Systems and methods for treating gastroesophageal reflux disease

Information

  • Patent Grant
  • 11717681
  • Patent Number
    11,717,681
  • Date Filed
    Wednesday, August 21, 2019
    5 years ago
  • Date Issued
    Tuesday, August 8, 2023
    a year ago
Abstract
Systems and methods for treating gastroesophageal reflux disease (GERD) includes minimally invasively implanting a stimulating device in a patient's esophagus in the region proximate the lower esophageal sphincter (LES). The patient is provided with a questionnaire related to his disease via an online service. The questionnaire is accessed on a mobile device, such as a cell phone, or on a computer with network access. The data from the sensors and the answers from the questionnaire are analyzed together by a health care provider using the online service. The data and answers are used to program the stimulating device, via the mobile device or computer, to optimize treatment.
Description
FIELD

This invention relates generally to a method and apparatus for electrical stimulation of the biological systems. More particularly, this invention relates to methods and systems for treating gastroesophageal reflux disease (GERD) by implanting an electrical stimulation device using laparoscopic or endoscopic techniques, capturing an eating event and detecting eating, using an implantable electrical stimulation device, enabling a patient to interface with an implanted stimulation device, and applying predefined treatment processes.


BACKGROUND

Gastro-esophageal reflux disease (GERD) is a common problem and is expensive to manage in both primary and secondary care settings. This condition results from exposure of esophageal mucosa to gastric acid and bile as the gastro-duodenal content refluxes from the stomach into the esophagus. The acid and bile damages the esophageal mucosa resulting in heartburn, ulcers, bleeding, and scarring, and long term complications such as Barrett's esophagus (pre-cancerous esophageal lining) and adeno-cancer of the esophagus.


Lifestyle advice and antacid therapy are advocated as first line treatment for the disease. However, since most patients with moderate to severe cases of GERD do not respond adequately to these first-line measures and need further treatment, other alternatives including pharmacological, endoscopic, and surgical treatments are employed.


The most commonly employed pharmacological treatment is daily use of H2 receptor antagonists (H2RAs) or proton-pump inhibitors (PPIs) for acid suppression. Since gastro-esophageal reflux disease usually relapses once drug therapy is discontinued, most patients with the disease, therefore, need long-term drug therapy. However, daily use of PPIs or H2RAs is not universally effective in the relief of GERD symptoms or as maintenance therapy. Additionally, not all patients are comfortable with the concept of having to take daily or intermittent medication for the rest of their lives and many are interested in nonpharmacological options for managing their reflux disease.


Several endoscopic procedures for the treatment of GERD have been tried. These procedures can be divided into three approaches: endoscopic suturing wherein stitches are inserted in the gastric cardia to plicate and strengthen the lower esophageal sphincter, endoscopic application of energy to the lower esophagus, and injection of bulking agents into the muscle layer of the distal esophagus. These procedures, however, are not without their risks, besides being technically demanding and involving a long procedure time. As a result, these procedures have largely been discontinued.


Open surgical or laparoscopic fundoplication is also used to correct the cause of the disease. However, surgical procedures are associated with significant morbidity and small but not insignificant mortality rates. Moreover, long-term follow-up with patients treated by surgery suggests that many patients continue to need acid suppressive medication. There is also no convincing evidence that fundoplication reduces the risk of esophageal adenocarcinoma in the long term.


While electrical stimulation has been suggested for use in the treatment of GERD, an effective electrical stimulation system has yet to be demonstrated. In particular, the prior art teaches that effective electrical stimulation requires active, real-time sensing for a patient's swallow and, based on a sensed swallow, to immediately cease stimulation. For example, certain prior art approaches require the constant sensing of certain physiological changes in the esophagus, such as changes in esophageal pH, to detect acid reflux and/or esophageal motility and, based on such sensed changes, initiating or terminating an electrical stimulation to instantaneously close or open the LES, respectively, thereby avoiding an acid reflux episode. Other prior art approaches require continuous stimulation with sensing for swallow and stopping stimulation to allow for normal swallow to happen. This creates a complex device and has not proven to be feasible or effective in practice.


Therefore, there is still a need for a safe and effective method of treatment that can help alleviate symptoms of GERD in the long term, without adversely affecting the quality of life of the patients. In particular, there is a need for simple, efficient GERD device and treatment methods that does not inhibit a patient from swallowing and do not rely on an instantaneous response from the patient's LES to avoid episodes of acid reflux. There is a need for treatment protocols and devices which are programmed to implement such protocols, which can be easily programmed and do not require complex physiologic sensing mechanisms in order to operate effectively and safely. In addition, there is still a need for minimally invasive and effective treatment for obesity. Moreover, there is not only a need for better devices in stimulation based therapies, but there is also a need for a safe and minimally invasive method and system that enables easy and expeditious deployment of such devices at any desired location in the body.


It is further desirable to have a system for the treatment of GERD which includes a stimulator and an optional sensor adapted to be placed in a patient's LES tissue.


It is further desirable to have a system for the treatment of GERD which includes an active implantable medical device (AIMD) and temporary sensor adapted to be placed in a patient's GI lumen where the sensors are designed to naturally dissolve or pass out through the lumen and the AIMD is adapted to dynamically acquire, process, measure the quality of, and use sensed data only when the sensor is present.


It is further desirable to have a system for the temporary treatment of GERD which includes an AIMD, which is adapted to be placed in a patient's GI lumen, designed to naturally dissolve or pass out through the lumen, and is adapted to deliver electrical stimulation to tissue at or in the vicinity of the LES. Such temporary stimulation scheme can additionally be used for pre-screening of patients likely to benefit from permanent stimulation.


It would further be desirable for the stimulator to use periodic or occasional sensing data to improve the treatment of GERD by dynamically detecting when a sensor is present, determining when a sensor is transmitting, or capable of transmitting, data, and processing the sensed data using an application having a special mode which opportunistically uses the sensed data to change stimulation parameters.


It is also desirable to automate the setting or calibration of some or all device parameters in order to reduce the need for medical follow-up visits, reduce burdens on healthcare providers and patients, decrease the rate of programming mistakes, and improve outcomes, thereby improving the treatment of GERD.


SUMMARY

The present specification is directed toward a device, having a plurality of dimensions, adapted for placement proximate a patient's lower esophageal sphincter (LES) using endoscopic or laparoscopic or surgical techniques and programmed to treat esophageal dysfunction, comprising a stimulator enclosed within a housing and a plurality of electrodes wherein said electrodes are attached to the outer surface of the housing using conductors at least 1 mm in length. In one embodiment, the electrodes are adapted to be placed in a right or left anterior quadrant of the LES. In one embodiment, the housing comprises a needle having a length in the range of 5-50 mm and, more preferably, in the range of 10-25 mm, for creating a pathway for electrode implantation into the muscularis of the LES.


In one embodiment, electrodes are of sufficient length to allow them to be placed entirely within the LES. In another embodiment, the electrodes are of sufficient length to allow them to be placed proximate to the LES wherein the electrical field generated stimulates the LES.


In one embodiment, the device is at least 6 mm long and no more than 10 cm long to minimize fibrosis within peritoneal cavity.


In one embodiment, the device is adapted to be inserted into a laparoscopic trocar and has a diameter of greater than 6 mm but less than 25 mm.


In one embodiment, the device has an energy source that is rechargeable. In one embodiment, the device has a recharge frequency of no more than once per day for 6 hours. In one embodiment, the device has an energy source that is a battery that is a solid state battery, lithium ion battery, or super capacitor battery. In another embodiment, the device has an energy receiving unit anchored to an abdominal wall of the patient to maximize coupling between energy transmitting and receiving units. In another embodiment, the is not rechargeable and has an implant life of at least 1 year.


In one embodiment, the electrodes of the device are permanently attached to the housing by insulated conductors no longer than 65 cm. In another embodiment, the electrodes of the device are attached to the housing by insulated conductors which are detachable from the housing and are no longer than 65 cm.


In one embodiment, the device is adapted to be attached to an abdominal wall of the patient. In another embodiment, the device is adapted to be attached to the outer surface or serosa of a stomach wall of the patient.


In one embodiment, the device is adapted to be delivered and anchored through a single port laparoscopic procedure. In another embodiment, the device is adapted to be delivered and anchored using an articulated trocar in a laparoscopic procedure. In yet another embodiment, the device is adapted to be delivered into a peritoneal cavity of the patient through an incision that is created for a laparoscopic port.


The present specification is also directed toward a system for detecting eating by a patient, having a gastrointestinal tract, comprised of a transmitter and a receiver that communicate with each other, wherein the transmitter is placed within a portion of the gastrointestinal tract, wherein the receiver is placed within a portion of the gastrointestinal tract, wherein the transmitter and receiver are separated by a portion of the gastrointestinal tract, and wherein a modulation of the communication between the transmitter and receiver is monitored by a processor and used by the processor to determine if the patient has ingested a quantity of liquid, solids, or both.


In various embodiments, the transmitter is adapted to be placed on a portion of an abdominal wall of the patient, a portion of an esophagus of the patient, a portion of a lower esophageal sphincter of the patient, a portion of a cardia sphincter of the patient, or an outer anterior stomach wall of the patient.


In various embodiments, the receiver is adapted to be placed on a portion of an abdominal wall of the patient, a portion of an esophagus of the patient, a portion of a lower esophageal sphincter of the patient, a portion of a cardia sphincter of the patient, or an outer anterior stomach wall of the patient.


In one embodiment, modulation occurs when a distance between the transmitter and receiver is affected by an ingestion of liquid, food, or both.


In one embodiment, the distance between the transmitter and receiver is continuously measured to determine if liquid, food, or both is being ingested. In various embodiments, the distance is measured using ultrasonic waves, electric fields, magnetic fields, optical waves, or electro-magnetic fields.


The present specification is also directed toward a method for treating gastroesophageal reflux occurring within a patient comprising implanting within the patient a stimulation device having a stimulator enclosed within a housing and a plurality of electrodes attached in electrical communication with said stimulator wherein said electrodes are anchored in a position that is at least 1 mm and, more preferably, at least 5 mm, from the patient's cardiac tissue. In another embodiment, the electrodes are positioned at a distance at least ¼, and more preferably, greater than ½, the shortest distance between two electrodes, from the patient's cardiac tissue. In another embodiment, the electrodes are positioned such that the electric field is less than 75% of the maximum electric field between two electrodes.


In one embodiment, the stimulator has a plurality of anchor points and anchoring is performed by sutures or Nitinol suturing techniques. In another embodiment, the stimulator has a plurality of fixation points and fixation is performed by a plurality of clips.


The present specification is also directed toward a method for treating gastroesophageal reflux occurring within a patient comprising implanting within the patient a stimulation device having a stimulator enclosed within a housing and a plurality of electrodes attached in electrical communication with said stimulator wherein said electrodes are anchored in a position that is at least 1 mm and, more preferably, at least 5 mm, from the patient's main vagal trunk.


In one embodiment, the stimulator has a plurality of anchor points and anchoring is performed by sutures or Nitinol suturing techniques. In another embodiment, the stimulator has a plurality of fixation points and fixation is performed by a plurality of clips.


The present specification is also directed toward a method of treating gastroesophageal reflux disease (GERD) in a patient having a lower esophageal sphincter (LES) comprising: implanting a stimulation device proximate the LES wherein the stimulation device is programmable and provides electrical stimulation to the LES to produce a contraction of the LES; measuring a pH in the patient's esophagus and generating pH data; transmitting the pH data to a processor housed within a computing device external to the patient and storing the pH data within the computing device; electronically presenting the patient with questions relating to symptoms arising from the patient's GERD; electronically receiving answers from the patient; analyzing the pH data in relation to the answers to generate programming parameters; and programming the stimulation device using the programming parameters.


In one embodiment, measuring the pH comprises implanting at least one pH sensor in the esophagus proximate the LES wherein the pH sensor is configured to continually monitor the pH of the lower esophagus and is capable of transmitting sensed pH data. In one embodiment, the pH sensor is adapted to be implanted endoscopically.


In various embodiments, the questions include any one or more of questions relating to a timing of the patient's GERD symptoms, a duration of the patient's GERD symptoms, a severity of the patient's GERD symptoms, the patient's meal times, types of food ingested by the patient, types of liquid ingested by the patient, the patient's sleep times, and the patient's exercise regimens.


In one embodiment, programming of the stimulation device comprises changing at least one operational parameter, wherein the at least one operational parameter comprises stimulation start time, stimulation duration, and/or stimulation amplitude.


In one embodiment, the questions are electronically presented to the patient by communicating those questions through a network to a computing device in the patient's possession. In one embodiment, the computing device is a mobile phone.


In one embodiment, the pH data, programming parameters, and patient's answers are stored in a memory and in relation to a user account that is controlled by the patient and accessible using a network accessible computing device.


In one embodiment, the method of treating gastroesophageal reflux disease (GERD) in a patient having a lower esophageal sphincter (LES) further comprises providing an online service that electronically receives the pH data through a network and stores the pH data. In one embodiment, the online service electronically receives the patient's answers through the network and stores the answers. In one embodiment, the online service also electronically receives other data representing at least one physiological value wherein the physiological value includes at least one patient eating state, supine position, level of physical activity, or blood glucose level.


In one embodiment, the method of treating gastroesophageal reflux disease (GERD) in a patient having a lower esophageal sphincter (LES) further comprises using a remote process to automatically program the stimulating device after generating the programming parameters.


In one embodiment, the online service further electronically transmits reminders and/or recommendations to the patient regarding diet and exercise regimens. In one embodiment, the online service further electronically receives questions and appointment requests from the patient.


In one embodiment, the online service monitors the patient's compliance with at least one of a treatment, diet, or exercise regimen or scheduled appointment, determines a degree of compliance, and generates a reward for the patient based on the degree of compliance.


The aforementioned and other embodiments of the present invention shall be described in greater depth in the drawings and detailed description provided below.





DESCRIPTION OF THE DRAWINGS

The aforementioned and other embodiments shall be described in greater depth in the drawings and detailed description provided below.



FIG. 1 is a first exemplary esophageal pH trace of a patient receiving non-specific LES electrical stimulation;



FIG. 2 is a second exemplary esophageal pH trace of the same patient receiving LES electrical stimulation therapy following the implantation of a patient specific optimization;



FIG. 3 is a flowchart detailing one process for optimizing the operational parameters of a patient device; and,



FIG. 4 is a flowchart detailing another process for optimizing the operational parameters of a patient device.





DETAILED DESCRIPTION

The present specification describes methods and systems for treating gastroesophageal reflux disease (GERD) by implanting an electrical stimulation device using laparoscopic or endoscopic techniques, capturing an eating event and detecting eating, using an implantable electrical stimulation device, enabling a patient to interface with an implanted stimulation device, and applying treatment processes. It should be appreciated that the methods and systems are being described with respect to specific embodiments, but are not limited thereto.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the claimed embodiments. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the claimed embodiments. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present specification is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that are known in the technical fields related to the claims have not been described in detail so as not to unnecessarily obscure the claimed embodiments.


It should be appreciated that the systems and methods described herein can be used with a plurality of different devices, including those electrical stimulation devices disclosed in U.S. Pat. No. 7,702,395, U.S. patent application Ser. Nos. 10/557,362 and 12/598,871, U.S. Pat. No. 6,901,295, PCT Application No. PCT/US08/56479, U.S. patent application Ser. Nos. 12/030,222, 11/539,645, 12/359,317, and 13/041,063, and PCT Application Numbers PCT/US09/55594 and PCT/US10/35753, which are herein incorporated by reference.


Devices Adapted to Be Implanted Using Laparoscopic Surgical Techniques


In one embodiment, surgical or endoscopic techniques are used to implant an electrical stimulation device to treat GERD in a manner that is less invasive than those currently employed.


In one embodiment, an electrical stimulation device, or portions thereof, is adapted to be placed within or proximate the lower esophageal sphincter using laparoscopic surgical techniques and programmed to treat GERD, diurnal GERD, nocturnal GERD, and/or transient lower esophageal sphincter relaxation (tLESR). The outer surface of the device has electrodes attached thereto which comprise conductors at least 1 mm in length. The device may be a conventional pulse generator, a miniature pulse generator, or a microstimulator.


In one embodiment, the electrodes are adapted to be placed in the right anterior quadrant of the LES. In one embodiment, the electrodes are adapted to be placed the furthest possible distance from cardiac tissue while still being positioned to stimulate the LES. In one embodiment, the electrodes are positioned at least 1 mm and, more preferably, at least 5 mm from the patient's cardiac tissue. In another embodiment, the electrodes are positioned at a distance at least ¼, and more preferably, greater than ½ the shortest distance between two electrodes, from the patient's cardiac tissue. In another embodiment, the electrodes are positioned such that the electric field is less than 75% of the maximum electric field between two electrodes.


In one embodiment, the device has a plurality of structures or members which serve to anchor the device in the patient's tissue whereby the structures or members are configured to enable anchoring using sutures or nitinol suturing techniques.


In one embodiment, the device has a plurality of fixation points, structures, or members which serve to fix the device in the patient's tissue, preferably using clips.


In one embodiment, the device has at least one protrusion or needle for forming a pathway through a patient's tissue, where the pathway serves to enable electrode implantation into the muscularis of the patient's LES. In various embodiments, the protrusion or needle measures from 10-25 mm in length.


In one embodiment, the device comprises at least one electrode of sufficient length that allows the electrode to be placed entirely within the LES, without extending beyond the LES.


In one embodiment, the device is at least 1 cm long and no more than 10 cm long to minimize fibrosis within the peritoneal cavity.


In one embodiment, the device has a form factor, and is contained entirely within a housing, that can be inserted into a conventional laparoscopic trocar. The device has dimensions greater than 6 mm, but less than 25 mm, in diameter. In another embodiment, the device is physically configured and/or adapted to be delivered and anchored through a single port laparoscopic procedure. In another embodiment, the device is physically configured and/or adapted to be delivered and anchored using an articulated trocar in a laparoscopic procedure. In another embodiment, the device is physically configured and/or adapted to be delivered and anchored into the peritoneal cavity through an incision that is created and/or sized for a laparoscopic port.


In one embodiment, the device has a local energy source, such as a battery, that has one or more of the following characteristics: the energy source is rechargeable; has a recharge frequency of once per day for 6 hours, once per week for approximately 60 minutes, once per month, or once per year, comprises lithium ion battery technology, comprises solid state battery technology, comprises lithium polymer battery technology, comprises super capacitor technology; is not rechargeable, is not rechargeable and/or has an implant life of at least one year.


In one embodiment, the device comprises an energy receiving unit that is adapted to be anchored into the abdominal wall in order to maximize coupling between an energy transmitting unit and an energy receiving unit.


In one embodiment, the device has electrodes which are permanently attached by insulated conductors. In another embodiment, the electrodes attached to insulated conductors are detachable from the device.


In one embodiment, the device is adapted to be attached to the abdominal wall, on either the subcutaneous side or the peritoneal side, and/or adapted to be attached to the submucosa or outer surface or serosa of the stomach wall.


In one embodiment, the device is physically configured or adapted to be placed entirely within the submucosa adjacent to the LES.


In one embodiment, the device is adapted to be implanted within a patient such that the device is oriented between 45 degrees and 135 degrees within a standing patient in relation to a ground surface, which is at 0 degrees.


In one embodiment, the device comprises a plurality of electrodes which are adapted to be implanted such that they face the same LES muscularis.


Eating Detection Systems


In one embodiment, the present system is used to detect an eating event based upon an implanted transmitter and an implanted receiver, which are separated by a distance in a range of 0.5 cm to 20 cm, or preferably 1-2 cm. In one embodiment, the system comprises an implantable transmitter and receiver pair which are used to determine if a patient has ingested a quantity of liquid, solids, or both.


In one embodiment, the transmitter is adapted to be placed in or on the abdominal wall. In one embodiment, the transmitter is adapted to be placed on the outer anterior stomach wall, to be placed on the serosal surface of the stomach, to cross the LES, to cross the esophagus, or cross the cardia sphincter.


In one embodiment, the receiver is adapted to be placed in or on the abdominal wall. In one embodiment, the receiver is adapted to be placed on the outer anterior stomach wall.


In one embodiment, the transmitter and receiver are placed such that the distance between the transmitter and receiver is only modulated, changed, or otherwise affected by ingested liquid, food, or both. A controller monitors the distance between the transmitter and receiver. As the distance changes, the controller determines whether the distance change is indicative of whether a patient has ingested liquid, food, or both. In one embodiment, the distance between the transmitter and receiver is continuously measured to determine if liquid, food, or both is continuously being ingested. In one embodiment, the distance between the transmitter and receiver is continuously measured to differentiate if liquid, food, or both has been ingested.


The distance between the transmitter and receiver pair may be measured using ultrasonic sensors, electric field sensors, magnetic field sensors, electro-magnetic field sensors, and/or optical sensors.


Patient Interfacing Systems


In one embodiment, the system is adapted to be used to treat GERD using treatment algorithms and systems for collecting patient data, which are used to optimize treatment efficacy.


In one embodiment, the specification provides apparatuses and methods for collecting diet or lifestyle data from patients that are related to and are used to evaluate reflux events and/or GERD symptoms. Such data can be, for example, meal times, the type of food ingested, the type of liquid ingested, exercise regimens, sleep routines, as well as data related to time and severity of reflux symptoms.


The specification describes an apparatus used for said lifestyle data collection as well as storage and communication of said data. In one embodiment, the apparatus takes the form of a stand-alone device specially designed for this purpose. In another embodiment, the apparatus is an embedded component of a system used for health related purposes within the patient, such as a charger for an implantable device that includes lifestyle data collection and communication capabilities. In another embodiment, the apparatus includes software running on general purpose systems such as computers, smartphones, or other mobile devices. The device can be battery operated, portable, and handheld or have a desktop form factor using mains power. In another embodiment, such data is collected using paper diary and input into the external device by a health care professional and inputted into the device using wireless communication.


In one embodiment, the device performs multiple functions to enable the treatment of patients. For example, the device is adapted to be used for wireless charging of an implantable pulse generator (IPG) battery used as an energy source for an electrical stimulator for the LES. In another embodiment, the device can be integrated into a physician controlled computing device which is used in a clinic to wirelessly program the device parameters and which may also be used to collect patient input. Another example is that of a diagnostic pH monitoring device adapted to receive patient lifestyle data. Various combinations of the devices mentioned can be implemented and be interconnected using wireless or wired communication so that patient data is available when decisions are taken on parameter setting of the stimulation device.


In another embodiment, the device is programmable to implement changes in GERD treatment algorithms based on any patient data collected.


One objective of the device is to treat, prevent, or otherwise minimize inappropriate relaxations of the LES while allowing appropriate relaxations of the LES, such as for vomits, swallows, or burps. Another objective of the device is to stimulate the LES while not inhibiting normal physiological relaxations of the LES, such as for vomits, swallows, or burps. Another objective of the device is to reduce a patient's esophageal pH and/or modulate a patient's LES pressure while not causing a patient's cardia sphincter to completely close.


In some embodiments of the present specification, an apparatus for combining data from implantable sensors with patient input is used for optimizing GERD treatment algorithms. Preferably, a sensor generates a signal indicative of the swallowing of food and/or content thereof, providing information related to eating habits of the patient. An analysis module typically determines a quality of the food, for example, whether it is predominantly solid or liquid, and stores this information in an electronic memory. Alternatively or additionally, the analysis module determines other characteristics of the ingested material, for example, the nutritional, chemical, and/or caloric content. “Food,” as used in the context of the present patent application and in the claims, is to be understood as including a bolus of solid food, a liquid, or both a solid food bolus and a liquid. “Swallowing,” as used in the context of the present patent application and in the claims, is to be understood as being indicative of the onset of eating as defined by the contraction of musculature of the esophageal body and relaxation of the LES to pass food from the esophagus into the stomach.


In some embodiments of the present invention, swallowing is detected by tracking the electrical activity in muscle tissue in the stomach, in the esophagus or in other parts of the GI tract. Typically, the commencement of enhanced electrical activity is also detected in muscle tissue in the stomach. Measurement of the time delay between swallowing and the commencement of electrical activity in the antrum is typically used to differentiate between solid and liquid matter, which are generally passed at different rates through the stomach.


Alternatively or additionally, swallowing is detected by at least one sensor placed at a site on the gastrointestinal tract wherein the sensor generates a signal indicative of swallowing. Appropriate sites include, but are not limited to, a site on the esophagus, a site on the stomach, and a site on the throat.


Whenever detection of swallowing is described in the present patent application with respect to any specific sensor such as a sensor in the LES, it is to be understood as being by way of example, and not as excluding, detection by a sensor located elsewhere on the gastrointestinal tract.


Typically, electrical activity response criteria of the stomach of an individual patient are determined and calibrated by measuring the response of the patient's stomach to various types of solid and liquid food. To ensure appropriate compliance, calibration is typically performed under the supervision of a healthcare worker.


For some applications, various supplemental sensors are also applied to the gastrointestinal tract or elsewhere on or in the patient's body. These supplemental sensors, which may comprise pH sensors, blood sugar sensors, ultrasound transducers or mechanical sensors, typically convey signals to a control unit of the apparatus indicative of a characteristic of solids or liquids ingested by the patient. For example, an ultrasound transducer may be coupled to indicate whether ingesta are solid or liquid, and a pH sensor may indicate that an acidic drink such as tomato juice was consumed rather than a more basic liquid such as milk.


In some embodiments, the data collected from the patient is used to adjust the parameters of electrical stimulation applied to the lower esophageal sphincter with the intent of enhancing its tone using an implantable neuro-stimulating system.


In such applications the electrical stimulation is optimally delivered intermittently rather than continuously. Such intermittent stimulation is beneficial to preserve battery life of the implantable device and also to minimize the risk of physiological adaptation to the electrical stimulation that might reduce its efficacy over time or require increasing levels of energy to be delivered.


In another embodiment, the sensor is a pH sensor that records the pH data indicative of a reflux event and such data is used to design a stimulation algorithm to treat GERD. In this embodiment the stimulation could be programmed to be delivered a fixed time prior to such measured event to prevent future reflux events.


Adjusting Stimulation Time Based on Meal Times and Related Symptoms


In many GERD patients, there is significant association between food intake and symptoms. In some embodiments, the stimulation timing is adjusted manually or automatically to meal times so as to optimize efficacy of electrical stimulation of the LES in treating GERD.


Additionally, treatment algorithms take into account the unique association between stimulation session timing and the enhancement effect on the tone of the LES. Two important elements of this effect are critical in setting stimulation timing: latency effect and residual effect.


The latency effect means that the impact on tone is not immediate upon initiation of electrical stimulation but rather some time delay, typically between 5 minutes and one hour, needs to pass before the tone reaches optimal enhancement. In addition, the electrical stimulation is known to have a residual effect beyond the time of cessation of stimulation that typically lasts between 20 minutes and 6 hours but can last up to 24 hours. All of the above means that initiation of the stimulation session needs to start enough time before any potential meal time in order to “cover” the expected reflux events or symptoms following the meal.


In order to tailor the stimulation time to eating habits of different patients and to the changes of eating habits of each patient over time, some embodiments use patient input and/or data from physiological sensors.


Utilization of Patient Input


In a preferred embodiment the patient input data includes answers to the following exemplary questions:


1. At what times do you start your three most important meals of the day (three can vary from 1-8)


2. When you have GERD symptoms, do they usually—mark one answer:

    • (a) follow meals?
    • (b) happen during night time or when you lay down?
    • (c) occur both when you lay down and after meals?
    • (d) occur at a specific time of the day unrelated to meals or body position?


3. What times of day do you typically feel reflux symptoms (allow 2-6 answers)?


The answers to the above questions can typically be used as follows: If the answer to Q2 is (a) or (c), then specific stimulation sessions are programmed to start prior to, or in proximity to, the start of meals associated with symptoms. Setting the timing of stimulation to the earliest reported start of the meal is beneficial because of the known latency effect of electrical stimulation on LES tone. The latency period is between about 15 minutes to one hour so a preferred embodiment will program stimulation session to start one hour before the earliest reported time of meal start.


Answers to the questions above should be preferably obtained before the first time stimulation parameters are set and then be verified occasionally or as patients habit change.


An exemplary stimulation algorithm may include sessions 30 minutes before each meal, when a supine position is detected and specific times prior to reported GERD events. However, in a patient with erratic lifestyles, the total number of daily sessions can be equally spaced during the day such as every 2 hours or every 4 hours. In another embodiment, based on predominant upright reflux or predominant supine reflux, more sessions could be programmed for the upright or supine period, respectively.


Utilization of pH Input in Conjunction with Patient Input


In a preferred embodiment, acid exposure traces (pH esophageal traces) from the subject are also used in conjunction with the meal diary of the subject, if available, to determine optimal treatment. Such traces are used as follows:


1. Meal times indicated on the pH traces are used in combination with meal periods reported by the patient on the patient communication system. Such combination can be performed so that meal times from both sources are super-imposed and the combined set of meal times is used in the same way as a patient diary to adjust stimulation times.


2. Acid exposure events are analyzed so that time relations to various patient conditions (as indicated on the pH trace) are noted. Such conditions can be meal times, supine position and reported symptoms.


In a preferred embodiment, the acid exposure events are used in different stages of the patient treatment cycle to optimize treatment as follows:


During the pre-treatment stage, acid exposure times indicate if the patient has a tendency to reflux following meals, during sleep or both, serving as a validation to the patient questionnaire as described. Such validation is used in some embodiments to adjust parameters so that if at least one of the following conditions is fulfilled, then supine stimulation is programmed in the IPG: (a) patient questionnaire reports supine symptoms (b) in more than 0-5% of supine time acid exposure is noted in the pH trace or (c) any esophageal pH event is associated with patient symptom.


During the patient treatment stage, if a patient reports GERD symptoms, sub-optimal improvement in GERD and/or symptoms appearing in specific times, then the questionnaire is repeated and parameters adapted as necessary. The pH traces indicate times during which treatment is not optimal and therefore an enhanced stimulation regime is required. The pH traces are further used to prescribe the said treatment enhancement where as acid exposure events are first related to patient reports or other external information such as meal times, supine time, exercise time etc. and a stimulation session is added about one hour prior to the expected acid exposure event or preferably adjustable between 5 minutes and two hours before an expected reflux event. The pH trace can be related to the patient questionnaire in the following way: If an acid event is detected at a certain time and a meal is indicated about 0-2 hours prior to that event, then the patient is asked about the earliest time that such a meal is typically started so that the enhanced treatment addresses not only the events of the specific day of the test but also the variable meal times that the patient reports.


An example of using a combination of patient reports and pH traces for treating a patient is described. The patient is a GERD patient that presented with high acid exposure and GERD symptoms prior to treatment. The patient was implanted with an IPG that was programmed to deliver stimulation irrespective of patient meal times and symptom times of acid exposure periods. During the first two weeks of treatment, the patient received a stimulation session at 2 pm, at the time at which the device detected sleep (using an accelerometer that sensed when the patient had decreased motion and was in a supine posture for at least 30 minutes), and 8 hours following the sleep detection using the above algorithm.


Following two weeks of treatment, the patient was still complaining of GERD symptoms with only a small improvement compared to baseline. At week 2, the patient was questioned about eating habits and his pH trace was reviewed so as to adjust the stimulation times. The patient was reporting meals at about 2 pm, which was verified in his baseline pH trace. The pH trace also showed a short meal at 4:30 pm. The patient also complained of symptoms between 5 and 6 pm so a 4 pm stimulation session was added. Finally, a 6 pm stimulation was added to address post dinner symptoms. At week 4, the patient was questioned again about symptoms and this time a dramatic improvement was noted. The pH exposure trace on the current stimulation algorithm confirmed an improvement or normalization of esophageal acid exposure.


Additional patients underwent similar processes with similar results, demonstrating the importance of tailoring stimulation time to precede meals and other events that are precursors of pH exposure and GERD symptoms.


Referring to FIG. 1, an esophageal pH trace of the patient is shown wherein the shaded periods 105 indicate meal times and wherein areas with esophageal pH<4 are considered abnormal acid exposure periods 110. The X-axis is time of day and the Y-axis is the pH at each given time. As shown, the patient presents with many events of acid exposure mainly post meals (e.g. post 11 am breakfast 110a, post 1-2 pm lunch 110b and post 9:30 pm dinner 110c) as well as during night time (supine time 115 marked as time between about 1 am and 8:30 am). Total acid exposure is 10.4% of the time, which is considered abnormal (4% is the threshold for normal exposure). Such high acid exposure can result in various issues such as GERD symptoms, esophagitis, or Barrett's esophagus.


Referring to FIG. 2, an esophageal pH trace of the patient is shown after the patient, whose trace is shown in FIG. 1, has been treated with electrical stimulation using the patient specific algorithm for 4 weeks. The trace demonstrates that the majority of the esophageal acid exposure periods 210 are prevented and the esophagus acid exposure decreased to only 3.6% of the recording time, which is considered normal.


Methods and Utilities Related to a Patient Communication Device


The following will describe a new component of the GERD treatment that can utilize patient input, communicate with the implantable pulse generator (IPG) and/or communicate externally with a clinic or other service provider. Such an apparatus, namely a “patient communication device”, can preferably include a processing unit that can integrate and analyze patient input with or without additional data as described above, such as pH data, and integrate the data to form a treatment recommendation in the form of stimulation session times, amplitudes, duration, etc. The patient communication device operates via an online service in which a patient can access his key physiological data and answer questions, such as those on the patient questionnaire that will help existing or new doctors program the patient's IPG. Use of the patient communication device frees the patient from being tied to one particular doctor and prevents the patient from being in a situation where they need treatment adjustment but don't have access to their data.


In one embodiment, any computer running the appropriate software and having online access can function as a patient communication device. Additionally or alternatively, the patient communication device can be a smart phone or other mobile device running the software so that the patient can use it without a need for a computer.



FIGS. 3 and 4 are flowcharts describing exemplary embodiments of different methods by which the online service and patient communication device operate to tailor GERD therapy for a specific patient. At steps 302 and 402, the patient communication device acquires sensed physiological data from sensors within the patient and, in steps 304 and 404, stores the data online using cloud based storage. The stored data is reviewed by a processor at steps 306 and 406 or a health care provider in a clinic or hospital setting at steps 308 and 408. In various embodiments, the sensed physiological data includes any one or more of esophageal pH, stomach pH, ingestion of food (using distance sensors as described above), supine position, patient weight, patient physical activity, and blood glucose level.


Using the sensed physiological data as a basis, either the remote processor at steps 310 and 410 or the health care provider at steps 312 and 412, generates a set of questions designed to further modify the GERD therapy. In various embodiments, the questions include any one or more of those in the questionnaire and questions regarding timing of reflux symptoms, duration of reflux symptoms, intensity of reflux symptoms, meal times, types of food ingested, types of liquid ingested, sleep times, and exercise regimens. At steps 314 and 414, the online service transmits the question set to the patient communication device which then presents it to the patient. At steps 316 and 416, the patient answer the questions directly on the patient communication device and the answers are stored in the cloud based storage at steps 318 and 418. The answers are also reviewable by a remote processor or a health care provider in a clinic or hospital setting.


In one embodiment, as shown at step 320 in FIG. 3, a processor located at the clinic or hospital automatically compares the sensed physiological data and the patient's answers and at step 324 automatically generates a set of operational parameters for the IPG specific to the patient's data. In another embodiment, as shown at step 322, a health care provider reviews the data and patient answers and then at step 326 programs operational parameters for the IPG. In another embodiment, as shown in step 420 in FIG. 4, a processor is located within the patient communication device automatically compares the sensed physiological data and the patient's answers and at step 424 automatically generates a set of operational parameters for the IPG specific to the patient's data. In yet another embodiment, as shown at step 422, the patient compares the data and his answers and at step 426 programs the IPG using the patient communication device. In various embodiments, the operational parameters include any one or more of stimulation start times, stimulation duration, and stimulation amplitude.


The generated or programmed operational parameters are then transmitted to the IPG. When the operational parameters are generated remotely by a processor or programmed remotely by a health care provider, said parameters are transmitted by the online service to the patient communication device at step 328, which then transmits the parameters to the IPG at step 330. When the operational parameters are generated locally by a processor on the patient communication device or are programmed by the patient using the patient communication device, then the patient communication device transmits said parameters directly to the IPG at step 428.


In a preferred embodiment, the patient questionnaire is applied using a patient communication device, being convenient for the patient as well as facilitating electronic data collection and analysis. Accessing the questionnaire is done via a web page to which patients log-on with a code from anywhere and the data will be transferred to the treating clinic electronically through an electronic database utilizing cloud based storage that is accessible by the clinic. In one embodiment, information relating to the patient, including the pH data, programming parameters, and patient's answers, is stored in the memory and in relation to a user account that is controlled by the patient and accessible using a network accessible computing device. Patient data will be protected from unauthorized access by standard web site protection tools such as SSL/HTTPS.


In a preferred embodiment, the clinic can communicate with the patient through the patient communication device. There can be various uses for such a communication channel, such as patient periodic reminders advising him/her to log in and answer the questionnaire. The means of communications can be standard, such as emails or instant phone messages, or can use special software and/or communication interfaces. When the patient uses a mobile application, the entire communication between the patient and the clinic can take place through the mobile application including patient reminders, questionnaire answering and data transfer to the clinic. The clinic can use the application or the other communication channels used for patient reminders to send him other relevant material such as medication information, scheduling of the next clinic visit, diet recommendations, and advice on various products and services that can be determined based on the patient profile stored in the clinic whereas such profile can be adapted from time to time based on the data communicated by the patient. The patient communication channel can be used for collecting additional medical information from the patient that can be used as initial screening information and may trigger (possibly in conjunction with physician review) scheduling in-person visits and specific tests.


In another preferred embodiment, the patient communication device can be centered around a patient charger that is used by the patient to wirelessly charge an implantable IPG with a rechargeable battery. Such a charger can have a screen for displaying patient messages and a keyboard for keying in information by the patient. It can also serve as a way station that can have a communication channel (wireless or wired) with a cell phone or a computer connected to the web to serve as a user interface, communication channel or both.


In embodiments in which the patient communication device can also establish a communication channel with the IPG, it can be adapted to configure or adjust the stimulation parameters to treat GERD of the subject. The patient communication device is adapted to monitor, using the received data, information regarding the applied stimulation, the information selected from the group consisting of: an amount of time per day that the implantable control unit drives the stimulator to apply the stimulation to the GI tract, and a number of times per day that the implantable control unit drives the stimulator to apply the stimulation to the patient and the time of day thereof.


For some applications, the patient communication system includes an output element, which is adapted to output the information regarding the applied stimulation. In a preferred embodiment, the GI tract includes the lower esophageal sphincter (LES) of the subject, and the one or more sensors are adapted to generate the respective sensor signals responsively to the GI tract physiological parameter of the esophagus and/or LES. For some applications, the patient communication device is adapted to monitor changes in the electrical properties of the esophageal tissue indicative of swallowing and/or the content of each swallow. Such electrical properties can include, for example, sensing of electrical action potentials and/or changes in the tissue impedance. In some embodiments, a gastric slow wave rate of the subject can be used as indicative of digestive state to improve the analytical capabilities of the system.


In one embodiment, the IPG is adapted to store data using patient input. The data is recorded using the accelerometer in the IPG. The patient can communicate the information to the IPG by simply tapping on the IPG and the tapping is recorded by the accelerometer. In this embodiment, the number or intensity of taps could represent a specific event. For example, one tap on the device may indicate start of a meal event, while two taps may indicate start of a reflux event. The event data can be recorded for download by the clinic to modify the stimulation algorithm or can be used by the IPG directly to modify the stimulation algorithm without input of a health care provider. The information gathered by the IPG will continuously modify the patient's lifestyle and GERD profile and adjust the stimulation algorithm to address the changing patient profile.


In another embodiment, an external device is used which produces a vibration with a characteristic that is specific to the event. The patient will place this device on the site of the IPG implant and press a specific event button on the external device which will then vibrate with the characteristic specific to the event. The vibrations are transmitted through the human tissue to the IPG which registers the specific event. The event data can be recorded for download by the clinic to modify the stimulation algorithm or can be used by the IPG directly to modify the stimulation algorithm without input of a health care provider. The information gathered by the IPG will continuously modify the patient's lifestyle and GERD profile and adjust the stimulation algorithm to address the changing patient profile.


In another embodiment, the IPG is adapted to store information regarding eating habits of the subject as detected by the swallowing sensors. For some applications, the IPG includes an output element, which is adapted to output the eating habit information. For some applications, the patient communication device is adapted to integrate and verify patient answers to the questionnaires with the eating detection data received from the IPG. The patient communication device can be adapted to transmit the integrated eating habit information to the clinic via the communication channel.


For some applications, the patient communication device is adapted to receive, analyze and integrate indication of non-GI tract physiological parameters. Such parameters can include an indication of a weight of the subject, level of physical activity of the patient, blood glucose of the patient, etc. The patient communication device can generate a message to the IPG for adjustment of parameters and/or a transmission of the information to the clinic.


For some applications, the IPG is adapted to modify a parameter of the stimulation at least in part responsively to the information. For example, the stimulation parameter may include an intensity of the stimulation, and the IPG is adapted to modify the intensity of the stimulation at least in part responsively to the information, and/or the stimulation parameter may include a timing parameter of the stimulation, and the IPG is adapted to modify the timing parameter of the stimulation at least in part responsively to the information.


In an embodiment, the patient communication device is adapted to be coupled to a remote service provider. In one embodiment, the remote service provider can analyze the patient data, for example, pH and symptom data, and convert it into parameter setting changes recommended for a given patient, thereby making the work of the clinic easier and shorter. For some applications, the apparatus includes an external cradle, and the patient communication device is adapted to be removably coupled to the cradle, and to be coupled to the service provider via the cradle. For some applications, the patient communication device is adapted to receive information from the service provider. Alternatively or additionally, the patient communication device is adapted to send information to the service provider selected from the group consisting of at least a portion of the received data and information derived from an analysis of at least a portion of the received data.


In an embodiment, the patient communication device is configured to serve as a charger for the IPG. In such a case, the patient communication device includes a power source, and is adapted to drive the power source to wirelessly transfer energy via one or more transducers, and the implantable pulse generator includes a rechargeable battery, and is adapted to receive the transmitted energy, using one or more transducers, and charge the battery using the energy.


In one embodiment, the patient communication device is adapted to be located remotely from the subject. In such an embodiment, the patient communication device is not capable of recharging the IPG. Data is transmitted between the patient communication device and the IPG via RF communication at a distance of up to 3 meters. In another embodiment, the patient communication device is adapted to be located proximate the subject.


In another embodiment, the patient communication device is adapted to be coupled wired or wirelessly to a point-of-sale terminal. In one embodiment, the online service monitors the patient's compliance with the recommended treatment, diet, or exercise regimen or scheduled appointment, determines a degree of compliance, and generates a reward for the patient based on the degree of compliance. In an embodiment, generating the reward includes providing a financial incentive to the patient. In one embodiment, providing the financial incentive is based on a measure of successful responses to the clinic communication requests. In various embodiments, the financial incentive comprises any one or more of the following: refunding to the patient a portion of the purchase price of the device/and or software; providing a discount to the patient on routine medical care; and, providing a free device charging session for rechargeable devices.


For some applications, a method includes sending a reminder from the service provider to the site, and communicating the reminder to the subject. In an embodiment, the method includes analyzing, at the service provider, the eating-related information. For some applications, analyzing the eating-related information includes developing a recommendation based on the eating-related information, sending the recommendation from the service provider to the site, and communicating the recommendation to the subject from the site. For example, the recommendation may be selected from the group consisting of a recommended food and a recommended recipe. For some applications, the recommendation is commercial in nature.


For some applications, receiving of data from the IPG includes logging the data, and providing the financial incentive includes providing the financial incentive responsively to the logged data.


In an embodiment, providing the financial incentive includes providing the financial incentive in response to determining, responsively to the data, that the subject has followed a prescribed regimen. For some applications, the regimen includes a diet regimen intended to improve GERD symptoms, and providing the financial incentive includes providing the financial incentive upon determining, responsively to the data, that the subject has adhered to the prescribed diet regimen. Alternatively or additionally, the regimen includes an exercise regimen, and providing the financial incentive includes providing the financial incentive upon determining, responsively to the data, that the subject has adhered to the prescribed exercise regimen.


For some applications, functionality described herein with respect to a patient communication device is embodied that can communicate with a stationary or portable receiving device located in the clinic and is configured to collect data from the patient communication system.


The above examples are merely illustrative of the many applications of the system of the present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. A system for treating a gastrointestinal condition of a patient, comprising: at least one electrode adapted to be implanted such that said electrode is configured to be in electrical communication with a lower esophageal sphincter (LES) of the patient to deliver a pulse stream in accordance with a plurality of stimulation parameters;a pulse generator in electrical communication with the at least one electrode; anda non-volatile memory for storing programmatic code which, when executed by a processor, causes the pulse generator to generate the pulse stream in accordance with the plurality of stimulation parameters, wherein the plurality of stimulation parameters comprises a pulse amplitude having a range of 1 to 30 mAmp, wherein a value for the pulse amplitude is defined such that swallowing of the patient is not hindered while the pulse stream is being delivered to the patient.
  • 2. The system of claim 1, wherein the plurality of stimulation parameters further comprises a pulse width having a range of 5 μsec to 30 msec and wherein a value for the pulse width is defined such that swallowing of the patient is not hindered while the pulse stream is delivered to the patient.
  • 3. The system of claim 1, further comprising an accelerometer configured to generate data indicative of when the patient is in a supine position.
  • 4. The system of claim 3, wherein the programmatic code comprises a pre-programmed stimulation mode adapted to automatically stimulate the LES during time periods in which the patient is in a supine position based on the data generated by the accelerometer.
  • 5. The system of claim 4, wherein the automatic stimulation occurs after the patient has been in the supine position for a predetermined period of time and wherein the predetermined period of time is programmable and is in a range of 1 minute to 60 minutes.
  • 6. The system of claim 1, wherein the pulse generator is adapted to be implanted.
  • 7. The system of claim 1, wherein the system does not have a sensor to determine when the patient is swallowing and does not modify the delivery of the pulse stream based on the swallowing.
  • 8. The system of claim 1, wherein the plurality of stimulation parameters comprises a pulse width having a range of 30 μsec to 5 msec, a pulse amplitude having a range of 2 to 15 mAmp, and a pulse frequency having a range of 2 to 80 Hz.
  • 9. The system of claim 1, wherein a portion of the system is adapted to be attached to an abdominal wall of the patient.
  • 10. The system of claim 1, wherein a portion of the system is adapted to be attached to an outer surface or serosa of a stomach wall of the patient.
  • 11. The system of claim 1, further comprising a housing, wherein the housing is adapted to contain the pulse generator and the non-volatile memory.
  • 12. The system of claim 11, wherein the housing has dimensions greater than 6 mm and less than 25 mm.
  • 13. The system of claim 11, wherein the at least one electrode is attached to the housing by insulated conductors.
  • 14. The system of claim 13, wherein a length of the insulated conductors is no longer than 65 cm.
  • 15. The system of claim 1, further comprising a rechargeable battery in electrical communication with the pulse generator.
  • 16. The system of claim 1, wherein the at least one electrode is adapted to be positioned at least 1 mm from the patient's main vagal trunk and at least 1 mm from the patient's cardiac tissue.
  • 17. The system of claim 1, wherein, when executed by a processor, said programmatic code further causes the pulse generator to generate the pulse stream 30 minutes before each meal.
  • 18. The system of claim 1, wherein, when executed by a processor, said programmatic code further causes the pulse generator to generate the pulse stream when the patient is in a supine position.
  • 19. The system of claim 1, wherein, when executed by a processor, said programmatic code further causes the pulse generator to generate the pulse stream prior to expected gastroesophageal reflux diseases events.
  • 20. The system of claim 1, wherein, when executed by a processor, said programmatic code further causes the pulse generator to generate the pulse stream at equally spaced periods throughout a day.
CROSS REFERENCE

The present application is a continuation of U.S. patent application Ser. No. 13/447,168, entitled “Systems and Methods for Treating Gastroesophageal Reflux Disease”, filed on Apr. 14, 2012, which, in turn, relies on U.S. Provisional Application No. 61/475,368, filed on Apr. 14, 2011, entitled “Electrical Stimulation Systems and Methods”, which are incorporated herein by reference. The present application is also a continuation in part of U.S. patent application Ser. No. 13/041,063, entitled “Device and Implantation System for Electrical Stimulation of Biological Tissues”, filed on Mar. 4, 2011, now U.S. Pat. No. 8,712,529, issued on Apr. 29, 2014, which is also incorporated herein by reference.

US Referenced Citations (368)
Number Name Date Kind
3909883 Fegen Oct 1975 A
3910281 Kletschka Oct 1975 A
4393883 Smyth Jul 1983 A
4414986 Dickhudt Nov 1983 A
4612934 Borkan Sep 1986 A
4735205 Chachques Apr 1988 A
5117827 Stuebe Jun 1992 A
5188104 Wernicke Feb 1993 A
5193539 Schulman Mar 1993 A
5197491 Anderson Mar 1993 A
5231988 Wernicke Aug 1993 A
5263480 Wernicke Nov 1993 A
5292344 Douglas Mar 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5423872 Cigaina Jun 1995 A
5531778 Maschino Jul 1996 A
5540730 Terry, Jr. Jul 1996 A
5556425 Hewson Sep 1996 A
5606242 Hull Feb 1997 A
5633573 Van Phuoc May 1997 A
5649902 Yoon Jul 1997 A
5674205 Pasricha Oct 1997 A
5690691 Chen Nov 1997 A
5697375 Hickey Dec 1997 A
5709224 Behl Jan 1998 A
5716385 Mittal Feb 1998 A
5716392 Bourgeois Feb 1998 A
5769881 Schroeppel Jun 1998 A
5810810 Tay Sep 1998 A
5836994 Bourgeois Nov 1998 A
5861014 Familoni Jan 1999 A
5861044 Crenshaw Jan 1999 A
5882340 Yoon Mar 1999 A
5893883 Torgerson Apr 1999 A
5935126 Riza Aug 1999 A
5995872 Bourgeois Nov 1999 A
6006755 Edwards Dec 1999 A
6026326 Bardy Feb 2000 A
6041258 Cigaina Mar 2000 A
6051017 Loeb Apr 2000 A
6091992 Bourgeois Jul 2000 A
6097984 Douglas Aug 2000 A
6216039 Bourgeois Apr 2001 B1
6221039 Durgin Apr 2001 B1
6243607 Mintchev Jun 2001 B1
6254598 Edwards Jul 2001 B1
6285897 Kilcoyne Sep 2001 B1
6321124 Cigaina Nov 2001 B1
6360130 Duysens Mar 2002 B1
6381495 Jenkins Apr 2002 B1
6449511 Mintchev Sep 2002 B1
6510332 Greenstein Jan 2003 B1
6542776 Gordon Apr 2003 B1
6571127 Ben-Haim May 2003 B1
6587719 Barrett Jul 2003 B1
6591137 Fischell Jul 2003 B1
6606523 Jenkins Aug 2003 B1
6611715 Boveja Aug 2003 B1
6612983 Marchal Sep 2003 B1
6615084 Cigaina Sep 2003 B1
6678561 Forsell Jan 2004 B2
6684104 Gordon Jan 2004 B2
6735477 Levine May 2004 B2
6749607 Edwards Jun 2004 B2
6754536 Swoyer Jun 2004 B2
6760626 Boveja Jul 2004 B1
6820019 Kelly Nov 2004 B1
6826428 Chen Nov 2004 B1
6832114 Whitehurst Dec 2004 B1
6853862 Marchal Feb 2005 B1
6876885 Swoyer Apr 2005 B2
6879859 Boveja Apr 2005 B1
6879861 Benz Apr 2005 B2
6901295 Sharma May 2005 B2
6915165 Forsell Jul 2005 B2
6947792 Ben-Haim Sep 2005 B2
6952613 Swoyer Oct 2005 B2
7006871 Darvish Feb 2006 B1
7016735 Imran Mar 2006 B2
7054689 Whitehurst May 2006 B1
7054690 Imran May 2006 B2
7076305 Imran Jul 2006 B2
7076306 Marchal Jul 2006 B2
7087053 Vanney Aug 2006 B2
7114502 Schulman Oct 2006 B2
7120498 Imran Oct 2006 B2
7127295 Evans Oct 2006 B2
7146216 Bumm Dec 2006 B2
7167750 Knudson Jan 2007 B2
7177693 Starkebaum Feb 2007 B2
7200443 Faul Apr 2007 B2
7203551 Houben Apr 2007 B2
7255675 Gertner Aug 2007 B2
7263405 Boveja Aug 2007 B2
7299091 Barrett Nov 2007 B2
7310557 Maschino Dec 2007 B2
7340306 Barrett Mar 2008 B2
7343201 Mintchev Mar 2008 B2
7363084 Kurokawa Apr 2008 B2
7444183 Knudson Oct 2008 B2
7477994 Sunshine Jan 2009 B2
7499752 Maschino Mar 2009 B2
7519431 Goetz Apr 2009 B2
7519433 Foley Apr 2009 B2
7558629 Keimel Jul 2009 B2
7593777 Gerber Sep 2009 B2
7599736 DiLorenzo Oct 2009 B2
7620454 Dinsmoor Nov 2009 B2
7664551 Cigaina Feb 2010 B2
7676270 Imran Mar 2010 B2
7702394 Imran Apr 2010 B2
7702395 Towe Apr 2010 B2
7702934 Lmran Apr 2010 B2
7711437 Bornzin May 2010 B1
7720539 Mintchev May 2010 B2
7729771 Knudson Jun 2010 B2
7734355 Cohen Jun 2010 B2
7738961 Sharma Jun 2010 B2
7742818 Dinsmoor Jun 2010 B2
7794425 Gobel Sep 2010 B2
7809442 Bolea Oct 2010 B2
7813809 Strother Oct 2010 B2
7835796 Maschino Nov 2010 B2
7848802 Goetz Dec 2010 B2
7890185 Cohen Feb 2011 B2
7899540 Maschino Mar 2011 B2
7914468 Shalon Mar 2011 B2
7941221 Foley May 2011 B2
7957807 Starkebaum Jun 2011 B2
7962214 Byerman Jun 2011 B2
7983755 Starkebaum Jul 2011 B2
8135470 Keimel Mar 2012 B2
8155758 Roline Apr 2012 B2
8160709 Soffer Apr 2012 B2
8185206 Starkebaum May 2012 B2
8282561 Towe Oct 2012 B2
8380321 Goetz Feb 2013 B2
8406868 Buschman Mar 2013 B2
8423134 Buschman Apr 2013 B2
8447403 Sharma May 2013 B2
8447404 Sharma May 2013 B2
8452407 Whitehurst May 2013 B2
8467874 Chen Jun 2013 B2
8467884 Chen Jun 2013 B2
8521292 Wei Aug 2013 B2
8538532 Starkebaum Sep 2013 B2
8538534 Soffer Sep 2013 B2
8543210 Sharma Sep 2013 B2
8556952 Shadduck Oct 2013 B2
8594811 Chen Nov 2013 B2
8712529 Sharma Apr 2014 B2
8712530 Sharma Apr 2014 B2
8718771 Gandhi May 2014 B2
8761903 Chen Jun 2014 B2
8792986 Cigaina Jul 2014 B2
8831737 Wesselink Sep 2014 B2
8892217 Camps Nov 2014 B2
9020597 Sharma Apr 2015 B2
9037245 Sharma May 2015 B2
9061147 Sharma Jun 2015 B2
9345879 Sharma May 2016 B2
9498619 Goode Nov 2016 B2
9724510 Sharma Aug 2017 B2
20010041831 Starkweather Nov 2001 A1
20020103522 Swoyer Aug 2002 A1
20020138075 Edwards Sep 2002 A1
20020161414 Flesler Oct 2002 A1
20020165589 Imran Nov 2002 A1
20030009202 Levine Jan 2003 A1
20030014086 Sharma Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030055463 Gordon Mar 2003 A1
20030078633 Firlik Apr 2003 A1
20030120321 Bumm Jun 2003 A1
20030144708 Starkebaum Jul 2003 A1
20030195600 Tronnes Oct 2003 A1
20040010290 Schroeppel Jan 2004 A1
20040012088 Fukasawa Jan 2004 A1
20040015201 Greenstein Jan 2004 A1
20040024428 Barrett Feb 2004 A1
20040039427 Barrett Feb 2004 A1
20040044376 Flesler Mar 2004 A1
20040059393 Policker Mar 2004 A1
20040073453 Nenov Apr 2004 A1
20040088033 Smits May 2004 A1
20040116977 Finch Jun 2004 A1
20040138586 Ganz Jul 2004 A1
20040147976 Gordon Jul 2004 A1
20040167583 Knudson Aug 2004 A1
20040172088 Knudson Sep 2004 A1
20040186544 King Sep 2004 A1
20040193229 Starkebaum Sep 2004 A1
20040215287 Swoyer Oct 2004 A1
20040236381 Dinsmoor Nov 2004 A1
20040236382 Dinsmoor Nov 2004 A1
20040243182 Cohen Dec 2004 A1
20040254622 Shadduck Dec 2004 A1
20050027328 Greenstein Feb 2005 A1
20050049655 Boveja Mar 2005 A1
20050065571 Imran Mar 2005 A1
20050070974 Knudson Mar 2005 A1
20050075678 Faul Apr 2005 A1
20050090873 Imran Apr 2005 A1
20050131485 Knudson Jun 2005 A1
20050131486 Boveja Jun 2005 A1
20050137480 Alt Jun 2005 A1
20050137643 Mintchev Jun 2005 A1
20050137644 Boveja Jun 2005 A1
20050143787 Boveja Jun 2005 A1
20050149141 Starkebaum Jul 2005 A1
20050149142 Starkebaum Jul 2005 A1
20050149146 Boveja Jul 2005 A1
20050222637 Chen Oct 2005 A1
20050222638 Foley Oct 2005 A1
20050245788 Gerber Nov 2005 A1
20050251219 Evans Nov 2005 A1
20060004304 Parks Jan 2006 A1
20060015162 Edward Jan 2006 A1
20060036293 Whitehurst Feb 2006 A1
20060041277 Deem Feb 2006 A1
20060047323 Foley Mar 2006 A1
20060064037 Shalon Mar 2006 A1
20060074459 Flesler Apr 2006 A1
20060089699 Imran Apr 2006 A1
20060095077 Tronnes May 2006 A1
20060106442 Richardson May 2006 A1
20060116736 DiLorenzo Jun 2006 A1
20060122660 Boveja Jun 2006 A1
20060149337 John Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060200217 Wessman Sep 2006 A1
20060206160 Cigaina Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060247717 Starkebaum Nov 2006 A1
20060247718 Starkebaum Nov 2006 A1
20060247719 Maschino Nov 2006 A1
20060247721 Maschino Nov 2006 A1
20060247722 Maschino Nov 2006 A1
20060265021 Herbert Nov 2006 A1
20060270989 McMichael Nov 2006 A1
20070016274 Boveja Jan 2007 A1
20070049793 Ignagni Mar 2007 A1
20070060955 Strother Mar 2007 A1
20070060968 Strother Mar 2007 A1
20070060979 Strother Mar 2007 A1
20070066995 Strother Mar 2007 A1
20070067000 Strother Mar 2007 A1
20070100388 Gerber May 2007 A1
20070106337 Errico May 2007 A1
20070106338 Errico May 2007 A1
20070114971 Uesaka May 2007 A1
20070142699 Jandrall Jun 2007 A1
20070142831 Shadduck Jun 2007 A1
20070142884 Jandrall Jun 2007 A1
20070156182 Castel Jul 2007 A1
20070162084 Chen Jul 2007 A1
20070162085 DiLorenzo Jul 2007 A1
20070179542 Prakash Aug 2007 A1
20070185374 Kick Aug 2007 A1
20070238942 Baylor Oct 2007 A1
20070239248 Hastings Oct 2007 A1
20070244375 Jenkins Oct 2007 A1
20070255118 Miesel Nov 2007 A1
20070255335 Herbert Nov 2007 A1
20070255336 Herbert Nov 2007 A1
20070255352 Roline Nov 2007 A1
20070265662 Ufford Nov 2007 A1
20070265666 Roberts Nov 2007 A1
20070265668 Reinke Nov 2007 A1
20070265671 Roberts Nov 2007 A1
20070265674 Olson Nov 2007 A1
20070282410 Cross Dec 2007 A1
20070293910 Strother Dec 2007 A1
20070299481 Syed Dec 2007 A1
20080021512 Knudson Jan 2008 A1
20080039904 Bulkes Feb 2008 A1
20080046062 Camps Feb 2008 A1
20080058836 Moll Mar 2008 A1
20080058891 Ben-Haim Mar 2008 A1
20080086179 Sharma Apr 2008 A1
20080132968 Starkebaum Jun 2008 A1
20080147137 Cohen Jun 2008 A1
20080154191 Gobel Jun 2008 A1
20080183238 Chen Jul 2008 A1
20080195171 Sharma Aug 2008 A1
20080208355 Stack Aug 2008 A1
20090012421 Bek Jan 2009 A1
20090018617 Skelton Jan 2009 A1
20090018619 Skelton Jan 2009 A1
20090020406 Nirmalakhandan Jan 2009 A1
20090030475 Brynelsen Jan 2009 A1
20090069803 Starkebaum Mar 2009 A1
20090076498 Saadat Mar 2009 A1
20090088817 Starkebaum Apr 2009 A1
20090131993 Rousso May 2009 A1
20090132001 Softer May 2009 A1
20090187223 Gross Jul 2009 A1
20090192564 Armstrong Jul 2009 A1
20090204063 Policker Aug 2009 A1
20090210019 Kim Aug 2009 A1
20090264951 Sharma Oct 2009 A1
20090281553 Kalloo Nov 2009 A1
20100004648 Edwards Jan 2010 A1
20100010388 Panken Jan 2010 A1
20100049026 Gerber Feb 2010 A1
20100057085 Holcomb Mar 2010 A1
20100069789 Hirota Mar 2010 A1
20100076345 Soffer Mar 2010 A1
20100170812 Odierno Jul 2010 A1
20100198039 Towe Aug 2010 A1
20100228313 Starkebaum Sep 2010 A1
20100268495 Armstrong Oct 2010 A1
20100324432 Bjoerling Dec 2010 A1
20100324644 Levi Dec 2010 A1
20110004266 Sharma Jan 2011 A1
20110034967 Chen Feb 2011 A1
20110046653 Addington Feb 2011 A1
20110071589 Starkebaum Mar 2011 A1
20110213437 Armstrong Sep 2011 A9
20110224665 Crosby Sep 2011 A1
20110295335 Sharma Dec 2011 A1
20110295336 Sharma Dec 2011 A1
20110301662 Bar-Yoseph Dec 2011 A1
20110307023 Tweden Dec 2011 A1
20110307027 Sharma Dec 2011 A1
20110307028 Sharma Dec 2011 A1
20120232610 Soffer Sep 2012 A1
20120232615 Barolat Sep 2012 A1
20120259389 Starkebaum Oct 2012 A1
20120265103 Policker Oct 2012 A1
20120277619 Starkebaum Nov 2012 A1
20120296166 Kim Nov 2012 A1
20120310317 Lund Dec 2012 A1
20130030503 Yaniv Jan 2013 A1
20130035740 Sharma Feb 2013 A1
20130072928 Schaer Mar 2013 A1
20130090551 Sharma Apr 2013 A1
20130178912 Sharma Jul 2013 A1
20130218229 Sharma Aug 2013 A1
20130231660 Edwards Sep 2013 A1
20130238048 Almendinger Sep 2013 A1
20140012348 Starkebaum Jan 2014 A1
20140018657 Sharma Jan 2014 A1
20140081366 Bentley Mar 2014 A1
20140088664 Sharma Mar 2014 A1
20140088666 Goetz Mar 2014 A1
20140107726 Voznesensky Apr 2014 A1
20140135886 Cook May 2014 A1
20140194953 Slavin Jul 2014 A1
20140222106 Sharma Aug 2014 A1
20140228911 Sharma Aug 2014 A1
20140243593 Goode Aug 2014 A1
20140249594 Sharma Sep 2014 A1
20140364678 Harry Dec 2014 A1
20150045786 Edwards Feb 2015 A1
20150057718 Sharma Feb 2015 A1
20150094789 Janzig Apr 2015 A1
20150119952 Sharma Apr 2015 A1
20150224310 Sharma Aug 2015 A1
20150360037 Hahn Dec 2015 A1
20160001071 Sharma Jan 2016 A1
20160015392 Gettman Jan 2016 A1
20160045730 Kim Feb 2016 A1
20160059010 Sharma Mar 2016 A1
20170197028 Goldsmith Jul 2017 A1
20170224986 Imran Aug 2017 A1
20170348049 Vrba Dec 2017 A1
20180154135 Goode Jun 2018 A1
Foreign Referenced Citations (31)
Number Date Country
1476339 Feb 2004 CN
1494451 May 2004 CN
102725021 Oct 2012 CN
105641805 Jun 2016 CN
105641805 Jun 2016 CN
1004330 May 2000 EP
1004330 May 2000 EP
199853878 Dec 1998 WO
9903532 Jan 1999 WO
9930776 Jun 1999 WO
0061223 Oct 2000 WO
0061224 Oct 2000 WO
2000061223 Oct 2000 WO
2000061224 Oct 2000 WO
0238217 May 2002 WO
0243467 Jun 2002 WO
2002043467 Jun 2002 WO
02089655 Nov 2002 WO
2002100481 Dec 2002 WO
2005051486 Sep 2005 WO
2007137026 Nov 2007 WO
2008117296 Oct 2008 WO
2009009276 Jan 2009 WO
2009114008 Sep 2009 WO
2010027963 Mar 2010 WO
2010135634 Nov 2010 WO
2012151449 Nov 2012 WO
2014032030 Feb 2014 WO
2015034867 Mar 2015 WO
2015077425 May 2015 WO
2015077435 May 2015 WO
Non-Patent Literature Citations (35)
Entry
International Search Report for PCT/US2008/053780, dated Jun. 8, 2009.
Summary of Neurostimulation Systems Features, Advanced Neuromodulation Systems (ANS) home page, accessed on May 31, 2007 at http://web.archive.org/web/20040211224857/www.ans-medical.com/patients/WhichSystemIsBest/SumOfNeurostimulation.html.
International Search Report for PCT/US2008/056479, dated Aug. 20, 2008.
International Search Report for PCT/US2011/027243, dated Jul. 8, 2011.
Christensen et al., ‘Physiologic Specialization at Esophagogastric Junction in Three Species’, American Journal of Physiology, vol. 225, No. 6, Dec. 1973, 1265-1270.
Cigaina, Valerio; Long-term Follow-Up of Gastric Stimulation for Obesity: The Mestre 8-Year Experience; Obesity Surgery; 14; 2004; S14-22.
Clarke et al.,. ‘An Endoscopic Implantable Device Stimulates the LES On-Demand By Remote Control in a Canine Model’; Gastrointestinal Endoscopy, Volum 63, No. 5; 2006, AB103, 759.
Clarke et al., ‘An endoscopically implantable device stimulates the lower esophageal sphincter on demand by remote control: a study using a canine model’, Endoscopy 2007; 39: 72-76.
Ellis, et al., ‘The Prevention of Experimentally Induced Reflux by Electrical Stimulation of the Distal Esophagus’, American Journal of Surgery, vol. 115, Apr. 1968, 482-487.
Gonzalez et al., ‘Different Responsiveness of Excitatory and Inhibitory Enteric Motor Neurons in the Human Esophagus to Electrical Field Stimulation and to Nicotine’, Am J Physiol Gastrointest Liver Physiol, 287:G299-G306, 2004.
International Search Report for PCT/US12/053576, dated Dec. 24, 2012.
International Search Report for PCT/US2007/068907, dated Aug. 7, 2008.
International Search Report for PCT/US2012/033695, dated Aug. 7, 2012.
International Search Report for PCT/US2012/036408, dated Aug. 17, 2012.
International Search Report for PCT/US2013/056520, dated Apr. 4, 2014.
International Search Report for PCT/US2014/053793, dated Mar. 27, 2015.
International Search Report for PCT/US2014/066565, dated Mar. 12, 2015.
International Search Report for PCT/US2014/066578, dated Mar. 19, 2015.
Jameison, GG et al. “Laparoscopic Nissen Fundoplication”. Annals of Surgery, vol. 220. No. 2, p. 139 (1994).
Kahrilas et al., ‘Impact of Fundoplication on Bolus Transit Across Esophagogastric Junction’, American Physiological Society, 1998, 1386-1393.
Kamath et al., ‘Neurocardiac and Cerebral Responses Evoked By Esophageal Vago-Afferent Stimulation in Humans: Effects of Varying Intensities’, Cardiovascular Research, 40 (1998) 591-599.
Kantsevoy et al., ‘An Endoscopically Implantable On-Demand Stimulator Is Successful in Increasing Lower Esophageal Sphincter Pressure in a Porcine Model’; Gastrointestinal Endoscopy, vol. 61, No. 5: 2005, AB79, 222.
Lund et al., ‘Electrical Stimulation of Esophageal Smooth Muscle and Effects of Antagonists’, American Journal of Physiology, vol. 217, No. 5, Nov. 1969, 1369-1374.
Sallam et al., ‘Feasibility of gastric electrical stimulation by percutaneous endoscopic transgastric electrodes’; Gastrointestinal Endoscopy; vol. 68, No. 4; 2008, 754-759.
Sanmiguel et al., ‘Effect of electrical stimulation of the LES on LES pressure in a canine model’; Am J Physiol Gastrointest Live Physiol; 295: 389-394; 2008.
Shellock, Frank G. ‘RF Bion Microstimulator’ MRISafety.com, http://www.mrisafety.com/SafetyInfov.asp?SafetyInfoID=254, Shellock R & D Services, Inc. and Frank G. Shellock, Ph.D., 4 pages, 2014.
Stein et al., ‘Three-dimensional Imaging of the Lower Esophageal Sphincter in Gastroesophageal Reflux Disease,’ Annual Meeting of the American Surgical Association, Apr. 11-13, 1991, 374-383.
Tam, WCE et al. “Delivery of radiofrequency energy to the lower esophageal sphincter and gastric cardia inhibits transient oesophageal sphincter relaxations and gastro-oesophageal reflux in patients with reflux disease”. Gut, 52(4), 479-785 (2003).
Xing et al., ‘Gastric Electrical Stimulation (GES) with Parameters for Morbid Obesity Elevates Lower Esophageal Sphincter (LES) Pressure in Conscious Dogs’; Obesity Surgery; 15; 2005; pp. 1321-1327.
Xing et al., ‘Gastric Electrical Stimulation Significantly Increases Canine Lower Esophageal Sphincter Pressure’; Digestive Diseases and Sciences; vol. 50, No. 8 (Aug. 2005), pp. 1481-1487.
Xing et al., ‘Gastric Electrical Stimulation Significantly Increases Canine Lower Esophageal Pressure’ Gastroenterology 122: May Issue, A579, 2003. Presented as a poster at Digestive Disease Week in Orlando, FL on Monday, May 19, 2003.
International Search Report for PCT/US2015/061108, dated May 26, 2016.
International Search Report for PCT/US2018/025092, dated Jun. 27, 2018.
International Search Report for PCT/US2017/062298, dated Feb. 1, 2018.
International Search Report for PCT/US2019/016923, dated Jun. 7, 2019.
Related Publications (1)
Number Date Country
20220054833 A1 Feb 2022 US
Provisional Applications (9)
Number Date Country
61475368 Apr 2011 US
61444849 Feb 2011 US
61422967 Dec 2010 US
61414378 Nov 2010 US
61384105 Sep 2010 US
61371146 Aug 2010 US
61328702 Apr 2010 US
61318843 Mar 2010 US
61310755 Mar 2010 US
Continuations (4)
Number Date Country
Parent 16041426 Jul 2018 US
Child 16547216 US
Parent 15170462 Jun 2016 US
Child 16041426 US
Parent 14337006 Jul 2014 US
Child 15170462 US
Parent 13447168 Apr 2012 US
Child 14337006 US
Continuation in Parts (1)
Number Date Country
Parent 13041063 Mar 2011 US
Child 13447168 US