The present disclosure relates to movable surgical robotic systems and, more particularly, to systems and methods facilitating placement of one or more surgical robotic cart assemblies relative to a surgical table.
Surgical robotic systems are used in minimally invasive medical procedures because of their increased accuracy and expediency. In surgical robotic systems, a robot arm supports a surgical instrument having an end effector mounted thereto by a wrist assembly. In operation, the robot arm inserts the surgical instrument into or holds a surgical instrument in a small incision via a surgical portal or a natural orifice of a patient to position the end effector at a work site within a patient's body.
Most of the surgical robotic systems on the market are heavy and stationary requiring a motor driven pallet jack to be relocated. In some of the more modern surgical robotic systems, the robot arm is supported on a movable surgical robotic cart having a base portion with a set of casters. This is beneficial because the surgical robotic systems can be moved between various rooms and between various positions relative to the surgical table as needed, without a pallet jack.
However, minimally invasive medical procedures require a high degree of accuracy, precision, and speed, and, therefore, movable surgical robotic systems used for minimally invasive medical procedures need to be precisely placed relative to the surgical table to achieve optimal positioning for specific surgical procedures.
Accordingly, there is a need to precisely locate and position a surgical robotic cart relative to the surgical table, and to do so with a high degree of accuracy, precision, and movability.
Provided in accordance with aspects of the present disclosure is a method of placing a surgical robotic cart assembly. The method includes, determining a first position of a first surgical robotic cart assembly relative to a surgical table, calculating a path for the first surgical robotic cart assembly towards a second position of the first surgical robotic cart assembly relative to the surgical table, wherein in the second position, the first surgical robotic cart assembly is spaced-apart a first safe distance from the surgical table, moving the first surgical robotic cart assembly autonomously towards the second position thereof, and detecting a potential collision along the path of the first surgical robotic cart assembly as the first surgical robotic cart assembly moves towards the second position thereof.
In one aspect of the present disclosure, the method further includes determining a first position of a second surgical robotic cart assembly relative to the first surgical robotic cart assembly and the surgical table, calculating a path for the second surgical robotic cart assembly towards a second position of the second surgical robotic cart assembly relative to the first surgical robotic cart assembly and the surgical table, wherein in the second position, the second surgical robotic cart assembly is spaced-apart a second safe distance from the first surgical robotic cart assembly and a third safe distance from the surgical table, moving the second surgical robotic cart assembly autonomously towards the second position thereof, and detecting a potential collision along the path of the second surgical robotic cart assembly as the second surgical robotic cart assembly moves towards the second position thereof.
In another aspect of the present disclosure, the method may include obtaining a first sensor data from a visual sensor to determine the first position of the first surgical robotic cart assembly and to determine the first position of the second surgical robotic cart assembly.
In yet another aspect of the present disclosure, the method may include obtaining a second sensor data from a floor sensor to determine the first position of the first surgical robotic cart assembly and to determine the first position of the first surgical robotic cart assembly.
In still another aspect of the present disclosure, the method may include obtaining a third sensor data from the first surgical robotic cart assembly to determine the first position of the second surgical robotic cart assembly.
In aspects of the present disclosure, the method may include obtaining a fourth sensor data from the surgical table to determine the first position of the first surgical robotic cart assembly.
In one aspect of the present disclosure, the method may include updating an environmental map to incorporate the first position of the first surgical robotic cart assembly and the first position of the second surgical robotic cart assembly.
In another aspect of the present disclosure, the method may include determining a third position for the second surgical robotic cart assembly upon detecting the potential collision between the second surgical robotic cart assembly and the first surgical robotic cart assembly.
In yet another aspect of the present disclosure, the method may include determining the requirement for troubleshooting of the second surgical robotic cart assembly upon detecting the potential collision between the second surgical robotic cart assembly and the first surgical robotic cart assembly.
In still another aspect of the present disclosure, the method may include moving the first surgical robotic cart assembly and the second surgical robotic cart assembly simultaneously towards the respective second positions thereof.
Provided in accordance with another aspect of the present disclosure is a method of positioning a plurality of surgical robotic cart assemblies within an operating room. The method includes, obtaining a first sensor data from an operating room sensor, determining a first position of a first surgical robotic cart assembly and determining a first position of a second surgical robotic cart assembly, the first surgical robotic cart assembly including a first base portion having a first sensor and a first transmitter, and the second surgical robotic cart assembly including a second base portion having a second sensor and a second transmitter, calculating a first path for the first surgical robotic cart assembly towards a second position of the first surgical robotic cart assembly and calculating a second path for the second surgical robotic cart assembly towards a second position of the second surgical robotic cart assembly, moving the first surgical robotic cart assembly and the second surgical robotic cart assembly autonomously towards the second positions, respectively, thereof, detecting a potential collision along the first path and the second path as the first surgical robotic cart assembly moves towards the second position thereof and as the second surgical robotic cart assembly moves towards the second position thereof, and updating an environmental map with the second position of the first surgical robotic cart assembly and with the second position of the second surgical robotic cart assembly upon moving the first and second surgical robotic cart assemblies to the second positions, respectively, thereof.
In one aspect of the present disclosure, the method may include determining the first position of the first surgical robotic cart assembly and determining the first position of the second surgical robotic cart assembly from the first sensor data obtained from the operating room sensor.
In another aspect of the present disclosure, the method may include obtaining a second sensor data from the first sensor of the first surgical robotic cart assembly to determine the first position of the second surgical robotic cart assembly.
In yet another aspect of the present disclosure, the method may include obtaining a third sensor data from the second sensor of the second surgical robotic cart assembly to determine the first position of the first surgical robotic cart assembly.
In still another aspect of the present disclosure, the method may include calculating the second position of the first surgical robotic cart assembly and calculating the second position of the second surgical robotic cart assembly to maintain a first safe distance between the first and second surgical robotic cart assemblies and to maintain a second safe distance between the first and second surgical robotic cart assemblies and a surgical table.
In one aspect of the present disclosure, the method may include moving the second surgical robotic cart assembly autonomously to a third position thereof when a distance between the first and second surgical robotic cart assemblies is less than the first safe distance.
In another aspect of the present disclosure, the method may include updating the environmental map to register the third position of the second surgical robotic cart assembly as a current position of the second surgical robotic cart assembly when the second surgical robotic cart assembly is moved to the third position thereof.
Provided in accordance with yet another aspect of the present disclosure is a surgical robotic cart assembly. The surgical robotic cart assembly includes a robotic arm and a base portion configured to operatively support the robotic arm thereon. The base portion includes a visual guidance system having a projector mounted on the base portion, a display mounted on the base portion, and a plurality of lights mounted on the base portion and spaced apart thereon. The projector is configured to project a pattern corresponding to a movement direction towards a target location. The display is configured to represent a visual indication corresponding to the movement direction towards the target location. At least one of the plurality of lights is configured to selectively illuminate corresponding to the movement direction towards the target location.
In one aspect of the present disclosure, the pattern projected by the projector may be configured to change as the base portion is moved along the pattern towards the target location.
Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of exemplary embodiment(s) given below, serve to explain the principles of the disclosure, wherein:
The present disclosure provides systems and methods facilitating automated and manual means for locating and moving one or more surgical robotic cart assemblies towards a target location to optimally position one or more robotic arm(s) relative to a surgical table. Embodiments of the present disclosure are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.
Referring initially to
In embodiments, surgical table “ST” includes one or more sensor(s) 16 and a transmitter 18 disposed about the periphery thereof. Sensor(s) 16 may be configured to receive, for example, radio frequency (RF) signals (e.g., ultra wide band RF signals); ultrasound waves; and infrared (IR) signals, and transmitter 18 may be configured to emit the same.
Robotic arms, such as for example, robotic arm 2 may be coupled to the surgical table “ST.” Alternatively, robotic arms, such as for example, robotic arm 3, may be supported on a surgical robotic cart assembly 100.
Operating console 5 includes a display device 6, which is set up in particular to display three-dimensional images; and manual input devices 7, 8, by means of which a person (not shown), e.g., a surgeon, is able to telemanipulate robotic arms 2, 3 in a first operating mode, as known in principle to a person skilled in the art. Each of the robotic arms 2, 3 may be composed of a plurality of members, which are connected through joints, and may include a surgical instrument, such as, for example, an electromechanical instrument 10 removably attached thereto for treating patient “P” in a minimally invasive manner.
Robotic arms 2, 3 may be driven by electric drives (not shown) that are connected to control device 4. Control device 4 (e.g., a computer) is set up to activate the drives, in particular by means of a computer program, in such a way that robotic arms 2, 3 and thus electromechanical instrument 10 (including the electromechanical end effector (not shown)) execute a desired movement according to a movement defined by means of manual input devices 7, 8. Control device 4 may also be set up in such a way that it regulates the movement of robotic arms 2, 3 and/or of the drives. In embodiments, surgical robotic cart assembly 100 may be controlled via manual input devices 7, 8. Additionally/alternatively, control device 4 may be configured to regulate the movement of surgical robotic cart assembly 100.
Robotic surgical system 1 may also include more than two robotic arms 2, 3, the additional robotic arms likewise being connected to control device 4 and being telemanipulatable by means of operating console 5. A surgical instrument, for example, electromechanical instrument 10 (including the electromechanical end effector), may also be attached to the additional robotic arm. Robotic surgical system 1 may also include a plurality of surgical robotic cart assemblies 100 for supporting robotic arms 3, such as, for example, a first surgical robotic cart assembly 100a and a second surgical robotic cart assembly 100b, as shown in
In embodiments, robotic surgical system 1 further includes a database 12 in communication with one or more operating room sensors 14. Database 12 is provided to store one or more environmental maps 12a representing the locations of entities (e.g., surgical table “ST” and first and second surgical robotic cart assemblies 100a, 100b) disposed within operating room “OR.” Environmental maps 12a may be generated from pre-programed input and/or generated from data collected from operating room sensors 14 and/or data gathered from surgical table “ST” and first and second surgical robotic cart assemblies 100a, 100b, as will be detailed below. Environmental maps 12a include a static map portion 12a1 and a dynamic map portion 12a2. Static map portion 12a1 represents dimensions or boundaries of operating room “OR” and the locations of any landmarks such as, for example, surgical table “ST.” Dynamic map portion 12a2 represents a current working environment generated by iteratively incorporating data informing of the current positions of movable entities such as, for example, first and second surgical robotic cart assemblies 100a, 100b.
Database 12 may also include patient data 12b such as, for example, pre-operative data and/or anatomical atlases assigned to patient “P.” Database 12 may also be coupled with operating console 5 such that environmental maps 12a and/or patient data 12b may be displayed on display device 6.
Operating room sensors 14 may include a visual sensor 14a mounted to the ceiling of operating room “OR” and a floor sensor 14b disposed about surgical table “ST.” Visual sensor 14a may include one or more cameras, video cameras, and/or imagers configured to detect the three-dimensional geometry of a base portion 130 of surgical robotic cart assembly 100 (
As shown in
For a detailed discussion of the construction and operation of a robotic surgical system, reference may be made to U.S. Pat. No. 8,828,023, filed on Nov. 3, 2011, entitled “Medical Workstation,” the entire content of which is incorporated herein by reference.
With reference to
For a detailed discussion of the construction and operation of a surgical robotic cart assembly, reference may be made to U.S. patent application Ser. No. 15/765,544 filed on Apr. 3, 2018, now U.S. Pat. No. 10,595,944, entitled “SURGICAL ROBOTIC CART WITH SELECTIVE WHEEL ALIGNMENT,” and/or International Patent Application Serial No. PCT/US2019/024509 filed on Mar. 28, 2019, published as WO 2019/203999, entitled “ROBOTIC SURGICAL SYSTEMS AND ROBOTIC ARM CARTS THEREOF,” the entire contents of each of which are incorporated herein by reference.
Continuing with
Similar to sensor(s) 16 of surgical table “ST,” sensor(s) 134 may be configured to receive, for example, RF signals (e.g., ultra wide band RF signals); ultrasound waves; and IR signals, and similar to transmitter 18 of surgical table “ST,” transmitter 136 may be configured to emit the same. As will be detailed below with reference to
With reference to
Turning first to
In embodiments, if an operator or clinician “C” is located within operating room “OR,” the clinician “C” may be provided with a tag 138 configured to transmit a signal corresponding to a current position “PC1” of clinician “C” relative to first and second surgical robotic cart assemblies 100a, 100b, and surgical table “ST.” The current position “PC1” of clinician “C” may be determined by one or more of visual sensor 14a, floor sensor 14b, sensor(s) 16 of surgical table “ST,” and/or camera 132 and sensor(s) 134 of each of first and second surgical robotic cart assemblies 100a, 100b.
Following the localization phase, in step S206, environmental maps 12a are updated by incorporating the current positions “PA1,” “PB1,” and “PC1” of first and second surgical robotic cart assemblies 100a, 100b and clinician “C,” respectively, into the dynamic map portion 12a2, and incorporating or aligning the dynamic map portion 12a2 with the static map portion 12a1 to provide a representation of the current positions “PA1,” “PB1,” and “PC1” within the boundaries of operating room “OR.”
Turning next to
In embodiments, as illustrated in
Next in step S212, if control device 4 determines that there will be a safe distance “D1” between first and second surgical robotic cart assemblies 100a, 100b as well as a safe distance “D2” between each of first and second surgical robotic cart assemblies 100a, 100b and surgical table “ST” when first and second surgical robotic cart assemblies 100a, 100b are in second positions “PA2” and “PB2,” respectively, control device 4 instructs first and second surgical robotic cart assemblies 100a, 100b to move towards the respective second positions “PA2” and “PB2.”
However, if control device 4 determines that the distance between first and second surgical robotic cart assemblies 100a, 100b will be less than safe distance “D1” and/or the distance between each of first and second surgical robotic cart assemblies 100a, 100b and surgical table “ST” will be less than safe distance “D2,” when first and second surgical robotic cart assemblies 100a, 100b are in second positions “PA2” and “PB2,” respectively, robotic surgical system 1 is returned to step S202 to obtain further sensor data as described above.
With reference to
In step S216, as first and second surgical robotic cart assemblies 100a, 100b move towards second positions “PA2” and “PB2,” respectively, sensor(s) 134 of each of first and second surgical robotic cart assemblies 100a, 100b are configured to continuously detect for signs of close-in contact potential, beyond prior detection of obstructions during the path planning phase as described above. Close-in contact potential can be computed using well established techniques from computer graphics and robotic navigation (e.g. see “FCL: A general purpose library for collision and proximity queries,” Robotics and Automation (ICRA), 2012 IEEE International Conference on, DOI: 10.1109/ICRA.2012.6225337).
In step S216, with first and second surgical robotic cart assemblies 100a, 100b located in second positions “PA2” and “PB2,” respectively, as shown in
In step S220, if troubleshooting is required, second surgical robotic cart assembly 100b is configured to stop movement and broadcast a signal via transmitter 136 to clinician “C” in operating room “OR” and/or observers (not shown) outside of operating room “OR” indicating the potential for collision with first surgical robotic cart assembly 100a or surgical table “ST.”
In step S222, if troubleshooting is not required, second surgical robotic cart assembly 100b is configured to signal via transmitter 136 to control device 4 indicating the potential for collision with first surgical robotic cart assembly 100a or surgical table “ST.” Following the indication from second surgical robotic cart assembly 100b, control device 4 determines a third position “PB3” for second surgical robotic cart assembly 100b such that, second surgical robotic cart assembly 100b avoids collision with first surgical robotic cart assembly 100a or surgical table “ST.” It is contemplated that third position “PB3” of second surgical robotic cart assembly 100b is calculated to enable second surgical robotic cart assembly 100b to continue performing its specified task while avoiding a collision with first surgical robotic cart assembly 100a and surgical table “ST.”
Once third position “PB3” of second surgical robotic cart assembly 100b is determined, robotic surgical system 1 is returned to step S214 wherein the movement phase is initiated to move second surgical robotic cart assembly 100b to third position “PB3.” Though not specifically illustrated in
Continuing with
Following the confirmation of placement phase, in step S228, first and second surgical robotic cart assemblies 100a, 100b are configured to perform the respective specified tasks (e.g., medical procedure). It is contemplated that further adjustments may be made to the positions of first and second surgical robotic cart assemblies 100a, 100b as described in the method steps above with reference to
Turning now to
Base portion 330 also includes a visual guidance system 331 and an on-board safety system 370. Visual guidance system 331 is configured to direct clinician “C” as to where surgical robotic cart assembly 300 needs to be manually moved. In embodiments, visual guidance system 331 includes a projector 332 mounted on a gimbal 334 supported on a bottom or floor-facing surface 330a of base portion 330. In embodiments, visual guidance system 331 also includes a display 336 and one or more light(s) 338 mounted on a top surface 330b thereof. Light(s) 338 may be spaced apart and disposed about the periphery of base portion 330.
With additional reference to
In embodiments, projector 332 of each first and second surgical robotic cart assemblies 300a, 300b is configured to emit or project a pattern “A1” and “B1,” respectively, onto the floor of the operating room “OR” which directs clinician “C” to move first and second surgical robotic cart assemblies 300a, 300b towards a target location “A2” and “B2,” respectively. In embodiments, visual sensor 14a mounted to the ceiling of operating room “OR” may include a projector 14c configured to simultaneously project patterns “A1” and “B1,” and target locations “A2” and “B2” for first and second surgical robotic cart assemblies 300a, 300b, respectively. Alternatively, projector 14c may instead be disposed within the operating room lights (not shown) above surgical table “ST.” It is contemplated that as clinician “C” moves first and second surgical robotic cart assemblies 300a, 300b towards target locations “A2” and “B2,” respectively, patterns “A1” and “B1” are configured to change to provide updated directions until exact placement of first and second surgical robotic cart assemblies 300a, 300b is achieved. Upon reaching respective target locations “A2” and “B2,” first and second surgical robotic cart assemblies 300a, 300b are configured to provide audible and/or visible indication that target locations “A2” and “B2” have been reached.
In embodiments, display 336 on base portion 330 is configured to display a visual indication 337 of the direction to move first and second surgical robotic cart assemblies 300a, 300b. Visual indication 337 of display 336 may include geometric indicia such as, for example, an arrow scaled according to the distance first and second surgical robotic cart assemblies 300a, 300b need to move in order to reach target locations “A2” and “B2,” respectively. In embodiments, visual indication 337 of display 336 may include numeric indicia of the remaining distance to target locations “A2” and “B2,” respectively. Display 336 is configured to continuously update the visual indication 337 until target locations “A2” and “B2” have been reached. In embodiments, light(s) 338 disposed about the periphery of base portion 330, may be configured to selectively illuminate to provide indication to move first and second surgical robotic cart assemblies 300a, 300b in a certain direction.
Further, as shown in
Safety system 370 is configured to operate in conjunction with visual guidance system 331 to prevent collisions between one or more of first and second surgical robotic cart assemblies 300a, 300b and surgical table “ST” as first and second surgical robotic cart assemblies 300a, 300b are moved by clinician “C.” In embodiments, safety system 370 is configured to selectively trigger a locking mechanism to apply brakes to one or more of the plurality of casters 340, 350, and 360 of base portion 330. Safety system 370 is also configured to communicate with control device 4 (
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the claimed invention. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a U.S. National Stage Application filed under 35 U.S.C. § 371(a) of International Patent Application Serial No. PCT/US2019/025108, filed Apr. 1, 2019, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/660,476, filed Apr. 20, 2018, the entire disclosure of each of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/025108 | 4/1/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/204013 | 10/24/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6132368 | Cooper | Oct 2000 | A |
6154139 | Heller | Nov 2000 | A |
6205396 | Teicher et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6374155 | Wallach et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6438456 | Feddema et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6493608 | Niemeyer | Dec 2002 | B1 |
6507771 | Payton et al. | Jan 2003 | B2 |
6565554 | Niemeyer | May 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6659939 | Moll et al. | Dec 2003 | B2 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6685698 | Morley et al. | Feb 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6714839 | Salisbury, Jr. et al. | Mar 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6728599 | Wang et al. | Apr 2004 | B2 |
6746443 | Morley et al. | Jun 2004 | B1 |
6766204 | Niemeyer et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6772053 | Niemeyer | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793653 | Sanchez et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6837883 | Moll et al. | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843403 | Whitman | Jan 2005 | B2 |
6845297 | Allard | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6941191 | Jaeger | Sep 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6974449 | Niemeyer | Dec 2005 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7066926 | Wallace et al. | Jun 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7125403 | Julian et al. | Oct 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7357774 | Cooper | Apr 2008 | B2 |
7373219 | Nowlin et al. | May 2008 | B2 |
7379790 | Toth et al. | May 2008 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7398707 | Morley et al. | Jul 2008 | B2 |
7413565 | Wang et al. | Aug 2008 | B2 |
7453227 | Prisco et al. | Nov 2008 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7594912 | Cooper et al. | Sep 2009 | B2 |
7607440 | Coste-Maniere et al. | Oct 2009 | B2 |
7666191 | Orban, III et al. | Feb 2010 | B2 |
7667606 | Packert et al. | Feb 2010 | B2 |
7682357 | Ghodoussi et al. | Mar 2010 | B2 |
7689320 | Prisco et al. | Mar 2010 | B2 |
7695481 | Wang et al. | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7699855 | Anderson et al. | Apr 2010 | B2 |
7713263 | Niemeyer | May 2010 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
7727244 | Orban, III et al. | Jun 2010 | B2 |
7741802 | Prisco et al. | Jun 2010 | B2 |
7756036 | Druke et al. | Jul 2010 | B2 |
7757028 | Druke et al. | Jul 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7778733 | Nowlin et al. | Aug 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7819859 | Prisco et al. | Oct 2010 | B2 |
7819885 | Cooper | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7835823 | Sillman et al. | Nov 2010 | B2 |
7843158 | Prisco | Nov 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7865269 | Prisco et al. | Jan 2011 | B2 |
7886743 | Cooper et al. | Feb 2011 | B2 |
7899578 | Prisco et al. | Mar 2011 | B2 |
7907166 | Lamprecht et al. | Mar 2011 | B2 |
7935130 | Williams | May 2011 | B2 |
7963913 | Devengenzo et al. | Jun 2011 | B2 |
7983793 | Toth et al. | Jul 2011 | B2 |
8002767 | Sanchez et al. | Aug 2011 | B2 |
8004229 | Nowlin et al. | Aug 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8054752 | Druke et al. | Nov 2011 | B2 |
8062288 | Cooper et al. | Nov 2011 | B2 |
8079950 | Stern et al. | Dec 2011 | B2 |
8100133 | Mintz et al. | Jan 2012 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8112172 | Chen et al. | Feb 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8142447 | Cooper et al. | Mar 2012 | B2 |
8147503 | Zhao et al. | Apr 2012 | B2 |
8151661 | Schena et al. | Apr 2012 | B2 |
8155479 | Hoffman et al. | Apr 2012 | B2 |
8182469 | Anderson et al. | May 2012 | B2 |
8202278 | Orban, III et al. | Jun 2012 | B2 |
8205396 | Atiyeh, Sr. et al. | Jun 2012 | B2 |
8206406 | Orban, III | Jun 2012 | B2 |
8210413 | Whitman et al. | Jul 2012 | B2 |
8216250 | Orban, III et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8244403 | Lin et al. | Aug 2012 | B2 |
8256319 | Cooper et al. | Sep 2012 | B2 |
8285517 | Sillman et al. | Oct 2012 | B2 |
8315720 | Mohr et al. | Nov 2012 | B2 |
8335590 | Costa et al. | Dec 2012 | B2 |
8347757 | Duval | Jan 2013 | B2 |
8374723 | Zhao et al. | Feb 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8419717 | Diolaiti et al. | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8446288 | Mizushima et al. | May 2013 | B2 |
8452447 | Nixon | May 2013 | B2 |
8454585 | Whitman | Jun 2013 | B2 |
8478442 | Casey et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8508173 | Goldberg et al. | Aug 2013 | B2 |
8528440 | Morley et al. | Sep 2013 | B2 |
8529582 | Devengenzo et al. | Sep 2013 | B2 |
8540748 | Murphy et al. | Sep 2013 | B2 |
8551116 | Julian et al. | Oct 2013 | B2 |
8562594 | Cooper et al. | Oct 2013 | B2 |
8594841 | Zhao et al. | Nov 2013 | B2 |
8597182 | Stein et al. | Dec 2013 | B2 |
8597280 | Cooper et al. | Dec 2013 | B2 |
8600551 | Itkowitz et al. | Dec 2013 | B2 |
8608773 | Tierney et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8624537 | Nowlin et al. | Jan 2014 | B2 |
8634956 | Chiappetta et al. | Jan 2014 | B1 |
8634957 | Toth et al. | Jan 2014 | B2 |
8638056 | Goldberg et al. | Jan 2014 | B2 |
8638057 | Goldberg et al. | Jan 2014 | B2 |
8644988 | Prisco et al. | Feb 2014 | B2 |
8666544 | Moll et al. | Mar 2014 | B2 |
8668638 | Donhowe et al. | Mar 2014 | B2 |
8746252 | McGrogan et al. | Jun 2014 | B2 |
8749189 | Nowlin et al. | Jun 2014 | B2 |
8749190 | Nowlin et al. | Jun 2014 | B2 |
8758352 | Cooper et al. | Jun 2014 | B2 |
8761930 | Nixon | Jun 2014 | B2 |
8768516 | Diolaiti et al. | Jul 2014 | B2 |
8786241 | Nowlin et al. | Jul 2014 | B2 |
8790243 | Cooper et al. | Jul 2014 | B2 |
8798840 | Fong et al. | Aug 2014 | B2 |
8808164 | Hoffman et al. | Aug 2014 | B2 |
8816628 | Nowlin et al. | Aug 2014 | B2 |
8821480 | Burbank | Sep 2014 | B2 |
8823308 | Nowlin et al. | Sep 2014 | B2 |
8827989 | Niemeyer | Sep 2014 | B2 |
8828023 | Neff et al. | Sep 2014 | B2 |
8838270 | Druke et al. | Sep 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8862268 | Robinson et al. | Oct 2014 | B2 |
8864751 | Prisco et al. | Oct 2014 | B2 |
8864752 | Diolaiti et al. | Oct 2014 | B2 |
8903546 | Diolaiti et al. | Dec 2014 | B2 |
8903549 | Itkowitz et al. | Dec 2014 | B2 |
8911428 | Cooper et al. | Dec 2014 | B2 |
8912746 | Reid et al. | Dec 2014 | B2 |
8944070 | Guthart et al. | Feb 2015 | B2 |
8983662 | Moore | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
9002518 | Manzo et al. | Apr 2015 | B2 |
9014856 | Manzo et al. | Apr 2015 | B2 |
9016540 | Whitman et al. | Apr 2015 | B2 |
9019345 | Patrick | Apr 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9068628 | Solomon et al. | Jun 2015 | B2 |
9078684 | Williams | Jul 2015 | B2 |
9084623 | Gomez et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9096033 | Holop et al. | Aug 2015 | B2 |
9101381 | Burbank et al. | Aug 2015 | B2 |
9113877 | Whitman et al. | Aug 2015 | B1 |
9138284 | Krom et al. | Sep 2015 | B2 |
9144456 | Rosa et al. | Sep 2015 | B2 |
9198730 | Prisco et al. | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9226648 | Saadat et al. | Jan 2016 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226761 | Burbank | Jan 2016 | B2 |
9232984 | Guthart et al. | Jan 2016 | B2 |
9241766 | Duque et al. | Jan 2016 | B2 |
9241767 | Prisco et al. | Jan 2016 | B2 |
9241769 | Larkin et al. | Jan 2016 | B2 |
9259275 | Burbank | Feb 2016 | B2 |
9259277 | Rogers et al. | Feb 2016 | B2 |
9259281 | Griffiths et al. | Feb 2016 | B2 |
9259282 | Azizian et al. | Feb 2016 | B2 |
9261172 | Solomon et al. | Feb 2016 | B2 |
9265567 | Orban, III et al. | Feb 2016 | B2 |
9265584 | Itkowitz et al. | Feb 2016 | B2 |
9283048 | Kostrzewski et al. | Mar 2016 | B2 |
9283049 | Diolaiti et al. | Mar 2016 | B2 |
9301811 | Goldberg et al. | Apr 2016 | B2 |
9314307 | Richmond et al. | Apr 2016 | B2 |
9317651 | Nixon | Apr 2016 | B2 |
9345546 | Toth et al. | May 2016 | B2 |
9393017 | Flanagan et al. | Jul 2016 | B2 |
9402689 | Prisco et al. | Aug 2016 | B2 |
9417621 | Diolaiti et al. | Aug 2016 | B2 |
9424303 | Hoffman et al. | Aug 2016 | B2 |
9433418 | Whitman et al. | Sep 2016 | B2 |
9446517 | Burns et al. | Sep 2016 | B2 |
9452020 | Griffiths et al. | Sep 2016 | B2 |
9474569 | Manzo et al. | Oct 2016 | B2 |
9480533 | Devengenzo et al. | Nov 2016 | B2 |
9503713 | Zhao et al. | Nov 2016 | B2 |
9550300 | Danitz et al. | Jan 2017 | B2 |
9554859 | Nowlin et al. | Jan 2017 | B2 |
9566124 | Prisco et al. | Feb 2017 | B2 |
9579164 | Itkowitz et al. | Feb 2017 | B2 |
9585641 | Cooper et al. | Mar 2017 | B2 |
9615883 | Schena et al. | Apr 2017 | B2 |
9623563 | Nixon | Apr 2017 | B2 |
9623902 | Griffiths et al. | Apr 2017 | B2 |
9629520 | Diolaiti | Apr 2017 | B2 |
9662177 | Weir et al. | May 2017 | B2 |
9664262 | Donlon et al. | May 2017 | B2 |
9687312 | Dachs, II et al. | Jun 2017 | B2 |
9700334 | Hinman et al. | Jul 2017 | B2 |
9718190 | Larkin et al. | Aug 2017 | B2 |
9730719 | Brisson et al. | Aug 2017 | B2 |
9737199 | Pistor et al. | Aug 2017 | B2 |
9795446 | DiMaio et al. | Oct 2017 | B2 |
9797484 | Solomon et al. | Oct 2017 | B2 |
9801690 | Larkin et al. | Oct 2017 | B2 |
9814530 | Weir et al. | Nov 2017 | B2 |
9814536 | Goldberg et al. | Nov 2017 | B2 |
9814537 | Itkowitz et al. | Nov 2017 | B2 |
9820823 | Richmond et al. | Nov 2017 | B2 |
9827059 | Robinson et al. | Nov 2017 | B2 |
9830371 | Hoffman et al. | Nov 2017 | B2 |
9839481 | Blumenkranz et al. | Dec 2017 | B2 |
9839487 | Dachs, II | Dec 2017 | B2 |
9850994 | Schena | Dec 2017 | B2 |
9855102 | Blumenkranz | Jan 2018 | B2 |
9855107 | Labonville et al. | Jan 2018 | B2 |
9872737 | Nixon | Jan 2018 | B2 |
9877718 | Weir et al. | Jan 2018 | B2 |
9883920 | Blumenkranz | Feb 2018 | B2 |
9888974 | Niemeyer | Feb 2018 | B2 |
9895813 | Blumenkranz et al. | Feb 2018 | B2 |
9901408 | Larkin | Feb 2018 | B2 |
9902061 | Kuffner | Feb 2018 | B1 |
9918800 | Itkowitz et al. | Mar 2018 | B2 |
9943375 | Blumenkranz et al. | Apr 2018 | B2 |
9943964 | Hares | Apr 2018 | B2 |
9948852 | Lilagan et al. | Apr 2018 | B2 |
9949798 | Weir | Apr 2018 | B2 |
9949802 | Cooper | Apr 2018 | B2 |
9952107 | Blumenkranz et al. | Apr 2018 | B2 |
9956044 | Gomez et al. | May 2018 | B2 |
9980778 | Ohline et al. | May 2018 | B2 |
10008017 | Itkowitz et al. | Jun 2018 | B2 |
10028793 | Griffiths et al. | Jul 2018 | B2 |
10033308 | Chaghajerdi et al. | Jul 2018 | B2 |
10034719 | Richmond et al. | Jul 2018 | B2 |
10052167 | Au et al. | Aug 2018 | B2 |
10085811 | Weir et al. | Oct 2018 | B2 |
10092344 | Mohr et al. | Oct 2018 | B2 |
10123844 | Nowlin et al. | Nov 2018 | B2 |
10188471 | Brisson | Jan 2019 | B2 |
10201390 | Swarup et al. | Feb 2019 | B2 |
10213202 | Flanagan et al. | Feb 2019 | B2 |
10258416 | Mintz et al. | Apr 2019 | B2 |
10278782 | Jarc et al. | May 2019 | B2 |
10278783 | Itkowitz et al. | May 2019 | B2 |
10282881 | Itkowitz et al. | May 2019 | B2 |
10335242 | Devengenzo et al. | Jul 2019 | B2 |
10405934 | Prisco et al. | Sep 2019 | B2 |
10433922 | Itkowitz et al. | Oct 2019 | B2 |
10464219 | Robinson et al. | Nov 2019 | B2 |
10485621 | Morrissette et al. | Nov 2019 | B2 |
10500004 | Hanuschik et al. | Dec 2019 | B2 |
10500005 | Weir et al. | Dec 2019 | B2 |
10500007 | Richmond et al. | Dec 2019 | B2 |
10507066 | DiMaio et al. | Dec 2019 | B2 |
10510267 | Jarc et al. | Dec 2019 | B2 |
10524871 | Liao | Jan 2020 | B2 |
10548459 | Itkowitz et al. | Feb 2020 | B2 |
10575909 | Robinson et al. | Mar 2020 | B2 |
10592529 | Hoffman et al. | Mar 2020 | B2 |
10595944 | Lattimore | Mar 2020 | B2 |
10595946 | Nixon | Mar 2020 | B2 |
10881469 | Robinson | Jan 2021 | B2 |
10881473 | Itkowitz et al. | Jan 2021 | B2 |
10898188 | Burbank | Jan 2021 | B2 |
10898189 | McDonald, II | Jan 2021 | B2 |
10905506 | Itkowitz et al. | Feb 2021 | B2 |
10912544 | Brisson et al. | Feb 2021 | B2 |
10912619 | Jarc et al. | Feb 2021 | B2 |
10918387 | Duque et al. | Feb 2021 | B2 |
10918449 | Solomon et al. | Feb 2021 | B2 |
10932873 | Griffiths et al. | Mar 2021 | B2 |
10932877 | Devengenzo et al. | Mar 2021 | B2 |
10939969 | Swarup et al. | Mar 2021 | B2 |
10939973 | DiMaio et al. | Mar 2021 | B2 |
10952801 | Miller et al. | Mar 2021 | B2 |
10965933 | Jarc | Mar 2021 | B2 |
10966742 | Rosa et al. | Apr 2021 | B2 |
10973517 | Wixey | Apr 2021 | B2 |
10973519 | Weir et al. | Apr 2021 | B2 |
10984567 | Itkowitz et al. | Apr 2021 | B2 |
10993773 | Cooper et al. | May 2021 | B2 |
10993775 | Cooper et al. | May 2021 | B2 |
11000331 | Krom et al. | May 2021 | B2 |
11013567 | Wu et al. | May 2021 | B2 |
11020138 | Ragosta | Jun 2021 | B2 |
11020191 | Diolaiti et al. | Jun 2021 | B2 |
11020193 | Wixey et al. | Jun 2021 | B2 |
11026755 | Weir et al. | Jun 2021 | B2 |
11026759 | Donlon et al. | Jun 2021 | B2 |
11040189 | Vaders et al. | Jun 2021 | B2 |
11045077 | Stem et al. | Jun 2021 | B2 |
11045274 | Dachs, II et al. | Jun 2021 | B2 |
11058501 | Tokarchuk et al. | Jul 2021 | B2 |
11076925 | DiMaio et al. | Aug 2021 | B2 |
11090119 | Burbank | Aug 2021 | B2 |
11096687 | Flanagan et al. | Aug 2021 | B2 |
11098803 | Duque et al. | Aug 2021 | B2 |
11109925 | Cooper et al. | Sep 2021 | B2 |
11116578 | Hoffman et al. | Sep 2021 | B2 |
11129683 | Steger et al. | Sep 2021 | B2 |
11135029 | Suresh et al. | Oct 2021 | B2 |
11147552 | Burbank et al. | Oct 2021 | B2 |
11147640 | Jarc et al. | Oct 2021 | B2 |
11154373 | Abbott et al. | Oct 2021 | B2 |
11154374 | Hanuschik et al. | Oct 2021 | B2 |
11160622 | Goldberg et al. | Nov 2021 | B2 |
11160625 | Wixey et al. | Nov 2021 | B2 |
11161243 | Rabindran et al. | Nov 2021 | B2 |
11166758 | Mohr et al. | Nov 2021 | B2 |
11166770 | DiMaio et al. | Nov 2021 | B2 |
11166773 | Ragosta et al. | Nov 2021 | B2 |
11173597 | Rabindran et al. | Nov 2021 | B2 |
11185378 | Weir et al. | Nov 2021 | B2 |
11191596 | Thompson et al. | Dec 2021 | B2 |
11197729 | Thompson et al. | Dec 2021 | B2 |
11213360 | Hourtash et al. | Jan 2022 | B2 |
11221863 | Azizian et al. | Jan 2022 | B2 |
11234700 | Ragosta et al. | Feb 2022 | B2 |
11241274 | Vaders et al. | Feb 2022 | B2 |
11241290 | Waterbury et al. | Feb 2022 | B2 |
11259870 | DiMaio et al. | Mar 2022 | B2 |
11259884 | Burbank | Mar 2022 | B2 |
11272993 | Gomez et al. | Mar 2022 | B2 |
11272994 | Saraliev et al. | Mar 2022 | B2 |
11291442 | Wixey et al. | Apr 2022 | B2 |
11291513 | Manzo et al. | Apr 2022 | B2 |
20060195226 | Matsukawa et al. | Aug 2006 | A1 |
20070112461 | Zini | May 2007 | A1 |
20070118248 | Lee et al. | May 2007 | A1 |
20080275630 | Regienczuk | Nov 2008 | A1 |
20080287924 | Mangiardi | Nov 2008 | A1 |
20090117312 | Hanelt et al. | May 2009 | A1 |
20120101508 | Wook Choi et al. | Apr 2012 | A1 |
20140316570 | Sun et al. | Oct 2014 | A1 |
20150257837 | Itkowitz et al. | Sep 2015 | A1 |
20160346930 | Hares | Dec 2016 | A1 |
20170071693 | Taylor et al. | Mar 2017 | A1 |
20170123421 | Kentley et al. | May 2017 | A1 |
20170251990 | Kheradpir et al. | Sep 2017 | A1 |
20180042682 | Iceman et al. | Feb 2018 | A1 |
20180344421 | Cagle | Dec 2018 | A1 |
20190041854 | Millhouse | Feb 2019 | A1 |
20190069962 | Tabandeh et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
107072723 | Aug 2017 | CN |
107072726 | Aug 2017 | CN |
107787266 | Mar 2018 | CN |
3212109 | Sep 2017 | EP |
101613376 | Apr 2016 | KR |
2016193686 | Dec 2016 | WO |
2017147596 | Aug 2017 | WO |
WO-2017147596 | Aug 2017 | WO |
2017220822 | Dec 2017 | WO |
2019203999 | Oct 2019 | WO |
Entry |
---|
International Search Report dated Jul. 18, 2019 and Written Opinion completed Jul. 18, 2019 corresponding to counterpart Int'l Patent Application PCT/US2019/025108. |
Indian Office Action dated Jan. 17, 2022 issued in corresponding IN Appln No. 202017040919. |
Partial Supplementary European Search Report dated Dec. 15, 2021 issued in corresponding EP Appln. No. 19788524.7. |
Japanese Office Action dated Sep. 7, 2021 corresponding to counterpart Patent Application JP 2020-555060. |
Japanese Notice of Allowance dated May 2, 2022 issued in corresponding JP Appln. No. 2020-555060. |
Extended European Search Report dated Mar. 22, 2022, issued in corresponding EP AppIn. No. 19788524.7. |
Office Action issued in corresponding Chinese application CN 201980025810.3 dated Feb. 12, 2023, together with English language translation (16 pages). |
European Examination Report issued in corresponding application EP 19788524.7 dated Oct. 19, 2023. |
Number | Date | Country | |
---|---|---|---|
20210153958 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62660476 | Apr 2018 | US |