Systems and methods for voice control of a medical device

Abstract
The invention is generally directed to systems and methods for medical care, and more particularly to systems and methods for voice control of a medical device. A first embodiment includes a voice controlled surgical system, such as a phacoemulsification system, a microphone coupled to the surgical system, and a voice controlled computer interface coupled with the surgical system. The voice controlled interface is configured to receive a request to invoke a voice command via the microphone, to listen for a voice command upon receipt of a valid request to invoke a voice command, and to forward a valid voice command upon receipt of the valid voice command to the surgical system for execution.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

In order to better appreciate how the above-recited and other advantages and objects of the inventions are obtained, a more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. It should be noted that the components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views. However, like parts do not always have like reference numerals. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.



FIG. 1 shows a diagram of a phacoemulsification system known in the art.



FIG. 2 shows a handpiece for a phacoemulsficiation system known in the art.



FIG. 3 shows a surgical system with a voice controlled interface in accordance with a preferred embodiment of the present invention.



FIG. 4 shows a flow diagram of the operation of a voice controlled interface in accordance with a preferred embodiment of the present invention.



FIG. 5 shows an alternative surgical system with a voice controlled interface in accordance with a preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As mentioned above, voice controlled surgical systems are known in the art; however, existing voice command interfaces require the operator to provide an additional confirmation command after the original voice command, which can cause undesirable delays during time sensitive operations. A system 1000 having a voice controlled interface 1020 coupled with a surgical system 1030, such as a phacoemulsification system shown in FIG. 1, is shown in FIG. 3. The system 1000 further includes a microphone 1010 coupled to the voice controlled interface 1020 to receive audio signals, a speaker coupled to the surgical system 1030 for audio output 1040 and a display monitor 1050 coupled to the surgical system 1030 to provide a computer user interface. The computer user interface can be a graphical user interface. Alternatively, the computer user interface can be provided by a separate computing system, such as a personal computer (not shown), in communication with the surgical system 1030.


The voice controlled interface 1020 can be implemented as a hardware and/or software component coupled with or integrated with the surgical system. The interface 1020 includes a speech recognition module, such as, for example, the VR Stamp™ from Sensory available in the commercial market. The interface 1020 can preferably be used without the need to train the speech recognition module to a particular user's voice and can preferably recognize more than one language. However, if the interface 1020 is trained for a particular operator's voice, for example, a particular surgeon, then the data associated with the training may be kept with the operator's profile in a database, which one of ordinary skill in the art would appreciate.


Turning to FIG. 4, a flow diagram 2000 illustrating the operation of the voice controlled interface 1020 is shown. The interface 1020 first listens for a request to invoke a voice command (configurable by the operator) (start block 2010), which causes the interface 1020 to listen for a voice command, such as “adjust power level.” The request can come from the operator by any recognizable means, such as a unique vocal keyword (configurable by the operator) that will preferably not be accidentally voiced during operation, e.g., “A-M-O.” The request for a voice command can further originate from a touch screen display monitor 1050, a foot pedal (not shown), or any other peripheral interface operably coupled to the surgical system 1030. Moreover, the request for a voice command may require a continuous input while issuing a voice command, e.g., require that the foot pedal be continuously depressed at a certain position.


Upon receipt of a valid request for a voice command, the interface 1020 will generate a confirmation to notify the operator that a request for a voice command was recognized and that the interface 1020 is waiting for a voice command (decision block 2020) and (action block 2030). The confirmation can be audible, e.g., a beep, and/or visual, e.g., a notification on the display monitor 1050. After confirmation (action block 2030), the interface 1020 will then listen for a voice command (action block 2040) associated with a function of the surgical system 1030, e.g., in the case of a phacoemulsification system 100, aspiration rate, irrigation rate, phaco power level, etc . . . Other examples will be described below.


The interface 1020 can be configured to wait a finite time period to receive a valid voice command after a valid request for a voice command has been received and confirmed. If a voice command has not yet been received (decision block 2050), then the interface 1020 will determine whether the finite time period has lapsed (decision block 2060), and if so, then the interface 1020 will wait/listen for another request for a voice command (start block 2010). If the finite time period has not lapsed, then the interface 1020 will continue to wait for a voice command (action block 2040). Upon receipt of a voice command, the interface 1020 will then determine whether the voice command is valid (decision block 2070). This determination can be made using a number of factors, including without limitation whether the voice of the received voice command matches the voice of the request for a voice command, whether the voice of the received voice command matches a valid operator's voice, and/or whether the received voice command matches an internal table of configured recognized voice commands. If no valid voice command has been received yet (decision block 2070), then the interface 1020 will determine whether the finite time period has lapsed (decision block 2060).


If a valid command has been received (decision block 2070), the interface 1020 will then interpret the valid voice command into a command recognizeable by the surgical system 1030, e.g., a computer readable data string, and forward the interpreted command to the surgical system 1030 for execution (action block 2080), and a confirmation of the executed command will be generated (action block 2090). This confirmation notifies the surgeon of the completed execution of the command, which can be in the form of an audio signal and/or visual signal. After confirmation of the executed command, the interface 1020 will then listen for another request for a voice command (start block 2010). An additional safety component can further be added, which determines whether the received voice command conflicts with a command from another input device, such as the foot pedal (not shown). For example, a voice command may be associated with the increase of power; however the foot pedal is set at a position for decreasing power. The interface 1020 can be configured to have either one interface or the other take priority, or have both interfaces fail and an alert generated notifying the operator.


The approach described above circumvents the need for a subsequent confirmation by the operator after the operator has submitted a voice command, which will substantially reduce delays during operation compared to prior existing voice interfaces. These prior voice interfaces require the subsequent confirmation because the prior interfaces cannot distinguish between a valid voice command or incidental noise near the microphone that is similar to a valid voice command. This is partly due to the fact that the prior interfaces have to be prepared to receive a voice command at any time. In the system 1000 described above; however, the interface 1020 will not listen for a voice command until a valid request for a voice command is received. Thus, the interface 1020 can expect the next voice signal received to be a valid voice command. In this approach, request for a voice command, voice command, and all other incidental noise can be readily distinguishable by the interface 1020, and the system 1000 can execute the voice command without further confirmation.


In the case of a phacoemulsification surgical system, the following is a sample list of parameters that can be configured to be associated with voice commands recognizeable by a voice control interface 1020 in accordance with a preferred embodiment:


“Phaco <XX>” where XX is an integer between 1 and 4: While the phacoemulsification system is in a mode to perform the actual phacoemulsification procedure, known as “phaco mode,” the surgeon may have different settings for different situations depending on, for example, hardness of cataract, stage of procedure, etc . . . . The different settings, e.g., ultrasonic power, irrigation rate, etc . . . , may be stored in different modes, which can be labeled by numbers, e.g., 1 thru 4, which thus can be invoked by voice command.


“IA <XX>” where XX is an integer between 1 and 3: The different irrigation and aspiration settings (“IA”) can be stored and preset in different modes, which also can be labeled by numbers, e.g., 1 thru 3, and invoked by voice command.


“Diathermy <XX>” where XX is an integer between 1 and 2: Diathermy is a mode of operation in which a surgeon can cauterize any bleeding wounds, and again, involves various settings known in the art which can be preset and stored by modes, labeled by numbers and invoked by voice command.


“Vitrectomy <XX>” where XX is an integer between 1 and 2: This mode of operation for the phacoemulsification system relates to cutting the vitreous of the eye, and also involves various settings stored by different modes.


“Light <XX>” where XX is an integer between 0 and 10: This command allows for different light settings, e.g., intensity of light.


“Bottle <XX>” where XX is an integer between 0 and 107, “Bottle Up”, “Bottle Down”, and “Bottle Height”: All are commands that control irrigation bottle height, in units, e.g., inches, or percentage, which controls irrigation flow and pressure.


“CASE <XX>” where XX is an integer between −2 and +2: The various settings related to the fluidics of the phasoemulsification system can be stored in different modes controllable by voice command. “CASE” and fluidics control are described in U.S. patent application Ser. No. 11/401,529, entitled “APPLICATION OF A SYSTEM PARAMETER AS A METHOD AND MECHANISM FOR CONTROLLING EYE CHAMBER STABILITY” and U.S. patent application Ser. No. 11/086,508, entitled “APPLICATION OF VACUUM AS A METHOD AND MECHANISM FOR CONTROLLING EYE CHAMBER STABILITY”, both of which are herein incorporated by reference in their entirety.


“Vacuum <XX>” where XX is an integer between 0 and 650, and “Max Vac”: These commands control vacuum settings.


“Flow <XX>” where XX is an integer between 0 and 60, and “Max Flow”: These commands control flow settings.


“Power <XX>” where XX is an integer between 0 and 100, and “Max Power”: These commands control ultrasonic power settings, which can be preset and stored in different modes. In addition, if the power is emitted in pulses, than the rate or the duty cycle of the pulses can be controlled by voice command. A description of the control of duty cycles of pulse emitted ultrasonic power is described in U.S. patent application Ser. No. 10/680,595, entitled “CONTROL OF PULSE DUTY CYCLE BASED UPON FOOTSWITCH DISPLACEMENT,” which is hereby incorporated by reference in its entirety. Settings related to the power and the duty cycles can be controlled directly or through modes such as those described above.


Other features that can be controlled by the voice interface 1020 include a dictation system (not shown) which records narration and commands provided by operator; the video monitor 1050 screen, wherein, e.g., the application windows in the screen can be switched by voice command; and a video recording system (not shown).


For phacoemulsification systems that include multiple pumps, e.g., a peristaltic and/or a venturi pump known in the art, the voice control interface 1020 can also be utilized to switch between the various pumps.


Turning to FIG. 5, a computer controllable microscope system 1060 can be coupled with the voice controlled interface 1020. The computer controllable microscope 1060 can include a processor for controlling features of the microscope such as auto focus and zoom (not shown), which then can be coupled to one or more mechanical servos or actuators for mechanically controlling such features. In the alternative, computer and servo/actuator components can be added to a manually controlled microscope (not shown), as one of ordinary skill in the art would appreciate. The voice controlled interface 1020 coupled to the microscope system 1060 can then enable an operator to vocally command the features of the microscope such as zoom and focus.


In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, the reader is to understand that the specific ordering and combination of process actions described herein is merely illustrative, and the invention may appropriately be performed using different or additional process actions, or a different combination or ordering of process actions. For example, this invention is particularly suited for applications involving medical systems, but can be used beyond medical systems in general. As a further example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.

Claims
  • 1. A voice controlled surgical system comprising: a surgical system;a microphone coupled to the surgical system; anda voice controlled computer interface coupled with the surgical system configured to receive a request to invoke a voice command via the microphone, to listen for a voice command upon receipt of a valid request to invoke a voice command, to interpret a valid voice command into a command recognizeable by the surgical system upon receipt of the valid voice command, and to forward the command recognizeable by the surgical system to the surgical system for execution.
  • 2. The system of claim 1, wherein the surgical system is a phacoemulsification system.
  • 3. The system of claim 1, wherein the request to invoke a voice command is a vocal request.
  • 4. The system of claim 1, further comprising a foot pedal coupled with the surgical system, wherein the foot pedal includes a switch configured to invoke a request to invoke a voice command.
  • 5. The system of claim 1, further comprising a peripheral device coupled to the surgical system configured to invoke a request to invoke a voice command.
  • 6. The system of claim 1, wherein the voice controlled surgical system is configured to generate a confirmation signal upon receipt of a valid request to invoke a voice command, wherein the confirmation is in the form of an audio signal or a visual signal.
  • 7. The system of claim 1, wherein the voice controlled surgical system is configured to generate a confirmation signal upon receipt of a valid voice command, wherein the confirmation is in the form of an audio signal or a visual signal.
  • 8. A computer program product that includes a computer-usable medium having a sequence of instructions which, when executed by a processor, causes said processor to execute a process for providing a voice controlled interface coupled to a surgical system, said process comprising: receiving a request to invoke a voice command associated with a function of the surgical system;listening for a voice command upon receipt of a valid request to invoke a voice command;interpreting a valid voice command into a command recognizeable by the surgical system upon receipt of the valid voice command; andforwarding the command recognizeable by the surgical system to the surgical system for execution.
  • 9. The computer program product of claim 8, wherein the surgical system is a phacoemulsification system.
  • 10. The computer program product of claim 8, wherein the request to invoke a voice command is a vocal request.
  • 11. The computer program product of claim 8, wherein the request to invoke a voice command comes from a foot pedal coupled to the surgical system.
  • 12. The computer program product of claim 8, wherein the request to invoke a voice command comes from a computer peripheral device coupled to the surgical system.
  • 13. The computer program product of claim 8, wherein the computer program product is configured to generate a confirmation signal upon receipt of a valid request to invoke a voice command, wherein the confirmation is in the form of an audio signal or a visual signal.
  • 14. The computer program product of claim 8, wherein the computer program product is configured to generate a confirmation signal upon receipt of a valid voice command, wherein the confirmation is in the form of an audio signal or a visual signal.
  • 15. A method for providing a voice controlled interface coupled to a surgical system, said process comprising: receiving a request to invoke a voice command associated with a function of the surgical system;listening for a voice command upon receipt of a valid request to invoke a voice command;interpreting a valid voice command into a command recognizeable by the surgical system upon receipt of the valid voice command; andforwarding the command recognizeable by the surgical system to the surgical system for execution.
  • 16. The method of claim 15, wherein the surgical system is a phacoemulsification system.
  • 17. The method of claim 15, wherein the request to invoke a voice command is a vocal request.
  • 18. The method of claim 15, wherein the request to invoke a voice command comes from a foot pedal coupled to the surgical system.
  • 19. The method of claim 15, wherein the request to invoke a voice command comes from a computer peripheral device coupled to the surgical system.
  • 20. The method of claim 15, further comprising generating a confirmation signal upon receipt of a valid request to invoke a voice command, wherein the confirmation is in the form of an audio signal or a visual signal.
  • 21. The method of claim 15, further comprising generating a confirmation signal upon receipt of a valid voice command, wherein the confirmation is in the form of an audio signal or a visual signal.