Systems and methods for ultrasonic detection of device distraction

Information

  • Patent Grant
  • 11857226
  • Patent Number
    11,857,226
  • Date Filed
    Wednesday, April 27, 2022
    2 years ago
  • Date Issued
    Tuesday, January 2, 2024
    10 months ago
Abstract
According to some embodiments, systems and methods of ultrasonic detection of implantable medical device distraction are provided. The system includes a first elongate member and a second elongate member. The first elongate member has a first end that is configured to be attached to a first location on the skeletal system of a subject, a second end, and at least one landmark identifiable using ultrasound. The second elongate member has a first end that is movably coupled to the second end of the first elongate member, a second end configured to be attached to a second location on the skeletal system, and at least one landmark identifiable using ultrasound. Movement of the first elongate member in relation to the second elongate member causes a corresponding movement of the at least one first landmark in relation to the at least one second landmark which can be detected using ultrasound.
Description
FIELD OF THE INVENTION

The field of the invention generally relates to medical devices for treating disorders of the skeletal system.


BACKGROUND

Distraction osteogenesis is a technique which has been used to grow new bone in patients with a variety of defects. For example, limb lengthening is a technique in which the length of a bone (for example a femur or tibia) may be increased. By creating a corticotomy, or osteotomy, in the bone, which is a cut through the bone, the two resulting sections of bone may be moved apart at a particular rate, such as one (1.0) mm per day, allowing new bone to regenerate between the two sections as they move apart This technique of limb lengthening is used in cases where one limb is longer than the other, such as in a patient whose prior bone break did not heal correctly, or in a patient whose growth plate was diseased or damaged prior to maturity. In some patients, stature lengthening is desired and is achieved by lengthening both femurs and/or both tibia to increase the patient's height.


Bone transport is a similar procedure, in that it makes use of osteogenesis, but instead of increasing the distance between the ends of a bone, bone transport fills in missing bone in between. There are several reasons why significant amounts of bone may be missing. For example, a prior non-union of bone, such as that from a fracture, may have become infected, and the infected section may need to be removed. Segmental defects may be present, the defects often occurring from severe trauma when large portions of bone are severely damaged. Other types of bone infections or osteosarcoma may be other reasons for a large piece of bone that must be removed or is missing.


Intramedullary distraction devices and bone transport devices have been devised which can be adjusted non-invasively using a variety of mechanisms such as magnets, motors, shape memory metals, and hydraulics. These devices are typically cylindrical and have a coaxially arranged, telescopic arrangement, in order to be low profile and allow for placement within the medullary canal of the bone. In these devices, the lengthening mechanism is typically assembled inside a housing, and then held in place by welds, for example, circumferential or axial welds. Welds may be created by laser, electron beam, or several other technologies. Depending on the design, the weld may need to withstand a large amount of stress, for a large number of cycles, and may also need to provide a hermetic seal when the device is implanted in the body of a subject. Typically, the strength of these devices is significantly below a typical solid or tubular trauma nail that is placed intramedullary in the canal of a broken bone. Because of this, patients with intramedullary distraction or bone transport devices must often use crutches and refrain from full walking for several months, in order to minimize the possibility of breakage of their implants.


In addition to intramedullary distraction and bone transport devices, other types of distraction devices are used in orthopedic applications. Examples include spinal distraction devices for treating scoliosis and other spinal deformities, mandible distraction devices for lengthening the jaw in patients with severe micrognathia and other extramedullary devices (attached to external portions of the bone to be lengthened or contoured). Because these devices are also subjected to high stresses and large numbers of cycles, the welds used to construct their housings are also challenged.


Non-invasively adjustable devices for spinal distraction are implanted in a surgical procedure, and then are non-invasively adjusted (e.g. lengthened) at regular intervals, such as monthly or quarterly. It is typical that an X-ray image is taken before and after the lengthening procedure, in order to visualize and confirm the amount of lengthening that has been achieved. If monthly lengthenings are performed, and if images are taken both before and after the lengthening, then at least 24 x-ray images will be taken of that patient in one year. Some surgeons feel that only one image per lengthening procedure (for example, only after the lengthening) is needed, and others feel it might be done even less often. However, more information about the status of the lengthening of the implant is still desirable.


SUMMARY

In one embodiment, a method of assembling a system for manipulating the skeletal system includes obtaining a monolithic member having opposing ends, one end including a housing having an axially extending cavity. A distraction rod is obtained that has opposing ends, a first end having an inner threaded cavity. A rotatable, radially poled magnet is rotationally coupled to a lead screw having threads. The threads of the lead screw are engaged with the threaded cavity of the distraction rod. The magnet and at least a portion of the first end of the distraction rod are inserted into the axially extending cavity such that the distraction rod and the monolithic member are in coaxial relation to one another. The magnet is axially locked in relation to the monolithic member, wherein the axially locked magnet is capable of rotation. The distraction rod is rotationally locked in relation to the monolithic member.


In another embodiment, a method of assembling a system for manipulating the skeletal system includes obtaining a monolithic member having opposing ends, one end including a housing having an axially extending cavity. A distraction rod is obtained that has opposing ends, a first end having an inner threaded cavity. A maintenance member for magnetically attracting at least one pole of a rotatable, radially poled magnet is secured to the monolithic member. The rotatable, radially poled magnet is rotationally coupled to a lead screw having threads. The threads of the lead screw are engaged with the threaded cavity of the distraction rod. The magnet and at least a portion of the first end of the distraction rod are inserted into the axially extending cavity such that the distraction rod and the monolithic member are in coaxial relation to one another. The magnet is axially locked in relation to the monolithic member, wherein the axially locked magnet is capable of rotation.


In another embodiment, a lengthening device for ultrasonic length measurement includes an elongate metallic member having opposing ends, one end including an axially extending cavity, the elongate metallic member having a first landmark which is identifiable by ultrasound when the lengthening device is implanted along the skeletal system of the subject. The lengthening device further includes a distraction rod having opposing ends and having a second landmark which creates a distinct ultrasonic signature, different from that of the distraction rod, and which is identifiable by ultrasound when the lengthening device is implanted along the skeletal system of the subject, wherein a particular amount of axial movement of the distraction rod in relation to the metallic member causes an equal change in the distance between the first landmark and the second landmark.


In another embodiment, a method for measuring a distraction length of a lengthening device using ultrasound includes implanting the lengthening device within a subject, the lengthening device having an elongate metallic member having opposing ends, one end including an axially extending cavity, the elongate metallic member also having a first landmark which is identifiable by ultrasound when the lengthening device is implanted along the skeletal system of the subject, the lengthening device further including a distraction rod having opposing ends and having a second landmark which creates a distinct ultrasonic signature, different from that of the distraction rod, and which is identifiable by ultrasound when the lengthening device is implanted along the skeletal system of the subject. An ultrasonic probe is placed adjacent the skin of the subject in the vicinity of the first landmark and the second landmark. An ultrasonic image of at least the first landmark and the second landmark is obtained. The actual length between the first landmark and the second landmark is determined based at least in part on the ultrasonic image.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a spinal distraction device having a monolithic rod and housing.



FIG. 2 illustrates the same spinal distraction device in a side view.



FIG. 3 illustrates a sectional view of the spinal distraction device of FIG. 2 along line 3-3.



FIG. 4 illustrates a cross-sectional view of the spinal distraction device of FIG. 2 along line 4-4.



FIG. 5 illustrates detailed view 5 of FIG. 3.



FIG. 6 illustrates detailed view 6 of FIG. 3.



FIG. 7 illustrates detailed view 7 of FIG. 3.



FIG. 8 illustrates detailed view 8 of FIG. 3.



FIG. 9A illustrates a distraction rod of the spinal distraction device of FIGS. 1-8 having ultrasound scattering marks.



FIG. 9B illustrates a first alternative embodiment for ultrasound scattering.



FIG. 9C illustrates a second alternative embodiment for ultrasound scattering.



FIG. 9D illustrates a third alternative embodiment for ultrasound scattering.



FIG. 9E illustrates detail 9E of the third alternative embodiment for ultrasound scattering of FIG. 9D.



FIG. 10 illustrates a device and method for measuring the amount of distraction length in a spinal distraction device, using only ultrasound imaging.



FIG. 11 is an ultrasound image of a spinal distraction device for the purpose of measuring the amount of distraction length.



FIG. 12 illustrates an intramedullary limb lengthening device having a monolithic rod and housing.



FIG. 13 illustrates the same intramedullary limb lengthening device in a side view.



FIG. 14 illustrates a sectional view of the intramedullary limb lengthening device of FIG. 13 along line 14-14.



FIG. 15A illustrates detailed view 15 of FIG. 14.



FIG. 15B illustrates a sectional view of an alternative embodiment of an. intramedullary limb lengthening device.



FIG. 15C illustrates a ring gear insert of the embodiment of FIG. 15B.



FIG. 15D illustrates a coupling assembly of the embodiment of FIG. 15B.



FIG. 16 illustrates an exploded view of the intramedullary limb lengthening device of FIGS. 12 through 15A.



FIG. 17 illustrates detailed view 17 of FIG. 16.



FIG. 18 illustrates internal components of an external adjustment device for non-invasively adjusting an intramedullary limb lengthening device according to one embodiment.



FIG. 19 illustrates an external adjustment device in a configuration for adjusting an intramedullary limb lengthening device implanted within the femur.



FIG. 20 illustrates a process for assembling a spinal distraction device having improved strength.



FIG. 21 illustrates a process for assembling an intramedullary limb lengthening device having improved strength.



FIG. 22 illustrates a distraction rod and magnetic assembly being inserted into the monolithic member of the spinal distraction device.



FIG. 23 illustrates an assembly being inserted into the monolithic member of the intramedullary limb lengthening device.



FIG. 24 illustrates the assembly of FIG. 23 being pushed further into the monolithic member with a cannulated tool.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS


FIGS. 1 and 2 illustrate a spinal distraction device 100 comprising a distraction rod 102 and a monolithic member 104. The monolithic member 104 extends between a first end 110 and a second end 112, and includes a hollow housing 106 and a solid segment 108, as better appreciated in the sectional view of FIG. 3. The monolithic member 104 is formed as a unitary structure with no seams or joints. The distraction rod 102 also includes a solid segment 114 and a hollow segment 116. Like the monolithic member 104, the distraction rod 102 is a unitary structure with no seams or joints connecting various sub-components. Both the distraction rod 102 and the monolithic member 104 may be made from a variety of biocompatible materials, including titanium, Titanium-6Al-4V, cobalt chromium alloys, and stainless steel. Because the distraction rod 102 and the monolithic member 104 are the primary load bearing members of the spinal distraction device 100, and because neither has any external circumferential weld, the spinal distraction device 100 is capable of withstanding improved loading challenges in comparison to standard spinal distraction devices. The solid segment 108 of the monolithic member 104 and the solid segment 114 of the distraction rod 102 have over a majority of their lengths respective diameters or thicknesses that provide a range between about 2.5 mm to about 7.5 mm, and more commonly between about 4.5 mm to about 6.35 mm. These solid segments 108, 114 are configured to allow coupling to pedicle screws and hooks, used for attachment to portions of the vertebrae. They may also have non-circular cross-sections, and in those cases compatible with other types of pedicle screws and hooks.


The respective cross-sectional views in FIG. 4 and FIGS. 5 through 8 show more detail of the spinal distraction device 100 in combination with FIGS. 1 through 3. A magnet 138 is a cylindrical, radially-poled rare earth magnet, for example of neodymium-iron-boron. The magnet 138 is enclosed and bonded within a magnet housing 140, which in turn is rotatably contained between a thrust bearing 142 and a radial bearing 144. The magnet 138 may be bonded within the magnet housing 140 by epoxy. The magnet housing 140 is coupled to a lead screw 134 by a pin 146 and a coupler 148. The coupler 148 is welded to an end 150 of the magnet housing 140 and both the coupler 148 and the lead screw 134 have holes through which the pin 146 is placed. The thrust bearing 142 is held over a centering pin 154, which fits into a cavity 158 at an end of the hollow housing 106 of the monolithic member 104. A radial bearing 144 is held within a spacer ring 156. The distraction rod 102 has a first end 118 and a second end 120 and is configured to be telescopically expandable from the hollow housing 106 of the monolithic member 104. A nut 132 is bonded within a cavity 152 of the hollow section 116 of the distraction rod 102, and the lead screw 134 engages the nut 132, so that rotation of the lead screw 134 in a first direction distracts or lengthens the distraction rod 102 and rotation of the lead screw 134 in a second, opposite direction retracts or shortens the distraction rod 102. Two grooves 122 run in an axial direction along the outer wall of the distraction rod 102, from a first end 126 (FIG. 2) to a second end 128 (FIG. 6). Pins 124 are spot welded or attached by other means to the wall of the hollow housing 106 of the monolithic member 104. The pins 124 extend radially into the grooves 122, thus assuring that the distraction rod 102 may not rotate in relation to the monolithic member 104, while also allowing axial extension and retraction of the distraction rod 102 in relation to the monolithic member 104. When the distraction rod 102 is fully retracted, a leading edge 130 of the pin 124 abuts the first end 126 of the groove 122, keeping any further retraction from happening, and avoiding any jamming between the nut 132 and the lead screw 134. When the distraction rod 102 is fully distracted, a leading edge 136 of the pin 124 abuts a second end 128 of the groove 122, thus assuring that the distraction rod 102 remains at least partially within the hollow housing 106 of the monolithic member 104.


Turning to FIG. 4, the magnet 138, comprising a north pole 160 and a south pole 162 is shown as bonded within the magnet housing 140 inside the hollow housing 106 of the monolithic member 104. Two maintenance members 164 are secured to the inner wall of the hollow housing 106 of the monolithic member 104 about 180° from each other along circumference. As shown, maintenance members 164 are curved plates, preferably made from a material such as 400 series stainless steel, which has magnetic properties that allow attraction to the poles 160, 162 of the magnet 138 when closely located. This aligns the magnet 138, as shown, and as the subject moves, the magnet 138 is not allowed to turn, but rather stays in the desired orientation. When distracting the spinal distraction device 100 with a strong external, moving magnetic field, however, the attraction of the magnet 138 to the maintenance members 164 is overcome easily, allowing the magnet 138 to turn. The maintenance members 164 may be resistance welded or adhesive or epoxy bonded to the inner wall of the monolithic member 104. Alternatively, only one maintenance member 164 may be used allowing attraction to either pole 160 or pole 162 of the magnet 138, but still aligning the magnet 138. In applications where patient movement is not significant, it may not be necessary to include any maintenance members 164.


The method for assembling the spinal distraction device 100 is illustrated in FIG. 20. In operation 500, the distraction rod 102 and the monolithic member 14 are individually manufactured, for example by machining processes incorporating manual or automated lathes. Included within this manufacturing operation may be the forming of an axially-extending cavity within the monolithic member 104. Post-processing may be included in this operation, for example bead blasting, passivation or anodizing. In operation 502, the distraction rod 102 and the monolithic member 104 are prepared for mating. In this operation, the nut 132 is bonded into the distraction rod 102. One or more o-rings 168 are placed in circumferential cavities 170 of the distraction rod 102. One or more maintenance members 164 are bonded in place. A centering pin 154 is placed into the cavity 158 at the end of the hollow housing 106 of the monolithic member 104. The centering pin 154 may be press fit into the cavity 158, or may be bonded with an adhesive, epoxy or other joining means. The thrust bearing 142 is placed over the centering pin 154. Ln operation 504, the distraction rod 102 is coupled to the magnet 138. In this operation, the magnet 138 is bonded into the magnet housing 140. The magnet housing 140 may be a two piece assembly, for example a clamshell configuration, or bookends, or a cup/cap configuration. The radial bearing 144 is pressed over the end 150 of the magnet housing 140 and the coupler 148 is welded or bonded to the end 150 of the magnet housing 140. The lead screw 134 is attached to the coupler 148 by the placing the pin 146 through the holes in the coupler 148 and the lead screw 134. The spacer ring 156 is then slid into place over the coupler 148 and the radial bearing 144. The lead screw 134 is screwed into the nut 132. In operation 506, the distraction rod 102 and magnet assembly 131 as seen in FIG. 22 (including magnet 138/magnet housing 140/radial bearing 144/coupler 148/lead screw 134/pin 146/spacer ring 156/nut 132/distraction rod 102) are then inserted into the hollow housing 106 of the monolithic member 104 (see FIG. 22). Ln operation 508, the magnet assembly 131 is axially locked in place within the hollow housing 106 of the monolithic member 104. More specifically, a sleeve 166 having an outer diameter dose to the inner diameter of the hollow housing 106 of the monolithic member 104 is pushed into the hollow housing 106 and either press fit or bonded in place. It may also be resistance welded in place. The sleeve 166 serves to push the assembled items into their desired axial location. When. the sleeve 166 is bonded, it then holds the components in this configuration. The two different inner diameter portions of the spacer ring 156 have the appropriate diameters and lengths so that the spacer ring 156 does not contact the magnet housing 140. In operation 510, the distraction rod is rotationally locked in relation to the monolithic member. The sleeve 166 is supplied with holes to match those in the wall of the hollow housing 106 through which the pins 124 are placed. Alternatively, holes may be drilled through the sleeve 166 using the holes in the hollow housing 106 as a guide. The o-rings 168 of the distraction rod 102 serve to seal between the distraction rod 102 and the inner diameter of the sleeve 166. The outer diameter of the sleeve 166 is sealably attached to the inner diameter of the hollow housing 106 via the adhesive or epoxy with which it is attached. Together, these two seals protect the inner contents: of the hollow housing 106 of the monolithic member 104 from body fluids.



FIG. 9A is a view of the distraction rod 102 of the spinal distraction device 100 of FIG. 1, having a tapered portion 101, and showing four landmarks 172, 174, 176, 178 for scattering ultrasound. The landmarks may consist of drilled indentations or partial holes, for example drilled with a small end mill. Typical hole diameter is about 1.00 mm, and typical hole depth is about 0.75 mm. In this embodiment, the distraction rod 102 is formed of a metal, for example Titanium 6AL-4V, and thus is very reflective of ultrasound waves, and because of its continuity and smooth surface, a consistent bright line will be seen (see white contour of distraction rod 102 image in FIG. 11). The landmarks 172, 174, 176, 178, for example made with the holes described, serve to break up this continuity, and give a small, but recognizable pattern in an ultrasound image. By using a different number of holes, or a varying array of holes, different image characteristics can be achieved. For example, landmark 172 is a single hole, while landmark 174 is a (in this figure) vertically arrayed pair of holes, with a distance of 1.50 mm from center to center. Landmark 176 consists of three vertically arrayed holes with a center-to-center distance of adjacent holes of 1.25 mm. Landmark 178 is two diagonally arrayed holes with a center-to-center distance of 2.75 mm.



FIG. 10 illustrates the spinal distraction device 100 implanted in a subject, and attached to four vertebrae 184 using pedicle screws 182. The spinal distraction device 100 has been lengthened a cumulative total amount of 17.6 mm, and landmarks 172, 174 have been extended from the hollow housing 106 of the monolithic member 104, while landmarks 176, 178 are still inside. The nose 188 of an ultrasound probe 186 is coated with an ultrasound gel and pressed over the skin 190. The ultrasound probe 186 illustrated has a linear array transducer 192 having a span of 40 mm, though probes are also available with spans of up to 64 mm, such as the General Electric L764. Typically, a transducer capable of being run at five to ten MegaHertz (5.0-10.0 MHz) is appropriate for the spinal distraction application, because it will be able to image the spinal distraction device 100 at its typical range of depths, based on patient tissue thickness. As seen in FIG. 10, the ultrasound probe 186 is centered over the region of interest (ROI), and adjusted until an image such as that in FIG. 11 can be visualized. The region of interest in FIG. 10 includes the extended landmarks 172, 174 and the first end 110 of the monolithic member 104. A cable 202 transfers signals back and forth between the linear array transducer 192 and an ultrasound unit 200. Signals are processed in a processor 206, and can be stored in a memory 208. An interface (keyboard, touch screen, etc.) 210 can be manipulated by the user to operate the ultrasound unit 200. The resulting image may be visualized on a display 204. Ultrasound waves 212 are transmitted to the spinal distraction device 100 and reflected waves 214 are received. In a subject 180 with a large amount of fat 194 or one in which the spinal distraction device 100 has been implanted significantly below the muscle 196, it is possible to hold the handle 198 of the ultrasound probe 186 and compress the fat 194, to bring the linear array transducer 192 of the ultrasound probe 186 closer to the spinal distraction device 100, as seen in FIG. 10. This assures that the desired image is located well within the display of the ultrasound unit 200.


In FIG. 11, an ultrasound scan 216 was performed using a 40 mm linear array transducer at 8.0 MHz. Skin 190, fat 194, and muscle 196 covered by fascia 218 can be clearly seen, as can the surface of the distraction rod 102, seen in bright white, and the first end 110 of the monolithic member 104. Beneath these features is an area of ultrasonic shadowing 220, due to lack of penetration of the ultrasound wave past the highly reflective titanium of the distraction rod 102 and the monolithic member 104. A first landmark 222 and second landmark 224 are also visible on the ultrasound scan 216. Because the distraction rod 102 and the monolithic member 104 move relative to each other when the spinal distraction device 100 is lengthened or shortened, a measurement should be taken between a landmark on the distraction rod 102 and a landmark on the monolithic member 104. The preferred landmark on the monolithic member 104 is the first end 110, because it is easy to appreciate the drop off in diameter from it to the distraction rod 102 that is seen extending from the monolithic member 104. The user placed a first cursor 226 along the x-axis in line with the first end 110, but on the y-axis at the level of the surface of the distraction rod 102. Varying the y-axis location is not necessary in ultrasound units that give an x distance, y distance and a hypotenuse. A second cursor 228 was then moved to the desired landmark on the distraction rod 102, for example landmark 222 or landmark 224. Many ultrasound units allow for accurate on-screen caliper measurements, but alternatively, the distance between first landmark 222 and second landmark 224, a known, controlled distance, may be used for accurate scaling.


The holes depicted in FIG. 9A may be left open, or they may be filled, for example with epoxy. The epoxy may be doped with ceramic particles, in order to scatter the ultrasound in a still different manner. As an alternative to the landmarks 172, 174, 176, 178 described in FIG. 9A, several alternative embodiments for scattering ultrasound are presented in FIGS. 9B through 9D, particularly depicting tapered portion 101 of distraction rod 102. The tapered portion 101 includes a taper 107 that extends between small diameter segment 103 and large diameter segment 105. Large diameter segment 105 has a typical diameter of about 6.35 mm and small diameter segment 103 has a typical diameter of about 2.5 to 6.0 mm, or more particularly 4.5 mm to 6.0 mm. Between the small diameter segment 103 and that taper 107 is a radiused transition. In FIG. 9B, a sharp transition 111 is formed in the distraction rod 102 at the tapered portion 101. This sharp transition 111 provides a highly defined point in the ultrasound image for making a precision axial measurement. In FIG. 9C, an embodiment is depicted which features a short ridge 113 extending around the distraction rod 102. The ridge 113 also provides a highly defined point for resolving in an ultrasound image. FIG. 9D depicts an embodiment having an ultrasound focusing feature 115 in place of the ridge 113 of FIG. 9C. The ultrasound focusing feature 115, as seen in more detail in FIG. 9E, includes a concave radius 117 extending around the distraction rod 102. Ultrasound reflects at a range of angles along different axial points on the concave radius 117, and the reflected ultrasound from these various reflections meets at a focal point 119, thus creating a recognizable image.



FIGS. 12 and 13 illustrate an intramedullary limb lengthening device 300 comprising a distraction rod 302 and a monolithic member 304. The monolithic member 304 extends between a first end 310 and a second end 312, as better appreciated in the sectional view of FIG. 14. The monolithic member 304 is formed as a unitary structure with no seams or joints. The distraction rod 302 has a first end 318 and a second end 320, and is configured to be telescopically extendable and retractable within the monolithic member 304. Like the monolithic member 304, the distraction rod 302 is a unitary structure with no seams or joints connecting various sub-components. Both the distraction rod 302 and the monolithic member 304 may be made from a variety of biocompatible materials, including titanium, for example Titanium-6AL-4V, cobalt chromium alloys, and stainless steel. Because the distraction rod 302 and the monolithic member 304 are the primary load bearing members of the intramedullary limb lengthening device 300, and because neither has any external circumferential weld, the intramedullary limb lengthening device 300 is capable of withstanding improved loading challenges in comparison to standard intramedullary limb lengthening devices. The monolithic member 304 contains two transverse holes 301 for passing bone screws, with which to attach the intramedullary limb lengthening device 300 to the bone. The distraction rod 302 contains three transverse holes 303, also for the passing of bone screws. At the second end 312 of the monolithic member 304, a coupling feature 323 provides an interface to releasably engage with an insertion instrument, such as a drill guide. The drill guide may include a male thread and the coupling feature 323 may be provided with a complementary female thread. The intramedullary limb lengthening device 300 comprises a magnet 338 which is bonded within a magnet housing 340 and configured for rotation between a radial bearing 344 and a thrust bearing 342. Between the thrust bearing 342 and the magnet housing 340 are three planetary gear stages 305, 307, 309, as seen in FIG. 15A. The planetary gear stages 305, 307, 309 each comprise a sun gear 311A, 311B, 311C and three planetary gears 313, which are rotatably held within a frame 315 by pins 317. The sun gear 311 is either a part of the magnet housing 340, as in the case of the sun gear 311A of planetary gear stage 305, or a part of the frame 315, as in sun gear 311B or gear stage 307 and sun gear 311C of gear stage 309. The rotation of the sun gear 311 causes the planetary gears 313 to rotate and track along inner teeth 321 of a ring gear insert 319. Each gear stage 305, 307, 309 has a gear reduction of 4:1, with a total gear reduction of 64:1.


The frame 315 of the final gear stage 309 passes through the thrust bearing 342 and is attached to a lead screw coupler 366 such that rotation of the frame 315 of the final gear stage 309 causes one-to-one rotation of the lead screw coupler 366. The lead screw coupler 366 and a lead screw 358 each contain transverse holes through which a locking pin 368 is placed, thus rotationally coupling the lead screw 358 to the final gear stage 309. A locking pin retainer 350 is slid over and tack welded to the lead screw coupler 366 to radially maintain the locking pin 368 in place. The distraction rod 302 has an internally threaded end 363, into which external threads 365 of a nut 360 are threaded and bonded, for example with epoxy. The nut 360 has internal threads 367 which are configured to threadably engage with external threads 325 of the lead screw 358, thereby allowing rotation of the lead screw 358 to distract the distraction rod 302 in relation to the monolithic member 304. Rotation of the magnet 338 and the magnet housing 340 causes rotation of the lead screw at 1/64 the rotational speed, but with significantly increased torque (64 times, minus frictional losses), and thus an amplified distraction force. O-rings 362 are placed in ring grooves 388 on the exterior of the distraction rod 302 and create a dynamic seal between the monolithic member 304 and the distraction rod 302, thus protecting the internal contents from body fluids. A split washer stop 364, located between the distraction rod 302 and the lead screw coupler 366, guards against jamming that would otherwise be caused as the distraction rod 302 approaches the lead screw coupler 366, for example if intramedullary limb lengthening device 300 is fully retracted with a high torque applied by an external moving magnetic field.


A maintenance member 346, comprising a curved plate made from 400 series stainless steel, is bonded within the inner wall of the monolithic member 304 by epoxy, adhesive, resistance welding or other suitable process. The maintenance member 346 attracts a pole of the magnet 338, thus keeping the limb lengthening device 300 from being accidentally adjusted by movements of the patient. However, a strong moving magnetic field, such as that applied by magnetic adjustment devices known in the art, is capable of overcoming the attraction of the magnet 338 to the maintenance member 346 in order to rotate the magnet 338 and adjust the length of the intramedullary limb lengthening device 300. Maintenance member has a thickness of approximately 0.015 inches and spans a circumferential arc of less than 180°. An exemplary arc is 99°.


The method for assembling the intramedullary limb lengthening device 300 is illustrated in FIG. 21. These assembly operations and the design of the internal components make it possible to incorporate the monolithic member 304 into the design of the intramedullary limb lengthening device 300. In operation 600, the distraction rod 302 and the monolithic member 304 are individually manufactured, for example by machining processes incorporating manual or automated lathes. Included within this manufacturing operation may be the forming of an axially-extending cavity within the monolithic member 304. Post-processing may be included in this operation, for example bead blasting, passivation or anodizing. In operation 602, the distraction rod 302 and the monolithic member 304 are prepared for mating. In this operation, the nut 360 is bonded into the distraction rod 302 and the o-rings 362 are placed into the ring grooves 388 as described. The maintenance member 346 is bonded to the monolithic member 304. In operation 604, the magnet 338 is placed into the cavity 390 of the monolithic member 304. In this operation, the magnet 338 and the magnet housing 340 are bonded together, and then assembled with the radial bearing 344 into the monolithic member 304 (see FIG. 14). Prior to assembling the radial bearing 344 into the monolithic member, the longitudinal depth of the cavity 390 of the monolithic member 304 is measured, and, if necessary, one or more shims may be placed before the radial bearing 344 so that the resultant axial play in the assembled components is not so low as to cause binding, yet not so high as to risk disassembly. In operation 606, the lead screw 358 is prepared for coupling to the magnet 338 that is in the cavity 390 of the monolithic member 304. In this operation, the ring gear insert 319 is slid into the cavity 390 of the monolithic member 304 until it abuts a ledge 392. First and second planetary gear stages 305, 307 are then placed into assembly as seen in FIG. 15A. The locking pin retainer 350 is preloaded over the lead screw coupler 366 prior to welding the lead screw coupler 366 to the final planetary gear stage 309, and is then slid in place over the locking pin 368 after the locking pin 368 is placed. Final planetary gear stage 309 is inserted through the thrust bearing 342 and is welded to the lead screw coupler 366, allowing for some axial play of the thrust bearing 342. The split washer stop 364 is then placed onto the lead screw 358. The lead screw 358 is then attached to the lead screw coupler 366 with the locking pin 368 and then the locking pin retainer 350 is slid over a portion of the ends of the locking pin 368 and tack welded to the lead screw coupler 366. Thrust bearing retainers 354, 356 are two matching pieces which form a cylindrical clamshell around the thrust bearing 342 and the lead screw coupler 366. The internal diameter of the monolithic member 304 is tinned with solder, as are the outer half diameter surfaces of each of the thrust bearing retainers 354,356. In operation 608, the thrust bearing retainers 354, 356 are then damped over an assembly 327 (illustrated in FIG. 23) containing the thrust bearing 342, lead screw coupler 366, planetary gear stage 309, and lead screw 358, and the thrust bearing retainers 354, 356 and the assembly 327 are pushed together into place within the monolithic member with a cannulated tool 329 (see FIGS. 23 and 24). The cannulated tool 329 has a chamfered end 331 which pushes against a matching chamfer 352 in each of the thrust bearing retainers 354, 356, thus forcing them outward against the inner diameter of the monolithic member 304. The sun gear 311C of the final planetary gear stage 309 engages with the planet gears 313 of the final planetary gear stage 309 and then chamfered edges 394 of the thrust bearing retainers 354, 356 are pushed against a chamfer 348 of the ring gear insert 319 with a pre-load force. In operation 610, the thrust bearing 342 and the magnet 338 are axially retained. In this operation, the thrust bearing retainers 354, 356 are soldered to the monolithic member 304 at the tinned portions, thus maintaining the pre-load force in place. This may be accomplished using induction heating. The friction of the ledge 392 and the chamfered edge 394 against opposing ends of the ring gear insert 319, as well as the wedging between the chamfered edge 394 and the chamfer 348, hold the ring gear insert 319 rotationally static in relation to the monolithic member 304. Alternatively, the ring gear insert 319 may have a keyed feature that fits into a corresponding keyed feature in the monolithic member 304, in order to stop the ring gear insert 319 from being able to turn in relation to the monolithic member 304, in case the friction on the ends of the ring gear insert 319 is not sufficient to hold it static.


In operation 612, the distraction rod 302 is engaged with the lead screw 358. In this operation, an assembly tool consisting of a high speed rotating magnet is used to make the magnet 338 and thus the lead screw 358 rotate and the distraction rod 302 is inserted into the monolithic member 304 while the lead screw 358 engages and displaces in relation to the nut 360 of the distraction rod 302. After the distraction rod 302 is inserted into the monolithic member 304 as described and retracted at least somewhat, the distraction rod 302 is still free to rotate in relation to the monolithic member 304. For the stability of the bone pieces being distracted, it is desired to inhibit rotation between the distraction rod 302 and the monolithic member 304, and this final portion of the assembly process is described in relation to FIGS. 16 and 17. In operation 614, the distraction rod 302 is rotationally locked in relation to the monolithic member 304. In this operation, an anti-rotation ring 370 is placed over the distraction rod 302 by engaging protrusions 374, one on each side, into grooves 372 extending along the distraction rod 302 and then by sliding the anti-rotation ring 370 up to a tapered inner edge 376 of the monolithic member 304. The anti-rotation ring 370 and the distraction rod 302 are then rotated until guide fins 382 can be inserted into guide cuts 380 in an end of the monolithic member 304. The anti-rotation ring 370 is now axially snapped into the monolithic member 304 as a flat edge 384 of the anti-rotation ring 370 is trapped by an undercut 378. The undercut 378 has a minimum diameter which is less than the outer diameter of the flat edge 384 of the anti-rotation ring 370, and is temporarily forced open during the snapping process. As assembled, the anti-rotation ring 370, the monolithic member 304 and the distraction rod 302 are all held rotationally static in relation to each other. In addition, when the intramedullary limb lengthening device 300 reaches maximum distraction length, the ends 386 of grooves 372 abut the protrusions 374, and thus the distraction rod 302 is kept from falling out of the monolithic member 304.


An alternative embodiment of the intramedullary limb lengthening device 300 of FIGS. 12-15A is shown in a sectional view in FIG. 15B. Much of this embodiment is identical to the embodiment of FIGS. 12-15A, however the differences are hereby described. The embodiment does not have thrust bearing retainers 354, 356, but instead incorporates a thrust bearing ferrule 335 having an external tapered end 347. A thrust bearing retainer 337, a locking pin retainer 341 and the thrust bearing ferrule 335 are placed over the thrust bearing 342 and a lead screw coupler 339, and the final planetary gear stage 309 is inserted through the thrust bearing 342 and is welded to the lead screw coupler 339. As shown in FIG. 15D, the locking pin retainer 341 has a relief 361 to allow the passage of the locking pin 368. After the locking pin 368 is placed, the locking pin retainer 341 is rotated so that the relief 361 is no longer directly over the locking pin 368 and the locking pin retainer 341 is tack welded or secured by other methods to the lead screw coupler 339, thus retaining the locking pin 368. These assembled components are then inserted into the cavity 390 of the monolithic member 304, where the final planetary gear stage 309 is coupled to the other planetary gear stages 305, 307 and the magnet 338. In this embodiment, a ring gear insert 333 (FIG. 15C) has an indentation 351 on each side. A tab 349 on each side of the thrust bearing ferrule 335 inserts into each indentation 351, in order to inhibit rotation of the ring gear insert 333 in relation to the monolithic member 304, once the thrust bearing ferrule 335 is engaged into the monolithic member 304. Also in this embodiment, the monolithic member 304 contains internal threading 343. The engagement of the thrust bearing ferrule 335 is achieved by tightening external threading 345 of the thrust bearing retainer 337 into the internal threading 343 of the monolithic member 304. A tool (not shown) is engaged into cut outs 357 on each side of the thrust bearing retainer 337 and is used to screw the thrust bearing retainer 337 into the internal threading 343 of the monolithic member 304. As shown in FIG. 15B, this wedges an internal taper 353 of the thrust bearing retainer 337 against the external tapered end 347 of the thrust bearing ferrule 335, allowing the thrust bearing ferrule 335 to apply a controlled load on the ring gear insert 333, locking the ring gear insert 333 axially and rotationally in relation to the monolithic member 304. The thrust bearing retainer 337 contains an axial split on the opposite side (not shown). The split in the thrust bearing retainer 337 allows the outer diameter of the thrust bearing retainer 337 to be slightly reduced (by compression) while it is inserted into the monolithic member 304, prior to being threaded, so that the internal portion of the monolithic member 304 is not scratched during insertion. A ledge 355 is visible on the lead screw coupler 339 in FIG. 15D. As noted earlier, the split washer stop 364 butts up against this ledge 355 to prohibit jamming when the distraction rod 302 is retracted completely.



FIGS. 18 and 19 illustrate an external adjustment device 478 configured for applying a moving magnetic field to allow for non-invasive adjustment of the intramedullary limb lengthening device 300 by turning the magnet 338 within the intramedullary limb lengthening device 300. FIG. 18 illustrates the internal components of the external adjustment device 478, and for clear reference, shows the magnet 338 of the intramedullary limb lengthening device 300, without the rest of the assembly. The internal working components of the external adjustment device 478 may, in certain embodiments, be similar to that described in U.S. Patent Application Publication No. 2012/0004494, which is incorporated by reference herein. A motor 480 with a gear box 482 outputs to a motor gear 484. The motor gear 484 engages and turns a central (idler) gear 486, which has the appropriate number of teeth to turn first and second magnet gears 488, 490 at identical rotational speeds. First and second magnets 492,494 turn in unison with the first and second magnet gears 488,490, respectively. Each magnet 492, 494 is held within a respective magnet cup 496 (shown partially). An exemplary rotational speed is 60 RPM or less. This speed range may be desired in order to limit the amount of current density induced in the body tissue and fluids, to meet international guidelines or standards. As seen in FIG. 18, the south pole 498 of the first magnet 492 is oriented the same as the north pole 404 of the second magnet 494, and likewise, the first magnet 492 has its north pole 400 oriented the same as the south pole 402 of the second magnet 494. As these two magnets 492,494 turn synchronously together, they apply a complementary and additive moving magnetic field to the radially-poled magnet 338, having a north pole 406 and a south pole 408. Magnets having multiple north poles (for example, two) and multiple south poles (for example, two) are also contemplated in each of the devices. As the two magnets 492, 494 turn in a first rotational direction 410 (e.g., counter-clockwise), the magnetic coupling causes the magnet 338 to turn in a second, opposite rotational direction 412 (e.g., clockwise). The rotational direction of the motor 480 is controlled by buttons 414, 416. One or more circuit boards 418 contain control circuitry for both sensing rotation of the magnets 492, 494 and controlling the rotation of the magnets 492, 494.



FIG. 19 shows the external adjustment device 478 for use with an intramedullary limb lengthening device 300 placed in the femur. The external adjustment device 478 has a first handle 424 attached to a housing 444 for carrying or for steadying the external adjustment device 478, for example, steadying it against an upper leg 420, as in FIG. 19, or against a lower leg 422 in the case that the intramedullary limb lengthening device 300 is implanted in the tibia. An adjustable handle 426 is rotationally attached to the external adjustment device 478 at pivot points 428, 430. The pivot points 428,430 have easily lockable/unlockable mechanisms, such as a spring loaded brake, ratchet or tightening screw, so that a desired angulation of the adjustable handle 426 in relation to the housing 444 can be adjusted and locked in orientation. The adjustable handle 426 is capable of being placed in multiple positions. In FIG. 19, adjustable handle 426 is set so that the apex 432 of loop 434 rests against housing end 436. In this position, patient 438 is able to hold onto one or both of grips 440, 442 while the adjustment is taking place. Patient is able to clearly view a control panel 446 including a display 448. In a different configuration from the two directional buttons 414, 416 in FIG. 18, the control panel 446 includes a start button 450, a stop button 452 and a mode button 454. Control circuitry contained on circuit boards 418 may be used by the surgeon to store important information related to the specific aspects of each particular patient. For example, in some patients an implant may be placed antegrade into the tibia. In other patients the implant may be placed either antegrade or retrograde into the femur. By having the ability to store information of this sort that is specific to each particular patient within the external adjustment device 478, the external adjustment device 478 can be configured to direct the magnets 492, 494 to turn in the correct direction automatically, while the patient need only place the external adjustment device 478 at the desired position, and push the start button 450. The information of the maximum allowable distraction length per day and per distraction session can also be input and stored by the surgeon for safety purposes. These may also be added via an SD card or USB device, or by wireless input. An additional feature is a camera at the portion of the external adjustment device 478 that is placed over the skin. For example, the camera may be located between the first magnet 492 and the second magnet 494. The skin directly over the implanted magnet 338 may be marked with indelible ink. A live image from the camera is then displayed on the display 448 of the control panel 446, allowing the user to place the first and second magnets 492, 494 directly over the area marked on the skin. Crosshairs can be overlayed on the display 448 over the live image, allowing the user to align the mark on the skin between the crosshairs, and thus optimally place the external adjustment device 478.


As described in conjunction with the spinal distraction device 100 of FIGS. 1 through 8 and with the intramedullary limb lengthening device 300 of FIGS. 12-17, load-bearing orthopedic devices can be constructed which, by incorporating a monolithic member 104, 304 having a unitary structure with no seams or joints, have improved strength over prior art devices having welded joints. Four point bend testing of monolithic members 304 constructed in accordance with the methods described herein showed that a strength improvement of 38% was achieved as compared to data obtained on elongate members which incorporated a housing having a laser weld. Additionally, the embodiments for the spinal distraction device 100 and the intramedullary limb lengthening device 300 described herein have features which inhibit rotation between the distraction rod 102, 302 and the monolithic member 104, 304, maintain the magnet 138, 338 in its axial position in relation to the monolithic member 104, 304, and keep the distraction rod 102, 302 from falling out of the monolithic member 104, 304 by providing a stopping mechanism at full extension. All of these features were not achievable in prior devices without resorting to welds which decreased the overall strength.


While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. For example, the magnets in the devices may be replaced by any type of drive member, for example motors or shape memory mechanisms. They may also be replaced by a subcutaneous lever that allows the device to be non-invasively adjusted. The invention, therefore, should not be limited, except to the following claims, and their equivalents.

Claims
  • 1. A distraction device for manipulating a portion of a skeletal system of a subject, the distraction device comprising: a monolithic member having a first end and a second end, the first end configured for attachment to a first portion of the skeletal system and the second end comprising a housing having an axially extending cavity;a distraction rod having a first end and a second end, the first end having an inner threaded cavity extending along at least a portion of a length thereof, the first end configured to be coaxial and movable within the axially extending cavity of the housing, and the second end configured to extend from the axially extending cavity of the housing, and further configured for attachment to a second portion of the skeletal system;a lead screw having threads disposed thereon, wherein the threads of the lead screw are configured to engage with the threaded cavity of the distraction rod;a rotatable, radially poled magnet rotationally coupled to the lead screw, wherein a rotation of the magnet is configured to cause rotation of the lead screw;wherein the magnet and at least a portion of the first end of the distraction rod are configured to be inserted at least partially within the axially extending cavity of the housing, and the distraction rod and the monolithic member are in coaxial relation to one another, andwherein the magnet is rotatable relative to the monolithic member and axially locked relative to the monolithic member, and the distraction rod is rotationally locked relative to the monolithic member.
  • 2. The distraction device of claim 1, further comprising a sleeve disposed at least partially within the housing of the monolithic member, wherein the sleeve is configured to rotationally lock the distraction rod to the monolithic member, and to limit axial movement of the distraction rod relative to the monolithic member.
  • 3. The distraction device of claim 1, wherein one full rotation of the magnet is configured to cause one full rotation of the lead screw.
  • 4. The distraction device of claim 1, further comprising a dynamic seal disposed between the distraction rod and the monolithic member, wherein the dynamic seal is configured to inhibit bodily fluids from entering the axially extending cavity.
  • 5. The distraction device of claim 1, further comprising an anti-rotation member disposed in proximity with the monolithic member, wherein the anti-rotation member is configured to limit relative rotation between the monolithic member and the distraction rod, while allowing relative axial movement between the monolithic member and the distraction rod.
  • 6. The distraction device of claim 5, wherein the anti-rotation member is further configured to stop the relative axial movement between the monolithic member and the distraction rod at or near a maximum extension of the distraction rod.
  • 7. The distraction device of claim 6, wherein the distraction rod comprises at least one axially extending groove and wherein the anti-rotation member comprises at least one protrusion configured to extend into the groove.
  • 8. The distraction device of claim 1, further comprising one or more landmarks disposed on at least a portion of the distraction rod, wherein the one or more landmarks is configured for scattering ultrasound.
  • 9. The distraction device of claim 8, wherein the one or more landmarks comprise one or more holes located at a surface of the distraction rod.
  • 10. The distraction device of claim 8, wherein the one or more landmarks comprise a raised ridge extending around the distraction rod.
  • 11. A distraction device for manipulating a portion of a skeletal system of a subject, the distraction device comprising: a monolithic member having a first end and a second end, the first end configured for attachment to a first portion of the skeletal system and the second end comprising a housing having an axially extending cavity;a distraction rod having a first end and a second end, the first end having an inner threaded cavity extending along at least a portion of a length thereof, the first end configured to be coaxial with and movable within the axially extending cavity, and the second end configured to extend from the axially extending cavity and to attach to a second portion of the skeletal system;a rotatable, radially poled magnet rotationally coupled to a lead screw having male threads, the threads being engaged with the inner threaded cavity of the distraction rod, wherein rotation of the magnet is configured to cause rotation of the lead screw;a maintenance member secured to the monolithic member, the maintenance member being configured to magnetically attract at least one pole of the rotatable, radially poled magnet;wherein the magnet and at least a portion of the first end of the distraction rod are configured to be inserted at least partially into the axially extending cavity, such that the distraction rod and the monolithic member are in coaxial relation to one another; andwherein the magnet is axially locked relative to the monolithic member, and the axially locked magnet is capable of rotation.
  • 12. The distraction device of claim 11, wherein the distraction rod is configured to be rotationally locked relative to the monolithic member.
  • 13. The distraction device of claim 12, wherein the distraction rod is further configured to be limited in axial movement relative to the monolithic member.
  • 14. The distraction device of claim 11, wherein one full rotation of the magnet is configured to cause one full rotation of the lead screw.
  • 15. The distraction device of claim 11, further comprising a dynamic seal located between the distraction rod and the monolithic member, wherein the dynamic seal is configured to inhibit body fluids from entering the axially extending cavity.
  • 16. The distraction device of claim 11, further comprising an anti-rotation member disposed in proximity with the monolithic member, wherein the anti-rotation member is configured to limit relative rotation between the monolithic member and the distraction rod, while allowing relative axial movement between the monolithic member and the distraction rod.
  • 17. The distraction device of claim 16, wherein the anti-rotation member is further configured to stop the relative axial movement between the monolithic member and the distraction rod at or near a maximum extension of the distraction rod.
  • 18. The distraction device of claim 17, wherein the distraction rod comprises at least one axially extending groove and wherein the anti-rotation member comprises at least one protrusion configured to extend into the groove.
  • 19. The distraction device of claim 11, wherein the maintenance member comprises 400 series stainless steel.
  • 20. The distraction device of claim 11, wherein the axially locking is configured to include induction heating.
RELATED APPLICATIONS

The present patent application is a continuation of co-pending U.S. patent application Ser. No. 16/581,011, filed Sep. 24, 2019, which is a continuation of U.S. patent application Ser. No. 14/863,019, filed Sep. 23, 2015 (now U.S. Pat. No. 10,463,406), which is a continuation of U.S. patent application Ser. No. 13/791,430, filed Mar. 8, 2013 (now U.S. Pat. No. 9,179,938). Each of the foregoing is incorporated by reference in its entirety as though fully set forth herein.

US Referenced Citations (565)
Number Name Date Kind
2702031 Wenger Feb 1955 A
3111945 Von Solbrig Nov 1963 A
3372476 Peiffer Mar 1968 A
3377576 Langberg Apr 1968 A
3512901 Law May 1970 A
3597781 Eibes Aug 1971 A
3900025 Barnes, Jr. Aug 1975 A
3915151 Kraus Oct 1975 A
RE28907 Eibes et al. Jul 1976 E
3976060 Hildebrandt et al. Aug 1976 A
4010758 Rockland et al. Mar 1977 A
4056743 Clifford et al. Nov 1977 A
4068821 Morrison Jan 1978 A
4078559 Nissinen Mar 1978 A
4204541 Kapitanov May 1980 A
4357946 Dutcher et al. Nov 1982 A
4386603 Mayfield Jun 1983 A
4448191 Rodnyansky et al. May 1984 A
4486176 Tardieu et al. Dec 1984 A
4501266 McDaniel Feb 1985 A
4522501 Shannon Jun 1985 A
4537520 Ochiai et al. Aug 1985 A
4550279 Klein Oct 1985 A
4561798 Elcrin et al. Dec 1985 A
4573454 Hoffman Mar 1986 A
4592355 Antebi Jun 1986 A
4595007 Mericle Jun 1986 A
4642257 Chase Feb 1987 A
4658809 Ulrich et al. Apr 1987 A
4700091 Wuthrich Oct 1987 A
4747832 Buffet May 1988 A
4854304 Zielke Aug 1989 A
4904861 Epstein et al. Feb 1990 A
4931055 Bumpus et al. Jun 1990 A
4940467 Tronzo Jul 1990 A
4957495 Kluger Sep 1990 A
4973331 Pursley et al. Nov 1990 A
5010879 Moriya et al. Apr 1991 A
5030235 Campbell, Jr. Jul 1991 A
5041112 Mingozzi et al. Aug 1991 A
5064004 Lundell Nov 1991 A
5074882 Grammont et al. Dec 1991 A
5092889 Campbell, Jr. Mar 1992 A
5133716 Plaza Jul 1992 A
5142407 Varaprasad et al. Aug 1992 A
5156605 Pursley et al. Oct 1992 A
5263955 Baumgart et al. Nov 1993 A
5290289 Sanders et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5330503 Yoon Jul 1994 A
5334202 Carter Aug 1994 A
5336223 Rogers Aug 1994 A
5356411 Spievack Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5364396 Robinson et al. Nov 1994 A
5403322 Herzenberg et al. Apr 1995 A
5429638 Muschler et al. Jul 1995 A
5437266 McPherson et al. Aug 1995 A
5466261 Richelsoph Nov 1995 A
5468030 Walling Nov 1995 A
5480437 Draenert Jan 1996 A
5509888 Miller Apr 1996 A
5516335 Kummer et al. May 1996 A
5527309 Shelton Jun 1996 A
5536269 Spievack Jul 1996 A
5549610 Russell et al. Aug 1996 A
5573012 McEwan Nov 1996 A
5575790 Chen Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5620445 Brosnahan et al. Apr 1997 A
5620449 Faccioli et al. Apr 1997 A
5626579 Muschler et al. May 1997 A
5626613 Schmieding May 1997 A
5632744 Campbell, Jr. May 1997 A
5659217 Petersen Aug 1997 A
5662683 Kay Sep 1997 A
5672175 Martin Sep 1997 A
5672177 Seldin Sep 1997 A
5700263 Schendel Dec 1997 A
5704938 Staehlin et al. Jan 1998 A
5704939 Justin Jan 1998 A
5720746 Soubeiran Feb 1998 A
5743910 Bays et al. Apr 1998 A
5762599 Sohn Jun 1998 A
5771903 Jakobsson Jun 1998 A
5810815 Morales Sep 1998 A
5827286 Incavo et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5879375 Larson, Jr. et al. Mar 1999 A
5902304 Walker et al. May 1999 A
5935127 Border Aug 1999 A
5945762 Chen et al. Aug 1999 A
5961553 Coty et al. Oct 1999 A
5976138 Baumgart et al. Nov 1999 A
5979456 Magovern Nov 1999 A
6022349 McLeod et al. Feb 2000 A
6033412 Losken Mar 2000 A
6034296 Elvin et al. Mar 2000 A
6102922 Jakobsson et al. Aug 2000 A
6106525 Sachse Aug 2000 A
6126660 Dietz Oct 2000 A
6126661 Faccioli et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139316 Sachdeva et al. Oct 2000 A
6162223 Orsak et al. Dec 2000 A
6183476 Gerhardt et al. Feb 2001 B1
6200317 Aalsma et al. Mar 2001 B1
6234956 He et al. May 2001 B1
6241730 Alby Jun 2001 B1
6245075 Betz et al. Jun 2001 B1
6315784 Djurovic Nov 2001 B1
6319255 Grundei et al. Nov 2001 B1
6331744 Chen et al. Dec 2001 B1
6336929 Justin Jan 2002 B1
6343568 McClasky Feb 2002 B1
6358283 Hogfors et al. Mar 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6389187 Greenaway et al. May 2002 B1
6400980 Lemelson Jun 2002 B1
6402753 Cole et al. Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6416516 Stauch et al. Jul 2002 B1
6499907 Baur Dec 2002 B1
6500110 Davey et al. Dec 2002 B1
6508820 Bales Jan 2003 B2
6510345 Van Bentem Jan 2003 B1
6537196 Creighton, IV et al. Mar 2003 B1
6554831 Rivard et al. Apr 2003 B1
6565573 Ferrante et al. May 2003 B1
6565576 Stauch et al. May 2003 B1
6582313 Perrow Jun 2003 B2
6583630 Mendes et al. Jun 2003 B2
6616669 Ogilvie et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6656135 Zogbi et al. Dec 2003 B2
6656194 Gannoe et al. Dec 2003 B1
6667725 Simons et al. Dec 2003 B1
6673079 Kane Jan 2004 B1
6702816 Buhler Mar 2004 B2
6706042 Taylor Mar 2004 B2
6709293 Mori et al. Mar 2004 B2
6730087 Butsch May 2004 B1
6761503 Breese Jul 2004 B2
6769499 Cargill et al. Aug 2004 B2
6789442 Forch Sep 2004 B2
6796984 Soubeiran Sep 2004 B2
6802844 Ferree Oct 2004 B2
6809434 Duncan et al. Oct 2004 B1
6835207 Zacouto et al. Dec 2004 B2
6849076 Blunn Feb 2005 B2
6852113 Nathanson et al. Feb 2005 B2
6918838 Schwarzler et al. Jul 2005 B2
6918910 Smith et al. Jul 2005 B2
6921400 Sohngen Jul 2005 B2
6923951 Contag et al. Aug 2005 B2
6971143 Domroese Dec 2005 B2
7001346 White Feb 2006 B2
7008425 Phillips Mar 2006 B2
7011658 Young Mar 2006 B2
7029472 Fortin Apr 2006 B1
7029475 Panjabi Apr 2006 B2
7041105 Michelson May 2006 B2
7060080 Bachmann Jun 2006 B2
7063706 Wittenstein Jun 2006 B2
7105029 Doubler et al. Sep 2006 B2
7105968 Nissen Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7115129 Heggeness Oct 2006 B2
7135022 Kosashvili Nov 2006 B2
7160312 Saadat Jan 2007 B2
7163538 Altarac et al. Jan 2007 B2
7189005 Ward Mar 2007 B2
7191007 Desai et al. Mar 2007 B2
7218232 DiSilvestro et al. May 2007 B2
7238191 Bachmann Jul 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7243719 Baron et al. Jul 2007 B2
7255682 Bartol, Jr. et al. Aug 2007 B1
7282023 Frering Oct 2007 B2
7285087 Moaddeb et al. Oct 2007 B2
7302015 Kim et al. Nov 2007 B2
7302858 Walsh et al. Dec 2007 B2
7314443 Jordan et al. Jan 2008 B2
7333013 Berger Feb 2008 B2
7357037 Hnat et al. Apr 2008 B2
7357635 Belfor et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7390007 Helms et al. Jun 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7402134 Moaddeb et al. Jul 2008 B2
7402176 Malek Jul 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
7445010 Kugler et al. Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7485149 White Feb 2009 B1
7489495 Stevenson Feb 2009 B2
7530981 Kutsenko May 2009 B2
7531002 Sutton et al. May 2009 B2
7553298 Hunt et al. Jun 2009 B2
7561916 Hunt et al. Jul 2009 B2
7611526 Carl et al. Nov 2009 B2
7618435 Opolski Nov 2009 B2
7658754 Zhang et al. Feb 2010 B2
7666184 Stauch Feb 2010 B2
7666210 Franck et al. Feb 2010 B2
7678136 Doubler et al. Mar 2010 B2
7678139 Garamszegi et al. Mar 2010 B2
7708737 Kraft et al. May 2010 B2
7708762 McCarthy et al. May 2010 B2
7727143 Birk et al. Jun 2010 B2
7753913 Szakelyhidi, Jr. et al. Jul 2010 B2
7753915 Eksler Jul 2010 B1
7762998 Birk et al. Jul 2010 B2
7763080 Southworth Jul 2010 B2
7766855 Miethke Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7776068 Ainsworth et al. Aug 2010 B2
7776075 Bruneau et al. Aug 2010 B2
7787958 Stevenson Aug 2010 B2
7794476 Wisnewski Sep 2010 B2
7811328 Molz, IV et al. Oct 2010 B2
7835779 Anderson et al. Nov 2010 B2
7837691 Cordes et al. Nov 2010 B2
7862586 Malek Jan 2011 B2
7867235 Fell et al. Jan 2011 B2
7875033 Richter et al. Jan 2011 B2
7901381 Birk et al. Mar 2011 B2
7909852 Boomer et al. Mar 2011 B2
7918844 Byrum et al. Apr 2011 B2
7938841 Sharkawy et al. May 2011 B2
7955357 Kiester Jun 2011 B2
7985256 Grotz et al. Jul 2011 B2
7988709 Clark et al. Aug 2011 B2
8002809 Baynham Aug 2011 B2
8011308 Picchio Sep 2011 B2
8034080 Malandain et al. Oct 2011 B2
8043299 Conway Oct 2011 B2
8043338 Dant Oct 2011 B2
8057473 Orsak et al. Nov 2011 B2
8057513 Kohm et al. Nov 2011 B2
8083741 Morgan et al. Dec 2011 B2
8092499 Roth Jan 2012 B1
8095317 Ekseth et al. Jan 2012 B2
8105360 Connor Jan 2012 B1
8114158 Carl et al. Feb 2012 B2
8123805 Makower et al. Feb 2012 B2
8133280 Voellmicke et al. Mar 2012 B2
8147549 Metcalf, Jr. et al. Apr 2012 B2
8162897 Byrum Apr 2012 B2
8162979 Sachs et al. Apr 2012 B2
8177789 Magill et al. May 2012 B2
8197490 Pool Jun 2012 B2
8211149 Justis Jul 2012 B2
8211151 Schwab et al. Jul 2012 B2
8221420 Keller Jul 2012 B2
8226690 Altarac et al. Jul 2012 B2
8236002 Fortin et al. Aug 2012 B2
8241331 Arnin Aug 2012 B2
8246630 Manzi et al. Aug 2012 B2
8252063 Stauch Aug 2012 B2
8267969 Altarac et al. Sep 2012 B2
8278941 Kroh et al. Oct 2012 B2
8282671 Connor Oct 2012 B2
8323290 Metzger et al. Dec 2012 B2
8343192 Kiester Jan 2013 B2
8357182 Seme Jan 2013 B2
8366628 Denker et al. Feb 2013 B2
8372078 Collazo Feb 2013 B2
8386018 Stauch et al. Feb 2013 B2
8394124 Biyani Mar 2013 B2
8403958 Schwab Mar 2013 B2
8414584 Brigido Apr 2013 B2
8425608 Dewey et al. Apr 2013 B2
8435268 Thompson et al. May 2013 B2
8439926 Bojarski et al. May 2013 B2
8444693 Reiley May 2013 B2
8449543 Pool et al. May 2013 B2
8469908 Asfora Jun 2013 B2
8470004 Reiley Jun 2013 B2
8486070 Morgan et al. Jul 2013 B2
8486076 Chavarria et al. Jul 2013 B2
8486147 De Villiers et al. Jul 2013 B2
8494805 Roche et al. Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8518062 Cole et al. Aug 2013 B2
8523866 Sidebotham et al. Sep 2013 B2
8529474 Gupta et al. Sep 2013 B2
8529606 Alamin et al. Sep 2013 B2
8529607 Alamin et al. Sep 2013 B2
8556901 Anthony et al. Oct 2013 B2
8556911 Mehta et al. Oct 2013 B2
8556975 Ciupik et al. Oct 2013 B2
8562653 Alamin et al. Oct 2013 B2
8568457 Hunziker Oct 2013 B2
8617220 Skaggs Oct 2013 B2
8579979 Edie et al. Nov 2013 B2
8585595 Heilman Nov 2013 B2
8585740 Ross et al. Nov 2013 B1
8591549 Lange Nov 2013 B2
8591553 Eisermann et al. Nov 2013 B2
8613758 Linares Dec 2013 B2
8623036 Harrison et al. Jan 2014 B2
8632544 Haaja et al. Jan 2014 B2
8632548 Soubeiran Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636771 Butler et al. Jan 2014 B2
8636802 Serhan et al. Jan 2014 B2
8641719 Gephart et al. Feb 2014 B2
8641723 Connor Feb 2014 B2
8657856 Gephart et al. Feb 2014 B2
8663285 Dall et al. Mar 2014 B2
8663287 Butler et al. Mar 2014 B2
8668719 Alamin et al. Mar 2014 B2
8709090 Makower et al. Apr 2014 B2
8715282 Pool May 2014 B2
8734488 Pool et al. May 2014 B2
8758347 Weiner et al. Jun 2014 B2
8758355 Fisher et al. Jun 2014 B2
8771272 LeCronier et al. Jul 2014 B2
8777947 Zahrly Jul 2014 B2
8777995 McClintock et al. Jul 2014 B2
8790343 McClellan et al. Jul 2014 B2
8790409 Van den Heuvel et al. Jul 2014 B2
8828058 Elsebaie et al. Sep 2014 B2
8828087 Stone et al. Sep 2014 B2
8840651 Reiley Sep 2014 B2
8852187 Pool et al. Oct 2014 B2
8852236 Kiester Oct 2014 B2
8870881 Rezach et al. Oct 2014 B2
8870959 Arnin Oct 2014 B2
8915915 Harrison et al. Dec 2014 B2
8915917 Doherty et al. Dec 2014 B2
8920422 Homeier et al. Dec 2014 B2
8945188 Rezach et al. Feb 2015 B2
8961521 Keefer et al. Feb 2015 B2
8961567 Hunziker Feb 2015 B2
8968402 Myers et al. Mar 2015 B2
8974463 Pool et al. Mar 2015 B2
8992527 Guichet Mar 2015 B2
9022917 Kasic et al. May 2015 B2
9044218 Young Jun 2015 B2
9060810 Kercher et al. Jun 2015 B2
9078703 Arnin Jul 2015 B2
9179938 Pool Nov 2015 B2
10463406 Chang Nov 2019 B2
11344342 Chang May 2022 B2
20020050112 Koch et al. May 2002 A1
20020072758 Reo et al. Jun 2002 A1
20020164905 Bryant Nov 2002 A1
20030040671 Somogyi et al. Feb 2003 A1
20030144669 Robinson Jul 2003 A1
20030149487 Doubler et al. Aug 2003 A1
20030220643 Ferree Nov 2003 A1
20030220644 Thelen et al. Nov 2003 A1
20040011137 Hnat et al. Jan 2004 A1
20040011365 Govari et al. Jan 2004 A1
20040019353 Freid et al. Jan 2004 A1
20040023623 Stauch et al. Feb 2004 A1
20040055610 Forsell Mar 2004 A1
20040133219 Forsell Jul 2004 A1
20040138663 Kosashvili Jul 2004 A1
20040138725 Forsell Jul 2004 A1
20040193266 Meyer Sep 2004 A1
20050034705 McClendon Feb 2005 A1
20050049617 Chatlynne et al. Mar 2005 A1
20050065529 Liu et al. Mar 2005 A1
20050090823 Bartimus Apr 2005 A1
20050159754 Odrich Jul 2005 A1
20050234448 McCarthy Oct 2005 A1
20050234462 Hershberger Oct 2005 A1
20050246034 Soubeiran Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20050272976 Tanaka et al. Dec 2005 A1
20060004459 Hazebrouck et al. Jan 2006 A1
20060009767 Kiester Jan 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060047282 Gordon Mar 2006 A1
20060058792 Hynes Mar 2006 A1
20060069447 DiSilvestro et al. Mar 2006 A1
20060074448 Harrison et al. Apr 2006 A1
20060079897 Harrison et al. Apr 2006 A1
20060136062 DiNello et al. Jun 2006 A1
20060142767 Green et al. Jun 2006 A1
20060155279 Ogilvie Jul 2006 A1
20060195087 Sacher et al. Aug 2006 A1
20060195088 Sacher et al. Aug 2006 A1
20060200134 Freid et al. Sep 2006 A1
20060204154 Ward Sep 2006 A1
20060204156 Takehara et al. Sep 2006 A1
20060235299 Martinelli Oct 2006 A1
20060235424 Vitale et al. Oct 2006 A1
20060241746 Shaoulian et al. Oct 2006 A1
20060241767 Doty Oct 2006 A1
20060249914 Dulin Nov 2006 A1
20060271107 Harrison et al. Nov 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060293683 Stauch Dec 2006 A1
20070010814 Stauch Jan 2007 A1
20070010887 Williams et al. Jan 2007 A1
20070021644 Woolson et al. Jan 2007 A1
20070031131 Griffitts Feb 2007 A1
20070043376 Leatherbury et al. Feb 2007 A1
20070050030 Kim Mar 2007 A1
20070118215 Moaddeb May 2007 A1
20070161984 Cresina et al. Jul 2007 A1
20070173837 Chan et al. Jul 2007 A1
20070179493 Kim Aug 2007 A1
20070185374 Kick et al. Aug 2007 A1
20070233098 Mastrorio et al. Oct 2007 A1
20070239159 Altarac et al. Oct 2007 A1
20070239161 Giger et al. Oct 2007 A1
20070255088 Jacobson et al. Nov 2007 A1
20070270803 Giger et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276378 Harrison et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070288024 Gollogly Dec 2007 A1
20070288183 Bulkes et al. Dec 2007 A1
20080009792 Henniges et al. Jan 2008 A1
20080015577 Loeb Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021456 Gupta et al. Jan 2008 A1
20080027436 Cournoyer et al. Jan 2008 A1
20080033431 Jung et al. Feb 2008 A1
20080033436 Song et al. Feb 2008 A1
20080051784 Gollogly Feb 2008 A1
20080082118 Edidin et al. Apr 2008 A1
20080086128 Lewis Apr 2008 A1
20080097487 Pool et al. Apr 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080108995 Conway et al. May 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080172063 Taylor Jul 2008 A1
20080177319 Schwab Jul 2008 A1
20080177326 Thompson Jul 2008 A1
20080190237 Radinger et al. Aug 2008 A1
20080228186 Gall et al. Sep 2008 A1
20080255615 Vittur et al. Oct 2008 A1
20080272928 Shuster Nov 2008 A1
20080275557 Makower et al. Nov 2008 A1
20090030462 Buttermann Jan 2009 A1
20090076597 Dahlgren Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093890 Gelbart Apr 2009 A1
20090112207 Walker Apr 2009 A1
20090112262 Pool Apr 2009 A1
20090112263 Pool et al. Apr 2009 A1
20090163780 Tieu Jun 2009 A1
20090171356 Klett Jul 2009 A1
20090192514 Feinberg et al. Jul 2009 A1
20090198144 Phillips et al. Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090275984 Kim et al. Nov 2009 A1
20100004654 Schmitz Jan 2010 A1
20100049204 Soubeiran Feb 2010 A1
20100057127 McGuire et al. Mar 2010 A1
20100094302 Pool Apr 2010 A1
20100094306 Chang et al. Apr 2010 A1
20100100185 Trieu et al. Apr 2010 A1
20100106192 Barry Apr 2010 A1
20100114322 Clifford et al. May 2010 A1
20100130941 Conlon et al. May 2010 A1
20100137872 Kam et al. Jun 2010 A1
20100145449 Makower et al. Jun 2010 A1
20100145462 Ainsworth et al. Jun 2010 A1
20100168751 Anderson et al. Jul 2010 A1
20100217271 Pool Aug 2010 A1
20100249782 Durham Sep 2010 A1
20100256626 Muller et al. Oct 2010 A1
20100262239 Boyden et al. Oct 2010 A1
20100318129 Seme et al. Dec 2010 A1
20100331883 Schmitz et al. Dec 2010 A1
20110004076 Janna et al. Jan 2011 A1
20110004246 Haaja Jan 2011 A1
20110054535 Gephart et al. Mar 2011 A1
20110057756 Marinescu et al. Mar 2011 A1
20110066188 Seme et al. Mar 2011 A1
20110098748 Jangra Apr 2011 A1
20110137347 Hunziker Jun 2011 A1
20110152725 Demir et al. Jun 2011 A1
20110196371 Forsell Aug 2011 A1
20110196435 Forsell Aug 2011 A1
20110202138 Shenoy et al. Aug 2011 A1
20110230883 Zahrly Sep 2011 A1
20110238126 Soubeiran Sep 2011 A1
20110257655 Copf, Jr. Oct 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20120004494 Payne Jan 2012 A1
20120019341 Gabay et al. Jan 2012 A1
20120019342 Gabay et al. Jan 2012 A1
20120053633 Stauch Mar 2012 A1
20120088953 King Apr 2012 A1
20120101527 Connor Apr 2012 A1
20120109207 Trieu May 2012 A1
20120116535 Ratron et al. May 2012 A1
20120130428 Hunziker May 2012 A1
20120158061 Koch et al. Jun 2012 A1
20120172883 Sayago Jul 2012 A1
20120179215 Soubeiran Jul 2012 A1
20120203282 Sachs Aug 2012 A1
20120221106 Makower et al. Aug 2012 A1
20120271353 Barry Oct 2012 A1
20120296234 Wilhelm et al. Nov 2012 A1
20120329882 Messersmith et al. Dec 2012 A1
20130013066 Landry et al. Jan 2013 A1
20130072932 Stauch Mar 2013 A1
20130096615 Kiester Apr 2013 A1
20130123847 Anderson et al. May 2013 A1
20130138017 Jundt May 2013 A1
20130138154 Reiley May 2013 A1
20130150863 Baumgartner Jun 2013 A1
20130150889 Fening et al. Jun 2013 A1
20130178903 Abdou Jul 2013 A1
20130211521 Shenoy et al. Aug 2013 A1
20130245692 Hayes et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253587 Carls et al. Sep 2013 A1
20130261672 Horvath Oct 2013 A1
20130296863 Globerman et al. Nov 2013 A1
20130296864 Burley et al. Nov 2013 A1
20130296940 Northcutt et al. Nov 2013 A1
20130325006 Michelinie et al. Dec 2013 A1
20130325071 Niemiec et al. Dec 2013 A1
20140005788 Haaja et al. Jan 2014 A1
20140025172 Lucas et al. Jan 2014 A1
20140052134 Orisek Feb 2014 A1
20140058392 Mueckter et al. Feb 2014 A1
20140058450 Arlet Feb 2014 A1
20140066987 Hestad et al. Mar 2014 A1
20140088715 Ciupik Mar 2014 A1
20140128920 Kantelhardt May 2014 A1
20140155946 Skinlo Jun 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140236234 Kroll et al. Aug 2014 A1
20140236311 Vicatos et al. Aug 2014 A1
20140250674 Pool Sep 2014 A1
20140257412 Patty et al. Sep 2014 A1
20140277446 Clifford et al. Sep 2014 A1
20140296918 Fening et al. Oct 2014 A1
20140303538 Baym et al. Oct 2014 A1
20140303539 Baym et al. Oct 2014 A1
20140358150 Kaufman et al. Dec 2014 A1
20140371796 Kiester Dec 2014 A1
20150105782 D'Lima et al. Apr 2015 A1
20150105824 Moskowitz et al. Apr 2015 A1
20160008032 Chang Jan 2016 A1
20160113683 Cheng Apr 2016 A1
20160183994 Quach Jun 2016 A1
20160270825 Wentz Sep 2016 A1
20170172624 Brunner Jun 2017 A1
20170333080 Roschak Nov 2017 A1
20180042651 Little Feb 2018 A1
20180296256 Beckett Oct 2018 A1
20190015138 Schwardt Jan 2019 A1
20190046252 Skinlo Feb 2019 A1
20200060735 Chang Feb 2020 A1
20220249139 Chang Aug 2022 A1
Foreign Referenced Citations (28)
Number Date Country
1697630 Nov 2005 CN
101040807 Sep 2007 CN
1541262 Jun 1969 DE
8515687 Dec 1985 DE
19626230 Jan 1998 DE
19745654 Apr 1999 DE
102005045070 Apr 2007 DE
0663184 Jul 1995 EP
1905388 Apr 2008 EP
2901991 Dec 2007 FR
2900563 Aug 2008 FR
2892617 Sep 2008 FR
2916622 Sep 2009 FR
2961386 Dec 2011 FR
H0956736 Mar 1997 JP
2002500063 Jan 2002 JP
WO1998044858 Oct 1998 WO
WO1999051160 Oct 1999 WO
WO2001024697 Apr 2001 WO
WO2001045485 Jun 2001 WO
WO2001045487 Jun 2001 WO
WO2001067973 Sep 2001 WO
WO2001078614 Oct 2001 WO
WO2007013059 Feb 2007 WO
WO2007015239 Feb 2007 WO
WO2011116158 Sep 2011 WO
WO2013119528 Aug 2013 WO
WO2014040013 Mar 2014 WO
Non-Patent Literature Citations (102)
Entry
Abe et al., “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.”, SPINE, 1999, pp. 646-653, 24, No. 7.
Ahlbom et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.”, Health Physics, 1998, pp. 494-522, 74, No. 4.
Amer et al., “Evaluation of treatment of late-onset tibia vara using gradual angulation translation high tibial osteotomy”, ACTA Orthopaedica Belgica, 2010, pp. 360-366, 76, No. 3.
Angrisani et al., “Lap-Band® Rapid Port™ System: Preliminary results in 21 patients”, Obesity Surgery, 2005, p. 936, 15, No. 7.
Baumgart et al., “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.”, Practice of Intramedullary Locked Nails, 2006, pp. 189-198.
Baumgart et al., “The bioexpandable prosthesis: A new perspective after resection of malignant bone tumors in children.”, J Pediatr Hematol Oncol, 2005, pp. 452-455, 27, No. 8.
Bodó et al., “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.”, Eklem Hastaliklari ve Cerrahisi—Joint Diseases and Related Surgery, 2008, pp. 27-32, 19, No. 1.
Boudjemline et al., “Off-label use of an adjustable gastric banding system for pulmonary artery banding.”, The Journal of Thoracic and Cardiovascular Surgery, 2006, pp. 1130-1135, 131, No. 5.
Brown et al., “Single port surgery and the Dundee Endocone.”, SAGES Annual Scientific Sessions: Emerging Technology Poster Abstracts, 2007, ETP007, pp. 323-324.
Buchowski et al., “Temporary internal distraction as an aid to correction of severe scoliosis”, J Bone Joint Surg Am, 2006, pp. 2035-2041, 88-A, No. 9.
Burghardt et al., “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.”, J Bone Joint Surg Br, 2011, pp. 639-643, 93-B, No. 5.
Burke, “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature”, Studies in Health Technology and Informatics, 2006, pp. 378-384, 123.
Carter et al., “A cumulative damage model for bone fracture.”, Journal of Orthopaedic Research, 1985, pp. 84-90, 3, No. 1.
Chapman et al., “Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review.”, Surgery, 2004, pp. 326-351, 135, No. 3.
Cole et al., “Operative technique intramedullary skeletal kinetic distractor: Tibial surgical technique.”, Orthofix, 2005.
Cole et al., “The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.”, Injury, 2001, pp. S-D-129-S-D-139, 32.
Dailey et al., “A novel intramedullary nail for micromotion stimulation of tibial fractures.”, Clinical Biomechanics, 2012, pp. 182-188, 27, No. 2.
Daniels et al., “A new method for continuous intraoperative measurement of Harrington rod loading patterns.”, Annals of Biomedical Engineering, 1984, pp. 233-246, 12, No. 3.
De Giorgi et al., “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.”, European Spine Journal, 1999, pp. 8-15, No. 1.
Dorsey et al., “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.”, Journal of Knee Surgery, 2006, pp. 95-98, 19, No. 2.
Edeland et al., “Instrumentation for distraction by limited surgery in scoliosis treatment.”, Journal of Biomedical Engineering, 1981, pp. 143-146, 3, No. 2.
Elsebaie, “Single growing rods (Review of 21 cases). Changing the foundations: Does it affect the results?”, Journal of Child Orthop, 2007, 1:258.
Ember et al., “Distraction forces required during growth rod lengthening.”, J of Bone Joint Surg BR, 2006, p. 229, 88-B, No. Suppl. II.
European Patent Office, “Observations by a third party under Article 115 EPC in EP08805612 by Soubeiran.”, 2010.
Fabry et al., “A technique for prevention of port complications after laparoscopic adjustable silicone gastric banding.”, Obesity Surgery, 2002, pp. 285-288, 12, No. 2.
Fried et al., “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region.”, Obesity Surgery, 2004, p. 914, 14, No. 7.
Gao et al., CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis, American Journal of Human Genetics, 2007, pp. 957-965, 80.
Gebhart et al., “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet; The Phenix M. system”, International Society of Limb Salvage 14th International Symposium on Limb Salvage. Sep. 3, 2007, Hamburg, Germany. (2 pages).
Gillespie et al. “Harrington instrumentation without fusion.”, J Bone Joint Surg Br, 1981, p. 461, 63-B, No. 3.
Goodship et al., “Strain rate and timing of stimulation in mechanical modulation of fracture healing.”, Clinical Orthopaedics and Related Research, 1998, pp. S105-S115, No. 355S.
Grass et al., “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.”, SPINE, 1997, pp. 1922-1927, 22, No. 16.
Gray, “Gray's anatomy of the human body.”, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007.
Grimer et al. “Non-invasive extendable endoprostheses for children—Expensive but worth it!”, International Society of Limb Salvage 14th International Symposium on Limb Salvage, 2007.
Grünert, “The development of a totally implantable electronic sphincter.” (translated from the German “Die Entwicklung eines total implantierbaren elektronischen Sphincters”), Langenbecks Archiv fur Chirurgie, 1969, pp. 1170-1174, 325.
Guichet et al. “Gradual femoral lengthening with the Albizzia intramedullary nail”, J Bone Joint Surg Am, 2003, pp. 838-848, 85-A, No. 5.
Gupta et al., “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.”, J Bone Joint Surg Br, 2006, pp. 649-654, 88-B, No. 5.
Hankemeier et al., “Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD).”, Oper Orthop Traumatol, 2005, pp. 79-101, 17, No. 1.
Harrington, “Treatment of scoliosis. Correction and internal fixation by spine instrumentation.”, J Bone Joint Surg Am, 1962, pp. 591-610, 44-A, No. 4.
Hennig et al., “The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis.”, Journal of Knee Surgery, 2007, pp. 6-14, 20, No. 1.
Hofmeister et al., “Callus distraction with the Albizzia nail.”, Practice of Intramedullary Locked Nails, 2006, pp. 211-215.
Horbach et al., “First experiences with the routine use of the Rapid Port™ system with the Lap-Band®.”, Obesity Surgery, 2006, p. 418, 16, No. 4.
Hyodo et al., “Bone transport using intramedullary fixation and a single flexible traction cable.”, Clinical Orthopaedics and Related Research, 1996, pp. 256-268, 325.
International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to static magnetic fields.” Health Physics, 2009, pp. 504-514, 96, No. 4.
INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB.
Kasliwal et al., “Management of high-grade spondylolisthesis.”, Neurosurgery Clinics of North America, 2013, pp. 275-291, 24, No. 2.
Kenawey et al., “Leg lengthening using intramedullay skeletal kinetic distractor: Results of 57 consecutive applications.”, Injury, 2011, pp. 150-155, 42, No. 2.
Kent et al., “Assessment and correction of femoral malrotation following intramedullary nailing of the femur.”, Acta Orthop Belg, 2010, pp. 580-584, 76, No. 5.
Klemme et al., “Spinal instrumentation without fusion for progressive scoliosis in young children”, Journal of Pediatric Orthopaedics. 1997, pp. 734-742, 17, No. 6.
Korenkov et al., “Port function after laparoscopic adjustable gastric banding for morbid obesity.”, Surgical Endoscopy, 2003, pp. 1068-1071, 17, No. 7.
Krieg et al., “Leg lengthening with a motorized nail in adolescents.”, Clinical Orthopaedics and Related Research, 2008, pp. 189-197, 466, No. 1.
Kucukkaya et al., “The new intramedullary cable bone transport technique.”, Journal of Orthopaedic Trauma, 2009, pp. 531-536, 23, No. 7.
Lechner et al., “In vivo band manometry: A new method in band adjustment”, Obesity Surgery, 2005, p. 935, 15, No. 7.
Lechner et al., “Intra-band manometry for band adjustments: The basics”, Obesity Surgery, 2006, pp. 417-418, 16, No. 4.
Li et al., “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.”, Injury, 1999, pp. 525-534, 30, No. 8.
Lonner, “Emerging minimally invasive technologies for the management of scoliosis.”, Orthopedic Clinics of North America, 2007, pp. 431-440, 38, No. 3.
Matthews et al., “Magnetically adjustable intraocular lens.”, Journal of Cataract and Refractive Surgery, 2003, pp. 2211-2216, 29, No. 11.
Micromotion, “Micro Drive Engineering·General catalogue.”, 2009, pp. 14-24.
Mineiro et al., “Subcutaneous rodding for progressive spinal curvatures: Early results.”, Journal of Pediatric Orthopaedics, 2002, pp. 290-295, 22, No. 3.
Moe et al., “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.”, Clinical Orthopaedics and Related Research, 1984, pp. 35-45, 185.
Montague et al., “Magnetic gear dynamics for servo control.”, Melecon 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, 2010, pp. 1192-1197.
Montague et al., “Servo control of magnetic gears.”, IEEE/ASME Transactions on Mechatronics, 2012, pp. 269-278, 17, No. 2.
Nachemson et al., “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.”, The Journal of Bone and Joint Surgery, 1971, pp. 445-465, 53, No. 3.
Nachlas et al., “The cure of experimental scoliosis by directed growth control.”, The Journal of Bone and Joint Surgery, 1951, pp. 24-34, 33-A, No. 1.
Newton et al., “Fusionless scoliosis correction by anterolateral tethering . . . can it work ?. ”, 39th Annual Scoliosis Research Society Meeting, 2004.
Oh et al., “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.”, Archives of Orthopaedic and Trauma Surgery, 2008, pp. 801-808, 128, No. 8.
Ozcivici et al., “Mechanical signals as anabolic agents in bone.”, Nature Reviews Rheumatology, 2010, pp. 50-59, 6, No. 1.
Piorkowski et al., Preventing Port Site Inversion in Laparoscopic Adjustable Gastric Banding, Surgery for Obesity and Related Diseases, 2007, 3(2), pp. 159-162, Elsevier; New York, U.S.A.
Prontes, “Longest bone in body.”, eHow.com, 2012.
Rathjen et al., “Clinical and radiographic results after implant removal in idiopathic scoliosis.”, SPINE, 2007, pp. 2184-2188, 32, No. 20.
Ren et al., “Laparoscopic adjustable gastric banding: Surgical technique”, Journal of Laparoendoscopic & Advanced Surgical Techniques, 2003, pp. 257-263, 13, No. 4.
Reyes-Sanchez et al., “External fixation for dynamic correction of severe scoliosis”, The Spine Journal, 2005, pp. 418-426, 5, No. 4.
Rinsky et al., “Segmental instrumentation without fusion in children with progressive scoliosis.”, Journal of Pediatric Orthopedics, 1985, pp. 687-690, 5, No. 6.
Rode et al., “A simple way to adjust bands under radiologic control”, Obesity Surgery, 2006, p. 418, 16, No. 4.
Schmerling et al., “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.”, Journal of Biomedical Materials Research, 1976, pp. 879-892, 10, No. 6.
Scott et al., “Transgastric, transcolonic and transvaginal cholecystectomy using magnetically anchored instruments.”, SAGES Annual Scientific Sessions, Poster Abstracts, Apr. 18-22, 2007, P511, p. 306.
Sharke, “The machinery of life”, Mechanical Engineering Magazine, Feb. 2004, Printed from Internet site Oct. 24, 2007 http://www.memagazine.org/contents/current/features/moflife/moflife.html.
Shiha et al., “Ilizarov gradual correction of genu varum deformity in adults.”, Acta Orthop Belg, 2009, pp. 784-791, 75, No. 6.
Simpson et al., “Femoral lengthening with the intramedullary skeletal kinetic distractor.”, Journal of Bone and Joint Surgery, 2009, pp. 955-961, 91-B, No. 7.
Smith, “The use of growth-sparing instrumentation in pediatric spinal deformity.”, Orthopedic Clinics of North America, 2007, pp. 547-552, 38, No. 4.
Soubeiran et al. “The Phenix M System, a fully implanted non-invasive lengthening device externally controllable through the skin with a palm size permanent magnet. Applications in limb salvage.” International Society of Limb Salvage 14th International Symposium on Limb Salvage, Sep. 13, 2007, Hamburg, Germany. (2 pages).
Soubeiran et al., “The Phenix M System. A fully implanted lengthening device externally controllable through the skin with a palm size permanent magnet; Applications to pediatric orthopaedics”, 6th European Research Conference in Pediatric Orthopaedics, Oct. 6, 2006, Toulouse, France (7 pages).
Stokes et al., “Reducing radiation exposure in early-onset scoliosis surgery patients: Novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Prospective validation study and assessment of clinical algorithm”, 20th International Meeting on Advanced Spine Techniques, Jul. 11, 2013. Vancouver, Canada. Scoliosis Research Society.
Sun et al., “Masticatory mechanics of a mandibular distraction osteogenesis site: Interfragmentary micromovement.”, Bone, 2007, pp. 188-196, 41, No. 2.
Synthes Spine, “VEPTR II. Vertical Expandable Prosthetic Titanium Rib II: Technique Guide.”, 2008, 40 pgs.
Synthes Spine, “VEPTR Vertical Expandable Prosthetic Titanium Rib, Patient Guide.”, 2005, 26 pgs.
Takaso et al., “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.”, Journal of Orthopaedic Science, 1998, pp. 336-340, 3, No. 6.
Teli et al., “Measurement of forces generated during distraction of growing rods.”, Journal of Children's Orthopaedics, 2007, pp. 257-258, 1, No. 4.
Tello, “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities: Experience and technical details.”, The Orthopedic Clinics of North America, 1994, pp. 333-351, 25, No. 2.
Thaller et al., “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.”, Injury, 2014 (E-published Oct. 28, 2013), pp. S60-S65, 45.
Thompson et al., “Early onset scoliosis: Future directions”, 2007, J Bone Joint Surg Am, pp. 163-166, 89-A, Suppl 1.
Thompson et al., “Growing rod techniques in early-onset scoliosis”, Journal of Pediatric Orthopedics, 2007, pp. 354-361, 27, No. 3.
Thonse et al., “Limb lengthening with a fully implantable, telescopic, intramedullary nail.”, Operative Techniques in Orthopedics, 2005, pp. 355-362, 15, No. 4.
Trias et al., “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.”, SPINE, 1979, pp. 228-235, 4, No. 3.
Verkerke et al., “An extendable modular endoprosthetic system for bone tumor management in the leg”, Journal of Biomedical Engineering, 1990, pp. 91-96, 12, No. 2.
Verkerke et al., “Design of a lengthening element for a modular femur endoprosthetic system”, Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1989, pp. 97-102, 203, No. 2.
Verkerke et al., “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.”, The International Journal of Artificial Organs, 1994, pp. 155-162, 17, No. 3.
Weiner et al., “Initial clinical experience with telemetrically adjustable gastric banding”, Surgical Technology International, 2005, pp. 63-69, 15.
Wenger, “Spine jack operation in the correction of scoliotic deformity: A direct intrathoracic attack to straighten the laterally bent spine: Preliminary report”, Arch Surg, 1961, pp. 123-132 (901- 910), 83, No. 6.
White, III et al., “The clinical biomechanics of scoliosis.”, Clinical Orthopaedics and Related Research, 1976, pp. 100-112, 118.
Yonnet, “A new type of permanent magnet coupling.”, IEEE Transactions on Magnetics, 1981, pp. 2991-2993, 17, No. 6.
Yonnet, “Passive magnetic bearings with permanent magnets.”, IEEE Transactions on Magnetics, 1978, pp. 803-805, 14, No. 5.
Zheng et al., “Force and torque characteristics for magnetically driven blood pump.”, Journal of Magnetism and Magnetic Materials, 2002, pp. 292-302, 241, No. 2.
Related Publications (1)
Number Date Country
20220249139 A1 Aug 2022 US
Continuations (3)
Number Date Country
Parent 16581011 Sep 2019 US
Child 17730530 US
Parent 14863019 Sep 2015 US
Child 16581011 US
Parent 13791430 Mar 2013 US
Child 14863019 US