kasai May 2006 A1
20060142085 Kim Jun 2006 A1
20060168107 Balan et al. Jun 2006 A1
20060164974 Ramalho et al. Jul 2006 A1
20060190540 Chatani Aug 2006 A1
20060200551 Bali et al. Sep 2006 A1
20060218274 Labio et al. Sep 2006 A1
20060218275 Labio et al. Sep 2006 A1
20060221856 Quiroz Oct 2006 A1
20060247011 Gagner Nov 2006 A1
20060248144 Zhu et al. Nov 2006 A1
20060253595 van Datta Nov 2006 A1
20060258463 Cugno et al. Nov 2006 A1
20060288103 Gobara Dec 2006 A1
20070058792 Chaudhari Mar 2007 A1
20070061460 Khan Mar 2007 A1
20070076729 Takeda Apr 2007 A1
20070094325 Ih et al. Apr 2007 A1
20070099702 Tupper May 2007 A1
20070165629 Chaturvedi Jul 2007 A1
20070174399 Ogle et al. Jul 2007 A1
20070191109 Crowder Aug 2007 A1
20070208748 Li Sep 2007 A1
20070217436 Markley Sep 2007 A1
20070233865 Garbow et al. Oct 2007 A1
20070288598 Edeker et al. Dec 2007 A1
20070291706 Miller et al. Dec 2007 A1
20080049755 Gannon et al. Feb 2008 A1
20080189365 Narayanaswami et al. Aug 2008 A1
20080243953 Wu et al. Oct 2008 A1
20080280686 Dhupelia et al. Nov 2008 A1
20080291839 Hooper et al. Nov 2008 A1
20090006545 Dhupelia Jan 2009 A1
20090006604 Dhupelia Jan 2009 A1
20090077245 Smelyansky Mar 2009 A1
20090089363 Keohane Apr 2009 A1
20090094370 Jacob Apr 2009 A1
20090113060 Jacob Apr 2009 A1
20090138610 Gobara May 2009 A1
20090157882 Kashyap Jun 2009 A1
20090240821 Juncker Sep 2009 A1
20090287828 Wei et al. Nov 2009 A1
20100153496 Heinla Jun 2010 A1
20100279767 Dhupelia Nov 2010 A1
20100285872 Dhupelia Nov 2010 A1
20100287239 Chatani Nov 2010 A1
20120166651 Jacob Jun 2012 A1
20130304931 Jacob Nov 2013 A1
20140256449 Chatani et al. Sep 2014 A1
20150180958 Jacob Jun 2015 A1
20180013802 Chatani Jan 2018 A1
20180013820 Jacob Jan 2018 A1
Foreign Referenced Citations (30)
Number Date Country
104069637 Oct 2014 CN
1125617 Aug 2001 EP
1499987 Jan 2005 EP
2360874 Aug 2011 EP
2360875 Aug 2011 EP
2325543 Nov 1998 GB
269863 Dec 2015 IN
05-022346 Jan 1993 JP
63-232725 Sep 1998 JP
11-234326 Aug 1999 JP
2000-124939 Apr 2000 JP
2000-157724 Jun 2000 JP
2001-187273 Jul 2001 JP
2001-314657 Nov 2001 JP
2002-011251 Jan 2002 JP
2003-099337 Apr 2003 JP
201347493 Nov 2013 TW
I491229 Jul 2015 TW
WO 200005854 Feb 2000 WO
WO 200010099 Feb 2000 WO
WO 200068864 Nov 2000 WO
WO 200163423 Aug 2001 WO
WO 200182678 Nov 2001 WO
WO 200235769 May 2002 WO
WO 2003091894 Nov 2003 WO
WO 2003100643 Dec 2003 WO
WO 2004063843 Jul 2004 WO
WO 2005088466 Sep 2005 WO
WO 2006023508 Mar 2006 WO
WO 2009045475 Apr 2009 WO
Non-Patent Literature Citations (117)
Entry
U.S. Appl. No. 15/688,592 FINal Office Action dated Jun. 26, 2020.
U.S. Appl. No. 15/688,656 Office Action dated Apr. 20, 2020.
U.S. Appl. No. 13/918,809, Shekhar V. Dhupelia, Method for Ladder Ranking in a Game, filed Jun. 14, 2013.
U.S. Appl. No. 15/688,592, Shekhar V. Dhupelia, Method for Ladder Ranking in a Game, filed Aug. 28, 2017.
U.S. Appl. No. 15/688,610, Shekhar V. Dhupelia, Method for Ladder Ranking in a Game, filed Aug. 28, 2017.
U.S. Appl. No. 15/688,656, Shekhar V. Dhupelia, Method for Ladder Ranking in a Game, filed Aug. 28, 2017.
U.S. Appl. No. 16/878,437, Masayuki Chatani, Managing Particpants in an Online Session, filed May 19, 2020.
“Brief for Appellee,” in re Masayuki Chatani et al., U.S. Court of Appeals for the Federal Circuit (2007-1150) (May 21, 2007).
“Brief of Appellants,” in re Masayuki Chatani et al., U.S. Court of Appeals for the Federal Circui (2007-1150) (Mar. 23, 2007).
“In Re Masayuki Chatani and Glen Van Datta,” United States Court of Appeals for the Federal Circuit, 2007-1150 (U.S. Appl. No. 11/211,128), filed Nov. 19, 2007.
“Petition for Panel Rehearing,” In Re Masayuki Chatani and Glen Van Datta, Appeal From the United States Patent and Trademark Office, Board of Patent Appeals and Interferences, In the United States Court of Appeals for the Federal Circuit, 2007-1150 (U.S. Appl. No. 10/211,128), filed Jan. 3, 2008.
“Reply Brief of Appellants,” In re Masayuki Chatani et al., U.S. Court of Appeals for the Federal Circuit (2007-1150) (Jun. 4, 2007).
“Technical Issues of establishing any-to-any 2-way real-time communications over the internet,” Apr. 24, 2005, URL http://web.archive.org/web/20050424081036/.
Aronson, Jesse. “Using Groupings for Networked Gaming,” Gamasutra.com, Jun. 21, 2000.
Audet, F. Nat Behavioral Requirements for Unicast UDP, BEHAVE Internet-Draft, Jul. 15, 2005.
Boulic, Ronan etl al. “Integration of Motion Control Techniques for Virtual Human and Avatar Real-Time Animation,” Swiss Fedl Inst. Of Tech., Lausanne, Switzerland, Sep. 1997.
Chiueh, Tzi-cker, “Distributed Systems Support for Networked Games,” Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY, May 1997.
Cisco Systems Inc., “Network Flow Management: Resource Reservation for Multimedia Flows,” Mar. 19, 1999.
Diot et al., “A Distributed Architecture for Multiplayer Interactive Applications on the Internet”, Aug. 1999, Network, IEEE, vol. 13, Issue 4, Jul.-Aug. 1999, pp. 6-15.
ECC Report 50. “Technical Issues of Establishing Any-to-Any-2-Way Real-Time Communications over the Internet.” Electronic Communications Committee (ECC). Gothenburg, Jul. 2004.
Festa and Borland, “Netscape alumni to launch P2P company”, Aug. 2, 2001, (avaiable at http://news.cnet.com/news/0-1005-202-6766377.html).
Hagsand O: Interactive Multiuser Ves in the DIVE System: IEEE Multimedia, IEEE Service Center, New York, NY, US vol. 3, No. 1, 21 Mar. 21, 1996, pp. 30-39, XP000582951 ISSN: 1070-986X.
Hanada, S. “The Design of Network Game and DirectPlay,” Inside Windows, Softbank K.K., vol. 4, pp. 42-57, Apr. 1, 1998.
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Multimedia Session Establishment Protocols, Mmusic Internet-Draft, Jul. 19, 2004.
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Offer/Answer Protocols, Mmusic Internet-Draft, Jul. 17, 2005.
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Multimedia Session Establishment Protocols, Mmusic Internet-Draft, Oct. 25, 2004.
Rosenberg, J. Interactive Connectivity Establishment (ICE): A Methodology for Network Address Translator (NAT) Traversal for Off/Answer Protocols, Mmusic Internet-Draft, Jan. 16, 2007.
Rosenberg, J. “Simple Traversal of UDP Through Network Address Translators (NAT),” BEHAVE Internet-Draft, Jul. 17, 2005.
Rosenberg, J. STUN—Simple Traversal of User Datagram Protocols (UDP) Throught Network Address Translators (NATs), Network Working Group, Mar. 2003.
Rosenberg, J. Traversal using Relay NAT (TURN), MIDCOM Internet-Draft, Oct. 20, 2003.
Takeda, Y. Symmetric NAT Traversal Using STUN, Internet Engineering Task Force, Jun. 2003.
PCT/US03/08682 International Search Report dated Oct. 14, 2003.
PCT/US03/12668 International Search Report dated Jul. 17, 2003.
PCT/US08/11415 Search Report and Written Opinion dated Dec. 5, 2008.
EP 037211413, European Search Report dated Jun. 30, 2005.
Chinese Application No. 03801033, Office Action dated Jun. 9, 2006.
Chinese Application No. 03801033, Office Action dated Jul. 5, 2011.
Chinese Application No. 03801033, Office Action dated Sep. 25, 2009.
Chinese Application No. 201410266012.9, Office Action dated Jul. 27, 2016.
European Application No. 03724201.3, Office Action dated Dec. 13, 2013.
European Application No. 03724201.3, Office Action dated Jul. 3, 2012.
Chinese Application No. 200810168739.8, Decision of Rejection dated Dec. 11, 2012.
Chinese Application No. 200810168739.8, Office Action dated May 11, 2012.
Chinese Application No. 200810168739.8, Office Action dated May 19, 2011.
Chinese Application No. 20088011547.1, Decision of Rejection dated Jul. 5, 2013.
Chinese Application No. 20088011547.1, Office Action dated Oct. 12, 2012.
Chinese Application No. 20088011547.1, Office Action dated Mar. 7, 2012.
Chinese Application No. 20088011547.1, Office Action dated Aug. 10, 2012.
EP 08014892.7 Office Action dated Jul. 20, 2011.
Taiwan Application No. 097138349, Office Action dated Mar. 26, 2014.
Taiwan Application No. 097138349, Office Action dated Feb. 8, 2013.
EP 08835745.4 Extended European Search Report dated Jul. 22, 2011.
EP 11004182.9 Extended European Search Report dated Jul. 14, 2011.
EP 11004181.1 Extended European Search Report dated Jul. 22, 2011.
U.S. Appl. No. 10/211,128 Final Office Action dated Feb. 2, 2004.
U.S. Appl. No. 10/211,128 Office Action dated Nov. 10, 2003.
U.S. Appl. No. 11/375,526 Office Action dated Apr. 8, 2008.
U.S. Appl. No. 11/375,526 Final Office Action dated Jul. 3, 2007.
U.S. Appl. No. 11/375,526 Final Office Action dated Mar. 2, 2007.
U.S. Appl. No. 11/375,526 Office Action dated Oct. 24, 2006.
U.S. Appl. No. 11/403,623 Office Action dated Jun. 25, 2009.
U.S. Appl. No. 11/403,623 Office Action dated Apr. 9, 2008.
U.S. Appl. No. 11/403,623 Final Office Action dated Jul. 3, 2007.
U.S. Appl. No. 11/403,623 Final Office Action dated Mar. 5, 2007.
U.S. Appl. No. 11/403,623 Office Action dated Oct. 24, 2006.
U.S. Appl. No. 12/840,977 Office Action dated Jul. 30, 2013.
U.S. Appl. No. 12/840,977 Final Office Action dated Jun. 18, 2012.
U.S. Appl. No. 12/840,977 Final Office Action dated Oct. 19, 2011.
U.S. Appl. No. 12/840,977 Office Action dated May 16, 2011.
U.S. Appl. No. 12/840,977 Final Office Action dated Dec. 3, 2010.
U.S. Appl. No. 14/283,959 Office Action dated Jan. 11, 2017.
U.S. Appl. No. 14/283,959 Final Office Action dated Jul. 19, 2016.
U.S. Appl. No. 14/283,959 Office Action dated Feb. 4, 2016.
U.S. Appl. No. 15/702,580 Office Action dated Oct. 7, 2019.
U.S. Appl. No. 15/702,580 Final Office Action dated May 13, 2019.
U.S. Appl. No. 15/702,580 Office Action dated Jan. 24, 2019.
U.S. Appl. No. 10/359,359 Final Office Action dated Nov. 27, 2009.
U.S. Appl. No. 10/359,359 Office Action dated Mar. 31, 2009.
U.S. Appl. No. 10/359,359 Office Action dated Aug. 27, 2007.
U.S. Appl. No. 10/359,359 Final Office Action dated Feb. 9, 2007.
U.S. Appl. No. 10/359,359 Office Action dated Aug. 8, 2006.
U.S. Appl. No. 12/839,306 Office Action dated Nov. 12, 2010.
U.S. Appl. No. 12/839,311 Office Action dated Nov. 12, 2010.
U.S. Appl. No. 12/218,581 Office Action dated Sep. 2, 2010.
U.S. Appl. No. 12/218,581 Office Action dated Feb. 1, 2010.
U.S. Appl. No. 12/218,581 Office Action dated Oct. 2, 2009.
U.S. Appl. No. 12/218,591 Office Action dated Feb. 25, 2009.
U.S. Appl. No. 13/918,809 Office Action dated Apr. 3, 2020.
U.S. Appl. No. 13/918,809 Office Action dated Jul. 12, 2019.
U.S. Appl. No. 13/918,809 Office Action dated Nov. 29, 2017.
U.S. Appl. No. 13/918,809 Office Action dated May 10, 2017.
U.S. Appl. No. 13/918,809 Office Action dated Oct. 20, 2016.
U.S. Appl. No. 13/918,809 Final Office Action dated Nov. 18, 2015.
U.S. Appl. No. 13/918,809 Office Action dated Apr. 29, 2015.
U.S. Appl. No. 13/918,809 Office Action dated Jun. 10, 2014.
U.S. Appl. No. 15/688,592 Office Action dated Nov. 14, 2019.
U.S. Appl. No. 15/688,610 Office Action dated Jan. 30, 2020.
U.S. Appl. No. 12/049,954 Final Office Action dated Dec. 14, 2010.
U.S. Appl. No. 12/049,954 Office Action dated Jun. 24, 2010.
U.S. Appl. No. 12/235,438 Final Office Action dated Jan. 4, 2012.
U.S. Appl. No. 12/235,438 Office Action dated Aug. 8, 2011.
U.S. Appl. No. 12/235,438 Final Office Action dated Aug. 31, 2010.
U.S. Appl. No. 12/235,438 Office Action dated Apr. 15, 2010.
U.S. Appl. No. 13/412,361 Office Action dated Jun. 17, 2014.
U.S. Appl. No. 13/412,361 Final Office Action dated Nov. 28, 2012.
U.S. Appl. No. 13/412,361 Office Action dated Jul. 30, 2012.
U.S. Appl. No. 13/941,436 Final Office Action dated Oct. 7, 2015.
U.S. Appl. No. 13/941,436 Office Action dated Jun. 22, 2015.
U.S. Appl. No. 14/637,182 Office Action dated Sep. 9, 2016.
U.S. Appl. No. 15/672,113 Office Action dated Mar. 8, 2018.
U.S. Appl. No. 16/048,065 Office Action dated Jun. 27, 2019.
U.S. Appl. No. 15/688,592 Office Action dated Jan. 21, 2021.
U.S. Appl. No. 15/688,610 Final Office Action dated Sep. 29, 2020.
U.S. Appl. No. 15/688,656 Final Office Action dated Oct. 14, 2020.
PCT/US08/11415 International Preliminary Report on Patentability dated Apr. 7, 2010; 7 pages.
U.S. Appl. No. 13/918,809 Final Office Action dated Nov. 3, 2020.
U.S. Appl. No. 15/688,656 Office Action dated Apr. 27, 2021.
Related Publications (1)
Number Date Country
20200329094 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
60997918 Oct 2007 US
Continuations (5)
Number Date Country
Parent 16048065 Jul 2018 US
Child 16773589 US
Parent 15672113 Aug 2017 US
Child 16048065 US
Parent 14637182 Mar 2015 US
Child 15672113 US
Parent 13412361 Mar 2012 US
Child 14637182 US
Parent 12049954 Mar 2008 US
Child 13412361 US