Systems and methods for treating back pain

Information

  • Patent Grant
  • 10390877
  • Patent Number
    10,390,877
  • Date Filed
    Friday, December 21, 2012
    11 years ago
  • Date Issued
    Tuesday, August 27, 2019
    5 years ago
Abstract
Systems and methods are disclosed for treating back pain associated with a vertebral body of a patient. The system may include an external energy source configured to be positioned at a location external to the body of the patient, a linear configured to drive translation of the external source in one or more axes, a computer coupled to the external source and linear drive and programming executable on said computer for determining a target treatment site within or near the vertebral body based on acquired imaging data, positioning a focal point of the external energy source to substantially coincide with the target treatment site, and delivering a treatment dose of therapeutic energy at said target treatment site, wherein the treatment dose is configured to modulate a nerve within or near the vertebral body.
Description
FIELD

Various embodiments of the invention pertain generally to methods and systems for therapeutic treatment of pain, and more particularly to therapeutic treatment of back pain.


BACKGROUND

Body pain may originate in muscles, organs, bones, or other areas of the body. One example of body pain is back pain, or pain associated with the spine. Back pain is a huge health problem worldwide and is the cause of much human suffering. Back pain is also a major cause for work-related disability benefits and compensation. Treatments for back pain vary widely, ranging from physical therapy, to pharmacological therapy and pain management, to surgical intervention.


Use of pharmaceuticals to treat back pain has at least three concerns. First, the patient may become dependent upon the pharmaceuticals. Second, the cost of the pharmaceuticals, usually over several years, may be extremely costly. Third, generally, the pain persists over many years.


Surgery also presents several concerns. First, most techniques involve fusing the vertebrae of the spine together and/or removing tissue from between the vertebrae. While surgery usually provides long-term relief, e.g., greater than one-year, surgical techniques require extensive recovery time and additional physical therapy for the patient.


While physical therapy does not present all of the concerns of surgery or using pharmaceuticals, patients receive varying degrees of relief from pain. Additionally, physical therapy usually provides only short-term pain relief, e.g., one to two months, thereby extending treatment over several years, and thus increasing the cost of treatment. Moreover, many patients ultimately require surgery.


SUMMARY

Several embodiments of the invention are directed to a method for treating back pain associated with a vertebral body of a patient, wherein the vertebral body is innervated by a basivertebral nerve having an origin at a medial branch of a sinuvertebral nerve and that courses medially under the posterior longitudinal ligament to enter the vertebral body at a basivertebral foramen of the vertebral body. In some embodiments, the method comprises identifying at least a portion of a basivertebral nerve associated with the vertebral body and isolating the basivertebral nerve at a location external to the vertebral body. In some embodiments, the method comprises modulating (e.g., denervating, temporarily or permanently blocking nerve conduction, altering a conductive property, stimulating, severing, cutting, crimping, heating, cooling, radiating, agitating, or altering the chemical composition of) the basivertebral nerve at the external location to treat pain associated with the vertebral body.


Several embodiments of the invention are directed to a method for treating back pain associated with a vertebral body of a patient. In some embodiments, the method comprises percutaneously guiding a delivery device within or near the vertebral body. In some embodiments, the method comprises identifying at least a portion of a basivertebral nerve associated with the vertebral body and isolating the basivertebral nerve at a location external to the vertebral body. In some embodiments, the method comprises delivering a treatment device to the external location using the delivery device and operating the treatment device at the external location. In some embodiments, the operation of the treatment device is configured to modulate the basivertebral nerve at the external location to treat pain associated with the vertebral body. In one embodiment, the delivery device comprises a catheter comprising a first lumen for advancing an imaging device and a second lumen for advancing the treatment device.


In some embodiments, the basivertebral nerve comprises a medial branch of a sinuvertebral nerve, wherein the basivertebral nerve emanates at a first end at a junction of the sinuvertebral nerve and wherein the basivertebral nerve courses medially from the junction under the posterior longitudinal ligament. In some embodiments, the basivertebral nerve enters the vertebral body at a second end located at a basivertebral foramen of the vertebral body. Modulation of the basivertebral nerve may be performed at a location on the basivertebral nerve at or near the second end located within the basivertebral foramen.


In some embodiments, identifying at least a portion of the basivertebral nerve comprises locating the sinuvertebral nerve and locating the junction of the basivertebral nerve with the sinuvertebral nerve. In one embodiment, modulating the basivertebral nerve comprises modulating the basivertebral nerve at a location on the basivertebral nerve at or near the junction with the sinuvertebral nerve. In one embodiment, the method comprises verifying that the basivertebral nerve courses medially under the posterior longitudinal ligament prior to modulating the basivertebral nerve. In some embodiments, the posterior longitudinal ligament is dilated to allow visualization of the basivertebral foramen prior to modulation of the basivertebral nerve.


In several embodiments, isolating the basivertebral nerve comprises following the basivertebral nerve from the junction medially under the posterior longitudinal ligament and dilating a space under the posterior longitudinal ligament to visualize the basivertebral foramen. In one embodiment, the method comprises locating the basivertebral foramen via direct visualization with an imaging device and modulating the basivertebral nerve at a location on the basivertebral nerve at or near the second end located within the basivertebral foramen.


In some embodiments, the step of modulating the basivertebral nerve comprises positioning an energy delivery device into the basivertebral foramen and directing a field of energy into the basivertebral foramen to denervate the basivertebral nerve, wherein the directed energy field is focused to be confined in a first direction into the basivertebral foramen. In some embodiments, the step of identifying at least a portion of the basivertebral nerve comprises locating the sinuvertebral nerve via direct visualization with an imaging device and locating the junction of the basivertebral nerve with the sinuvertebral nerve.


Several embodiments of the invention are directed to a system for treating back pain associated with a vertebral body of a patient. The system may comprise a delivery assembly configured to be percutaneously delivered to a treatment region adjacent the vertebral body. The delivery assembly may comprise a catheter having one or more lumens and an energy delivery device configured to be advanced within one of the catheter lumens. In some embodiments, the energy delivery device is sized to allow positioning of a distal end of the energy delivery device at a treatment region (such as the origin of the basivertebral nerve with the sinuvertebral nerve, or into the basivertebral foramen). In one embodiment, the energy delivery device comprises an energy delivery element configured to direct a focused field of energy (e.g., for focusing energy into the basivertebral foramen to modulate the basivertebral nerve) such that the directed energy field is focused to be confined in a first direction into the basivertebral foramen.


In some embodiments, the energy delivery element is configured to emit therapeutic energy radially outward from the distal end of the energy delivery device while substantially shielding energy delivery toward a proximal end of the energy delivery device. In some embodiments, the delivery assembly comprises an imaging device (e.g., visualization scope or camera) to aid in visualization of the basivertebral foramen and delivery of the energy delivery device into the basivertebral foramen. In one embodiment, the delivery assembly comprises an aspirating device to be delivered under the posterior longitudinal ligament via the one ore more lumens of the catheter. The aspiration device may be configured to dilate a space under the posterior longitudinal ligament to aid in visualization of the basivertebral foramen.


Several embodiments of the invention are directed to a method for denervating a basivertebral nerve to treat back pain using an externally positioned energy source (e.g., radiation, ultrasound, microwave source). The energy source may comprise a plurality of sources. The plurality of sources may be configured to deliver different energy modalities and/or deliver energy at different times. In one embodiment, the method includes acquiring imaging data of the vertebra. In one embodiment, the method comprises determining a target treatment site within or near the vertebra based on the acquired imaging data that corresponds to a location of a basivertebral nerve associated with pain in the vertebral body. In one embodiment, the step of determining a target treatment site is performed visually without acquiring imaging data. In one embodiment, the method comprises positioning a focal point of an external energy source to substantially coincide with the target treatment site. The target treatment site may be within or outside the vertebral body. The target treatment site may correspond to a location of a basivertebral nerve associated with pain in the vertebral body. In several embodiments, the target treatment site is a location within a basivertebral foramen of the vertebral body.


In one embodiment, the external energy source is positioned at a location external to the body of a patient. In one embodiment, the method comprises delivering a treatment dose of therapeutic energy at the target treatment site, wherein the treatment dose is configured to modulate (e.g., denervate, temporarily or permanently block or eliminate nerve conduction, alter a conductive property, stimulate, heat, cool, radiate, agitate, disrupt, ablate, or alter the chemical composition of) the basivertebral nerve.


In one embodiment, the method comprises acquiring patient feedback prior to delivering the treatment dose (e.g., using one or more sensors or monitors or through conversation with the patient). In one embodiment, acquiring patient feedback comprises delivering an identification dose that is a lesser dose than the treatment dose to the target treatment site and eliciting feedback from the patient with respect to a change in the sensation of pain. The identification dose may be prescribed such that the identification dose temporarily alters the sensation of pain experienced by the patient. In one embodiment, the method comprises modifying the target treatment site or location according to the acquired feedback.


Treatment may be delivered to the target treatment site to modulate at least a portion of the basivertebral nerve (e.g., terminus or junction or a portion of the basivertebral nerve between the terminus or junction and the posterior wall). In one embodiment, a portion of the basivertebral nerve is modulated by delivering focused energy (e.g., radiation, acoustic or ultrasonic energy) to an isolated region of the basivertebral nerve. In one embodiment, the focused energy is high-intensity focused ultrasonic energy. In another embodiment, a portion of the basivertebral nerve is modulated by delivering an agent to the treatment region to isolate treatment to that region. In accordance with several embodiments of the invention, the treatment is advantageously focused on a location of the basivertebral nerve that is upstream of one or more branches of the basivertebral nerve.


In some embodiments, delivering the treatment dose comprises delivering a first incremental dose that is a fraction of the treatment dose and then acquiring imaging data of the patient. The method may comprise measuring the distance between the focal point of the energy source and the target treatment site and then moving the external energy source such that the focal point of the external energy source coincides with the target treatment site if the measured distance is not within a predetermined threshold. In some embodiments, delivering the treatment does comprises delivering a second incremental dose if the measured distance is within the predetermined threshold


Nerves within bones other than the vertebrae or spine may be targeted by the external energy source, for example, non-spinal joints or in non-orthopedic applications (e.g., cardiac, pulmonary, renal, or treatment of other organs and/or their surrounding nerves). The external energy source may comprise at least one radiation source or at least one acoustic energy source. In one embodiment, the at least one acoustic energy source comprises one or more transducers configured to deliver focused ultrasonic energy (e.g., high-intensity focused ultrasonic energy or low-intensity focused ultrasonic energy). In one embodiment, the external energy source comprises at least one microwave source.


In some embodiments, the step of determining a target treatment site comprises acquiring a vertebral reference point corresponding to a radiographically identifiable anatomical feature of the vertebra and generating coordinates for the target treatment site as a function of a calculated distance from the vertebral reference point. In one embodiment, the calculated distance corresponds to a predicted basivertebral nerve location that is obtained from analysis of the acquired imaging data.


In some embodiments, the step of acquiring imaging data comprises restraining at least a portion of the patient to an external support. In one embodiment, the external support comprises a radiographically identifiable marker. Acquiring imaging data may comprise imaging the patient and locating the radiographically identifiable marker within the acquired image. The method may comprise assigning an external reference point corresponding to the location of the radiographically identifiable marker. In one embodiment, the external reference point is as a base point for positioning the focal point of the external energy source at the target treatment site. In one embodiment, the method comprises acquiring a vertebral reference point corresponding to a radiographically identifiable anatomical feature of the vertebra and generating coordinates for the target treatment site as a function of a calculated distance from the vertebral reference point. In some embodiments, the step of determining a target treatment site is performed by direct visualization without calculations based on acquired imaging data.


Several embodiments of the invention are directed to a system for treating back pain associated with the spine (e.g., one or more vertebrae) of a patient. In several embodiments, the system provides non-invasive treatment of the back pain by modulating spinal nerves (e.g., intraosseous or basivertebral nerves) from outside the body. In some embodiments, the system comprises an external energy (e.g., radiation) source configured to be positioned at a location external to the body of the patient. In one embodiment, the system comprises a linear drive configured to drive translation of the external energy source with respect to the patient in one or more axes. In one embodiment, the system comprises a computer coupled to the external energy source and to the linear drive. In one embodiment, the system comprises programming instructions executable on the computer. In several embodiments, the programming instructions comprise one or more modules for performing one or more of the following: determining a target treatment site within or near the spine (e.g., vertebral body) based on acquired imaging data or based on direct visualization; controlling the linear drive to position a focal point of the external energy source to substantially coincide with a target treatment site that corresponds to a location of a basivertebral nerve associated with pain in the spine (e.g., vertebral body); and controlling the external energy source to deliver a treatment dose of therapeutic energy at the target treatment site. In several embodiments, the treatment dose is configured to modulate (e.g., denervate) the basivertebral nerve. The therapeutic system may include a treatment device and an imaging device. In one embodiment, the treatment device and the imaging device are combined into a single unitary device. The focal point may be adjusted depending on imaging obtained by the imaging device or other feedback mechanisms.


In some embodiments, the system comprises an imaging source coupled to the computer for acquiring imaging data of the spine (e.g., vertebrae or vertebral bodies). In one embodiment, the system comprises a support configured to restrain at least a portion of the patient to an external support. The support may comprise a radiographically identifiable marker. In one embodiment, the executable program instructions are configured to control the imaging source for imaging the patient, locate the radiographically identifiable marker within the acquired image; and assign an external reference point corresponding to the location of the radiographically identifiable marker. The external reference point may be used as a base point for positioning the focal point of the external energy source at the target treatment site.


In some embodiments, the system comprises a radial drive coupled to the external energy source. The radial drive may be configured to rotate the external energy source about the target treatment site during delivery of the treatment dose. The external energy source may comprise one or more radiation-emitting and/or acoustic energy sources having a common focal point or different focal points.


Several embodiments of the invention are directed to a radiotherapy method for treating back pain associated with a vertebral body of a vertebra of a patient. In one embodiment, the method comprises acquiring imaging data of the vertebra and determining a target treatment site within the vertebra based on the acquired imaging data. In one embodiment, the target treatment site corresponds to a location of a basivertebral nerve associated with pain in the vertebral body. The method may further comprise positioning a focal point of an external radiation source to substantially coincide with the target treatment site and delivering a treatment dose of therapeutic energy at the target treatment site to modulate the basivertebral nerve.


Several embodiments of the invention are directed to a radiotherapy system for treating back pain associated with a vertebral body of a patient. In some embodiments, the system comprises an external radiation source configured to be positioned at a location external to the body of the patient. In one embodiment, the system comprises a linear drive coupled to the radiation source, the linear drive configured to drive translation of the radiation source in one or more axes. In some embodiments, the system comprises a computer coupled to the radiation source and to the linear drive. The computer may comprise programming instructions executable on the computer for determining a target treatment site within or near the vertebra based on acquired imaging data, wherein the target treatment site corresponds to a location of a basivertebral nerve associated with pain in the vertebral body. In one embodiment, the programming instructions are further configured to control the linear drive to position a focal point of the external energy source to substantially coincide with the target treatment site and/or to control the external radiation source to deliver a treatment dose of therapeutic energy at the target treatment site. In some embodiments, the treatment dose is configured to modulate the basivertebral nerve at the location.


Further aspects of embodiments of the invention will be discussed in the following portions of the specification. With respect to the drawings, elements from one figure may be combined with elements from the other figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Several embodiments of the invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:



FIG. 1 illustrates a left posterior view of the lumbar spine showing branches of associated nerves.



FIG. 2 is a posterior view of the spine, with pedicles transected, dural sac removed to show the path and branches of the left sinuvertebral nerve.



FIG. 3 is a posterior view of the spine, with pedicles transected and dural sac removed, and posterior longitudinal ligament cut out to show the path and branches of the left sinuvertebral nerve.



FIG. 4 shows a posterior view of the spine showing the basivertebral nerve emanating from a bifurcated branch of the sinuvertebral nerve.



FIG. 5 shows a posterior view of another spine sample showing the basivertebral nerve emanating from a bifurcated branch of the sinuvertebral nerve.



FIG. 6 illustrates a cross-sectional view of a vertebral body shown in FIG. 1.



FIG. 7 illustrates a schematic diagram of an embodiment of a method for treatment of pain via denervation of the basivertebral nerve at a location external to the vertebral body.



FIG. 8 illustrates a schematic diagram of an embodiment of a method for identifying the basivertebral nerve.



FIG. 9 illustrates a schematic diagram of an embodiment of a method for isolating the basivertebral nerve.



FIG. 10 shows an embodiment of a delivery and treatment system for minimally-invasively treating the basivertebral nerve at a location external to the vertebral body.



FIG. 11 shows a distal-end view of an embodiment of a delivery assembly.



FIG. 12 illustrates cut-out side view of a lumber vertebra.



FIG. 13 illustrates a cut-out top view of a vertebral body showing placement of an embodiment of a treatment delivery assembly within a first of two basivertebral foramen.



FIG. 14 illustrates a cut-out top view of a vertebral body showing placement of an embodiment of a treatment delivery assembly within a vertebra having one basivertebral foramen.



FIG. 15 is a picture of a cadaver showing numerous small neural elements converged on the foraminal ostia.



FIG. 16 is a picture of a cadaver showing larger, more singular nerves observed entering from the general region of the nerve root.



FIG. 17 is a picture of a cadaver showing largest medial branch of the sinuvertebral nerve.



FIG. 18 is another picture of a cadaver of FIG. 17.



FIG. 19 is a block diagram of an embodiment of a radiotherapy apparatus for treating back pain.



FIG. 20 is a schematic diagram of an embodiment of the radiotherapy apparatus of FIG. 19.



FIG. 21 is a sectional view of an embodiment of the radiotherapy gantry of FIG. 20.



FIG. 22 is a side view of a lumbar vertebra showing innervation of the vertebral body.



FIG. 23 is a top view of the lumber vertebra of FIG. 22.



FIG. 24 is flow diagram of an embodiment of a radiotherapy method for treating back pain.



FIG. 25 is an embodiment of a flow diagram of the treatment delivery method of FIG. 24.





DETAILED DESCRIPTION

In accordance with several embodiments, back pain may be associated with one or more nerves in the spine. For example, one or more intraosseous or basivertebral nerves within one or more vertebrae of the spine may be the source of the back pain. In some embodiments, the nerves are treated (e.g., modulated) at nerve portions that are isolated outside of the bony tissue of the vertebral body (e.g., external to the vertebral body). In some embodiments, the nerves are treated from a location external to the skin (e.g., extracorporeal, non-invasive) treatment.


Identification, Isolation, and Modulation of Basivertebral Nerve


FIG. 1 illustrates a left posterior view of the lumbar spine 10 showing branches of associated nerves. Spine 10 comprises intervertebral discs 14 disposed between adjacent vertebrae 12. Lumbar dorsal rami 18 branch at nearly right angles from a corresponding ventral ramus 16 at each vertebra 12. The dorsal rami 18 divide into two or three branches: medial branch 20, lateral branch 22, and variable intermediate branch 21.


Referring to FIGS. 2 and 3, the sinuvertebral nerves 28 (left and right) are recurrent branches of the ventral rami 16 that re-enter (e.g., retrograde) the intervertebral foramina 25 to be distributed within the vertebral canal 46. FIG. 2 is a posterior view of the spine 10 with pedicles 26 transected, dural sac removed to show the path and branches of the left sinuvertebral nerve 28 (posterior longitudinal ligament 32 is intact). FIG. 3 is a posterior view of the spine 10 with pedicles 26 transected and dural sac removed, and posterior longitudinal ligament 32 cut out to show the path and branches of the left sinuvertebral nerve 28 and floor of the vertebral canal 46. In FIG. 3, the ventral ramus 16 and dorsal root gang 18 are retracted to show the originals of the origin of the sinuvertebral nerve 28.


As shown in FIG. 3, the sinuvertebral nerves 28 are mixed polysegmental nerves and nerve plexuses, each being formed by a somatic root 36 from a ventral ramus 16 and an autonomic root 38 from the grey ramus communicans 34. The lumbar sinuvertebral nerves 28 run across the back of the vertebral body 40, just below the upper pedicle 26. Within the vertebral canal 46, the sinuvertebral nerve 28 forms a major ascending branch 35 travelling nostrally parallel to the posterior longitudinal ligament 32, a lesser descending branch 33, and a larger medial branch 30 that crosses under the posterior longitudinal ligament 32.


In accordance with several embodiments, the medial branch 30 comprises the basivertebral nerve that innervates the vertebral body 40, and is in large part responsible for back pain experienced by a subject (e.g., human or animal patient).



FIG. 3 illustrates a basivertebral nerve 30 that emanates from a trifurcated junction 31 of the sinuvertebral nerve 28, comprising ascending branch 35, descending branch 33 and medial basivertebral nerve branch 30. As seen in FIG. 3, the basivertebral nerve extends from trifurcated junction 31 below the posterior longitudinal ligament 32 and into one of the basivertebral foramina 42. The basivertebral nerve 30 shown in FIG. 3 is the left basivertebral nerve that enters the left-most basivertebral foramen 42. Correspondingly, the right basivertebral nerve (not shown) follows a similar path from under the opposite pedicle 26 and into the right basivertebral foramen 42.



FIGS. 4 and 5 are similar posterior views of the spine 10 showing the basivertebral nerve 30 emanating from a bifurcated junction 37 of the sinuvertebral nerve 28. In each of these cases, the lesser descending branch 33 is formed from a first junction with the ascending branch 35 of the sinuvertebral nerve 28. The basivertebral nerve 30 then emanates from the ascending branch 35 at the bifurcated junction 37, and runs medially under the posterior longitudinal ligament 32 and into the basivertebral foramen 42. FIG. 5 shows an example where the bifurcated junction (e.g., basivertebral nerve junction) 37 is closer to the origination of the sinuvertebral nerve 28 with somatic root 36 and anatomic root 38.


The basivertebral nerve 30 comprises the largest medial branch emanating from the sinuvertebral nerve 28, which runs medially under the posterior longitudinal ligament 32. The basivertebral nerve 30 travels into the basivertebral foramen 42 to innervate the vertebral body.



FIG. 6 illustrates a cross-sectional view of the vertebral body 12 shown in FIG. 1, with associated anatomy. As shown in FIG. 6, the left and right basivertebral nerves 30 emanate from the sinuvertebral nerve 28 and travel medially under the posterior longitudinal ligament 32 and into the vertebral foramina 46. Each corresponding basivertebral nerve 30 then enters corresponding left and right basivertebral foramen 42, where they generally bundle with basivertebral blood vessels 43 and travel to the end of the conical-shaped basivertebral foramen 42 to then enter the bony mass of the vertebral body 40. In some cases, there may only be one basivertebral foramen (shown in FIG. 13), and both left and right basivertebral nerves may travel toward the distal end of the same basivertebral foramen.



FIG. 7 illustrates a schematic diagram of an embodiment of a method 100 for treatment of pain via modulation of the basivertebral nerve 30 within a patient. In accordance with several embodiments, access to the basivertebral nerve 30 for subsequent intraosseous nerve modulation (e.g., ablation, denervation, stimulation) may be achieved in at least two ways. In a first “minimally invasive” approach, the patient's skin may be penetrated with a surgical instrument, which is then used to access the desired basivertebral nerves, e.g., percutaneously.


In a second “open” approach, the intraosseous nerves (e.g., basivertebral nerves) may be modulated during an open surgery or surgical repair of the spine 10, wherein the patient's spine, or a portion thereof, is fully exposed for the primary surgery (e.g., vertebral fracture repair, spinal fixation, tumor removal, etc.). The basivertebral nerves 30 may be permanently or temporarily denervated (e.g., ablated, cut, crimped) as a prophylactic measure against subsequent post-surgical back pain. In some embodiments, intraosseous nerve modulation (e.g., ablation, denervation, stimulation) may also occur prior to the primary spinal surgery.


Regardless of whether the basivertebral nerve modulation is performed percutaneously or as a secondary procedure during a conventional spinal surgical repair, the following discussion is directed to various embodiments of surgical methods for accessing basivertebral nerves. While the following description is limited to three different approaches for accessing the basivertebral nerves, alternative approaches may be taken by the surgeon depending upon the clinical setting without varying from the spirit and/or scope of the disclosure.


Referring back to FIG. 7, in accordance with several embodiments, the first step 102 in method 100 is to identify at least a portion of the left or right basivertebral nerve 30 for the particular vertebral body of interest (e.g., the L3, L4, L5, S1, or S2 vertebra). Next, at step 104, a portion of the basivertebral nerve 30 is isolated at a location outside the vertebral body. In some implementations, the isolation is achieved by locating the origin of the basivertebral nerve 30 with the sinuvertebral nerve 28 at junctions 31 or 37 (see FIGS. 3-5). In some implementations, the isolation is achieved by locating the entry of the basivertebral nerve 30 into the vertebral body 40 (e.g. at basivertebral foramen 42 shown in FIG. 7). Identification and/or isolation at steps 102 and 104 may be performed via direct visualization with a catheter-based delivery system 200, as shown in FIGS. 10 and 11, or with an external imaging system (e.g., ultrasound, optical coherence tomography, MR imaging, CT imaging, Doppler, X-ray).


Referring to FIG. 8, in accordance with several embodiments, step 104 (isolating the basivertebral nerve 30 at junctions 31 or 37) is first performed by locating the sinuvertebral nerve 28 at step 110. In some embodiments, locating the sinuvertebral nerve 28 is performed percutaneously through intervening facie and tissues. Next, at step 112, the sinuvertebral nerve 28 is followed away from its origination ascending upward until the largest medial branch 30 is located at trifurcated junction 31 (trifurcated branch shown in FIG. 3) or bifurcated junction 37 (bifurcated branch shown in FIG. 4 or 5). The determination may then be verified at step 114 by verifying that the branch of the basivertebral nerve 30 runs under the posterior longitudinal ligament 32.


Referring to FIG. 9, in accordance with several embodiments, locating the entry of the basivertebral nerve 30 into the vertebral body 40 via step 104 may be performed by first following the medial branch 30 under the posterior longitudinal ligament 32 at step 120. In some embodiments, the space under the posterior longitudinal ligament 32 may then be dilated at step 122 to visualize the space underneath the posterior longitudinal ligament 32. The medial branch 30 may then be followed into the basivertebral foramen 42 at step 124. In some embodiments, to locate the entry of the basivertebral nerve 30 into the vertebral body 40, an alternative approach may be to dilate the posterior longitudinal ligament 32 and identify and/or visualize the basivertebral foramen 42 without identifying or following the medial branch of the sinuvertebral nerve 28. By locating basivertebral foramen 42, the basivertebral nerve 30 is also located, as the basivertebral nerve enters the vertebral body 40 via the basivertebral foramen 42.


Referring back to FIG. 7, in accordance with several embodiments, once the basivertebral nerve 30 is located and isolated for treatment, the desired treatment location of the basivertebral nerve 30 is denervated at step 106. For purposes of this disclosure, the terms “modulate” or “neuromodulate” as used herein, shall be given their ordinary meaning, and shall include modifying the conductive properties of the nerve, such that the transmission of signals from the nerve endings within the vertebral body are stimulated, altered, blocked, or eliminated altogether, to provide a therapeutic effect within or related to the vertebral body. Modulation shall also include ablation, denervation, disruption, inhibition, therapeutic stimulation, diagnostic stimulation, necrosis, desensitization, or other effect on tissue. Neuromodulation shall refer to modulation of a nerve (structurally and/or functionally) and/or neurotransmission. Modulation is not limited to nerves and may include effects on other tissue. Modulation may comprise a partial or total and/or partial or temporary loss or alteration of conduction of the nerve across the location for treatment of the nerve. In several embodiments, modulating (e.g., denervating) the nerve may be achieved by cutting, crimping, heating, cooling, radiating, agitating, or altering the chemical composition of the nerve at the treatment location.


The goal of the treatment or modulation (e.g., denervation) may be ablation or necrosis of the target nerve or tissue, or some lesser degree of treatment to denervate the basivertebral nerve. For example, the treatment energy, frequency and/or other treatment parameters may be just sufficient to stimulate the nerve to block the nerve from transmitting signals (e.g., signals indicative of pain).


In one embodiment, the treatment system 200 (shown in FIGS. 10 and 11 and described in further detail below) may comprise a number of different treatment modalities for therapeutic treatment of the target region. For example, in one embodiment, the treatment devices or probes in system 200 operate in a manner that produces heat or thermal energy (such as described in U.S. Pat. No. 6,699,242, herein incorporated by reference in its entirety) that modulates (e.g., ablates) the tissue of the target region (e.g., a basivertebral nerve) at the target region (e.g., a basivertebral nerve location). In some embodiments, the treatment devices or probes in system 200 operate in a manner that produces acoustic energy. The treatment devices or probes may include one or more energy sources (e.g., RF energy sources, ultrasonic transducers or elements, microwave energy sources, light energy sources, plasma ion sources). In some embodiments, energy sources of different energy modalities may be used in combination. For example, one energy source may emit ultrasound energy while another energy source may emit microwave or electrical energy. The energy output may be dynamically controlled by changing the power intensity, the frequency, the angle of dispersion, the focus, or other dynamically controllable parameters. In some embodiments, the treatment devices or probes in system 200 comprise surgical cutting devices or fluid delivery devices. In one embodiment, the treatment devices or probes comprise a bipolar RF probe with a pair of electrodes. In some embodiments, the fluid delivery device comprises a catheter, tube, sleeve, needle, cannula, wicking device, or other conduit configured to deliver fluid. The fluid may comprise neurolytic agents, chemotherapy agents, radioactive substances, medications, drugs, pharmaceuticals, alcohols, acids, solvents, cooling agents, nerve blocking agents, and/or other chemical agents.


In one embodiment, the treatment device is configured to deliver therapeutic treatment that is targeted to block nerve conduction without ablating the nerve (e.g., treatment is delivered to the nerve via thermal therapy, chemical agent, or the like) that results in denervation of the basivertebral nerve without necrosis of tissue. This may be achieved via delivery of a lesser amount of energy or agent to the tissue site (either in the form of less exposure time, concentration, intensity, etc.) than is required for ablation, but an amount sufficient to achieve some amount of temporary or permanent denervation. In some embodiments, the treatment device is configured to stimulate nerves.


In one embodiment, dosing of the treatment therapy may be tailored to the desired goal for modulation, the region or type of tissue to be treated, and the modality being used, among other factors.


In one embodiment, when heating is the applied modality, a minimum dose threshold of 30 CEMs (Cumulative Equivalent Minutes), with temperatures between 40° C. and 100° C. (e.g., between about 40° C. and about 60° C., between about 40° C. and about 80° C., between about 50° C. and about 90° C., between about 60° and about 100° C., between about 50° C. and about 80° C., or overlapping ranges thereof) is applied for some tissues. In some embodiments, cooling is administered to the target tissue (using either the treatment device or a separate device.


In some embodiments, a thermal dose of 300 CEMs may be used to ablate tissues, and sometimes the dose may reach 1000 CEMs or more. The delivered dose may be a function of several different variables: e.g., tissue type, thermal conduction of the surrounding tissues, treatment region, treatment type, and other uncontrolled variables. In various embodiments, the thermal dose may be between about 30 and about 1000 CEMs, between about 100 and about 500 CEMs, between about 50 and about 300 CEMs, between about 200 and about 400 CEMs, between about 300 and about 800 CEMs, between about 400 and about 900 CEMs, between about 500 and about 1500 CEMs, or overlapping ranges thereof.


In some embodiments, such as when RF energy is used, the impedance of the target tissue may also have an effect and be factored in the desired dosing treatment plan. If ultrasound energy is used, the propagation of the energy through the tissues is a major factor, (e.g., ultrasound generally propagates better through soft tissues than hard tissues, such as bone). Propagation of the energy (e.g., via ultrasound or RF) may be also be enhanced or modified by other substances added to the local tissues. The ultrasound energy may be used for cavitation or non-cavitation.


In one embodiment, the material used to enhance the conduction of the energy may be a biological material such as blood. In some embodiments, the biological material may serve to enhance the energy delivery while simultaneously acting as an insulator for another area of the body. For example, delivery of blood may enhance the propagation of thermal energy at some temperatures, but may act as in insulator if exposed to higher temperatures, thus effectively blocking the transmission of potently damaging thermal energy to other neighboring nerves or anatomy once a threshold temperature is exceeded.). In embodiments where RF energy is used for heating the nerve or other target tissue, the frequency may be any integer between about 100 kHz and 1 MHz, between 400 kHz and 600 kHz, between 300 kHz and 500 kHz, between 350 kHz and 600 kHz, between 450 kHz and 600 kHz, between 300 kHz and 450 kHz, between 350 kHz and 500 kHz, between 400 kHz and 600 kHz, between 450 kHz and 550 kHz, between 460 kHz and 500 kHz overlapping ranges thereof, or any frequency within the recited ranges.


For stimulation of the nerve using RF energy, in accordance with several embodiments, the frequency may be applied at a substantially lower level, e.g., in the range of approximately 1 Hz to 200 kHz, and may be used in a pulsed or continuous mode. In one embodiment, the total CEMs in the stimulation mode are maintained below 30 to limit tissue damage. Pulsed energy may be used to stimulate the nerve in one mode and then the frequency, pulse width or intensity may be modulated (e.g., increased) to achieve ablative/destructive doses of energy. In one embodiment, stimulation of the nerve is performed to block the travel of signals indicative of pain. Stimulation may comprise mechanical, electrical, or electromechanical stimulation.


Each vertebra generally comprises a left and right basivertebral nerve 30 that leads into the vertebral body 40. Accordingly, once a first side (e.g. left side) is treated, the procedure may then be repeated for the corresponding opposite side (e.g. right side). In some embodiments, a “side” is defined by a center line extending from the center of the posterior outer cortical wall to the center of the anterior cortical wall. In other embodiments, “side” can be defined by any line extending through the center of the vertebral body.


Patient feedback may be acquired at particular stages within the procedure. For example, in one embodiment, the target region of the basivertebral nerve 30 may be heated at a lower, non-destructive or “stimulating” level to generate a desired temporary therapeutic response from the patient. Patient feedback may then be obtained to verify that the location is correct before a destructive or permanent dose is delivered.



FIG. 10 shows one embodiment of a delivery and treatment system 200 for minimally-invasively treating the basivertebral nerve 30 at a location external to the vertebral body. System 200 comprises a delivery assembly 202, such as the multi-lumen catheter 202, that is configured to be introduced into the body subcutaneously and delivered to the basivertebral nerve 30 at one its junctions 31, 37 with sinuvertebral nerve 28, and/or to the basivertebral foramen 42 under the posterior longitudinal ligament 32.


In some embodiments, the treatment system 200 comprises a treatment device 204 for achieving the desired denervation at the treatment location at the basivertebral nerve 30. The treatment device 204 may be configured to deliver any number of treatment modalities (singly or in combination) at the treatment site for therapeutic denervation of the basivertebral nerve 30 or other nerves within bone. For example, treatment may be affected by monopolar, bipolar or tripolar RF, ultrasound, acoustic, radiation, steam, microwave, laser, light, or other heating means. Additionally, in some embodiments, the treatment device 204 may comprise a fluid delivery catheter that deposits an agent (e.g., bone cement, chemoablative fluid, radioactive substance, or other therapeutic agent) to the treatment location at the basivertebral nerve 30. In one embodiment, cryogenic cooling may be delivered for localized treatment of the basivertebral nerve 30. In one embodiment, treatment may be affected by any mechanical destruction and or removal means capable of severing or denervating the basivertebral nerve 30. For example, a cutting blade, bur or mechanically actuated cutter may be used to affect denervation of the basivertebral nerve 30.


In accordance with several embodiments, and in addition to or separate from treating the basivertebral nerve, a sensor (not shown) may be delivered to the region to preoperatively or postoperatively measure nerve conduction or heating at the treatment region. In this configuration, the sensor may be delivered on a distal tip of a flexible probe that may or may not have treatment elements (e.g., electrodes, ultrasound transducers, microwave elements) as well.


In one embodiment, system 200 comprises a camera 208 or other imaging device sized to be received within delivery assembly 202. The camera 208 can be configured to provide visualization of the nerves and surrounding anatomy for navigating to the proper location and identification of the basivertebral nerve 30 and surrounding anatomy. The imaging device can comprise one or more optical fibers for lighting and/or one or more optical fibers for imaging.


In one embodiment, system 200 further comprises an aspiration device 206 sized to be received within delivery assembly 202 for delivering fluid to the region (e.g., under the posterior longitudinal ligament 32 to dilate a space under the posterior longitudinal ligament 32 for visualization of the basivertebral nerve 30, basivertebral foramen 42, or other anatomy). Aspiration of the surrounding anatomy may be used for navigating to the proper location and identification of the basivertebral nerve 30 and surrounding anatomy (e.g. sinuvertebral nerve, 28 and/or basivertebral foramen 42).


In one embodiment, system 200 may comprise a secondary visualization and/or imaging means 210, such as radiographic (x-ray) imaging, to be used in combination with, or in alternative to, direct imaging. For example, the basivertebral foramen 42 may be located via radiographic imaging for direct treatment of the basivertebral nerve 30 within the basivertebral foramen.



FIG. 11 shows a distal-end view of one embodiment of a delivery assembly 202. Delivery assembly 202 may comprise a multi-lumen catheter with a plurality of lumens 220, 222, and 224 for minimally-invasively delivering diagnostic and treatment instruments to the treatment location.


In one embodiment, catheter 202 comprises a first lumen 220 for delivery of a camera 208 or other imaging device. In some embodiments, catheter 202 comprises a second delivery lumen 222 for delivery of a treatment device 204, which may comprise a treatment element 212. Treatment element 212 may comprise an energy/therapy delivery applicator (e.g., RF element, agent delivery lumen, cutting blade, or the like) for treatment of the basivertebral nerve 30 at the treatment location. In one embodiment, catheter 202 comprises a third lumen 224 for delivery of an aspiration device 206 simultaneously with either the imaging device 208 or treatment device 204.


As explained above, the treatment location may comprise the location of the basivertebral nerve 30 at the entry point within the vertebral body 40 within the basivertebral foramen 42. FIGS. 12-14 show the basivertebral foramen 42 and one embodiment of the treatment assembly 202 delivered at the treatment location within the basivertebral foramen 42.



FIG. 12 illustrates a cut-out side view of a lumber vertebra 12. As shown in the cutout in vertebral body 40, the basivertebral foramen 42 is a conical opening emanating from the spinal canal 46 and generally positioned along the midline of the vertebral body 40. Previous systematic histological analysis of the vertebral body 40 has established the predominant entry point for vertebral intraosseous nerves as the basivertebral foramen 42, and the major source of innervation of the vertebral body 40 as the basivertebral nerve 30. The large basivertebral foramina 42 universally penetrate the posterior cortex of the vertebral body 40 at a midline of the vertebral body. The basivertebral nerves (which arise as a branch of the sinuvertebral nerve, which in turn anastomoses with the sympathetic chain) enter the vertebral body 40 through these foramina 42, arborize and innervate the vertebral body 40 down to and including the endplates. Nociceptive function of these basivertebral nerves has been confirmed by staining.



FIG. 13 illustrates a cutout top view of a vertebral body showing placement of one embodiment of a treatment delivery assembly 202 within a first of two basivertebral foramen 42. In one embodiment, the treatment device 204 is delivered into the basivertebral foramen 42 and then actuated to modulate (e.g., denervate) the basivertebral nerve 30 (this location may comprise multiple branches of the basivertebral nerve 30) within the cavity of the basivertebral foramen 42. FIG. 13 is shown with one embodiment of an energy delivery device (e.g. ultrasound or RF applicator) delivering a field of energy E into the basivertebral foramen 42 to denervate the basivertebral nerve 30. Other modalities (e.g., cutting blade, agent delivery, etc.) may also be delivered into the cavity 42 with appropriate non-energy delivery devices. In one embodiment, energy is delivered radially outward and/or forward into the cavity 42 so as to form a conduction block of the basivertebral nerve 30 toward at least one location within the basivertebral foramen 42. The field of energy may be delivered omnidirectionally or in a controlled direction. Device 204 may comprise shielding or directed energy delivery so as not to direct energy backward into the spinal canal 46, and only direct energy into the basivertebral foramen 42, where the energy is contained within the bony walls of the basivertebral foramen 42.


In one embodiment, once the first basivertebral nerve 30 is treated within the first basivertebral foramen 42, the treatment device 204 may then be disposed in the other basivertebral foramen 42 to treat the basivertebral nerve 30 on the other side. This may be achieved by advancing treatment assembly 202 further within the canal 46, or by accessing the other basivertebral foramen 42 from the opposite side of the vertebra 12.


In one embodiment, the basivertebral foramen 42 is accessed through a transpedicular approach, where a channel (shown as dashed lines in FIG. 13) is bored into pedicle 26. The channel may generally comprise a curved channel based on the location and size of the basivertebral foramen 42, and bored with instruments and methods as detailed in U.S. Patent Pub. No. 2010/0324506, filed on Aug. 26, 2010, and U.S. patent application Ser. No. 13/612,541, filed on Sep. 12, 2012, each of which is incorporated by reference herein in its entirety.


As seen in FIG. 14, the vertebra 12 may only comprise one basivertebral foramen 42. In this case, the treatment delivery assembly 202 and treatment device 204 are delivered into the singular basivertebral foramen 42, and may deliver energy field E to treat both left and right basivertebral nerves 30 simultaneously.


Cadaver Study of the Proximal Basivertebral Neuroanatomy


The following study was performed on the neuroanatomy of the proximal basivertebral system, with the specific objective of identifying neural components entering the basivertebral foramina, and tracing the primary basivertebral nerve to a point of origin. A series of three cadaver studies were conducted to identify the origination of the basivertebral nerve and path into the vertebral body. The three cadaver studies are non-limiting examples of embodiments of identification of basivertebral nerve origin.


Cadaver Dissection I (Cadaver A)


With the cadaver in the prone position, a midline incision was made over the lumbar spine from L2 to S1 and extended laterally 10 cm at each end into an ‘H’. The paraspinal muscles and other soft tissues were elevated and dissected clear of the posterior spine with sharp dissection, and the lamina exposed. The dorsal spine and lamina were totally excised utilizing an oscillating saw, exposing the spinal canal and cord (within the dura) and the dorsal ganglia.


The cord was gently retracted with dural retractors, ligatures placed for traction, and the Posterior Lateral Ligament isolated and gently elevated clear of the posterior spinal canal with blunt dissection technique.


The adherent elements of soft tissue were gently cleared by blunt dissection using alternating saline saturated and dry gauze sponges, exposing elements of the neural network and the basivertebral foramina. Further local dissection at each foramen was conducted to provide visibility for specific appreciation of the various elements entering the foramina.


Referring to FIG. 15, it was observed that numerous small neural elements converged on the foraminal ostia, which then generally followed the vascular elements into the vertebral body, forming a classic neurovascular bundle. As seen in FIG. 16, larger, more singular nerves were observed entering from the general region of the nerve root. Due to the mechanical disruption of soft tissue in this area from the laminectomy, the exposure utilized rendered tracing these nerves entering the canal to their point of origin (from inside the canal tracing outwards) unfeasible in this cadaver. It was determined that a subsequent dissection utilizing an alternate approach would be conducted focusing on the post-ganglionic anatomy, tracing any nerves entering the canal from that region (from outside the canal tracing inwards).


Cadaver Dissection II (Cadaver B)


With the cadaver in the prone position, a midline incision was created overlying the Lumbar spine approximately 20 cm in length. Sharp dissection was used to expose the posterior aspect of the lumbar spinous processes. With these landmarks well exposed, the incision was extended laterally approximately 5 cm in each direction at both ends of the original incision to create a very wide exposure (in the shape of an “H”). Following this, the lamina and facet joints of L1, L2, L3, and L4, were widely exposed. Rongeurs and osteotomes were then used to remove the facet joints, lamina, and ligamentum flavum creating a wide exposure of the dura, the Dorsal Root Ganglion, and exiting nerve roots. Pedicles were divided on the coronal plane.


Beginning on the left side, the nerve roots were divided as they exited the central dural sac. The central dura thus drained of CSF, collapsed and was gently retracted medially out of the field. The root itself was then gently retracted laterally. With careful elevation of the nerve root, the sinuvertebral nerve was easily identified at each of the levels dissected, as it branched off of the large nerve root and coursed back through the foramen (between the remaining stumps of the pedicles).


Results


The sinuvertebral nerve divided variably into 3 or more branches, as expected. In every case, however, a branch of the sinuvertebral nerve was seen to course medially beneath the posterior longitudinal ligament. The posterior longitudinal ligament in this cadaver was very white and somewhat flaccid, and the space beneath it could be well visualized by only partially dividing it. Referring to FIG. 17, the largest medial branch of the sinuvertebral nerve was seen in every case to course directly into the basivertebral foramen, where it then divided usually into 3 to 5 smaller branches and entered the bone (see FIG. 18). The dissection clearly documented that the basivertebral nerve is a branch of the sinuvertebral nerve.


Having successfully established the basivertebral nerve's origin as a branch of the sinuvertebral nerve and having mapped the basivertebral nerve's usual course, additional detailed dissections were undertaken to further document and illuminate these findings and to gain some understanding of the nature and prevalence of individual variants.


Cadaver Dissection III


Cadavers were positioned prone on a dissecting table. A longitudinal midline incision was made from L1 to the mid sacral level. The skin, subcutaneous fat was divided to expose the lumbar fascia. The fascial incision was carried out, also longitudinally, and the paraspinal muscles were dissected off of the spinous processes and the lamina bilaterally. The skin incision was then extended laterally from the proximal and distal end, approximately 8 cm on both sides to create the shape of an H.


These large flaps were then developed on both sides to allow good exposure of the spinous processes, lamina, facet joints and interlaminal spaces from L5 to L1.


Spinous processes were removed with rib cutters, and the lumbar lamina then removed with rongeurs and Cloward type punches. Blunt dissection allowed exposure of the dural sac. The facet joints were then completely removed bilaterally using osteotomes and rongeurs to expose the pedicle, which was viewable “end on” transected in the coronal plane. Exiting nerve roots were identified, and exposed from the axilla, to at least one cm beyond the lateral border of the pedicle, and beyond the thickened portion of the dorsal root ganglion. Following the gross exposure, superior visualization surgical loupes (3.5×) were used for visualization of the finer neurovascular structures during the remainder of the dissection.


Exposure of the sinuvertebral nerve was accomplished by transecting the nerve root at its base as it branched off of the dural sac. The root was then carefully and gently reflected laterally and the volar aspect inspected. In all cases, the sinuvertebral nerve was seen to exit the volar aspect of the sheath, at or immediately lateral to the distal portion of the ganglion. In many cases, other small nerves were also seen to emerge immediately distal to the dorsal root ganglion, sometimes (but not always) anastamosing with the sinuvertebral nerve. Most of the other small nerves coursed dorsally or posteriorly. Generally, only one nerve (the sinuvertebral nerve) coursed retrograde back through the foramen.


The details of the anatomy at each exposed level are described below:


Cadaver C


L5 left: The sinuvertebral nerve entered the epidural space before the first small branch was noted, which coursed directly caudad. The larger branch coursed cephalad to the level of the inferior border of the L5 pedicle, when a large branch traveled medially, directly to the basivertebral foramen


L5 Right: Two branches were seen to arise from the root, just past the thickening of the ganglion. The smaller branch coursed inferomedially before branching into two equally sized nerves just before travelling beneath the posterior longitudinal ligament. It was not possible to follow them further. The “other sinuvertebral nerve” coursed cephalomedially until dividing into two approximately equally sized branches, just medial to the posterior longitudinal ligament. One branch coursed directly medially onto the basivertebral foramen, the other coursed cephalad.


L4 left: This sinuvertebral nerve coursed cephalomedially until it neared the edge of the posterior longitudinal ligament, where it divided into two branches. The inferior branch coursed caudad, parallel to the border of the posterior longitudinal ligament. The other coursed cephalad, immediately lateral to the border of the posterior longitudinal ligament before branching at the level of the inferior pedicle, creating a branch that coursed medially, beneath the posterior longitudinal ligament, to enter the basivertebral foramen.


L4 Right: This sinuvertebral nerve coursed directly medial, sending small branches cephalad and caudad shortly after entering the epidural space. The larger central branch continued medial until immediately after passing beneath the posterior longitudinal ligament, it divided into 2 nearly equal branches. One of these coursed inferiorly and medially, the other coursed cephalomedially directly to the basivertebral foramen.


L3 Left: The sinuvertebral nerve coursed cephalomedially to about the level of the middle of the L3 pedicle, where it trifurcated, sending one branch caudad, one branch cephalolaterally, and one branch medially. The medial branch coursed directly toward the basivertebral foramen, and divided into three smaller nerves at the basivertebral foramen, all of which entered the basivertebral foramen.


L3 Right: This sinuvertebral nerve had a curved course, travelling cephalomedially, trifurcating at the level of the lateral border of the posterior longitudinal ligament. A very small branch coursed directly caudad. The remaining branches were equivalent in size. One traveled cephalad, the other coursed medially and slightly inferiorly to enter the basivertebral foramen.


Cadaver D


L5 left: The sinuvertebral nerve entered the epidural space coursing medially, and did not branch until approximately 3 mm medial to the medial border of the pedicle where it began coursing cephalad. The first branch coursed medially directly to the basivertebral foramen. A second medial branch was seen that also coursed directly to the basivertebral foramen. The sinuvertebral nerve continued to course cephalad, and was not explored as it traveled past the upper border of the pedicle.


L5 right: Two small nerves exited the root, just beyond the pedicle and coursed back into the spinal canal. The caudad nerve coursed inferiorly. The second coursed medially for approx 0.3 cm before curving cephalad at the level of the basivertebral foramen; this nerve branched once, both branches entered the basivertebral foramen.


L4 Left: sinuvertebral nerve coursed into the epidural space, the first branch coursed inferiorly. The larger branch coursed cephalad. At above the level of the middle of the pedicle it split into 4 branches. Two of them coursed directly to the basivertebral foramen, and the other two coursed cephalad.


L4 right: The sinuvertebral nerve coursed medially for approx 3 mm, and then split into 4 branches, one coursed cephalad, one caudad and two coursed to the basivertebral foramen and entered it.


L3 left: the sinuvertebral nerve coursed medially for about 2 mm, then split into 4 nerves. One coursed superiorly, one coursed to the basivertebral foramen and entered it, one coursed medially (inferior to the basivertebral foramen), and one coursed caudad.


L3 right: The sinuvertebral nerve coursed medially approx 4 mm, a branch then traveled caudad, and another traveled obliquely caudad and medial. This branch divided into two, one coursing to the basivertebral nerve and one continuing cephalad


L2 left: The sinuvertebral nerve coursed medially and slightly cephalad before a branch was produced that traveled caudad. A second branch the was seen to course medially, inferior to the basivertebral foramen, the larger branch traveled very close to the basivertebral foramen and a short branch traveled medially to enter the basivertebral foramen, the continuation of this sinuvertebral nerve continued cephalad and branched again medially, above the level of the basivertebral foramen.


L2 right: the sinuvertebral nerve coursed cephalad and medial. The first branch coursed caudad. The second branch coursed cephalad and medial to enter the basivertebral foramen. The other branch continued cephalad.


Cadaver Dissection IV


Designs for Vision surgical loupes (6.0×) were used for visualization of the finer neurovascular structures during the remainder of the dissection.


Cadaver E


L5 left: a large sinuvertebral nerve branched more laterally than most, dividing into three branches; one coursed caudad, one cranially, and the “middle” one coursed directly to the basivertebral foramen where several small branches entered the foramen. Interestingly the larger branch continued cephalad, actually appearing to travel slightly Right of the midline.


L5 Right: This small sinuvertebral nerve coursed directly cephalomedially to enter the basivertebral foramen. No other branches were identified.


L4 left: The sinuvertebral nerve branched into three distinct nerves at the level of the foramen. One branch coursed caudad, one cephalad and the middle branch coursed directly to the basivertebral foramen.


L4 Right: This sinuvertebral nerve coursed very similarly to the sinuvertebral nerve on the Left. A large sinuvertebral nerve divided into 3 nearly equally sized branches at the level of the foramen. One branch curved cephalad, another curved Caudad, and the middle branch coursed directly to the basivertebral foramen.


L3 left: Only one small nerve was identified leaving the root and reentering the canal. This nerve coursed directly to enter the basivertebral foramen without other visible branches.


L3 Right: the sinuvertebral nerve was seen to enter the epidural space in a very medial direction. It divided into two branches at immediately beneath the lateral border of the dural sac. One barge branch coursed caudad. The other branch coursed cephalad, but broke before reaching the level of the inferior border of the pedicle. The broken end could not be reliably identified.


L2 left: the sinuvertebral nerve divided into two nearly equal branches immediately beneath the lateral border of the dural sac. One coursed caudad and medial, the other coursed directly toward the basivertebral foramen. This nerve trifurcated at the basivertebral foramen, sending one branch into the basivertebral foramen, while another branch continued cephalad. A smaller branch coursed inferomedially.


L2 Right: The sinuvertebral nerve abruptly separated into three branches within 2 mm of the dorsal root ganglion, at the level of the lateral border of the pedicle.


One branch coursed inferomedially, another cephalad, and the “middle’ one coursed directly to the basivertebral foramen, and was seen to enter it.


Cadaver F


L5 Right: The sinuvertebral nerve coursed in an almost pure medial direction, before dividing at one point into two branches. One coursed caudad one coursed nearly vertically directly to the basivertebral foramen, which it entered. The remaining branch coursed cephalad.


L5 Left: The nerve entered the epidural space and coursed obliquely in the direction of the basivertebral foramen, approximately 2 mm from the midline it branched, sending one branch to enter the basivertebral foramen, and another to course cephalad. No branches were seen coursing caudad, but it is possible that such were severed during the dissection.


L4 Left: The sinuvertebral nerve coursed medially for approx 3 mm, the first small branch coursed caudad. The larger branch of the sinuvertebral nerve coursed cephalad, at about the level of the inferior border of the pedicle where it divided into two nearly equally sized branches; one branch was seen to travel obliquely cephalad and medial to enter the basivertebral foramen. The other branch of the sinuvertebral nerve continued cephalad.


L4 Right: The sinuvertebral nerve coursed medial and cephalad. No branch was identified coursing caudad. At approximately the level of the inferior border of the L4 pedicle, a large branch diverged from the sinuvertebral nerve and coursed obliquely medial and cephalad and directly entered the BV foramen. The other branch continued to course cephalad.


L3 Left: The sinuvertebral nerve divided into two large branches while still lateral to the foramen. These branches coursed cephalad and caudad, without sending identifiable branches to the basivertebral foramen


L3 Right: The sinuvertebral nerve was not clearly identifiable at this level, very possibly due to disruption of the anatomy during pedicle removal. Therefore the nerve could not be traced antegrade. When dissection medially was undertaken to attempt a retrograde dissection, a “large” branch of a nerve was found to enter the basivertebral foramen from a cranial direction. Dissection at the L2 level above revealed a large “sinuvertebral nerve” nerve from immediately distal to the L2 ganglion, that coursed directly to the L3 basivertebral foramen; this nerve branched twice at the level of the L2-3 disc, sending small branches medially and laterally. The L2 nerve root also produced a “second sinuvertebral nerve” the coursed medially and centrally at the L2 level. This nerve was not explored further.


Summary


Lumbar Spinal dissection was performed on a total of five cadavers with the successful approach as described. A total of 18 levels, ranging from L1 to S1 were bilaterally exposed. A total of 34 basivertebral nerves were successfully traced from their point of origin at the sinuvertebral nerve, beneath the posterior longitudinal ligament and to the point of entry into the basivertebral foramen. In every case, the innervation of the basivertebral foramen was traced to one or both (L, R) basivertebral nerve branches from the sinuvertebral nerve. In the majority of levels dissected (16/18) basivertebral foramen innervations was clearly bilateral. The fragility of the branches of the sinuvertebral nerve has been noted by other authors. It is suspected that nerve breakage during dissection may have allowed some branches of the sinuvertebral nerve to have remained undetected. The typical anatomy is illustrated in FIG. 4, with variants as described illustrated in FIGS. 5 and 6. In all cases, the innervation of the vertebral body via the basivertebral foramen was from one or more medial branches of the large branch of the sinuvertebral nerve that was consistently seen coursing cephalad within the ventral epidural space.


Discussion


The paraspinal neuroanatomy (including innervation of the disc) has been extensively described. The innervation of the vertebral body has been documented as well. The neuroanatomical communication between paraspinal and intervertebral innervation and its implications has been less studied. In this study, emphasis was placed on the proximal basivertebral system, following the basivertebral nerve to its point of origin. As described above, the basivertebral nerve system originates as a medial branch of the sinuvertebral nerve.


The sinuvertebral nerve was specifically identified as a branch of the exiting lumbar nerve root. The sinuvertebral nerve was clearly seen to course back into the ventral epidural space, and usually was seen to branch into at least three easily identifiable branches.


In this study, the medial branches of the nerve were followed as they course underneath the posterior longitudinal ligament. The largest medial branches of the sinuvertebral nerve were seen to course under the posterior longitudinal ligament, and directly enter the basivertebral foramen. Such branches were seen at every level dissected. The basivertebral nerve was consistently present bilaterally.


Imaging and External Radiation of Basivertebral Nerve

Although the location of the basivertebral nerve is somewhat well known, the basivertebral nerve is a normally functioning anatomical feature that is radiolucent, so its precise location cannot be easily identified by an X-ray, angiography, or other indirect imaging methods. Since the basivertebral nerve may also be extremely thin in some embodiments, knowingly directing externally applied energy in close proximity to the basivertebral nerve, without risk to neighboring anatomy, may be problematic.


Several embodiments of the invention access the basivertebral nerve outside of the vertebral body, and denervate the basivertebral nerve to cut off or reduce conduction within the nerve (permanently or temporarily) to downstream locations within the vertebral body. Several embodiments of the invention predictably identify and treat the basivertebral nerve via an energy source located external to the skin (e.g., extracorporeal treatment) or external to the vertebral body of the patient (e.g., human or animal subject).


Several embodiments of the invention are directed to devices and methods for treating back pain by modulating (e.g., denervating, stimulating) the basivertebral nerve from an energy source located external to the body (e.g., external to the skin). While the embodiments listed below are directed to systems and methods that utilize radiation as the primary therapeutic energy modality, any type of energy capable of being directed to a focused point within the body of a patient (in one embodiment, preferably without destruction of intervening tissues and/anatomy) may be used (e.g., high-intensity or low-intensity focused ultrasound). The energy output may be dynamically controlled by changing the power intensity, the frequency, the angle of dispersion, the focus, or other dynamically controllable parameters. In some embodiments, radioactive implants may deliver energy instead of or in combination with external beam therapy.


For external therapy systems involving ultrasonic energy sources, the neuromodulating effects may include application of focused ultrasound energy to achieve sustained heating, sonication, and/or cavitation. In some embodiments, the focal intensity of the ultrasonic energy may range from about 100 W/cm2 to about 1 MW/cm2, from about 1 kW/cm2 to about 10 kW/cm2, from about 10 kW/cm2 to about 100 kW/cm2 or overlapping ranges thereof. In some embodiments, the frequency of the ultrasonic energy may range from about 500 kHz to about 10 MHz, from about 1 MHz to about 5 MHz, from about 5 MHz to about 10 MHz, or overlapping ranges thereof. In some embodiments, focused ultrasound energy may be selected to heat the tissue within the vertebral body to between about 35° C. and about 90° C., between about 40° C. and about 50° C., between about 45° C. and about 60° C., between about 50° C. and about 70° C., between about 60° C. and about 85° C., or overlapping ranges thereof. The treatment time may range from about 2 seconds to about 1 hour, from about 5 seconds to about 10 seconds, from about 10 seconds to about 30 seconds, from about 20 seconds to about 1 minute, from about 1 minute to about 5 minutes, from about 5 minutes to about 10 minutes, from about 10 minutes to about 20 minutes, from about 20 minutes to about 40 minutes, from about 30 minutes to about 45 minutes, from about 40 minutes to about 60 minutes, or overlapping ranges thereof.



FIGS. 19-21 detail the components of several embodiments of a radiotherapy system 310 configured to direct therapeutic energy to a region of the spine for purposes of modulating the basivertebral nerve. FIG. 19 illustrates a block diagram illustrating the primary components of radiotherapy system 310. FIG. 20 illustrates a schematic diagram of an example radiotherapy system 310 having a moveable gantry 312.


Referring to FIG. 19, one embodiment of an external therapy (e.g., radiotherapy) system 310 comprises a control module 314 (e.g., computer or series of computers) having a processor 316 and application programming modules 318 for controlling the delivery of energy from one or more energy sources 330. In some implementations, the control module 314 and application programming modules 318 are configured to control and monitor output from each energy source 330 to ensure proper dosing, while simultaneously controlling motion of the energy source 330 and gantry 312 through linear drive 322 and radial drive 324 to ensure the proper delivery location of therapeutic energy into the patient 350. The control module 314 and application programming modules 318 may also be configured to receive data (real-time or pre-acquired) from one or more imaging sources 320 (e.g., X-ray, CT, MRI, fluoroscopy, etc.). In some embodiments, external therapy (such as radiotherapy) system 310 further comprises a motion restraint 326 for immobilizing or minimizing motion of a particular spinal segment to be treated.



FIG. 20 illustrates a side view of one embodiment of a radiotherapy system 310 with a patient positioned for treatment. System 310 may include a table 340 that is fixed in relation to moveable gantry 312. In one embodiment, table 340 comprises a recess 346 sized to receive lumbar support 342 of motion restraint 326. Motion restraint 326 is shown in FIG. 20 as a lumbar restraint for immobilizing the lumbar spine segment from motion. However, motion restraint 326 may be configured with a support for immobilizing other regions of the spine (e.g. thoracic or cervical vertebrae). In some embodiments, motion restraint 326 comprises a plurality of straps 344 that wrap around the patient torso 350 for securing the support 342 to the patient's back adjacent to the lumber spine. In one embodiment, the motion restraint 326 is further configured to lock into the recess 346 so that the support 342 does not move with respect to the table 340.


In one embodiment, one or more radiation sources 330 are disposed in a moveable gantry 312 that is allowed to translate in (x, y, z) directions via linear drive 322. FIG. 21 shows a sectional view of one embodiment of the radiotherapy gantry 312. The gantry 312 comprises a tubular frame 334 configured to house one or more radiation sources 330. Each of the radiation sources may be embedded into the frame and configured to direct radiation energy through dedicated collimators 332 so as to focus the radiation beams 335 at the center-point of the gantry Cp.


In FIG. 21, the gantry 312 is shown centered about the target treatment site T (e.g., the center-point of the gantry Cp is shown coincident with the treatment target T). In some embodiments, imaging sources 320 are used (optionally in conjunction with images obtained from pre-acquired patient imaging) to help center the gantry 312 at the treatment location T (shown in FIG. 21 as the vertebral body 356 of L4 vertebra 352).


In accordance with several embodiments, gantry 312 is shown in FIG. 21 as housing eight radially spaced-apart radiation sources 330. However, the number of radiation sources 330 may vary from one to several hundred, depending on the type of radiation sources being used.


In accordance with several embodiments, in order to treat the basivertebral nerve of vertebral body 352, which is deep within the body of the patient, the radiation 335 penetrates the intervening healthy tissue in order to irradiate and modulate (e.g., denervate) the basivertebral nerve. In several embodiments, the treatment is performed without exposing large volumes of healthy tissue to harmful doses of radiation, thereby resulting in reduced recovery periods for the patient. In some embodiments, the patient is treated with ionizing radiation and treatment protocols so as to expose the target tissue to a dose of radiation that results in the desired cell modification, while keeping the exposure of healthy tissue to a minimum.


In order to avoid excessive doses being applied to healthy tissue, in some embodiments, the incident direction may be varied throughout the treatment period (e.g., by rotating gantry 312 with the various beams of radiation 335 each converging on a single point). Radial drive 324 may thus be employed to rotate the gantry 312 about the z-axis as shown in FIGS. 20 and 21.


In some embodiments, a large number of radiation sources 330 (e.g., from about 200 to about 300, from about 50 to about 100, from about 100 to about 200, overlapping ranges thereof, over 200) may be employed at a lower dose that individually have a negligible effect on intervening tissue. The single center point (Cp) may thereby receive a full dose, while the surrounding areas receive only a minimal dose. It is also possible to employ both a combination of multiple sources 330 and a rotating gantry 312.


Radiation sources 330 may comprise one of a number of different types, e.g., particle beam (proton beam therapy) sources, cobalt-60 based (photon or gamma-ray sources such as found in the Gamma Knife® technology), linear accelerator based (linac source such as that used in the CyberKnife® or Novalis® Tx technology). Gamma Knife® sources may produce gamma rays from the decay of Co-60 at an average energy of 1.25 MeV. The radiation sources 330 may include over 200 sources arrayed to deliver a variety of treatment angles. In some embodiments, linear accelerators emit high energy X-rays, usually referred to as “X-ray therapy” or “photon therapy.” The x-rays are produced from the impact of accelerated electrons striking a high z target (usually tungsten). Linear accelerators therefore can generate any number of energy x-rays (e.g., 6 MV photons). For linear accelerators, the gantry generally moves in space to change the delivery angle.


Referring now to FIGS. 22 and 23, which illustrate the anatomy of a typical lumbar vertebra 352, the treatment target (e.g., basivertebral nerve) is a normally functioning anatomical feature that is radiolucent, so it generally cannot be seen or identified by an X-ray, angiography, or other indirect imaging methods. Accordingly, several embodiments of the invention use a novel approach for determining and verifying the target treatment site T.



FIGS. 22 and 23 illustrate side and top views, respectively, of a lumbar vertebra 312, showing vertebral body 356, and spinous process 358, in addition to the path 354 and plexus 362 of the basivertebral nerve. One or more basivertebral nerves 354 enter the vertebral body 356 through the basivertebral foramen 355, which is a conical opening emanating from the spinal canal 360, and generally penetrate the posterior cortex of the vertebral body 356 along the midline of the vertebral body 356. The basivertebral nerves 354 enter the vertebral body 356 at the basivertebral foramen 355, continue distally (anteriorly) through the vertebral body, and arborize at plexus 362 to innervate the vertebral body 356 down to and including the endplates


In some embodiments, the target region T of the basivertebral nerve 354 is located within the cancellous portion of the bone (e.g., to the interior of the outer cortical bone region), and at or proximal to the junction or plexus 362 of the basivertebral nerve 354 having a plurality of branches. In some embodiments, treatment in this region (at or proximal to the junction or plexus 362) is advantageous because only a single portion of the basivertebral nerve 354 need be effectively treated to denervate (temporarily or permanently) the entire downstream nerve system. In contrast, treatment of the basivertebral nerve 354 at locations more downstream than the junction 362 may require the denervation of each individual branch.


Treatment in accordance with several embodiments of the invention can be effectuated by focusing energy 335 in the target region T of the vertebral body 356 located between 60% (point C) and 90% (point A) of the distance between the posterior and anterior ends of the vertebral body. Point A will often reside in the basivertebral foramen 355, and therefore energy directed to that region may not be as contained (basivertebral foramen 355 opens to the vertebral canal 360, containing sensitive anatomy such as the spinal chord) as when directed into the vertebral body at points B or C (which are surrounded at all sides by bone). Point C may run the risk of being downstream from the nerve junction.


In various embodiments, treatment can be effectuated by focusing in the region of the vertebral body located at a region that is more than 1 cm from the outer cortical wall of the vertebral body, within a region that is centered at or about 50% of the distance from the posterior outer cortical wall of the vertebral body to the anterior outer cortical wall, and/or within a region that is between 10% and 90% (e.g., between about 10% and about 60%, between about 20% and about 80%, between about 35% and about 65%, between about 25% and about 75%, between about 10% and about 55%, between about 30% and about 70%, or overlapping ranges thereof) of the distance from the posterior outer cortical wall of the vertebral body to the anterior outer cortical wall.


In accordance with several embodiments, because the basivertebral nerve is not visible from radiographic imaging, a radiographically identifiable reference point RPb may be advantageously established to determine a target treatment site T that corresponds with the correct location within the vertebral body. In FIG. 20 through FIG. 24, reference point RPb is shown at the tip of the spinous process 358. Other physical landmarks may also be used without departing from the spirit and/or scope of the disclosure. The table 340 and/or motion restraint 326 may have a radiographically identifiable marker to establish external reference point RPr, which may be used for identifying the target T with respect to the treatment source 330 focal point/center point Cp.



FIG. 24 illustrates a flow diagram of one embodiment of a method 400 for identifying and treating back pain through radiotherapy of the basivertebral nerve 354. In one embodiment, method 400 is carried out with use of radiotherapy system 310; however other external therapy/surgery systems may be used to perform method 400.


First, imaging data (also called image data) of the target anatomy (e.g., vertebra 352) is acquired at pretreatment imaging step 402. Image data (e.g. real-time or pre-acquired x-rays) may be obtained from one or more imaging sources 320, and/or from an outside imaging source (e.g., x-ray, CT, MRI, OCT, angiography, Doppler, ultrasound, etc.). The image data may be used to determine coordinates and dimensions of the target vertebra 312 used in acquiring or identifying the target location or treatments site T. In some embodiments, imaging is not performed. In some embodiments, imaging may be supplemented or replaced by non-imaging techniques that facilitate targeted treatment. In one embodiment, imaging is performed using the same system (e.g., transducer) that provides therapy.


In one embodiment, patient feedback may be obtained through a series of steps 404 through 418 to verify that source center point Cp is correctly positioned at the target treatment site T. In one embodiment, this verification is achieved by determining a pretreatment dose location (PDL) at step 404, which corresponds to the physician's (and/or other medical practitioner's) best estimate for the target basivertebral nerve location T, and delivering one or more identification doses. In another embodiment, the pretreatment dose location PDL is assumed to be the target location T, and the treatment dose TD is delivered at step 420, effectively skipping feedback steps 404 through 418.


In accordance with several embodiments, determining the pretreatment dose location PDL at step 404 generally involves analysis of data acquired from pretreatment imaging step 402. Reference points RPb and RPr (shown in FIGS. 20 through 23) may first be identified to aid in the determination of the treatment target. Once the reference point RPb on the target vertebra 352 is identified, the pretreatment dose location PDL corresponding to expected target T (Xt, Yt, Zt) may be set according to a calculated coordinate distance (e.g., corresponding to a predicted basivertebral nerve location) from the reference point RPb (Xr, Yr, Zr). For example, target T may be at coordinate (Xr+0, Yr+Yd, Zr+Zd), where distances Yd and Zd are computed based at least in part on the pre-acquired imaging data of the anatomy and one or more predetermined metrics. For example, distance Yd may be calculated according to the Y coordinate point corresponding to 75% of the distance from the anterior end of the vertebral body 356 to the posterior end of the vertebral body 356. Distance Zd may be calculated according to the Z coordinate point corresponding to a midline of vertebral body 356. Since the tip of the spinous process 358 generally corresponds to the X coordinate of the basivertebral nerve 354, the reference coordinate Xr will typically be equal to the target coordinate Xt. In some embodiments, reference RPr on table 340 may be used as the starting point from which motion of the gantry 312 is based to center the source 330 about the pretreatment dose location PDL (e.g., PDL=Cp).


In one embodiment, at step 408, an identification dose is delivered to the pretreatment dose location PDL. This identification dose is generally a fraction of the treatment dose TD, and may be prescribed to elicit some response from the patient relating to the patient's pain. At step 410, patient feedback is acquired to verify a change in the sensation of pain within the region. The patient's change in pain sensation may be positive (e.g., temporarily alleviate or lessen pain via numbing effect, etc.) or negative (e.g., the small dose aggravates the nerve ends, thereby causing more pain).


If no change in pain is experienced by the patient 350, the source 330 center point Cp may be adjusted to a new pretreatment dose location (PDLx) at step 414. In some embodiments, an additional identification dose is then delivered at step 416. Patient feedback is then elicited for some change in sensation relating to the patient's pain at step 418. If no change in pain is still experienced by the patient 350, the source 330 center point Cp may be adjusted to yet another pretreatment dose location (PDLx) at step 414. In some embodiments, the loop continues in a scanning fashion until the patient identifies a change in pain sensation, thus verifying that the target dose location T is the last treatment dose location (PDL) at step 412.


Next, in accordance with several embodiments, the treatment dose TD is delivered to the target T. Embodiments with radial drive 324 may be operated to change the delivery angle during treatment and minimize the dose to non-target tissues. The treatment dose TD is generally prescribed before treatment, and can be a factor of the patient's age, anatomy, desired treatment volume 364 (see FIG. 22), etc. In some embodiments, the treatment dose is configured to denervate the basivertebral nerve 354 to inhibit transmission of pain signals from within the vertebral body 356.


In one embodiment, the prescribed treatment dose is configured to deliver therapeutic treatment that is targeted to block nerve conduction without ablating the nerve, e.g., thermal treatment is delivered to the nerve that results in denervation of the basivertebral nerve 354 without necrosis of tissue. This denervation without ablation or necrosis may be achieved via delivery of a lesser amount of energy or agent to the tissue site (either in the form of less exposure time, concentration, intensity, etc.) than is required for ablation, but an amount sufficient to achieve some amount of temporary or permanent denervation.


In one embodiment, the treatment dose for delivery of gamma radiation delivered to the patient will typically range between 10 Gy and 70 Gy (e.g., between about 10 Gy and about 30 Gy, between about 20 Gy and about 50 Gy, between about 30 Gy and about 60 Gy, between about 40 Gy and about 70 Gy, or overlapping ranges thereof). However, because the treatment region is contained within the large bony mass vertebral body 356, higher doses may be contemplated, as there is little risk to surrounding tissues that are more vulnerable. The dose may be varied based on the treatment volume 364, or other variables, such as treatment time and dose concentration. A prescription of 35 instances of a 2 Gy dose might be replaced by 15 instances of a 3 Gy dose, a technique known as “hypofractionation.” Taken to its logical extreme, this dose might be replaced with a single 45 Gy dose if the dosage delivered to healthy tissue can be reduced significantly.


In several embodiments, the identification dose used in steps 408 through 416 is generally a much smaller dose than treatment dose TD, so as not to damage healthy tissue. An example dose may range from 0.5 Gy to 5 Gy (e.g., between about 0.5 Gy and about 2 Gy, between about 1 Gy and about 2.5 Gy, between about 1.5 Gy and about 3 Gy, between about 2 Gy and about 5 Gy, or overlapping ranges thereof. However, this range may also change based on considerations such as anatomy, patient, etc.


In some embodiments, one or more radioactive implants are used to deliver radiotherapy instead of or in combination with external beam therapy. The one or more radioactive implants may be inductively powered or activated from outside the body over time (e.g., periodically or as desired or required). In some embodiments, the radioactive implants include an internal battery. The radioactive implants may deliver radioactive therapy over time without additional activation. The radioactive implants may be permanent or removable. In some embodiments, a radioactive implant comprises a plurality of radioactive sources or a plurality of radioactive seeds. In accordance with several embodiments, treatment time is subject to rate of radioactive decay of the radioactive implants. In some embodiments, the radiotherapy is delivered over a matter of minutes (e.g., 10 to 60 minutes, 20 to 40 minutes, 15 to 50 minutes, or overlapping ranges thereof), a matter of hours (e.g., 1 to 24 hours, 2 to 6 hours, 8-12 hours, or overlapping ranges thereof), a matter of days (e.g., 1 to 3 days, 2 to 8 days, 2 to 4 days, or overlapping ranges thereof), a matter of months (e.g., 1 to 12 months, 2 to 6 months, 4 to 10 months, 3 to 9 months, or overlapping ranges thereof), or a matter of years (e.g., 1 to 10 years, 2 to 6 years, 3 to 6 years, or overlapping ranges thereof).


Referring now to FIG. 25, in one embodiment, the application programming modules 318 may be configured to acquire real-time imaging data from imaging sources 320 to provide a motion-driven delivery of the treatment dose at step 420. In some embodiments, this ensures that the source Cp is delivering the dose to the target T, even in the event of incidental patient motion. An incremental treatment dose (e.g., an amount TDx equal to total treatment dose TD divided by number of increments) is delivered at step 432. At step 434, the routine determines if the total prescribed dose TD has been delivered. If yes, the routine ends at step 436. If not, the treatment location is imaged with respect to table 340 or restraint support 342 at step 438 (e.g., vertebra reference point RPb with respect to reference point RPr). At step 440, the distance d between source center point Cp and newly acquired target T data is calculated. The distance d is then compared against a threshold value Th at step 442. The treatment dose TD may be adjusted according to the desired sensitivity of the system 400. If distance d is less than value Th, the routine returns back to step 432 to deliver another incremental dose TDx. If distance d is greater than value Th, the source 330 (e.g., via linear motion of gantry 312) is translated at step 444 such that CP=T, and then the routine returns back to step 432 to deliver another incremental dose TDx.


While motion tracking dosing routine 420 of FIG. 25 may be used in place of physical restraint 326, in accordance with several embodiments, it is generally preferred to use the motion tracking in combination with restraint 326 to ensure delivery of energy to the proper target location T.


Although the treatments and therapies were described with reference to intraosseous nerves (e.g., basivertebral nerves) within the spine, the disclosed methods and systems may be used to modulate (e.g., ablate, stimulate) nerves within other bones in other locations of the body.


Conditional language, for example, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps.


Although certain embodiments and examples have been described herein, aspects of the methods and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments. Additionally, the methods described herein may be practiced using any device suitable for performing the recited steps. Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure (including the figures) herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein.


For purposes of this disclosure, certain aspects, advantages, and novel features of the inventions are described herein. Embodiments embodied or carried out in a manner may achieve one advantage or group of advantages as taught herein without necessarily achieving other advantages. The headings used herein are merely provided to enhance readability and are not intended to limit the scope of the embodiments disclosed in a particular section to the features or elements disclosed in that section. The features or elements from one embodiment of the disclosure can be employed by other embodiments of the disclosure. For example, features described in one figure may be used in conjunction with embodiments illustrated in other figures.


Embodiments of the invention may be described with reference to flowchart illustrations of methods and systems according to embodiments of the invention, and/or algorithms, formulae, or other computational depictions, which may also be implemented as computer program products. In this regard, each block or step of a flowchart, and combinations of blocks (and/or steps) in a flowchart, algorithm, formula, or computational depiction can be implemented by various means, such as hardware, firmware, and/or software including one or more computer program instructions embodied in computer-readable program code logic. As will be appreciated, any such computer program instructions may be loaded onto a computer, including without limitation a general purpose computer or special purpose computer, or other programmable processing apparatus to produce a machine, such that the computer program instructions which execute on the computer or other programmable processing apparatus create means for implementing the functions specified in the block(s) of the flowchart(s).


Accordingly, blocks of the flowcharts, algorithms, formulae, or computational depictions support combinations of means for performing the specified functions, combinations of steps for performing the specified functions, and computer program instructions, such as embodied in computer-readable program code logic means, for performing the specified functions. It will also be understood that each block of the flowchart illustrations, algorithms, formulae, or computational depictions and combinations thereof described herein, can be implemented by special purpose hardware-based computer systems which perform the specified functions or steps, or combinations of special purpose hardware and computer-readable program code logic means.


Furthermore, these computer program instructions, such as embodied in computer-readable program code logic, may also be stored in a computer-readable memory that can direct a computer or other programmable processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the block(s) of the flowchart(s). The computer program instructions may also be loaded onto a computer or other programmable processing apparatus to cause a series of operational steps to be performed on the computer or other programmable processing apparatus to produce a computer-implemented process such that the instructions which execute on the computer or other programmable processing apparatus provide steps for implementing the functions specified in the block(s) of the flowchart(s), algorithm(s), formula (e), or computational depiction(s).


Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the embodiments of this invention. Therefore, it will be appreciated that the scope of the invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.”

Claims
  • 1. A method for treating back pain associated with a vertebral body of a patient, comprising: imaging a vertebral body to generate one or more images of the vertebral body;locating, based on said images, a portion of a sinuvertebral nerve within an epidural space associated with the vertebral body;identifying one or more nerve branches associated with the vertebral body and emanating at a first end at a junction with the sinuvertebral nerve at a location external to the vertebral body and that course medially from the junction under a posterior longitudinal ligament,percutaneously guiding a delivery assembly to the location external to the vertebral body,wherein the delivery assembly comprises at least one lumen for advancing an imaging device and for advancing a treatment device;isolating the one or more nerve branches for treatment,wherein isolating the one or more nerve branches comprises verifying that the one or more nerve branches course under the posterior longitudinal ligament;delivering the treatment device to the external location via the delivery assembly; anddenervating the one or more isolated nerve branches at a position at or near the junction with the sinuvertebral nerve,wherein denervating the one or more isolated nerve branches comprises operating the treatment device at the position at or near the junction with the sinuvertebral nerve.
  • 2. The method of claim 1, further comprising dilating a space under the posterior longitudinal ligament to allow visualization of a foramen leading to the vertebral body prior to denervation of the one or more nerve branches.
  • 3. The method of claim 1, wherein the step of denervating the one or more isolated nerve branches comprises altering a conductive property of the one or more nerve branches.
  • 4. The method of claim 1, wherein the step of denervating the one or more isolated nerve branches comprises severing conduction across the one or more nerve branches.
  • 5. The method of claim 3, wherein altering a conductive property of the one or more nerve branches comprises one or more of: stimulation, alteration, blocking, or elimination of conduction across the one or more nerve branches sufficient to provide a therapeutic effect within or related to the vertebral body.
  • 6. The method of claim 3, wherein altering a conductive property of the one or more nerve branches comprises one or more of: heating, cooling, radiating, agitating, or altering the chemical composition of the one or more nerve branches sufficient to provide a therapeutic effect within or related to the vertebral body.
  • 7. The method of claim 3, wherein altering a conductive property of the one or more nerve branches comprises cutting or crimping the one or more nerve branches.
  • 8. The method of claim 1, wherein said denervating is effected by at least one of radiofrequency, ultrasound, radiation, steam, microwave, or laser.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Phase application of International Application Number PCT/US2012/071465 filed Dec. 21, 2012, published as International Publication Number WO 2013/101772 on Jul. 4, 2013, which claims the benefit of U.S. Provisional Application No. 61/582,170 filed Dec. 30, 2011 and U.S. Provisional Application No. 61/582,165 filed Dec. 30, 2011, the entire contents of each of which are hereby expressly incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2012/071465 12/21/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/101772 7/4/2013 WO A
US Referenced Citations (1095)
Number Name Date Kind
3565062 Kuris Feb 1971 A
3822708 Zilber Jul 1974 A
3845771 Vise Nov 1974 A
3920021 Hiltebrandt Nov 1975 A
3938502 Born Feb 1976 A
3997408 MacKew Aug 1976 A
4044774 Corgin et al. Aug 1977 A
4116198 Roos Sep 1978 A
4311154 Sterzer et al. Jan 1982 A
4312364 Convert et al. Jan 1982 A
4378806 Henley-Cohn Apr 1983 A
4448198 Turner May 1984 A
4449528 Auth et al. May 1984 A
4462408 Silverstein et al. Jul 1984 A
4528979 Marchenko et al. Jul 1985 A
4530360 Durate Jul 1985 A
4569351 Tang Feb 1986 A
4573448 Kambin Mar 1986 A
4586512 Do-huu May 1986 A
4601296 Yerushalmi Jul 1986 A
4612940 Kasevich et al. Sep 1986 A
4657017 Sorochenko Apr 1987 A
4662383 Sogawa et al. May 1987 A
4671293 Shalov Jun 1987 A
4676258 Inokuchi et al. Jun 1987 A
4679561 Doss Jul 1987 A
4681122 Winters et al. Jul 1987 A
4750499 Hoffer Jun 1988 A
4754757 Feucht Jul 1988 A
4757820 Itoh Jul 1988 A
4774967 Zanakis et al. Oct 1988 A
4800899 Elliott Jan 1989 A
4813429 Eshel et al. Mar 1989 A
4841977 Griffith et al. Jun 1989 A
4907589 Cosman Mar 1990 A
4924863 Sterzer May 1990 A
4936281 Stasz Jun 1990 A
4950267 Ishihara et al. Aug 1990 A
4951677 Crowley et al. Aug 1990 A
4955377 Lennox et al. Sep 1990 A
4959063 Kojima Sep 1990 A
4961435 Kitagawa et al. Oct 1990 A
4963142 Loertscher Oct 1990 A
4966144 Rochkind et al. Oct 1990 A
4967765 Turner et al. Nov 1990 A
4976711 Parins et al. Dec 1990 A
4977902 Sekino et al. Dec 1990 A
5000185 Yock Mar 1991 A
5002058 Marinelli Mar 1991 A
5002059 Crowley et al. Mar 1991 A
5007437 Sterzer Apr 1991 A
5025778 Silverstein et al. Jun 1991 A
5031618 Mullett Jul 1991 A
5061266 Hakky Oct 1991 A
5070879 Herres Dec 1991 A
RE33791 Carr Jan 1992 E
5078736 Behl Jan 1992 A
5080660 Buelna Jan 1992 A
5084043 Hertzmann et al. Jan 1992 A
5090414 Takano Feb 1992 A
5098431 Rydell Mar 1992 A
5106376 Mononen et al. Apr 1992 A
5108404 Scholten et al. Apr 1992 A
5131397 Crowley et al. Jul 1992 A
5147355 Friedman et al. Sep 1992 A
5156157 Valenta, Jr. et al. Oct 1992 A
5158536 Sekins et al. Oct 1992 A
5161533 Prass et al. Nov 1992 A
5167231 Matsui Dec 1992 A
5186177 O'Donnell et al. Feb 1993 A
5190540 Lee Mar 1993 A
5190546 Jervis Mar 1993 A
5201729 Hertzmann et al. Apr 1993 A
5207672 Martinelli et al. May 1993 A
5209748 Daikuzono May 1993 A
5222953 Dowlatshahi Jun 1993 A
5226430 Spears et al. Jul 1993 A
5242439 Larsen et al. Sep 1993 A
5255679 Imran Oct 1993 A
5271408 Breyer et al. Dec 1993 A
5273026 Wilk Dec 1993 A
5281213 Milder et al. Jan 1994 A
5281215 Milder et al. Jan 1994 A
5282468 Klepinski Feb 1994 A
5292321 Lee Mar 1994 A
5295484 Marcus et al. Mar 1994 A
5300085 Yock Apr 1994 A
5304214 DeFord et al. Apr 1994 A
5305756 Entrekin et al. Apr 1994 A
5320617 Leach Jun 1994 A
5324255 Pasafaro et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5342292 Nita et al. Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5344435 Turner et al. Sep 1994 A
5345940 Seward et al. Sep 1994 A
5348554 Imran et al. Sep 1994 A
5350377 Winston et al. Sep 1994 A
5351691 Brommersma Oct 1994 A
5366443 Eggers et al. Nov 1994 A
5366490 Edwards et al. Nov 1994 A
5368031 Cline et al. Nov 1994 A
5368035 Hamm et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita Nov 1994 A
5370675 Edwards et al. Dec 1994 A
5370678 Edwards et al. Dec 1994 A
5372138 Crowley et al. Dec 1994 A
5374265 Sand Dec 1994 A
5383876 Nardella Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5385544 Edwards et al. Jan 1995 A
5391197 Burdette et al. Feb 1995 A
5391199 Ben-Haim Feb 1995 A
5411527 Alt May 1995 A
5417719 Hull et al. May 1995 A
5419767 Eggers et al. May 1995 A
5421338 Crowley Jun 1995 A
5423811 Imran et al. Jun 1995 A
5433739 Sluijter et al. Jul 1995 A
D361555 Bettin et al. Aug 1995 S
5437661 Rieser Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5447509 Millis et al. Sep 1995 A
5449380 Chin Sep 1995 A
5454373 Koger et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5471988 Fujio et al. Dec 1995 A
5472441 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5484432 Sand Jan 1996 A
5486170 Winston et al. Jan 1996 A
5501703 Holsheimer et al. Mar 1996 A
5505730 Edwarrds Apr 1996 A
5514130 Baker May 1996 A
5524624 Tepper et al. Jun 1996 A
5526815 Granz et al. Jun 1996 A
5529580 Hagino et al. Jun 1996 A
5540679 Fram et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5545161 Imran Aug 1996 A
5560362 Sliwa, Jr. et al. Oct 1996 A
5565005 Erickson et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571147 Sluijter et al. Nov 1996 A
5575772 Lennox Nov 1996 A
5575788 Baker et al. Nov 1996 A
5588432 Crowley Dec 1996 A
5596988 Markle et al. Jan 1997 A
5601526 Chapelon et al. Feb 1997 A
5606974 Castellano et al. Mar 1997 A
5620479 Diederich Apr 1997 A
5628317 Starkebaum et al. May 1997 A
5630426 Shmulewitz et al. May 1997 A
5630837 Crowley May 1997 A
5643319 Green et al. Jul 1997 A
5643330 Holshiemer et al. Jul 1997 A
5647361 Damadian Jul 1997 A
5647871 Levine et al. Jul 1997 A
5658278 Imran et al. Aug 1997 A
5672173 Gough et al. Sep 1997 A
5681282 Eggers et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5685839 Baker et al. Nov 1997 A
5687729 Schaetzle Nov 1997 A
5693052 Weaver Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697927 Imran et al. Dec 1997 A
5700262 Acosta et al. Dec 1997 A
5718231 Chen et al. Feb 1998 A
5720286 Chapelon et al. Feb 1998 A
5720287 Chapelon et al. Feb 1998 A
5722403 McGee et al. Mar 1998 A
5725494 Brisken Mar 1998 A
5728062 Brisken Mar 1998 A
5730706 Garnies Mar 1998 A
5733315 Burdette et al. Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5735811 Brisken Apr 1998 A
5735846 Fleischman et al. Apr 1998 A
5735847 Gough et al. Apr 1998 A
5738680 Mueller et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743904 Edwards Apr 1998 A
5746737 Saadat May 1998 A
5752969 Cunci et al. May 1998 A
5755663 Johnson et al. May 1998 A
5762066 Law et al. Jun 1998 A
5762616 Talish Jun 1998 A
5766153 Eggers et al. Jun 1998 A
5766231 Erickson et al. Jun 1998 A
5776092 Farin et al. Jul 1998 A
5785705 Baker Jul 1998 A
5800378 Edwards et al. Sep 1998 A
5800429 Edwards Sep 1998 A
5800432 Swanson Sep 1998 A
5807237 Tindel Sep 1998 A
5807391 Wijkamp Sep 1998 A
5807392 Eggers Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5817021 Reichenberger Oct 1998 A
5824021 Rise Oct 1998 A
5840031 Crowley Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843021 Edwards et al. Dec 1998 A
5844092 Presta et al. Dec 1998 A
5846218 Brisken et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5855576 LeVeen et al. Jan 1999 A
5860951 Eggers et al. Jan 1999 A
5865788 Edwards et al. Feb 1999 A
5865801 Houser Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871469 Eggers et al. Feb 1999 A
5871470 McWha Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5873877 McGaffigan et al. Feb 1999 A
5876398 Mulier et al. Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5895370 Edwards et al. Apr 1999 A
5902272 Eggers et al. May 1999 A
5902308 Murphy May 1999 A
5904681 West, Jr. May 1999 A
5906613 Mulier et al. May 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5916214 Cosio Jun 1999 A
5919188 Shearon et al. Jul 1999 A
5931805 Brisken Aug 1999 A
5935123 Edwards et al. Aug 1999 A
5938582 Ciamacco et al. Aug 1999 A
5941722 Chen Aug 1999 A
5941876 Nardella et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5948007 Starkebaum et al. Sep 1999 A
5948008 Daikuzono Sep 1999 A
5954716 Sharkey et al. Sep 1999 A
5964727 Edwards et al. Oct 1999 A
5967988 Briscoe et al. Oct 1999 A
5976105 Marcove et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
6001095 de la Rama et al. Dec 1999 A
6007533 Casscells et al. Dec 1999 A
6007570 Sharkey et al. Dec 1999 A
6012457 Lesh Jan 2000 A
6014588 Fitz Jan 2000 A
6016452 Kasevich Jan 2000 A
6016809 Mulier et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6019776 Preissman et al. Feb 2000 A
6022334 Edwards et al. Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6030374 McDaniel Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6032673 Langberg et al. Mar 2000 A
6032674 Eggers et al. Mar 2000 A
6033411 Preissman et al. Mar 2000 A
6035238 Ingle et al. Mar 2000 A
6038480 Hrdlicka et al. Mar 2000 A
6045532 Eggers et al. Apr 2000 A
6046187 Berde et al. Apr 2000 A
6047214 Mueller et al. Apr 2000 A
6050995 Durgin Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6063078 Wittkampf May 2000 A
6063079 Hovda et al. May 2000 A
6066134 Eggers et al. May 2000 A
6068642 Johnson et al. May 2000 A
6071279 Whayne et al. Jun 2000 A
6073051 Sharkey et al. Jun 2000 A
6074352 Hynynen et al. Jun 2000 A
6086585 Hovda et al. Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6095149 Sharkey et al. Aug 2000 A
6099499 Ciamacco Aug 2000 A
6099514 Sharkey et al. Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6104957 Alo et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6106454 Berg et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6112122 Schwardt et al. Aug 2000 A
6113597 Eggers et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117109 Eggers et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120467 Schallhorn Sep 2000 A
6120502 Michelson Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6126682 Ashley et al. Oct 2000 A
6137209 Dahlberg et al. Oct 2000 A
6139545 Utley et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6143019 Motamedi et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6164283 Lesh Dec 2000 A
6165172 Farley et al. Dec 2000 A
6168593 Sharkey et al. Jan 2001 B1
6169924 Meloy et al. Jan 2001 B1
6171239 Humphrey Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6179858 Squire et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6190383 Schmaltz et al. Feb 2001 B1
6193715 Wrublewski et al. Feb 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6206842 Tu et al. Mar 2001 B1
6210393 Brisken Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210415 Bester Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6221038 Brisken Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228046 Brisken May 2001 B1
6228078 Eggers et al. May 2001 B1
6228082 Baker et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231528 Kaufman et al. May 2001 B1
6231571 Ellman et al. May 2001 B1
6231615 Preissman May 2001 B1
6233488 Hess May 2001 B1
6235020 Cheng et al. May 2001 B1
6235024 Tu May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6241665 Negus et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
6245064 Lesh Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6248345 Goldenheim et al. Jun 2001 B1
6254553 Lidgren et al. Jul 2001 B1
6254599 Lesh et al. Jul 2001 B1
6254600 Willink et al. Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6259952 Sluijter Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6264659 Ross et al. Jul 2001 B1
6267770 Truwit Jul 2001 B1
6270498 Michelson Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6277122 McGahan et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6287114 Meller et al. Sep 2001 B1
6287272 Brisken et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6290715 Sharkey et al. Sep 2001 B1
6292699 Simon et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6305378 Lesh et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6309420 Preissman Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6312426 Goldberg et al. Nov 2001 B1
6319241 King et al. Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6348055 Preissman Feb 2002 B1
6355032 Hovda et al. Mar 2002 B1
6356790 Maguire et al. Mar 2002 B1
6361531 Hissong Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6368292 Ogden et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6383190 Preissman May 2002 B1
6391025 Weinstein et al. May 2002 B1
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6423059 Hanson et al. Jul 2002 B1
6426339 Berde et al. Jul 2002 B1
6428491 Weiss Aug 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6436060 Talish Aug 2002 B1
6436098 Michelson Aug 2002 B1
6447448 Ishikawa et al. Sep 2002 B1
6451013 Bays et al. Sep 2002 B1
6454727 Bubank et al. Sep 2002 B1
6461350 Underwood et al. Oct 2002 B1
6461354 Olsen et al. Oct 2002 B1
6464695 Hovda et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6470220 Kraus et al. Oct 2002 B1
6478793 Cosman et al. Nov 2002 B1
6482201 Olsen et al. Nov 2002 B1
6485271 Tack Nov 2002 B1
6487446 Hill et al. Nov 2002 B1
6491893 Babich Dec 2002 B1
6493592 Leonard et al. Dec 2002 B1
6494902 Hoey et al. Dec 2002 B2
6500173 Underwood et al. Dec 2002 B2
6505075 Weiner Jan 2003 B1
6524261 Talish et al. Feb 2003 B2
6527759 Tachibana et al. Mar 2003 B1
6537306 Burdette et al. Mar 2003 B1
6540741 Underwood et al. Apr 2003 B1
6544261 Ellsberry et al. Apr 2003 B2
6557559 Eggers et al. May 2003 B1
6558385 McClurken et al. May 2003 B1
6558390 Cragg May 2003 B2
6560486 Osorio et al. May 2003 B1
6562033 Shah et al. May 2003 B2
6575968 Eggers et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6575979 Cragg Jun 2003 B1
6578579 Burnside et al. Jun 2003 B2
6582423 Thapliyal et al. Jun 2003 B1
6585656 Masters Jul 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6595990 Weinstein et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6607502 Maguire et al. Aug 2003 B1
6607529 Jones et al. Aug 2003 B1
6608502 Aoki et al. Aug 2003 B2
6622731 Daniel et al. Sep 2003 B2
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6645202 Pless et al. Nov 2003 B1
6648883 Francischelli et al. Nov 2003 B2
6659106 Hovda et al. Dec 2003 B1
6663627 Francischelli et al. Dec 2003 B2
6673063 Brett Jan 2004 B2
6689086 Nita et al. Feb 2004 B1
6689125 Keith et al. Feb 2004 B1
6692450 Coleman Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6699242 Heggeness Mar 2004 B2
6709432 Ferek-Patric Mar 2004 B2
6718208 Hill et al. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6726684 Woloszko et al. Apr 2004 B1
6736810 Hoey et al. May 2004 B2
6736835 Pellegrino et al. May 2004 B2
6745079 King Jun 2004 B2
6746447 Davison et al. Jun 2004 B2
6749604 Eggers et al. Jun 2004 B1
6758846 Goble et al. Jul 2004 B2
6770071 Woloszko et al. Aug 2004 B2
6772012 Ricart et al. Aug 2004 B2
6773431 Eggers et al. Aug 2004 B2
6795737 Gielen et al. Sep 2004 B2
6827715 Francischelli et al. Dec 2004 B2
6827716 Ryan et al. Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6852091 Edwards et al. Feb 2005 B2
6863672 Reiley et al. Mar 2005 B2
6875219 Arramon et al. Apr 2005 B2
6881214 Cosman et al. Apr 2005 B2
6896674 Woloszko et al. May 2005 B1
6896675 Leung et al. May 2005 B2
6907884 Pellegrino et al. Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6922579 Taimisto et al. Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6936046 Hissong et al. Aug 2005 B2
6955674 Eick et al. Oct 2005 B2
6960204 Eggers et al. Nov 2005 B2
6962589 Mulier et al. Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6980849 Sasso Dec 2005 B2
6989010 Francischelli et al. Jan 2006 B2
7048743 Miller et al. May 2006 B2
7065408 Herman et al. Jun 2006 B2
7090672 Underwood et al. Aug 2006 B2
7104989 Skarda Sep 2006 B2
7131969 Hovda et al. Nov 2006 B1
6997941 Sharkey et al. Dec 2006 B2
7177678 Osorio et al. Feb 2007 B1
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7201731 Lundquist et al. Apr 2007 B1
7201750 Eggers et al. Apr 2007 B1
7211055 Diederich et al. May 2007 B2
7217268 Eggers et al. May 2007 B2
7250048 Francischelli et al. Jul 2007 B2
7258690 Sutton et al. Aug 2007 B2
7270659 Ricart et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7276063 Davison et al. Oct 2007 B2
7294127 Leung et al. Nov 2007 B2
7305264 Larson et al. Dec 2007 B2
7306596 Hillier et al. Dec 2007 B2
7318823 Sharps et al. Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7331957 Woloszko et al. Feb 2008 B2
RE40156 Sharps et al. Mar 2008 E
7346391 Osorio et al. Mar 2008 B1
7386350 Vilims Jun 2008 B2
7387625 Hovda et al. Jun 2008 B2
7393351 Woloszko et al. Jul 2008 B2
7422585 Eggers et al. Sep 2008 B1
7429262 Woloszko et al. Sep 2008 B2
7435247 Woloszko et al. Oct 2008 B2
7435250 Francischelli et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7468059 Eggers et al. Dec 2008 B2
7480533 Cosman et al. Jan 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7503921 Siegal Mar 2009 B2
7507236 Eggers et al. Mar 2009 B2
7546164 King Jun 2009 B2
7553307 Bleich et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7555343 Bleich Jun 2009 B2
7593778 Chandran et al. Sep 2009 B2
7645277 McClurken et al. Jan 2010 B2
7678111 Mulier et al. Mar 2010 B2
7708733 Sanders et al. May 2010 B2
7738968 Bleich Jun 2010 B2
7740631 Bleich et al. Jun 2010 B2
7749218 Pellegrino et al. Jul 2010 B2
7749220 Schmaltz et al. Jul 2010 B2
7819826 Diederich Oct 2010 B2
7819869 Godara et al. Oct 2010 B2
7824398 Woloszko et al. Nov 2010 B2
7824404 Godara et al. Nov 2010 B2
7846156 Malis et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7896870 Arless et al. Mar 2011 B2
7901403 Woloszko et al. Mar 2011 B2
7909827 Reiley et al. Mar 2011 B2
7914526 Lehmann et al. Mar 2011 B2
7917222 Osorio et al. Mar 2011 B1
7918849 Bleich et al. Apr 2011 B2
7918874 Siegal Apr 2011 B2
7945331 Vilims May 2011 B2
7951140 Arless et al. May 2011 B2
7959634 Sennett Jun 2011 B2
7963915 Bleich Jun 2011 B2
8021401 Carl et al. Sep 2011 B2
8025688 Diederich et al. Sep 2011 B2
8034052 Podhajsky Oct 2011 B2
8062290 Buysse et al. Nov 2011 B2
8066702 Rittman, III et al. Nov 2011 B2
8083736 McClurken et al. Dec 2011 B2
8100896 Podhajsky Jan 2012 B2
8128633 Linderman et al. Mar 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8172846 Brunnett et al. May 2012 B2
8182477 Orszulak et al. May 2012 B2
8192424 Woloszko et al. Jun 2012 B2
8192435 Bleich et al. Jun 2012 B2
8265747 Rittman, III et al. Sep 2012 B2
8282628 Paul et al. Oct 2012 B2
8292887 Woloszko et al. Oct 2012 B2
8323279 Dahla et al. Dec 2012 B2
8348946 McClurken et al. Jan 2013 B2
8355799 Marion et al. Jan 2013 B2
8361067 Pellegrino et al. Jan 2013 B2
8414509 Diederich et al. Apr 2013 B2
8414571 Pellegrino et al. Apr 2013 B2
8419730 Pellegrino et al. Apr 2013 B2
8419731 Pellegrino et al. Apr 2013 B2
8425507 Pellegrino et al. Apr 2013 B2
8444640 Demarais et al. May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8475449 Werneth et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8504147 Deem et al. Aug 2013 B2
8535309 Pellegrino et al. Sep 2013 B2
8579903 Carl Nov 2013 B2
8597301 Mitchell Dec 2013 B2
8613744 Pellegrino et al. Dec 2013 B2
8617156 Werneth et al. Dec 2013 B2
8623014 Pellegrino et al. Jan 2014 B2
8628528 Pellegrino et al. Jan 2014 B2
8644941 Rooney et al. Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8676309 Deem et al. Mar 2014 B2
8690884 Linderman et al. Apr 2014 B2
8747359 Pakter et al. Jun 2014 B2
8747398 Behnke Jun 2014 B2
8758349 Germain et al. Jun 2014 B2
8771276 Linderman Jul 2014 B2
8774913 Demarais et al. Jul 2014 B2
8774924 Weiner Jul 2014 B2
8795270 Drake Aug 2014 B2
8808161 Gregg et al. Aug 2014 B2
8808284 Pellegrino et al. Aug 2014 B2
8821488 Stewart et al. Sep 2014 B2
8845631 Werneth et al. Sep 2014 B2
8864760 Kramer et al. Oct 2014 B2
8882755 Leung et al. Nov 2014 B2
8882759 Manley et al. Nov 2014 B2
8882764 Sutton et al. Nov 2014 B2
8894658 Linderman et al. Nov 2014 B2
8915949 Diederich et al. Dec 2014 B2
8926620 Chasmawala et al. Jan 2015 B2
8968288 Brannan Mar 2015 B2
8989859 Deem et al. Mar 2015 B2
8992522 Pellegrino et al. Mar 2015 B2
8992523 Pellegrino et al. Mar 2015 B2
9017325 Pellegrino et al. Apr 2015 B2
9023038 Pellegrino et al. May 2015 B2
9028488 Goshayeshgar May 2015 B2
9028538 Paul et al. May 2015 B2
9039701 Pellegrino et al. May 2015 B2
9044245 Condie et al. Jun 2015 B2
9044254 Ladtkow et al. Jun 2015 B2
9044575 Beasley et al. Jun 2015 B2
9095359 Robert et al. Aug 2015 B2
9113896 Mulier et al. Aug 2015 B2
9113911 Sherman Aug 2015 B2
9113925 Smith et al. Aug 2015 B2
9119647 Brannan Sep 2015 B2
9119650 Brannan et al. Sep 2015 B2
9125671 Germain et al. Sep 2015 B2
9131597 Taft et al. Sep 2015 B2
9151680 Brannan Oct 2015 B2
9155895 Wacnik et al. Oct 2015 B2
9161735 Bradford et al. Oct 2015 B2
9161805 Isenberg Oct 2015 B2
9161814 Brannan et al. Oct 2015 B2
9168078 Linderman et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9173676 Pellegrino et al. Nov 2015 B2
9173700 Godara et al. Nov 2015 B2
9179970 Utley et al. Nov 2015 B2
9186197 McKay Nov 2015 B2
9192308 Brannan et al. Nov 2015 B2
9198684 Arthur et al. Dec 2015 B2
9226756 Teisen et al. Jan 2016 B2
9237916 Crainich et al. Jan 2016 B2
9238139 Degiorgio et al. Jan 2016 B2
9241729 Juntz et al. Jan 2016 B2
9241760 Godara et al. Jan 2016 B2
9247992 Ladtkow et al. Feb 2016 B2
9247993 Ladtkow et al. Feb 2016 B2
9248278 Crosby et al. Feb 2016 B2
9248289 Bennett et al. Feb 2016 B2
9254168 Palanker Feb 2016 B2
9254386 Lee et al. Feb 2016 B2
9259241 Pellegrino et al. Feb 2016 B2
9259248 Leuthardt et al. Feb 2016 B2
9259269 Ladtkow et al. Feb 2016 B2
9259569 Brounstein et al. Feb 2016 B2
9259577 Kaula et al. Feb 2016 B2
9265522 Pellegrino et al. Feb 2016 B2
9265557 Sherman et al. Feb 2016 B2
9277969 Brannan et al. Mar 2016 B2
9282988 Goshayeshgar Mar 2016 B2
9289607 Su et al. Mar 2016 B2
9295517 Peyman et al. Mar 2016 B2
9295841 Fang et al. Mar 2016 B2
9301723 Brannan et al. Apr 2016 B2
9301804 Bonn Apr 2016 B2
9302117 De Vincentiis Apr 2016 B2
9308036 Robinson Apr 2016 B2
9308045 Kim et al. Apr 2016 B2
9314252 Schaller et al. Apr 2016 B2
9314613 Mashiach Apr 2016 B2
9314618 Imran et al. Apr 2016 B2
9333144 Baxter et al. May 2016 B2
9333339 Weiner May 2016 B2
9333361 Li et al. May 2016 B2
9333373 Imran May 2016 B2
9339655 Carbunaru May 2016 B2
9345530 Ballakur et al. May 2016 B2
9345537 Harrison et al. May 2016 B2
9345538 Deem et al. May 2016 B2
9351739 Mahoney et al. May 2016 B2
9358067 Lee et al. Jun 2016 B2
9358396 Holley Jun 2016 B2
9364286 Werneth et al. Jun 2016 B2
9370348 Tally et al. Jun 2016 B2
9370392 Sharonov Jun 2016 B2
9370398 Ladtkow et al. Jun 2016 B2
9375274 Reid Jun 2016 B2
9375275 Lee et al. Jun 2016 B2
9375278 Robert et al. Jun 2016 B2
9375279 Brannan Jun 2016 B2
9375283 Arts et al. Jun 2016 B2
9381024 Globerman et al. Jul 2016 B2
9381045 Donner et al. Jul 2016 B2
9381050 Lee et al. Jul 2016 B2
9381359 Parramon et al. Jul 2016 B2
9387094 Manrique et al. Jul 2016 B2
9393416 Rooney et al. Jul 2016 B2
9398931 Wittenberger et al. Jul 2016 B2
9399144 Howard Jul 2016 B2
9403038 Tyler Aug 2016 B2
9409023 Burdick et al. Aug 2016 B2
9414884 Faehndrich et al. Aug 2016 B2
9421064 Pellegrino et al. Aug 2016 B2
9421123 Lee et al. Aug 2016 B2
9421371 Pless et al. Aug 2016 B2
9421378 Lian et al. Aug 2016 B2
9439693 Childs et al. Sep 2016 B2
9439721 Werneth et al. Sep 2016 B2
9445859 Pageard Sep 2016 B2
9446229 Omar-Pasha Sep 2016 B2
9446235 Su et al. Sep 2016 B2
9452286 Cowan et al. Sep 2016 B2
9456836 Boling et al. Oct 2016 B2
9457182 Koop Oct 2016 B2
9468485 Wittenberger et al. Oct 2016 B2
9468495 Kunis et al. Oct 2016 B2
9474906 Sachs et al. Oct 2016 B2
9486279 Pellegrino et al. Nov 2016 B2
9486621 Howard et al. Nov 2016 B2
9492657 Gerber Nov 2016 B2
9492664 Peterson Nov 2016 B2
9504372 Kim Nov 2016 B2
9504518 Condie et al. Nov 2016 B2
9504530 Hartmann et al. Nov 2016 B2
9504818 Moffitt et al. Nov 2016 B2
9511229 Bradley Dec 2016 B2
9511231 Kent et al. Dec 2016 B1
9517200 Bleier Dec 2016 B2
9526507 Germain Dec 2016 B2
9526551 Linderman Dec 2016 B2
9532828 Condie et al. Jan 2017 B2
9549772 Carl Jan 2017 B2
9550041 Bedell Jan 2017 B2
9555037 Podhajsky Jan 2017 B2
9566449 Perryman et al. Feb 2017 B2
9572976 Howard et al. Feb 2017 B2
9572986 Moffitt Feb 2017 B2
9579518 Gertner Feb 2017 B2
9597148 Olson Mar 2017 B2
RE46356 Pellegrino et al. Apr 2017 E
9610117 Germain Apr 2017 B2
9649116 Germain May 2017 B2
9687255 Sennett et al. Jun 2017 B2
9724107 Pellegrino et al. Aug 2017 B2
9724151 Edidin Aug 2017 B2
9730707 Sasaki et al. Aug 2017 B2
9770280 Diederich et al. Sep 2017 B2
9775627 Patel et al. Oct 2017 B2
9782221 Srinivasan Oct 2017 B2
9795802 Mohamed et al. Oct 2017 B2
9848944 Sutton et al. Dec 2017 B2
20010001314 Davison et al. May 2001 A1
20010001811 Burney et al. May 2001 A1
20010020167 Woloszko et al. Sep 2001 A1
20010023348 Ashley et al. Sep 2001 A1
20010025176 Ellsberry et al. Sep 2001 A1
20010025177 Woloszko et al. Sep 2001 A1
20010027295 Dulak et al. Oct 2001 A1
20010029370 Hovda et al. Oct 2001 A1
20010029373 Baker et al. Oct 2001 A1
20010032001 Ricart et al. Oct 2001 A1
20010047167 Heggeness Nov 2001 A1
20010049522 Eggers et al. Dec 2001 A1
20010049527 Cragg Dec 2001 A1
20010051802 Woloszko et al. Dec 2001 A1
20010053885 Gielen et al. Dec 2001 A1
20010056280 Underwood et al. Dec 2001 A1
20020016600 Cosman Feb 2002 A1
20020019626 Sharkey et al. Feb 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020095144 Carl Apr 2002 A1
20020052600 Davison et al. May 2002 A1
20020068930 Tasto et al. Jun 2002 A1
20020095151 Dahla et al. Jul 2002 A1
20020095152 Ciarrocca et al. Jul 2002 A1
20020099366 Dahla et al. Jul 2002 A1
20020111661 Cross et al. Aug 2002 A1
20020115945 D'Luzansky et al. Aug 2002 A1
20020120259 Lettice et al. Aug 2002 A1
20020147444 Shah et al. Oct 2002 A1
20020151885 Underwood et al. Oct 2002 A1
20020188284 To et al. Dec 2002 A1
20020188290 Sharkey et al. Dec 2002 A1
20020193708 Thompson et al. Dec 2002 A1
20020193789 Underwood et al. Dec 2002 A1
20030009164 Woloszko et al. Jan 2003 A1
20030014047 Woloszko et al. Jan 2003 A1
20030014088 Fang et al. Jan 2003 A1
20030028147 Aves et al. Feb 2003 A1
20030028189 Woloszko et al. Feb 2003 A1
20030040742 Underwood et al. Feb 2003 A1
20030055418 Tasto et al. Mar 2003 A1
20030069569 Burdette et al. Apr 2003 A1
20030083592 Faciszewski May 2003 A1
20030084907 Pacek et al. May 2003 A1
20030097126 Woloszko et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030130655 Woloszko et al. Jul 2003 A1
20030139652 Kang et al. Jul 2003 A1
20030158545 Hovda Aug 2003 A1
20030181963 Pellegrino et al. Sep 2003 A1
20030208194 Hovda et al. Nov 2003 A1
20030216725 Woloszko et al. Nov 2003 A1
20030216726 Eggers et al. Nov 2003 A1
20030225364 Kraft Dec 2003 A1
20040006339 Underwood et al. Jan 2004 A1
20040024399 Sharps et al. Feb 2004 A1
20040054366 Davison et al. Mar 2004 A1
20040064023 Thomas et al. Apr 2004 A1
20040064136 Crombie et al. Apr 2004 A1
20040064137 Pellegrino et al. Apr 2004 A1
20040082942 Katzman Apr 2004 A1
20040087937 Eggers et al. May 2004 A1
20040116922 Hovda et al. Jun 2004 A1
20040120891 Hill et al. Jun 2004 A1
20040133124 Bates et al. Jul 2004 A1
20040162559 Arramon Aug 2004 A1
20040186544 King Sep 2004 A1
20040193151 To et al. Sep 2004 A1
20040220577 Cragg et al. Nov 2004 A1
20040225228 Ferree Nov 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050004634 Ricart et al. Jan 2005 A1
20050010095 Stewart et al. Jan 2005 A1
20050010203 Edwards et al. Jan 2005 A1
20050010205 Hovda et al. Jan 2005 A1
20050055096 Serhan et al. Mar 2005 A1
20050177210 Leung et al. Aug 2005 A1
20050177211 Leung et al. Aug 2005 A1
20050182417 Pagano Aug 2005 A1
20050192564 Cosman et al. Sep 2005 A1
20050209659 Pellegrino et al. Sep 2005 A1
20050234445 Conquergood et al. Oct 2005 A1
20050261754 Woloszko Nov 2005 A1
20050267552 Conquergood et al. Dec 2005 A1
20050278007 Godara Dec 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20060004369 Patel et al. Jan 2006 A1
20060064101 Arramon Mar 2006 A1
20060095026 Ricart et al. May 2006 A1
20060095028 Bleich May 2006 A1
20060122458 Bleich Jun 2006 A1
20060129101 McGuckin Jun 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060206128 Conquergood et al. Sep 2006 A1
20060206129 Conquergood et al. Sep 2006 A1
20060206130 Conquergood et al. Sep 2006 A1
20060206132 Conquergood et al. Sep 2006 A1
20060206133 Conquergood et al. Sep 2006 A1
20060206134 Conquergood et al. Sep 2006 A1
20060206166 Weiner Sep 2006 A1
20060229625 Truckai et al. Oct 2006 A1
20060253117 Hovda et al. Nov 2006 A1
20060259026 Godara et al. Nov 2006 A1
20060264957 Cragg et al. Nov 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060276749 Selmon et al. Dec 2006 A1
20070027449 Godara et al. Feb 2007 A1
20070055316 Godara et al. Mar 2007 A1
20070118142 Krueger et al. May 2007 A1
20070129715 Eggers et al. Jun 2007 A1
20070142791 Yeung et al. Jun 2007 A1
20070142842 Krueger et al. Jun 2007 A1
20070149966 Dahla et al. Jun 2007 A1
20070179497 Eggers et al. Aug 2007 A1
20070260237 Sutton et al. Nov 2007 A1
20080004621 Dahla et al. Jan 2008 A1
20080004675 King et al. Jan 2008 A1
20080009847 Ricart et al. Jan 2008 A1
20080021447 Davison et al. Jan 2008 A1
20080021463 Georgy Jan 2008 A1
20080058707 Ashley et al. Mar 2008 A1
20080065062 Leung et al. Mar 2008 A1
20080091207 Truckai et al. Apr 2008 A1
20080114364 Goldin et al. May 2008 A1
20080119844 Woloszko et al. May 2008 A1
20080119846 Rioux May 2008 A1
20080132890 Woloszko et al. Jun 2008 A1
20080161804 Rioux et al. Jul 2008 A1
20080275458 Bleich et al. Nov 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080294166 Goldin et al. Nov 2008 A1
20090030308 Bradford et al. Jan 2009 A1
20090069807 Eggers et al. Mar 2009 A1
20090105775 Mitchell et al. Apr 2009 A1
20090112278 Wingeier et al. Apr 2009 A1
20090118731 Young et al. May 2009 A1
20090131867 Liu et al. May 2009 A1
20090131886 Liu et al. May 2009 A1
20090149878 Truckai et al. Jun 2009 A1
20090222053 Gaunt et al. Sep 2009 A1
20090312764 Marino Dec 2009 A1
20100010392 Skelton et al. Jan 2010 A1
20100016929 Prochazka Jan 2010 A1
20100023006 Ellman Jan 2010 A1
20100023065 Welch et al. Jan 2010 A1
20100082033 Germain Apr 2010 A1
20100094269 Pellegrino et al. Apr 2010 A1
20100114098 Carl May 2010 A1
20100145424 Podhajsky et al. Jun 2010 A1
20100179556 Scribner et al. Jul 2010 A1
20100185082 Chandran et al. Jul 2010 A1
20100185161 Pellegrino et al. Jul 2010 A1
20100211076 Germain et al. Aug 2010 A1
20100222777 Sutton et al. Sep 2010 A1
20100261989 Boseck et al. Oct 2010 A1
20100261990 Gillis et al. Oct 2010 A1
20100298832 Lau et al. Nov 2010 A1
20100324506 Pellegrino et al. Dec 2010 A1
20110022133 Diederich et al. Jan 2011 A1
20110034884 Pellegrino et al. Feb 2011 A9
20110040362 Godara et al. Feb 2011 A1
20110077628 Hoey et al. Mar 2011 A1
20110087314 Diederich et al. Apr 2011 A1
20110118735 Abou-Marie et al. May 2011 A1
20110196361 Vilims Aug 2011 A1
20110206260 Bergmans Aug 2011 A1
20110264098 Cobbs Oct 2011 A1
20110276001 Schultz et al. Nov 2011 A1
20110295261 Germain Dec 2011 A1
20110319765 Gertner Dec 2011 A1
20120029420 Vilims Feb 2012 A1
20120123427 McGuckin, Jr. May 2012 A1
20120136346 Condie et al. May 2012 A1
20120136348 Condie et al. May 2012 A1
20120172858 Harrison et al. Jul 2012 A1
20120172859 Condie et al. Jul 2012 A1
20120196251 Taft et al. Aug 2012 A1
20120197344 Taft et al. Aug 2012 A1
20120203219 Evans et al. Aug 2012 A1
20120226273 Nguyen et al. Sep 2012 A1
20120239050 Linderman Sep 2012 A1
20120265186 Burger et al. Oct 2012 A1
20120330180 Pellegrino et al. Dec 2012 A1
20120330300 Pellegrino et al. Dec 2012 A1
20120330301 Pellegrino et al. Dec 2012 A1
20130006232 Pellegrino et al. Jan 2013 A1
20130006233 Pellegrino et al. Jan 2013 A1
20130012933 Pellegrino et al. Jan 2013 A1
20130012935 Pellegrino et al. Jan 2013 A1
20130012936 Pellegrino et al. Jan 2013 A1
20130012951 Linderman Jan 2013 A1
20130079810 Isenberg Mar 2013 A1
20130231654 Germain Sep 2013 A1
20130103022 Sutton et al. Oct 2013 A1
20130261507 Diederich et al. Oct 2013 A1
20130324994 Pellegrino et al. Dec 2013 A1
20130324996 Pellegrino et al. Dec 2013 A1
20130324997 Pellegrino et al. Dec 2013 A1
20130345765 Brockman et al. Dec 2013 A1
20140031715 Sherar et al. Jan 2014 A1
20140039500 Pellegrino et al. Feb 2014 A1
20140046245 Cornacchia Feb 2014 A1
20140066913 Sherman Mar 2014 A1
20140088575 Loeb Mar 2014 A1
20140148801 Asher et al. May 2014 A1
20140148805 Stewart et al. May 2014 A1
20140171942 Werneth et al. Jun 2014 A1
20140221967 Childs et al. Aug 2014 A1
20140236144 Krueger et al. Aug 2014 A1
20140243823 Godara et al. Aug 2014 A1
20140257265 Godara et al. Sep 2014 A1
20140271717 Goshayeshgar et al. Sep 2014 A1
20140276728 Goshayeshgar et al. Sep 2014 A1
20140276744 Arthur et al. Sep 2014 A1
20140288544 Diederich et al. Sep 2014 A1
20140288546 Sherman et al. Sep 2014 A1
20140296850 Condie et al. Oct 2014 A1
20140316405 Pellegrino et al. Oct 2014 A1
20140324051 Pellegrino et al. Oct 2014 A1
20140336630 Woloszko et al. Nov 2014 A1
20140336667 Pellegrino et al. Nov 2014 A1
20140364842 Werneth et al. Dec 2014 A1
20150005767 Werneth et al. Jan 2015 A1
20150045783 Edidin Feb 2015 A1
20150057658 Sutton et al. Feb 2015 A1
20150065945 Zarins et al. Mar 2015 A1
20150073515 Turovskiy et al. Mar 2015 A1
20150157402 Kunis et al. Jun 2015 A1
20150164546 Pellegrino et al. Jun 2015 A1
20150196358 Goshayeshgar Jul 2015 A1
20150216588 Deem et al. Aug 2015 A1
20150231417 Metcalf et al. Aug 2015 A1
20150272655 Condie et al. Oct 2015 A1
20150297246 Patel et al. Oct 2015 A1
20150335382 Pellegrino et al. Nov 2015 A1
20150342660 Nash Dec 2015 A1
20150342670 Pellegrino et al. Dec 2015 A1
20150359586 Heggeness Dec 2015 A1
20150374432 Godara et al. Dec 2015 A1
20150374992 Crosby et al. Dec 2015 A1
20150374995 Foreman et al. Dec 2015 A1
20160000601 Burger et al. Jan 2016 A1
20160001096 Mishelevich Jan 2016 A1
20160002627 Bennett et al. Jan 2016 A1
20160008593 Cairns Jan 2016 A1
20160008618 Omar-Pasha Jan 2016 A1
20160008628 Morries et al. Jan 2016 A1
20160016012 Youn et al. Jan 2016 A1
20160022988 Thieme et al. Jan 2016 A1
20160022994 Moffitt et al. Jan 2016 A1
20160024208 MacDonald et al. Jan 2016 A1
20160029930 Plumley et al. Feb 2016 A1
20160030276 Spanyer Feb 2016 A1
20160030408 Levin Feb 2016 A1
20160030748 Edgerton et al. Feb 2016 A1
20160030765 Towne et al. Feb 2016 A1
20160051831 Lundmark et al. Feb 2016 A1
20160059007 Koop Mar 2016 A1
20160074068 Patwardhan Mar 2016 A1
20160074279 Shin Mar 2016 A1
20160074661 Lipani Mar 2016 A1
20160081716 Boling et al. Mar 2016 A1
20160095721 Schell et al. Apr 2016 A1
20160106985 Zhu Apr 2016 A1
20160106994 Crosby et al. Apr 2016 A1
20160113704 Godara et al. Apr 2016 A1
20160115173 Bois et al. Apr 2016 A1
20160136310 Bradford et al. May 2016 A1
20160144182 Bennett et al. May 2016 A1
20160144187 Caparso et al. May 2016 A1
20160158551 Kent et al. Jun 2016 A1
20160166835 De Ridder Jun 2016 A1
20160175586 Edgerton et al. Jun 2016 A1
20160199097 Linderman et al. Jul 2016 A1
20160213927 McGee et al. Jul 2016 A1
20160220393 Slivka et al. Aug 2016 A1
20160220638 Dony et al. Aug 2016 A1
20160220672 Chalasani et al. Aug 2016 A1
20160228131 Brockman et al. Aug 2016 A1
20160228696 Imran et al. Aug 2016 A1
20160235471 Godara et al. Aug 2016 A1
20160235474 Prisco et al. Aug 2016 A1
20160243353 Ahmed Aug 2016 A1
20160246944 Jain et al. Aug 2016 A1
20160250469 Kim Sep 2016 A1
20160250472 Carbunaru Sep 2016 A1
20160262830 Werneth et al. Sep 2016 A1
20160271405 Angara et al. Sep 2016 A1
20160278791 Pellegrino et al. Sep 2016 A1
20160278846 Harrison et al. Sep 2016 A1
20160279190 Watts et al. Sep 2016 A1
20160279408 Grigsby et al. Sep 2016 A1
20160279411 Rooney et al. Sep 2016 A1
20160279441 Imran Sep 2016 A1
20160302925 Keogh et al. Oct 2016 A1
20160310739 Burdick et al. Oct 2016 A1
20160317053 Srivastava Nov 2016 A1
20160317211 Harrison et al. Nov 2016 A1
20160317621 Bright Nov 2016 A1
20160324541 Pellegrino et al. Nov 2016 A1
20160324677 Hyde et al. Nov 2016 A1
20160325100 Lian et al. Nov 2016 A1
20160339251 Kent et al. Nov 2016 A1
20160354093 Pellegrino et al. Dec 2016 A1
20160354233 Sansone et al. Dec 2016 A1
20160367797 Eckermann Dec 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20160375259 Davis et al. Dec 2016 A1
20170001026 Schwarz et al. Jan 2017 A1
20170007277 Drapeau et al. Jan 2017 A1
20170014169 Dean et al. Jan 2017 A1
20170027618 Lee et al. Feb 2017 A1
20170028198 Degiorgio et al. Feb 2017 A1
20170028201 Howard Feb 2017 A1
20170035483 Crainich et al. Feb 2017 A1
20170036009 Hughes et al. Feb 2017 A1
20170036025 Sachs et al. Feb 2017 A1
20170036033 Perryman et al. Feb 2017 A9
20170042834 Westphal et al. Feb 2017 A1
20170049503 Cosman Feb 2017 A1
20170049507 Cosman Feb 2017 A1
20170049513 Cosman Feb 2017 A1
20170050017 Cosman Feb 2017 A1
20170050021 Cosman Feb 2017 A1
20170050024 Bhadra et al. Feb 2017 A1
20170128080 Torrie May 2017 A1
20170135742 Lee et al. May 2017 A1
20170199461 Godara et al. May 2017 A1
20170181788 Dastjerdi et al. Jun 2017 A1
20170202613 Pellegrino et al. Jul 2017 A1
20170266419 Goshayeshgar Sep 2017 A1
20180021048 Pellegrino et al. Jan 2018 A1
20180042656 Edidin Feb 2018 A1
20180103964 Patel et al. Apr 2018 A1
20180193088 Sutton et al. Jul 2018 A1
Foreign Referenced Citations (42)
Number Date Country
0040658 Dec 1981 EP
0584959 Mar 1994 EP
0597463 May 1994 EP
0880938 Dec 1998 EP
1013228 Jun 2000 EP
1059067 Dec 2000 EP
1059087 Dec 2000 EP
2965782 Jan 2016 EP
60-016764 Feb 1985 JP
06-47058 Feb 1994 JP
10-290806 Nov 1998 JP
2001-037760 Feb 2001 JP
2005-169012 Jun 2005 JP
WO 9636289 Nov 1996 WO
WO 9827876 Jul 1998 WO
WO 9834550 Aug 1998 WO
WO 9919025 Apr 1999 WO
WO 9944519 Sep 1999 WO
WO 9948621 Sep 1999 WO
WO 0021448 Apr 2000 WO
WO 0033909 Jun 2000 WO
WO 0049978 Aug 2000 WO
WO 0056237 Sep 2000 WO
WO 0067648 Nov 2000 WO
WO 0067656 Nov 2000 WO
WO 0101877 Jan 2001 WO
WO 0145579 Jun 2001 WO
WO 0157655 Aug 2001 WO
WO 0205699 Jan 2002 WO
WO 0205897 Jan 2002 WO
WO 0228302 Apr 2002 WO
WO 02054941 Jul 2002 WO
WO 02067797 Sep 2002 WO
WO 02096304 Dec 2002 WO
WO 0731264 Mar 2007 WO
WO 08001385 Jan 2008 WO
WO 08008522 Jan 2008 WO
WO 08121259 Oct 2008 WO
WO 2008140519 Nov 2008 WO
WO 2009124192 Oct 2009 WO
WO2013134452 Sep 2013 WO
WO 2014141207 Sep 2014 WO
Non-Patent Literature Citations (134)
Entry
A Novel Approach for Treating Chronic Lower Back Pain, Abstract for Presentation at North American Spine Society 26th Annual Meeting in Chicago, IL on Nov. 4, 2011.
Antonacci, M. Darryl et al.; Innervation of the Human Vertebral Body: A Histologic Study; Journal of Spinal Disorder, vol. 11, No. 6, pp. 526-531, 1998 Lippincott Williams & Wilkins, Philadelphia.
Arnoldi, Carl C.; Intraosseous Hypertension—A Possible Cause of Low Back Pain?; Clinical Orthopedics and Related Research, No. 115, Mar.-Apr. 1976.
Bergeron et al., “Fluoroscopic-guided radiofrequency ablation of the basivertebral nerve: application and analysis with multiple imaging modalities in an ovine model,” Thermal Treatment of Tissue: Energy Delivery and Assessment III, edited by Thomas P. Ryan, Proceedings of SPIE, vol. 5698 (SPIE, Bellingham, WA, 2005) pp. 156-167.
Bogduk, Nikolai, et al.; Technical Limitations to the efficacy of Radiofrequency Neurotomy for Spinal Pain; Neurosurgery vol. 20, No. 4, 1987.
Choy, Daniel SS.J. et al.; Percutaneous Laser Disc Decompression, A New Therapeutic Modality; Spine vol. 17, No. 8, 1992.
Cosman, E.R. et al., Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone. Neurosurgery, vol. 1, No. 6, 1984, pp. 945-950.
Deardorff, Dana L. et al.; Ultrasound applicators with internal cooling for interstitial thermal therapy; SPIE vol. 3594, 1999.
Dupuy, D.E. et al. Radiofrequency ablation of spinal tumors: Temperature distribution in the spinal canal AJR, vol. 175, pp. 1263-1266, Nov. 2000.
Dupuy, Damian E.; Radiofrequency Ablation: An Outpatient Percutaneous Treatment; Medicine and Health/Rhode Island vol. 82, No. 6, Jun. 1999.
Deramond, H. et al., Temperature Elevation Caused by Bone Cement Polymerization During Vertebroplasty, Bone, Aug. 1999, pp. 17S-21S, vol. 25, No. 2, Supplement.
Diederich, C. J. et al., “IDTT Therapy in Cadaveric Lumbar Spine: Temperature and thermal dose distributions, Thermal Treatment of Tissue: Energy Delivery and Assessment,” Thomas P. Ryan, Editor, Proceedings of SPIE vol. 4247:104-108 (2001).
Diederich, Chris J. et al.; Ultrasound Catheters for Circumferential Cardiac Ablation; SPIE vol. 3594 (1999).
Esses, Stephen I. et al.; Intraosseous Vertebral Body Pressures; Spine vol. 17 No. 6 Supplement 1992.
FDA Response to 510(k) Submission by Relievant Medsystems, Inc. submitted on Sep. 27, 2007 (date stamped on Oct. 5, 2007) and associated documents.
Goldberg, S.N. et al., Tissue ablation with radiofrequency: Effect of probe size, gauge, duration, and temperature on lesion volume, Acad. Radiol., vol. 2, pp. 399-404 (1995).
Hanai, Kenji et al.; Simultaneous Measurement of Intraosseous and Cerebrospinal Fluid Pressures in the Lumbar Region; Spine vol. 10, No. 1, 1985.
Heggeness, Michael H. et al., The Trabecular Anatomy of Thoracolumbar Vertebrae: Implications for Burst Fractures, Journal of Anatomy, 1997, pp. 309-312, vol. 191, Great Britain.
Heggeness, Michael H. et al. Discography Causes End Plate Deflection; Spine vol. 18, No. 8, pp. 1050-1053, 1993, J.B. Lippincott Company.
Hoopes et al., “Radiofrequency Ablation of the Basivertebral Nerve as a Potential Treatment of Back Pain: Pathologic Assessment in an Ovine Model,” Thermal Treatment of Tissue: Energy Delivery and Assessment III, edited by Thomas P. Ryan, Proceedings of SPIE, vol. 5698 (SPIE, Bellingham, WA, 2005) pp. 168-180.
Houpt, Jonathan C. et al.; Experimental Study of Temperature Distributions and Thermal Transport During Radiofrequency Current Therapy of the Intervertebral Disc; Spine vol. 21, No. 15, pp. 1808-1813, 1996, Lippincott-Raven Publishers.
Kleinstueck, Frank S. et al.; Acute Biomechanical and Histological Effects of Intradiscal Electrothermal Therapy on Human Lumbar Discs; Spine vol. 26, No. 20, pp. 2198-2207; 2001, Lippincott Williams & Wilkins, Inc.
Kopecky, Kenyon K. et al. “Side-Exiting Coaxial Needle for Aspiration Biopsy”—AJR—1996; 167, pp. 661-662.
Lehmann, Justus F. et al.; Selective Heating Effects of Ultrasound in Human Beings; Archives of Physical Medicine & Rehabilitation Jun. 1966.
Letcher, S. Frank et al.; The Effect of Radiofrequency Current and Heat on Peripheral Nerve Action Potential in the Cat; U.S. Naval Hospital, Philadelphia, PA.
Lundskog, Jan; Heat and Bone Tissue-/an experimental investigation of the thermal properties of bone tissue and threshold levels for thermal injury; Scandinavian Journal of Plastic and Reconstructive Surgery Supplemental 9, From the Laboratory of Experimental Biology, Department of anatomy, University of Gothenburg, Gothenburg, Sweden, Goteborg 1972.
Martin, J.B. et al., Vertebroplasty: Clinical Experience and Follow-up Results, Bone, Aug. 1999, pp. 11S-15S, vol. 25, No. 2, Supplement.
Massad, Malek M.D. et al.; Endoscopic Thoracic Sympathectomy: Evaluation of Pulsatile Laser, Non-Pulsatile Laser, and Radiofrequency-Generated Thermocoagulation; Lasers in Surgery and Medicine; 1991; pp. 18-25.
Mehta, Mark et al.; The treatment of chronic back pain; Anaesthesia, 1979, vol. 34, pp. 768-775.
Nau, William H., Ultrasound interstitial thermal therapy (USITT) in the prostate; SPIE vol. 3594.
Rashbaum, Ralph F.; Radiofrequency Facet Denervation a Treatment alternative in Refractory Low Back Pain with or without Leg Pain; Orthopedic Clinics of North America—vol. 14, No. 3, Jul. 1983.
Rosenthal, D.I., Seminars in Musculoskeletal Radiology, vol. 1, No. 2., pp. 265-272 (1997).
Ryan et al., “Three-Dimensional Finite Element Simulations of Vertebral Body Thermal Treatment,” Thermal Treatment of Tissue: Energy Delivery and Assessment III, edited by Thomas P. Ryan, Proceedings of SPIE, vol. 5698 (SPIE, Bellingham, WA, 2005) pp. 137-155.
Shealy, C. Norman; Percutaneous radiofrequency denervation of spinal facets Treatment for chronic back pain and sciatica; Journal of Neurosurgery/vol. 43/Oct. 1975.
Sherman, Mary S.; The Nerves of Bone, The Journal of Bone and Joint Surgery, Apr. 1963, pp. 522-528, vol. 45-A, No. 3.
Solbiati, L. et al. Hepatic metastases: Percutaneous radio-frequency ablation with cooled-tip electrodes. Interventional Radiology, vol. 205, No. 2, pp. 367-373 (1997).
Stanton, Terry, “Can Nerve Ablation Reduce Chronic Back Pain ?” AAOS Now Jan. 2012.
The AVAmax System—Cardinal Health Special Procedures, Lit. No. 25P0459-01—www.cardinal.com (copyright 2007).
Tillotson, L. et al. Controlled thermal injury of bone: Report of a percutaneous technique using radiofrequency electrode and generator. Investigative Radiology, Nov. 1989, pp. 888-892.
Troussier, B. et al.; Percutaneous Intradiscal Radio-Frequency Thermocoagulation a Cadaveric Study; Spine vol. 20, No. 15, pp. 1713-1718, 1995, Lippincott-Raven Publishers.
Ullrich, Jr. Peter F., “Lumbar Spinal Fusion Surgery” Jan. 9, 2013, Spine-Health (available via wayback machine Internet archive at http://web.archive.org/web/20130109095419/http://www/spine-health.come/treatement/spinal-fusion/lumbar-spinal-fusion-surgery.
U.S. Appl. No. 09/775,137 U.S. Pat No. 6,699,242, filed Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Australia, 2001033279 774022, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Canada, 2,397,413 2,397,413, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Canada, 2,723,071 2,723,071, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Europe, 1905397.4 1255500, Feb. 1, 2001, Devices for Intraosseous Nerve Ablation.
Europe, 7010394 1844723, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Europe, 7010581.2, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Europe, 7010649.7, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Europe, 10012521, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Hong Kong, 8103900.5 1109847, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Hong Kong, 8102841.9, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
Japan, 2001-556439 4916635, Feb. 1, 2001, Methods and Devices for Intraosseous Nerve Ablation.
U.S. Appl. No. 10/401,854 U.S. Pat. No. 7,258,690, filed Mar. 28, 2003, Windowed Thermal Ablation Probe.
U.S. Appl. No. 11/745,446, filed May 7, 2007, Windowed Thermal Ablation Probe.
U.S. Appl. No. 12/643,997, filed Dec. 21, 2009, Windowed Thermal Ablation Probe.
U.S. Appl. No. 13/655,683 U.S. Pat. No. 8,882,764, filed Oct. 19, 2012, Thermal Denervation Devices.
U.S. Appl. No. 14/535,868, filed Nov. 7, 2014, Thermal Denervation Devices and Methods.
U.S. Appl. No. 10/260,879 U.S. Pat. No. 6,907,884, filed Sep. 30, 2002, Method of Straddling an Intraosseous Nerve.
U.S. Appl. No. 11/123,766 U.S. Pat. No. 7,749,218, filed May 6, 2005, Method of Straddling an Intraosseous Nerve.
U.S. Appl. No. 12/683,555 U.S. Pat. No. 8,613,744, filed Jan. 7, 2010, Systems Methods for Navigating an Instrument Through Bone.
U.S. Appl. No. 13/612,561 U.S. Pat. No. 8,425,507, filed Sep. 12, 2012, Basivertebral Nerve Denervation.
U.S. Appl. No. 13/617,470 U.S. Pat. No. 8,623,014, filed Sep. 14, 2012, Systems for Denervation of Basivertebral Nerves.
U.S. Appl. No. 13/862,306 U.S. Pat. No. 8,628,528, filed Apr. 12, 2013, Vertebral Denervation.
U.S. Appl. No. 14/136,763 U.S. Pat. No. 9,023,038, filed Dec. 20, 2013, Denervation Methods.
U.S. Appl. No. 14/174,024 U.S. Pat. No. 9,017,325, filed Jan. 3, 2014, Nerve Modulation Systems.
U.S. Appl. No. 14/153,922 U.S. Pat. No. 9,173,676, filed Jan. 13, 2014, Nerve Modulation Systems.
U.S. Appl. No. 14/695,330 U.S. Pat. No. 9,421,064, filed Apr. 24, 2015, Nerve Modulation Systems.
U.S. Appl. No. 14/701,908, filed May 1, 2015, Denervation Methods.
U.S. Appl. No. 14/928,037, filed Oct. 30, 2015, Intraosseous Nerve Modulation Methods.
U.S. Appl. No. 15,241,523, filed Aug. 19, 2016, Nerve Modulation Systems.
U.S. Appl. No. 13/612,541 U.S. Pat. No. 8,361,067, filed Sep. 12, 2012, Methods of Therapeutically Heating a Vertebral Body to Treat Back Pain.
U.S. Appl. No. 13/615,001 U.S. Pat. No. 8,419,731, filed Sep. 13, 2012, Methods of Treating Back Pain.
U.S. Appl. No. 13/615,300, filed Sep. 13, 2012, System for Heating a Vertebral Body to Treat Back Pain.
U.S. Appl. No. 13/862,317 U.S. Pat. No. 8,992,522, filed Apr. 12, 2013, Back Pain Treatment Methods.
U.S. Appl. No. 13/923,798 U.S. Pat. No. 8,992,523, filed Jun. 12, 2013, Vertebral Treatment.
U.S. Appl. No. 14/673,172 U.S. Pat. No. 9,486,279, filed Mar. 30, 2015, Intraosseous Nerve Treatment.
U.S. Appl. No. 13/541,591 (Reissue of U.S. Pat. No. 7,749,218), filed Jul. 3, 2012, Method of Treating an Intraosseous Nerve.
Australia, 2003248436 2003248436, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
Australia, 2008249202 2008249202, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
Australia, 2011218612 2011218612, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
Canada, 2,443,491, 2,443,491, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
Europe, 3256168 1402838, Sep. 29, 2003, Intraosseous Nerve Denervation Device.
Europe, 5021597.9 1611860, Sep. 29, 2003, Intraosseous Nerve Denervation Device.
Europe, 10012523.6, Sep. 29, 2003, Intraosseous Nerve Denervation Device.
Japan, 2003-341164 4540959, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
Japan, 2009-269652 5203338, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
Japan, 2012-246075 5653986, Sep. 29, 2003, Method of Straddling an Intraosseous Nerve.
U.S. Appl. No. 12/566,895 U.S. Pat. No. 8,419,730, filed Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
U.S. Appl. No. 13/963,767 U.S. Pat. No. 9,039,701, filed Aug. 9, 2013, Channeling Paths Into Bone.
U.S. Appl. No. 13/862,242 U.S. Pat. No. 9,259,241, filed Apr. 12, 2013, Systems for Accessing Nerves Within Bone.
U.S. Appl. No. 15/040,268, filed Feb. 10, 2016, Systems for Accessing Nerves Within Bone.
U.S. Appl. No. 12/868,818 U.S. Pat. No. 8,808,284, filed Aug. 26, 2010, Systems for Navigating an Instrument Through Bone.
U.S. Appl. No. 14/462,371 U.S. Pat. No. 9,265,522, filed Aug. 18, 2014, Methods for Navigating an Instrument Through Bone.
U.S. Appl. No. 13/543,712 U.S. Pat. No. 8,535,309, filed Jul. 6, 2012, Vertebral Bone Channeling Systems.
U.S. Appl. No. 13/543,723 U.S. Pat. No. 8,414,571, filed Jul. 6, 2012, Vertebral Bone Navigation Systems.
U.S. Appl. No. 13/543,721, filed Jul. 6, 2012, Intraosseous Nerve Denervation Methods.
WO, PCT/US2009/58329, Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
Australia, 2009296474 2009296474, Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
Australia, 2015234376, Oct. 2, 2015, Systems and Methods for Navigating an Instrument Through Bone.
Canada, 2,737,374, Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
Europe, 9816892.5, Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
Hong Kong, 12100034.4, Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
Japan, 2011-529245 5688022, Sep. 25, 2009, Systems and Methods for Navigating an Instrument Through Bone.
Japan, 2015-010950 6027151, Jan. 23, 2015, Systems and Methods for Navigating an Instrument Through Bone.
Japan, 2016-201503, Oct. 13, 2016, Systems and Methods for Navigating an Instrument Through Bone.
Australia, 2011204278 2011204278, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
Canada, 2,785,207, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
Europe, 11732213.1, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
Hong Kong, 13105656.9, Jul. 27, 2012, Systems and Methods for Navigating an Instrument Through Bone.
Israel, 220747 220747, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
Israel, 245665, May 16, 2016, Systems and Methods for Navigating an Instrument Through Bone.
Japan, 2012-548169 5179682, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
Japan, 2013-1951, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
WO, PCT/US2011/020535, Jan. 7, 2011, Systems and Methods for Navigating an Instrument Through Bone.
U.S. Appl. No. 10/103,439 U.S. Pat. No. 6,736,835, filed Mar. 21, 2002, Novel Early Intervention Spinal Treatment Methods and Devices for Use Therein.
South Korea, 2003-0017897 10-957458, Mar. 21, 2003, Early Intervention Spinal Treatment and Devices for Use Therein.
Australia, 2012362524, Jul. 23, 2014, Systems and Methods for Treating Back Pain.
WO, PCT/US2012/071465, Dec. 21, 2012, Systems and Methods for Treating Back Pain.
WO, PCT/US2013/068012, Nov. 1, 2013, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
Australia, 2013337680, Jun. 4, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
Canada, 2889478, Apr. 22, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
Europe, 13852217.2, May 21, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
Hong Kong, 16110183.9, Jan. 8, 2016, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
Israel, 238516, Apr. 29, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
Japan, 2015-540810, May 1, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
U.S. Appl. No. 14/440,050, filed Apr. 30, 2015, Systems and Methods for Creating Curved Paths Through Bone and Modulating Nerves Withing the Bone.
U.S. Appl. No. 14/454,643, filed Aug. 7, 2012, Modulating Nerves Within Bone Using Bone Fasteners.
Bogduk, N. The anatomy of the lumbar intervertebral disc syndrome, Med J. Aust. 1976, vol. 1, No. 23, pp. 878-881.
Fras M.D., Christian et al., “Substance P-containing Nerves within the Human Vertebral Body: An Immunohistochemical Study of the Basivertebral Nerve”, The Spine Journal 3, 2003, pp. 63-67.
Heggeness, M. et al Ablation of the Basivertebral Nerve for the Treatment of Back Pain: A Pilot Clinical Study; The Spine Journal, 2011, vol. 11, Issue 10, Supplement, pp. S65-Sa66, ISSN 1529-9430.
Bailey, Jeannie F., “Innervation Patterns of PGP 9.5-Positive Nerve Fibers within the Human Lumbar Vertebra, Journal of Anatomy”, (2011) 218, pp. 263-270, San Francisco, California.
Becker, Stephan, et al., “Ablation of the basivertebral nerve for treatment of back pain: a clinical study,” The Spine Journal, vol. 17, pp. 218-223 (Feb. 2017).
Osteocool Pain Mangement Brochure, Baylis Medical, copyright 2011.
Related Publications (1)
Number Date Country
20150005614 A1 Jan 2015 US
Provisional Applications (2)
Number Date Country
61582165 Dec 2011 US
61582170 Dec 2011 US