The present invention relates generally to semiconductor manufacturing and more particularly to a system for cleaning wafers.
Polishing slurries used for planarization processes, such as chemical-mechanical polishing (CMP) processes, are typically aqueous suspensions, comprising metal oxide abrasive, organic acids, surfactants, and a suitable oxidizing agent. The oxidizing agent enhances mechanical removal of material via a corrosion assisted process. Such oxidizing agents employed in commercially available or proprietary slurries are typically inorganic metal salts such as FeNO3, or KIO3, and also hydrogen peroxide. Other chemicals, such as organic acids, are added-to slurries to improve dispersion and/or enhance performance. Sodium, potassium, and iron salts and/or compounds are frequently used in slurry formulations, and significant measurements of these metal ion impurities remain on the wafer after polishing and post-polish cleaning. The particulate materials are extremely difficult to remove without adversely affecting the polished surface.
Wafer cleaning systems are provided. An exemplary embodiment of a wafer cleaning system comprises: a first brush; a second brush; a brush motor, and a controller. The second brush is positioned parallel to the first brush. The brush motor rolls the first and second brushes, respectively. The controller moves at least one of the first and second brushes from a first position to a second position according to a driving current of the brush motor.
Workpiece processing methods are provided. An exemplary embodiment of a workpiece is cleaned with a pair of rolling brushes positioned at a first position. A measurement of a driving current is received, wherein the driving current is utilized to roll the brush when it is at the first position. A preset schedule is provided, specifying the relationship between the driving current and the distance between the outer surfaces of the first and second brushes. A second brush position is determined according to the measurement of the driving current and the preset schedule. The brushes are moved from the first position to the second position. The workpiece is cleaned with the pair of rolling brushes positioned at the second position.
Methods for controlling a brush assembly are also provided. An exemplary embodiment of a brush assembly used for wafer cleaning comprises a pair of brushes positioned at a first position rolling when cleaning a wafer. A preset schedule is provided, specifying the relationship between the driving current and the distance between the outer surfaces of the first and second brushes. A measurement of a driving current is received, wherein the driving current utilized to roll the brush when it is at the first position. A second position for the pair of brushes is determined according to the measurement of the driving current and the preset schedule.
The method for controlling a brush assembly may take the form of program code embodied in a tangible media. When the program code is loaded into and executed by a machine, the machine becomes a system for practicing embodiments of the invention.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The present invention will now be described with reference to FIGS. 2 to 4, which generally relate to a manufacturing system implementing a method for operating a brush assembly.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration of specific embodiments. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The leading digit(s) of reference numbers appearing in the Figures corresponds to the Figure number, with the exception that the same reference number is used throughout to refer to an identical component which appears in multiple Figures.
The manufacturing system 200 comprises a processing station 20, a Computer Integrated Manufacturing system (CIM) 23, and a Fault Detection Control system (FDC) 25. The CIM 23 and FDC 25 connect to databases 24 and 26, respectively.
The processing station 20 performs a CMP process and a post-CMP cleaning process, comprising a CMP tool 210 and a cleaning tool 230.
The CMP tool 210 comprises platens 211˜213. Platens 211, 212, and 213 are used for different CMP stages, wherein different types of polishing slurry and different processing recipes are used in those different CMP stages. For example, a first CMP stage is performed at platen 211, wherein a buck of material, such as Cu, is removed. An eddy current endpoint mechanism is used in the first stage for detecting a process endpoint. A second CMP stage is performed at platen 212, wherein a lower down force is implemented, and the wafer surface is further polished. An i-scan endpoint mechanism is used in the second stage for detecting a process endpoint. A third CMP stage is performed at platen 213, wherein a final polishing is performed. A processing time mechanism is used in the third stage for determining a process endpoint.
The cleaning tool 230 comprises a megasonic cleaner 231, scrubbing cleaners 232 and 233, and a dryer 234. The megasonic cleaner 231 performs a cleaning process on a wafer using a megasonic mechanism after the wafer is processed by the CMP tool 210. The scrubbing cleaners 232 and 233 perform a wafer cleaning process using a brush assembly, respectively. The structure and operation of the scrubbing cleaners 232 and 233 are detailed in the following. The dryer 234 uses isopropyl alcohol (IPA) drying mechanism to remove water and moisture from the wafer processed by the megasonic cleaner 231 and scrubbing cleaners 232 and 233.
As shown in
First, a preset schedule is provided, specifying the relationship between the driving current and the distance between the outer surfaces of the first and second brushes (step S41). The preset schedule can be determined by experimenting and/or historical process data recorded during previous processes.
In step S42, a workpiece is cleaned with a pair of rolling brushes, wherein the pair of the brushes is positioned at a first position.
During the cleaning process, a measurement of a driving current for the brush rolling is obtained when the pair of brushes is positioned at the first position (step S43). The measurement is obtained by a cleaning tool, transferred to and stored in a CIM system. The CIM system stores measurements obtained during a plurality of process runs in a database. The stored measurements are retrieved from the CIM system, and used for cleaner adjustment periodically. Typically, a cleaning brush, such as a PVA brush, undergoes cleaning processes for 400˜500 wafers before it is severely worn. The texture and size of the brush changes during its lifetime, causing changes in a downward pressure exerted on a workpiece. Here, the data retrieval and cleaner adjustment can be performed at a lower frequency during the early in the life of the brush, and a higher frequency later in the life of the brush.
In step S44, stored measurements are retrieved from the CIM system, and used for cleaner adjustment. In step S45, a second position for the pair of brushes is determined according to the preset schedule and the retrieved measurements. Moving the pair of brushes from the first position to the second position compensates for brush wear. In step S46, the pair of brushes is moved from the first position to the second position. In step S47, a cleaning process is performed using the pair of brushes positioned at the second position.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. Those skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this invention. Therefore, the scope of the present invention shall be defined and protected by the following claims and their equivalents.