The systems and methods relate generally to medical ultrasound imaging, and more particularly to three dimensional ultrasound imaging with an orientation adjustable array.
The ability to perform three-dimensional (3D) ultrasound imaging of the interior of a living being provides numerous diagnostic and therapeutic advantages. However, 3D imaging with intravascular or other internally inserted imaging systems, such as intravascular ultrasound or intracardiac echocardiography (ICE) imaging systems, is difficult. This is mainly because of the size constraints inherent in the use of internal imaging devices.
For instance, conventional 3D imaging systems require a two-dimensional (2D) phased array having numerous transducer elements. This 2D array provides a steerable imaging beam which images in one direction and can be steered in two additional directions, thus providing 3D capability. However, 2D arrays are very costly and typically too large for insertion into most regions of a living being, such as narrow blood vessels. Furthermore, each element is typically coupled with a separate communication line, e.g., a cable, in order to communicate with an external imaging system. These communication lines add undesirable cross-sectional area to the insertable device (such as a catheter) being used to deploy and navigate the array within the body. This added cross-sectional area, or width, can also prevent use of the array within narrow regions of the body. Finally, 2D arrays are susceptible to cross-talk between elements, which can significantly degrade performance.
Other conventional 3D imaging systems use a single element transducer mounted on the distal end of a rotating drive shaft. This single element transducer images one dimensionally in a radial direction perpendicular or transverse to the central axis of the drive shaft. When the transducer is rotated in a second direction, the image data collected can be used to generate a 2D cross-sectional image of the body tissue. The driveshaft is typically located within an outer sheath and can be slid proximally and distally within the sheath along the central axis of the drive shaft. Multiple 2D cross-sectional images can be obtained at different positions along the central axis. An image processing system can then be used to assemble, or reconstruct these images into a 3D image of the body tissue. However, this process cannot be performed in real-time since it requires the reconstruction of previously obtained 2D images.
Accordingly, there is a need for improved systems and methods for 3D imaging which overcome the shortcomings of conventional 3D imaging systems.
The systems and methods described herein provide for a medical ultrasound imaging system configured for 3D imaging of a living being with an orientation adjustable imaging device insertable into a living being and configured to image the interior of the living being. In one example embodiment as described below, the imaging device includes an ultrasound array having an imaging field and an orientation adjustment unit coupled with the array and configured to adjust the orientation of the array. The array can include multiple transducer elements configured as a linear array arranged along a one dimensional axis. The array can preferably image a two-dimensional imaging field such that when the orientation of the array is adjusted in a third dimension, image data from a three-dimensional region can be collected.
The orientation adjustment unit can be configured to adjust the orientation of the array in any manner. In one embodiment, orientation adjustment unit adjusts the pitch of the array about an axis. The orientation adjustment unit can include an orientation control unit configured to control the orientation of the array, control the rate of adjustment of the array and optionally determine the orientation of the array. The orientation control unit can control the orientation of the array in any manner, such as electrically, mechanically, magnetically and the like. The orientation adjustment unit can also include an adjustable mounting for mounting the array thereon. In one embodiment, the adjustable mounting is a flexible circuit having a multiplexer for multiplexing signals communicated to and from the array.
The imaging system can also include an image processing system communicatively coupled with the array. In an example embodiment as described below, the image processing system can be configured to control the imaging direction of the array and can be configured to, receive an output signal from each element in the array, where one or more of the output signals are representative of an echo received in the imaging direction. This image processing system can also be configured to process the received output signals and generate a three-dimensional image therefrom. In one example embodiment, the image processing system can be configured to process the one or more output signals into echo data and store the echo data in an echogenic record, where one echogenic record is generated for each imaging direction imaged by the array. The image processing system can be configured to store the echogenic records generated at each orientation of the array as a separate image data set and can also be configured to generate a three-dimensional image from the image data sets corresponding to multiple orientations of the array.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims. It is also intended that the invention is not limited to require the details of the example embodiments.
The details of the invention, including fabrication, structure and operation, may be gleaned in part by study of the accompanying figures, in which like reference numerals refer to like segments.
FIGS. 1A-C are block diagrams depicting an example embodiment of an medical imaging system with an orientation adjustable imaging device.
FIGS. 2B-C are top down views depicting additional example embodiments of an orientation adjustable imaging device.
The systems and methods described herein provide for 3D imaging with a medical ultrasound imaging system using an orientation adjustable imaging device. FIGS. 1A-C depict one example embodiment of an ultrasound imaging system 100 having an orientation adjustable imaging device 102. Imaging device 102 is preferably a component of a flexible elongate medical device 101, such as a catheter, endoscope and the like, which is insertable into a living being and configured to allow imaging of the interior of the living being with imaging device 102. Imaging system 100 can be any type of ultrasound imaging system having an insertable imaging device 102, such as an IVUS imaging system, an ICE imaging system or other imaging systems. Imaging device 102 preferably includes an orientation adjustment unit 104 and an ultrasound transducer device 106 configured to image an imaging field 108, which is preferably 2D. Ultrasound transducer device 106 is preferably a transducer array, but can also be multiple transducer elements in a non-array configuration or a single element transducer. Orientation adjustment unit 104 is preferably configured to adjust the orientation of array 106 in a third dimension, indicated by directions 111 and 113, to allow array 106 to image a 3D region of the body.
In the embodiments depicted in FIGS. 1A-C, array 106 is adjustable over a range of motion 116. In this embodiment, array 106 is rotatable about axis 117. FIGS. 1A-C each depict array 106 at a separate orientation with motion range 116.
At each orientation within range 116, array 106 can be used to image field 108. Preferably, array 106 sweeps back and forth across motion range 116 while at the same time collecting image data across 2D imaging field 108 that can be used to generate a 3D image. It should be noted that motion range 116 is not limited to motion only in directions 111 and 113. The orientation of array 106 can be adjusted in any manner and through any range of motion. For instance, motion range 116 can include up/down movement, left/right movement, forward/backward movement, rotational movement, tilting movement, pivoting movement, wobbling movement, oscillating movement and other types of movement.
In practice, beam 205 will have a finite cross-sectional area and imaging field 108 will extend into the Z direction by a small amount. However, this amount is generally negligible for 3D imaging purposes, so imaging field 108 is referred to herein as being substantially 2D. One of skill in the art will readily recognize that the shape of beam 205 can be adjusted to provide greater resolution in the Z direction as required by the needs of the application.
After collecting 2D image data over the imaging field 108 at a first orientation of array 106, the orientation adjustment unit 104 preferably adjusts the array 106 to a second orientation to collect 2D image data over the imaging field 108 at that orientation. This process repeats until 2D image data has been collected for a desired number of different orientations of array 106. This collected 2D image data can then be assembled, or reconstructed, by an image processing system 306 (described below) to generate a 3D image of the body tissue. Thus, in this embodiment a 1D array 106 can be used to generate a 3D image with superior quality than conventional systems, due in part to the reduced potential for cross-talk resulting from the use of a 1D array 106.
However, any type of transducer array 106 can be used including 2D arrays and other appropriate transducer configurations. Array 106 can be a linear or phased array. Array 106 can also be fabricated in any manner desired. For instance, array 106 can include piezoelectric transducer elements, micromachined ultrasound transducer (MUT) elements such as capacitive micromachined ultrasound transducers (CMUTs) or piezoelectric micromachined ultrasound transducers (PMUTs), or other known transducer array structures.
The rate at which the orientation of imaging device 102 is adjusted is dependent upon the needs of the application and can be as rapid or as slow as desired. Also, the orientation adjustment can be continuous or can proceed in a stepped fashion. The adjustment rate can also be related to the imaging frame rate of imaging system 100, for instance, to allow for real-time 3D imaging. In one example, a video frame may include image data collected from 100 separate imaging fields 108, each located at a different pitch within motion range 116. If the imaging frame rate is 30 frames per second, then each sweep of array 106 across motion range 116 can take no longer than 0.0333 seconds. If the pitch is adjusted in a stepped fashion and it takes 20 microseconds to image one imaging field 108, then the time to adjust array 106 from one pitch to the next can be no longer than 133 microseconds. It should be noted that these values serve only as an example and in no way limit the systems and methods described herein.
In one embodiment, image processing system 306 is configured to store the echo data in an echogenic record, where each echogenic record includes the echo data received in direction 206 at one angular location 208 in the imaging field 108. One echogenic record can be generated for each angular location 208 in an imaging field 108 for one orientation of array 106. All of the echogenic records from a given imaging field 108 can then be grouped together by image processing system 306 into an image data set. Image processing system 306 is preferably configured to assemble each of the image data sets and generate a 3D image of the body tissue. Image processing system 306 preferably includes the processing hardware and/or software to generate the 3D images in real-time, or near real-time, for the benefit of the physician or technician operating system 100.
The term “orientation” is defined herein as the position of array 106 with respect to the structure or device used to move, navigate or guide array 106 within the living being. In this embodiment, although shaft 408 can be used to move the imaging device 102 within the living being, for instance to position imaging device 102 in proximity with the desired region for imaging, the orientation of array 106 remains adjustable even when shaft 408 is stationary.
In this embodiment, orientation adjustment unit 104 is configured to control the orientation of the array 106 and determine the orientation of array 106 at any given time, for instance, in order to allow tracking of array 106. Orientation adjustment unit 104 can include an orientation control unit 412 for controlling and determining the orientation of array 106. Orientation control unit 412 can be configured in any manner in accordance with the needs of the application.
For instance, orientation control unit 412 can be configured to electrically, mechanically or magnetically operate or control the orientation of array 106, or any combination thereof. In one example embodiment, orientation control unit 412 includes one or more actuators for adjusting the orientation of array 106. One example actuator that can be used is a piezo-film actuator, although the systems and methods described herein are not limited to such. In another embodiment, orientation control unit 412 includes a piezoelectric drive for orientation control of array 106. In yet another embodiment, orientation control unit 412 includes a rolling wheel and an electrical servo motor for powering the wheel, which is in turn coupled with array 106 by a wire or tether. Adjustment of the rolling wheel applies tension to the array via the wire or tether and can be used to control and adjust the orientation of array 106. Orientation adjustment unit 104 can also optionally include one or more sensors 418 for determining the orientation of array 106 at any given time. Sensors 418 can use any type of sensing technique such as electrical, optical, magnetic, capacitive, inductive etc.
Orientation control unit 412 can be adjustably coupled with array 106. For instance in one embodiment, orientation control unit 412 is a flexible circuit physically coupled with array 106. Alternatively, orientation adjustment unit 104 can also include a position adjustable mounting 414 for adjustably coupling array 106 with orientation control unit 412. Any type of position adjustable mounting 414 can be used in accordance with the needs of the application. For instance, in one embodiment, communication lines 308 are flexible and function as position adjustable mounting 414. In another embodiment, position adjustable mounting 414 is a hinge-type structure configured to limit the motion of array 106 to movement solely within motion range 116. It should be understood that these embodiments are only examples and in no way limit the systems and methods described herein.
Orientation adjustment unit 104 can also include a multiplexer 416.
Multiplexer 416 also includes communication ports 506-1 through 506-M (where “M” indicates that any number of ports 506 can be present, unless otherwise noted). Each communication port 506-1 through 506-M is preferably coupled with a communication line 308-1 through 308-M and routed to image processing system 306 with shaft 408. Preferably, multiplexer 416 is an N:M multiplexer configured to multiplex the signals input to ports 504-1 through 504-N and output the multiplexed signals from ports 506-1 through 506-M, where M is less then N. Multiplexer 416 also preferably includes corresponding M:N demultiplexer circuitry to demultiplex the signals input to ports 506-1 through 506-M and output the demultiplexed signals from ports 504-1 through 504-N to array 106. Also, image processing system 306 preferably includes complementary multiplexing and demultiplexing hardware and/or software for communication with array 106.
The use of a multiplexer 416, with the value of M less than N, reduces the number of communication lines 308 necessary to transmit signals between array 106 and image processing system 306. A reduction in the number of communication lines 308 can decrease the potential for cross-talk and can also allow the radial cross-sectional area of device 101, or width, to be minimized, which in turn can allow the introduction of device 101 into smaller regions of the body.
Also, multiplexer 416 can also be used as, or in conjunction with, position adjustable mounting 414 to provide adjustable support for array 106. For instance, in one embodiment, multiplexer 416 is a flexible circuit coupled with array 106. Furthermore, in embodiments where the elements 202 of array 106 are MUTs, multiplexer 416 and array 106 can be monolithically integrated together on a common semiconductor substrate. The integration of multiplexer 416 and array 106 on the same substrate can reduce the size of imaging device 102 and improve the interface performance between array 106 and multiplexer 416.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Features and processes known to those of ordinary skill may similarly be incorporated as desired. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.