Systems and methods for voltage regulation using split-conductors with loop current reduction

Information

  • Patent Grant
  • 10468880
  • Patent Number
    10,468,880
  • Date Filed
    Wednesday, April 5, 2017
    7 years ago
  • Date Issued
    Tuesday, November 5, 2019
    5 years ago
Abstract
A split-conductor electrical-injection power substation uses an array of series and parallel electrical-injection devices to control power flow in the power grid. The split-conductors allow the use of smaller electrical-injection devices in higher current distribution systems. The electrical injection devices introduce small voltage differences between the split-conductor wires because of electrical injection and sensor variations. The small voltage variations cause large loop currents on the low-impedance wires. Sensors detect current differences in the split-conductor wires and use feedback to adjust injected voltages, thereby reducing the loop currents.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to systems and methods for line balancing and optimizing power transmission over the grid.


2. Prior Art

Congested networks limit system reliability and increase the cost of power delivery by having part of the power dissipated in unbalanced circuits. Unbalanced circuits cause power flow loop currents and have an associated power loss. Also, substantially out-of-phase voltages and currents on the transmission lines reduce the capacity of the lines to transfer real power from the generator to the distribution substation. To remove the out-of-phase voltages limitation, there exists a need to have high-voltage (HV) power grids with transmission lines that are balanced; with power transfer shared substantially using optimization methods; with reasonable power factor; and with controllable phase differences between the alternating voltage and alternating current. These improvements reduce the loop currents and associated losses and increase real power transfer over the grid up to the power transfer capacity of the lines. Active power flow control provides an ideal solution for this power flow problem by altering the line impedances and voltages, and by changing the angle of the voltage on the respective line, thereby controlling power flow. At present, there are few solutions for distributed control of the power grid that are both effective and reliable. One such effective and reliable system is the PowerLine Guardian®—a commercial product available from the assignee of the current application.



FIG. 1 shows a top view of an electrical injection substation for balancing the power grid. The electrical injection substation contains an array of electrical injection devices (EIDs) 303. The EIDs 303 are mounted on towers 301 using lateral apparatus structural supports 305 which also provide electrical isolation. The primary structural elements, towers 301, are symmetrically loaded around the vertical axis to reduce unbalanced loads on the structural element. The transmission line conductors 315 typically connect to the power grid and are then connected to each device 303 in a series or parallel configuration. The EIDs 303 inject impedance or voltage into the transmission line conductors 315 to modify the voltage and electrical properties to balance the power grid. The lateral apparatus structural supports 305 provide the lateral distance needed to meet clearance requirements to other devices and support elements of tower 301. The lateral apparatus structural support insulators 305 are arranged to maximize the density of devices in a horizontal plane and reduce the interstitial spacing 306 while maintaining each device's radial and horizontal spacing clearances 304, 307, and 314.



FIG. 2 shows an elevation view of the electrical injection substation shown in FIG. 1. A power grid typically uses three HV transmission line wires to transmit power in three different phases. Each of these three HV transmission line wires connects to a separate transmission line conductor 315. Each of the three transmission line conductors connect to a different row 200 of the array of EID devices 303.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings are made to point out and distinguish the invention from the prior art. The objects, features, and advantages of the invention are detailed in the description taken together with the drawings.



FIG. 1 is a top view of electrical injection substation used for balancing the power grid. (Prior art)



FIG. 2 is an elevation view showing an electrical injection substation connected to the power grid. (Prior art)



FIG. 3a is an exemplary conceptual diagram showing multiple EIDs connected to each wire of a split-conductor.



FIG. 3b is an exemplary top view of an electrical injection substation using split-conductors.



FIG. 4 is an exemplary conceptual diagram showing EIDs communicating with a split-conductor controller to control the loop current.



FIG. 5 is an exemplary block diagram of an EID for distributed active impedance injection on an HV transmission line.



FIG. 6 is an exemplary flowchart showing the actions of the split-conductor controller.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A split-conductor electrical-injection power substation uses EIDs to inject voltage and impedance into split-conductors. Splitting the transmission line conductor into multiple, parallel wires reduces the current in each wire, allowing the use of smaller electrical-injection devices in higher current distribution systems. The transmission line conductor may be split into any number of multiple, parallel wires, including but not limited to two and three split-wires.



FIG. 3a is an exemplary conceptual diagram 300 showing conductor 315 splitting into wires 316 and 317. The first split-conductor 316 connects to EIDs 320, 321 and 322.


The second split-conductor 317 connects to EIDs 330, 331 and 332. After electrical injection, the split-conductors 316 and 317 are rejoined to form transmission line conductor 315. Today's EIDs can inject up to 100V, next generation EID will be able to inject up to 400V, and future generations will inject even higher voltage levels. The electrical injection power substation uses as many EIDs as necessary to support the needed voltage variations of the power grid.



FIG. 3b is an exemplary split-conductor electrical injection substation diagram showing one way of modifying the wiring arrangement of FIG. 1 to support split-conductors. The first half 316 of the split-conductor connects to EIDs 320, 321 and 322.


The second half 317 of the split-conductor connects to EIDs 330, 331 and 332. After electrical injection, the split-conductors 316 and 317 connect to EIDs mounted on the next tower. There are many alternate ways of connecting split-conductors to EIDs. For example, the EIDs mounted on the first, third, fifth, etc. towers could all connect to the first split-conductor and the EIDs mounted on even numbered towers could connect to the second split-conductor.


In one scenario, 30 EIDs inject 100V on the first split-conductor, and 30 EIDs inject 100V on a second split-conductor. In practice, the EIDs will inject different voltages. Each EID will have a voltage injection tolerance which might typically be 1%. In a worst-case scenario the first 30 EIDs inject 100V each and the second 30 EIDs inject 99V. Thus, the two split-conductors will have a voltage differential of 30V. When the two split-conductors are connected, current will flow from the higher voltage split-conductor to the lower voltage split-conductor causing what is known as a loop current. The split-conductor wires have low impedance so a 30V differential could cause a high loop current of several hundred amps. Without regulation and control, these loop currents will be difficult to predict. For example, the loop current direction may vary from day to day. The EIDs and wires need to be able to support both the expected current and the loop current. A single EID failure will normally create a 100V voltage differential between the split-conductors. This regulation and control requires sophisticated synchronization methods to enable the devices to have a normal operation. There are numerous communication and control schemes available to control the EIDs 303.


The electrical injection substation detects loop currents by measuring the current difference between the split-conductors. For example, the first split-conductor could have a current of 600 A and a second split-conductor could have a current of 500 A. In this case, the loop current is 50 A. The electrical injection substation reduces the loop current by adjusting the injected voltages. A split-conductor controller controls the voltage injection levels of the numerous EIDs and ensures all devices are synchronized.



FIG. 4 is an exemplary conceptual diagram 400 showing EIDs communicating to control loop currents. In a preferred embodiment, the EIDs communicate in a wireless manner. In a second embodiment, the EIDs communicate used wired connections. In a preferred embodiment of FIG. 4, EID 321 contains a split-conductor controller 410 that collects information from other EIDs and sends commands to other EIDs. The split-conductor controller 410 does not need to be contained in an EID, and can be a separate device in communication with EIDs. The split-conductor controller 410 can include a current sensor, or it can collect data from other sensors.


Adjustments to the EID devices such as EID 321 may include the phase, amplitude, and frequency of impedance or voltage injection. There are multiple control schemes available to control the timing and synchronization of the EID devices 303. The overall communications and control scheme has multiple layers. The top layer, for example, may focus on power flow control levels and may have access to energy management system and SCADA data. Meanwhile, the bottom layer of communication and control may focus on impedance or voltage injection. The bottom layer may also include loop current flow minimization. In a preferred embodiment, the control of the local parameters is controlled locally within the split-conductor electrical injection substation by a split-conductor controller. Data from device controllers can be aggregated into an aggregator or network coordinator. A gateway device may collect and send data to and from the network coordinator. A manager device may control the overall power flow levels required, which is then propagated back down through a communication architecture to the EID devices.


Each EID typically has a current sensor, commonly referred to as a current transformer, allowing it to measure the current in its connected split-conductor wire. The current transformers connected to the same split-conductor will produce slightly different measurements because of manufacturing tolerances in the current transformers. In a preferred embodiment, the split-conductor controller within master EID 321 receives current measurements from multiple EIDs so it can discard erroneous values, average results, and in general determine a more accurate assessment of the current in each split-conductor. Each EID with a current sensor can measure its own current in the same time-synchronized, time-coherent fashion. The split-conductor controller compares and averages current values concurrently. In a preferred embodiment, each EID takes the root-mean-square (RMS) value of the current over one cycle, adds a time-stamp of the value, and communicates the value and time-stamp to the split-conductor controller. In alternate embodiments the EIDs take current measurements using alternative methods including a) taking an average current over a different time period, and b) using different averaging methods.


In an alternate embodiment, the split-conductor controller receives a current measurement from only one EID on each of the other split-conductor wires. In this embodiment, the split-conductor controller uses its own current measurement and compares the single current measurement for each wire.


In a preferred embodiment, the EIDs use the IEEE 1588 precision time protocol (PTP) which provides a standard method to synchronize devices on a network with sub-microsecond precision. The protocol synchronizes slave clocks to a master clock ensuring that events and timestamps in all devices use the same time base. In an alternative embodiment, the EIDs use different methods of synchronizing their clocks including (1) using the network time protocol (NTP) or (2) using laser pulses.


The split-conductor controller analyzes the current measurements and sends adjustment commands to the other EIDs, as described later.



FIG. 5 shows an exemplary EID having a plurality of secondary windings each associated with an electrical injection unit (EIU). The exemplary EIUs 400A and 400B are shown, each having a single-turn of primary winding transformer 401A and 401B, though this is not a limitation. Each EID may have multiple EIUs. It is not uncommon to have between one and more than seven EIUs in a single EID, for example. In this example, the primary winding of these transformers is the HV transmission line 108. Within the split-conductor electrical injection substation the HV transmission line 108 is a split-conductor wire. Other EIDs will connect the HV transmission line 108 to a multi-turn primary winding. The secondary windings of the transformers are electrically isolated from ground, being at the HV transmission line voltage, and are inductively coupled to the primary winding 108 using independent ungapped cores. In alternate embodiments, the EID can be a transformer-less solution.


The secondary circuit of each of the injection transformers 401A and 401B comprise power-electronic circuits for generation and injection of the inductive and capacitive impedances on to the HV transmission line 108. Each of the secondary winding circuits of the EIUs 400A and 400B is similar in structure, and as such, the block diagram is explained using the EIU 400A. The EIU 400A has a single-turn injection transformer 401A, having a shorting switch 304A across its secondary winding 401A-2 and a power converter 405A for generating the necessary voltages and currents at the appropriate phase angle for injecting on to the HV transmission line 108 via the single-turn injection transformer 401A coupled to it.


A master controller 508 in each EID is common to all the EIUs in an EID is enabled to sense the HV transmission line 108 current by way of a current transformer, with a separate power supply transformer providing power to the master controller, both shown schematically in FIG. 5 as sensor and power-supply transformer 502 coupled to the HV transmission line 108 via a sensor and power supply module 503. The master controller 508 provides the needed control instructions to the power converter 405A to generate and to inject the needed injection voltages to be impressed on the HV transmission line 108 for HV transmission line balancing and loop current control as commanded by the split-conductor controller 410 (FIG. 4). In other embodiments, the respective converter/inverter controllers may provide alternate redundant master-controller architectures. Therefore, the specific embodiment shown and described here is only representative. Within the split-conductor electrical injection substation the master controller 508 implements the functions of the split-conductor controller.


The single master controller 508 is also enabled to sense via the sensor and power supply transformer 502 and the connected sensor and power supply module 503 when over-current conditions exist in the HV transmission line and to provide instruction to the switch 304A to short the secondary winding 401A-2 of the injection transformer 401A in order to protect the power-electronic circuits and components connected to the secondary winding 401A-2 of the injection transformer 401A from damage due to high voltages and currents. Also as stated before, the sensor and power supply module 503 is also enabled to extract power from the line and provide the DC supply voltages needed by the power-electronics circuits connected to the secondary winding 401A-2 of the injection transformer 401A. Further as discussed before, the same set of components and blocks are repeated for the same functionality implemented by the second injection block 400B (EIU) and any further EIUs in the respective EID. The master controller 508 also contains a transceiver that provides the capability for the module containing the plurality of injection blocks for communication to the outside world to provide status and to be externally controlled and configured for operation. An exemplary virtual ground connection 509 from the secondary circuit to the HV transmission line is shown as grounding the converters 405A and 405B to the HV transmission line itself to eliminate any possibility of voltages accumulating between the EIDs and the HV transmission line.


The split-conductor electrical-injection power substation uses the split-conductor controller 410 (FIG. 3) that may be embodied in an EID or as a separate device to communicate with all EIDs of the respective group of split-conductors. The split-conductor controller 410 receives current measurements from the EIDs of that group of EIDs and transmits (or couples) electrical injection adjustment commands to all such EIDs. The non-master EID's master controllers 508 transmit current measurements to and receive electrical injection adjustment commands from the split-conductor controller. All EID's master controllers 508 communicate using the wireless communication unit 510. The master controller 508 may be implemented in many ways including a) as a processor with instructions in a memory; b) as an ASIC; c) as programmable logic.



FIG. 6 is an exemplary flowchart 600 showing the actions of the split-conductor controller. In step S610 the split-conductor controller receives current measurements, status information, and time-stamps from the other EIDs. In one embodiment the split-conductor controller requests this information. In an alternate embodiment, the EIDs send their own information to the split-conductor controller without it being requested. The status information describes the EID status and includes: a) whether the current measurement is valid; and b) whether the electric injection unit or units are working. The timestamp indicates when the current measurement was made.


In S620 the split-conductor controller computes the average current in each split-conductor wire. The split-conductor controller rejects invalid current measurements and measurements that lie too far from the median. The split-conductor controller compares the average current in each split-conductor wire to determine the current flows and whether injected voltages need to be increased or decreased.


In S630 the split-conductor controller 410 determines what adjustments need to be made, both for HV transmission line balancing and for loop current control. The split-conductor controller 410 decides which EIDs should be adjusted and what that adjustment should be. An EID may contain one or more electrical-injection units (EIUs). The split-conductor controller uses the following decision criteria:

    • a) If an EIU has just unexpectedly stopped (or started) working, then prepare commands to tell one EIU attached to each of the other split-conductor wires to stop (or start) working.
    • b) If the current differential is too large, then shut down the electric injection substation (disable the EIUs at the respective substation).
    • c) If the adjustment commands are not reducing the current differential, then shut down the electric injection substation (disable the EIUs at the respective substation).
    • d) If the current differential is small, then prepare adjustment commands to change the injected voltage for one EIU attached to each of the other split-conductor wires.
    • e) If the current differential is large, then prepare adjustment commands to change the injected voltage for each EIU.
    • f) If multiple EIUs are used to sense current in each split-conductor wire and the current sensed by one EIU for one split-conductor wire is erroneous for some reason, that sensed current is discarded and the remaining sensed currents for the remaining split-conductor wires are combined and used as the sensed current for that split-conductor.


In S640 the split-conductor controllers send the adjustment commands to the selected EIUs and EIDs.


In operation of the overall power distribution system, commands are sent wirelessly to the EIDs from one or more a) other substations, b) localized intelligence centers or c) the utility supervisory for power flow control, and the resulting loop currents are sensed by the EIDs, with feedback of the current measurements at the current sensing EIDs to the applicable split-conductor controller to reduce any sensed loop currents in the split conductors. The current measurements may be RMS values, average values, such as over one or more AC cycles, time synchronized substantially instantaneous values, or any other measurement desired. Any loop current measurement that differs by more than a predetermined amount from the other loop current measurements for the same split-conductor, such as the average of the currents sensed by other current sensors for the same split-conductor, is disregarded and the loop current control is based on the remaining current measurements, or alternatively, the EID is disabled and another EID is activated for that split-conductor in its place.


Thus the present invention has a number of aspects, which aspects may be practiced alone or in various combinations or sub-combinations, as desired. Also while certain preferred embodiments of the present invention have been disclosed and described herein for purposes of exemplary illustration and not for purposes of limitation, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A method of controlling power in a high voltage power distribution system comprising: for each conductor of the high voltage power distribution system: splitting the conductor into multiple split-conductors in a substation;coupling multiple electrical injection devices to each of the multiple split-conductors;sensing the current in each split-conductor; andcontrolling the multiple electrical injection devices to tend to equalize the currents in the split-conductors.
  • 2. The method of claim 1 further comprising controlling the multiple electrical injection devices to control power flow in the conductors of the high voltage power distribution system.
  • 3. The method of claim 2 wherein the multiple electrical injection devices are controlled wirelessly to control power flow in the conductors of the high voltage power distribution system and to equalize the currents in the split-conductors from a split-conductor controller that controls the electrical injection devices collectively responsive to a command for equalizing the currents in the conductors of the high voltage power distribution system, with feedback reapportioning the collective control of the electrical injection devices between electrical injection devices on different split-conductors of each conductor of the high voltage power distribution system to tend to equalize the currents in the respective split-conductors.
  • 4. The method of claim 2 wherein the commands for controlling the multiple electrical injection devices to control power flow in the conductors of the high voltage power distribution system are received wirelessly from one or more a) substations, b) localized intelligence centers or c) the utility supervisory.
  • 5. The method of claim 1 wherein the current in each split-conductor is sensed in all or less than all multiple electrical injection devices coupled to the respective multiple split-conductors and the currents sensed are combined for the measure of the current in the respective split-conductor.
  • 6. The method of claim 5 wherein the currents sensed in each split-conductor are averaged over one or multiple cycles of the alternating current.
  • 7. The method of claim 5 wherein the currents sensed in each split-conductor are RMS currents sensed over one or more cycles time-synchronized with all sensed currents in the split-conductors of the respective conductor of the high voltage power distribution system.
  • 8. The method of claim 5 wherein when a difference between a current sensed and other sensed currents for a split-conductor exceeds a predetermined difference, the respective electrical injection device is disabled and another electrical injection device coupled to the same split conductor is enabled to provide for the electrical injection intended for the disabled electrical injection device.
  • 9. The method of claim 5 wherein when a difference between one current sensed and other sensed currents for a split-conductor exceeds a predetermined difference, that one current sensed is disregarded and the other currents sensed are combined for the measure of the current in the respective split-conductor.
  • 10. The method of claim 1 wherein the number of split-conductors or each conductor is two.
  • 11. The method of claim 1 wherein the number of split-conductors or each conductor is three.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/422,188 filed Nov. 15, 2016.

US Referenced Citations (164)
Number Name Date Kind
2237812 De Blieux Apr 1941 A
2551841 Kepple et al. May 1951 A
3556310 Loukotsky Jan 1971 A
3704001 Sloop Nov 1972 A
3750992 Johnson Aug 1973 A
3913003 Felkel Oct 1975 A
4025824 Cheatham May 1977 A
4057736 Jeppson Nov 1977 A
4103853 Bannan Aug 1978 A
4164345 Arnold et al. Aug 1979 A
4200899 Volman et al. Apr 1980 A
4277639 Olsson Jul 1981 A
4286207 Spreadbury et al. Aug 1981 A
4323722 Winkelman Apr 1982 A
4367512 Fujita Jan 1983 A
4514950 Goodson, Jr. May 1985 A
4562360 Fujimoto Dec 1985 A
4577826 Bergstrom et al. Mar 1986 A
4710850 Jahn et al. Dec 1987 A
4821138 Nakano et al. Apr 1989 A
4903927 Farmer Feb 1990 A
5006846 Granville et al. Apr 1991 A
5023768 Collier Jun 1991 A
5032738 Vithayathil Jul 1991 A
5193774 Rogers Mar 1993 A
5461300 Kappenman Oct 1995 A
5469044 Gyugyi et al. Nov 1995 A
5513061 Gelbien Apr 1996 A
5610501 Nelson et al. Mar 1997 A
5648888 Le Francois et al. Jul 1997 A
5844462 Rapoport et al. Dec 1998 A
5884886 Hageli Mar 1999 A
5886888 Akamatsu et al. Mar 1999 A
5986617 McLellan Nov 1999 A
6088249 Adamson Jul 2000 A
6134105 Lueker Oct 2000 A
6147581 Rancourt et al. Nov 2000 A
6215653 Cochran et al. Apr 2001 B1
6233137 Kolos et al. May 2001 B1
6335613 Sen et al. Jan 2002 B1
6486569 Couture Nov 2002 B2
6727604 Couture Apr 2004 B2
6831377 Yampolsky et al. Dec 2004 B2
6895373 Garcia et al. May 2005 B2
6914195 Archambault et al. Jul 2005 B2
7090176 Chavot et al. Aug 2006 B2
7091703 Folts et al. Aug 2006 B2
7105952 Divan et al. Sep 2006 B2
7193338 Ghali Mar 2007 B2
7352564 Courtney Apr 2008 B2
7460931 Jacobson Dec 2008 B2
7642757 Yoon et al. Jan 2010 B2
7688043 Toki et al. Mar 2010 B2
7834736 Johnson et al. Nov 2010 B1
7835128 Divan et al. Nov 2010 B2
7932621 Spellman Apr 2011 B1
8019484 Korba et al. Sep 2011 B2
8249836 Yoon et al. Aug 2012 B2
8270558 Dielissen Sep 2012 B2
8310099 Engel et al. Nov 2012 B2
8401709 Cherian et al. Mar 2013 B2
8441778 Ashmore May 2013 B1
8497592 Jones Jul 2013 B1
8680720 Schauder et al. Mar 2014 B2
8681479 Englert et al. Mar 2014 B2
8816527 Ramsay et al. Aug 2014 B1
8825218 Cherian et al. Sep 2014 B2
8867244 Trainer et al. Oct 2014 B2
8872366 Campion et al. Oct 2014 B2
8890373 Savolainen et al. Nov 2014 B2
8896988 Subbaiahthever et al. Nov 2014 B2
8922038 Bywaters et al. Dec 2014 B2
8957752 Sharma et al. Feb 2015 B2
8996183 Forbes, Jr. Mar 2015 B2
9099893 Schmiegel et al. Aug 2015 B2
9124100 Ukai et al. Sep 2015 B2
9124138 Mori et al. Sep 2015 B2
9130458 Crookes et al. Sep 2015 B2
9172246 Ramsay et al. Oct 2015 B2
9178456 Smith et al. Nov 2015 B2
9185000 Mabilleau et al. Nov 2015 B2
9207698 Forbes, Jr. Dec 2015 B2
9217762 Kreikebaum et al. Dec 2015 B2
9246325 Coca Figuerola et al. Jan 2016 B2
9325173 Varma et al. Apr 2016 B2
9331482 Huang May 2016 B2
9563218 Hall Feb 2017 B2
9659114 He et al. May 2017 B2
9843176 Gibson et al. Dec 2017 B2
20020005668 Couture Jan 2002 A1
20020042696 Garcia et al. Apr 2002 A1
20030006652 Couture Jan 2003 A1
20030098768 Hoffmann et al. May 2003 A1
20040153215 Kearney Aug 2004 A1
20040217836 Archambault et al. Nov 2004 A1
20050052801 Ghali Mar 2005 A1
20050073200 Divan et al. Apr 2005 A1
20050194944 Folts et al. Sep 2005 A1
20050205726 Chavot et al. Sep 2005 A1
20060085097 Courtney Apr 2006 A1
20070135972 Jacobson Jun 2007 A1
20070250217 Yoon et al. Oct 2007 A1
20080103737 Yoon et al. May 2008 A1
20080157728 Toki et al. Jul 2008 A1
20080177425 Korba et al. Jul 2008 A1
20080278976 Schneider et al. Nov 2008 A1
20080310069 Divan et al. Dec 2008 A1
20090243876 Lilien et al. Oct 2009 A1
20090281679 Taft et al. Nov 2009 A1
20100026275 Walton Feb 2010 A1
20100177450 Holcomb Jul 2010 A1
20100213765 Engel et al. Aug 2010 A1
20100302744 Englert et al. Dec 2010 A1
20110060474 Schmiegel et al. Mar 2011 A1
20110095162 Parduhn et al. Apr 2011 A1
20110106321 Cherian et al. May 2011 A1
20110172837 Forbes, Jr. Jul 2011 A1
20120105023 Schauder et al. May 2012 A1
20120146335 Bywaters et al. Jun 2012 A1
20120205981 Varma et al. Aug 2012 A1
20120242150 Ukai et al. Sep 2012 A1
20120255920 Shaw et al. Oct 2012 A1
20120293920 Subbaiahthever et al. Nov 2012 A1
20130002032 Mori et al. Jan 2013 A1
20130033103 McJunkin et al. Feb 2013 A1
20130044407 Byeon et al. Feb 2013 A1
20130094264 Crookes et al. Apr 2013 A1
20130128636 Trainer et al. May 2013 A1
20130166085 Cherian et al. Jun 2013 A1
20130169044 Stinessen et al. Jul 2013 A1
20130182355 Coca Figuerola et al. Jul 2013 A1
20130184894 Sakuma et al. Jul 2013 A1
20130200617 Smith et al. Aug 2013 A1
20130249321 Gao et al. Sep 2013 A1
20130277082 Hyde et al. Oct 2013 A1
20130345888 Forbes, Jr. Dec 2013 A1
20140008982 Powell Jan 2014 A1
20140025217 Jin et al. Jan 2014 A1
20140032000 Chandrashekhara et al. Jan 2014 A1
20140111297 Earhart et al. Apr 2014 A1
20140129195 He et al. May 2014 A1
20140132229 Huang May 2014 A1
20140153383 Mabilleau et al. Jun 2014 A1
20140188689 Kalsi et al. Jul 2014 A1
20140203640 Stinessen Jul 2014 A1
20140210213 Campion et al. Jul 2014 A1
20140246914 Chopra et al. Sep 2014 A1
20140247554 Sharma et al. Sep 2014 A1
20140266288 Trabacchin Sep 2014 A1
20140268458 Luciani et al. Sep 2014 A1
20140312859 Ramsay et al. Oct 2014 A1
20140327305 Ramsay et al. Nov 2014 A1
20140347158 Goeke et al. Nov 2014 A1
20150012146 Cherian et al. Jan 2015 A1
20150029764 Peng Jan 2015 A1
20150051744 Mitra Feb 2015 A1
20150184415 Bushore Jul 2015 A1
20150226772 Kreikebaum et al. Aug 2015 A1
20150244307 Cameron Aug 2015 A1
20150270689 Gibson et al. Sep 2015 A1
20160036231 Ramsay et al. Feb 2016 A1
20160036341 Jang et al. Feb 2016 A1
20170163036 Munguia et al. Jun 2017 A1
20170169928 Carrow et al. Jun 2017 A1
Foreign Referenced Citations (13)
Number Date Country
660094 Mar 1987 CH
103256337 Aug 2013 CN
203668968 Jun 2014 CN
2002-199563 Jul 2002 JP
2005-045888 Feb 2005 JP
2015-086692 May 2015 JP
10-1053514 Aug 2011 KR
WO-2008082820 Jul 2008 WO
WO-2014035881 Mar 2014 WO
WO-2014074956 May 2014 WO
WO-2014099876 Jun 2014 WO
WO-2015074538 May 2015 WO
WO-2015119789 Aug 2015 WO
Non-Patent Literature Citations (25)
Entry
Amin, S. M. et al., “Toward a Smart Grid: Power Delivery for the 21st Century”, IEEE power & energy magazine, vol. 3, No. 5, Sep./Oct. 2005, pp. 34-41.
Angeladas, Emmanouil , “High Voltage Substations Overview (part 1)”, Siemens, Jan. 24, 2013, pp. 1-8.
Aquino-Lugo, Angel A. , “Distributed and Decentralized Control of the Power Grid”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2010, 172 pp. total.
Dash, P. K. et al., “Digital Protection of Power Transmission Lines in the Presence of Series Connected FACTS Devices”, IEEE Power Engineering Society Winter Meeting, 2000, pp. 1967-1972.
Divan, D. M. , “Nondissipative Switched Networks for High-Power Applications”, Electronics Letters, vol. 20, No. 7, Mar. 29, 1984, pp. 277-279.
Funato, Hirohito et al., “Realization of Negative Inductance Using Variable Active-Passive Reactance (VAPAR)”, IEEE Transactions on Power Electronics, vol. 12, No. 4, Jul. 1997, pp. 589-596.
Gyugyi, Laszlo et al., “Status Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines”, IEEE Transactions on Power Delivery, vol. 12, No. 1, Jan. 1997, pp. 406-417.
Gyugyi, Laszlo et al., “The Interline Power Flow Controller Concept: A New Approach to Power Flow Management in Transmission Systems”, IEEE Transactions on Power Delivery, vol. 14, No. 3, Jul. 1999, pp. 1115-1123.
Kavitha, M. et al., “Integration of FACTS into Energy Storage Systems for Future Power Systems Applications”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, Issue 2, Feb. 2013, pp. 800-810.
Kumbhar, Mahesh M. et al., “Smart Grid: Advanced Electricity Distribution Network”, IOSR Journal of Engineering (IOSRJEN), vol. 2, Issue 6, Jun. 2012, pp. 23-29.
Lambert, Frank C. , “Power Flow Control”, ISGT Europe, 2014, Istanbul, Turkey, Oct. 13, 2014, pp. 1-15.
Lehmkoster, Carsten , “Security Constrained Optimal Power Flow for an Economical Operation of FACTS-Devices in Liberalized Energy Markets”, IEEE Transactions on Power Delivery, vol. 17, No. 2, Apr. 2002, pp. 603-608.
Mali, Bhairavanath N. et al., “Performance Study of Transmission Line Ferranti Effect and Fault Simulation Model Using MATLAB”, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 4, Issue 4, Apr. 2016, pp. 49-52.
Mutale, Joseph et al., “Transmission Network Reinforcement Versus FACTS: An Economic Assessment”, IEEE Transactions on Power Systems, vol. 15, No. 3, Aug. 2000, pp. 961-967.
Ramchurn, Sarvapali D. et al., “Putting the ‘Smarts’ into the Smart Grid: A Grand Challenge for Artificial Intelligence”, Communications of the ACM, vol. 55, No. 4, Apr. 2012, pp. 86-97.
Reddy, D. M. et al., “FACTS Controllers Implementation in Energy Storage Systems for Advanced Power Electronic Applications—A Solution”, American Journal of Sustainable Cities and Society, Issue 2, vol. 1, Jan. 2013, pp. 36-63.
Renz, B. A. et al., “AEP Unified Power Flow Controller Performance”, IEEE Transactions on Power Delivery, vol. 14, No. 4, Oct. 1999, pp. 1374-1381.
Ribeiro, P. et al., “Energy Storage Systems”, Chapters 1-2.4 of Section entitled “Energy Storage Systems” in Electrical Engineering—vol. III, edited by Kit Po Wong, Encyclopedia of Life Support Systems (EOLSS) Publications, Dec. 13, 2009, 11 pp. total.
Schauder, C. D. et al., “Operation of the Unified Power Flow Controller (UPFC) Under Practical Constraints”, IEEE Transactions on Power Delivery, vol. 13, No. 2, Apr. 1998, pp. 630-639.
Siemens Sas, , “Portable Power Solutions, “Plug and play” High Voltage E-Houses, skids and mobile high voltage substations up to 420 kV”, Nov. 2015, 8 pp. total.
Swain, S. C. et al., “Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm”, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 5, No. 3, 2011, pp. 399-407.
Xue, Yiyan et al., “Charging Current in Long Lines and High-Voltage Cables—Protection Application Considerations”, 67th Annual Georgia Tech Protective Relaying Conference, Atlanta, Georgia, May 8-10, 2013, pp. 1-17.
Albasri, Fadhel A. et al., “Performance Comparison of Distance Protection Schemes for Shung-FACTS Compensated Transmission Lines”, IEEE Transactions on Power Delivery, vol. 22, No. 4, Oct. 2007, pp. 2116-2125.
Bhaskar, M. A. et al., “Impact of FACTS devices on distance protection in Transmission System”, 2014 IEEE National Conference on Emerging Trends in New & Renewable Energy Sources and Energy Management (NCET NRES EM), Dec. 16, 2014, pp. 52-58.
Samantaray, S. R. , “A Data-Mining Model for Protection of FACTS-Based Transmission Line”, IEEE Transactions on Power Delivery, vol. 28, No. 2, Apr. 2013, pp. 612-618.
Related Publications (1)
Number Date Country
20180138702 A1 May 2018 US
Provisional Applications (1)
Number Date Country
62422188 Nov 2016 US