The technology disclosed describes systems and methods for implementing global profiling to track resource usage and performance for multiple threads across multiple servers for a cloud-based system. This disclosed technology provides global profiling to track resource usage across any part of a transaction as it passes between layers of a computing stack regardless of the language being executed, on logically different virtual machines across multiple servers. After data collection stops, the disclosed technology combines the results into a configurable profile view that accurately represents the order of execution of applications and methods, as though they ran on one machine. The disclosed technology builds multiple formats of the data files for different display visualizations.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for one or more implementations of this disclosure. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of this disclosure. A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is made with reference to the figures. Sample implementations are described to illustrate the technology disclosed, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows.
Cloud computing refers to a set of services that provide companies and application developers with the means to scale their application's resource usage through the Internet on demand. For example, developers can build applications on Amazon Web Services, Google App Engine and Microsoft Windows Azure.
A platform as a service (PaaS) is a category of cloud computing services that provides a platform allowing customers to develop, run and manage Web applications without the complexity of building and maintaining the infrastructure typically associated with developing and launching an app. A CRM is an example category of service that is deliverable as a PaaS. CRMs combine business processes and technology to organize, automate, and synchronize sales, marketing, customer service, and technical support, providing a platform for managing a company's interactions with current and future customers, to achieve the goal of getting and keeping the customers. A PaaS can be delivered as a public cloud service from a provider, where the consumer can control some software deployment and configuration settings, and the provider provides the networks, servers, storage, and core software services to host the consumer's customized application. Microsoft Azure is an example of a cloud computing platform and infrastructure, for building, deploying and managing applications and services. Force.com is another example PaaS a platform provided as a service to developers, with applications built using a proprietary Java-like programming language and an XML syntax that allows developers to create multitenant add-on applications that integrate into Salesforce.com applications, and are hosted on SFDC infrastructure.
When users at multiple organizations simultaneously make use of a cloud-based CRM or other PaaS, each user interacts with a separate logical instance. These stateless instances run independently on multiple servers that hold no record of previous instances or interactions. Each user instance gets handled based entirely on information included with the invocation. Due to multi-tenancy, multiple app servers participate in activities for an organization. One app server knows nothing about another app server. We must log data independently and post-process it to come up with a version that looks like it is a single cloud. Service users do not care about app service.
A tool called a profiler can perform a form of dynamic program analysis that measures the time complexity of a program, the usage of particular instructions, and the frequency and duration of function and method calls. This information aids developers as they debug and optimize programs. Historically profilers have collected data on an app server basis or across multiple servers, from an external viewpoint. This approach has limitations, as events get out of sequence in the logs due to the presence of multiple threads across multiple servers.
Developers who build and support applications that run on multi-user cloud-based software platforms need to be able to track resource usage across multiple invocations of controllers for different users across diverse organizations on multiple app servers. To discover problems, programmers need a cloud view perspective across the many threads of code combining the multiple instances into a single profile view so that the instances appear to have run on one machine.
The disclosed technology provides global profiling to track resource usage and performance across any part of a transaction as it passes between layers of a computing stack regardless of the language being executed on logically different virtual machines across multiple servers. After data collection stops, the disclosed technology combines the results into a configurable profile view that accurately represents the order of execution of applications and methods, as though they all ran on one machine building multiple formats of the data files for different display visualizations.
Profiling Environment
Filters 112 specify what is to be profiled; that is, they control a scope of profiling of service entry and service exit data across multiple services running on multiple hardware instances. The function of filtering is to reduce the load on the server by reducing the generation of events. A profile request can specify capture all events for a specific time span, or can filter for a single user (userID, also called user identifier), for one method or class (classID, also called class identifier), or for an organization (organization ID), or some combination of the filter options.
Logging engine 132 collects data for an instance and stores the data in high speed data stores 134, with a one-to-one mapping between instance and data store. That is, the data for a single instance is stored separately from the data for a different instance. Profiler UI 142 includes entry of filter options for a profile, and can display reports of data logged during the profiling time window, as described later. In an alternative implementation filter settings could be provided by a pre-configured test profile.
Multi-app server profiling environment 100 further includes a user computing device 155 with a web browser 175 and a mobile application 185. In other implementations, environment 100 may not have the same elements as those listed above and/or may have other/different elements instead of, or in addition to, those listed above.
In some implementations, the modules of multi-app server profiling environment 100 can be of varying types including workstations, servers, computing clusters, blade servers, server farms, or any other data processing systems or computing devices. Modules can be communicably coupled to the data store via a different network connection. For example, logging engine 132 can be coupled to a direct network link. In some implementations, it may be connected via a WiFi hotspot.
In some implementations, network(s) 135 can be any one or any combination of Local Area Network (LAN), Wide Area Network (WAN), WiFi, WiMAX, telephone network, wireless network, point-to-point network, star network, token ring network, hub network, peer-to-peer connections like Bluetooth, Near Field Communication (NFC), Z-Wave, ZigBee, or other appropriate configuration of data networks, including the Internet.
User computing device 155 includes a web browser 175 and/or a mobile application 185. In some implementations, user computing device 155 can be a personal computer, laptop computer, tablet computer, smartphone, personal digital assistant (PDA), digital image capture devices, and the like.
In some implementations, datastores can store information from one or more tenants into tables of a common database image to form an on-demand database service (ODDS), which can be implemented in many ways, such as a multi-tenant database system (MTDS). A database image can include one or more database objects. In other implementations, the databases can be relational database management systems (RDBMSs), object oriented database management systems (OODBMSs), distributed file systems (DFS), no-schema database, or any other data storing systems or computing devices.
For a platform as a service (PaaS) environment and for software as a service, the source code is maintained on servers and the compilation and runtime aspects are managed for users on the servers. For the disclosed technology, when a profiler request is activated, the request is mapped to the source code instance. That source code is compiled, and generated code is loaded into custom interpreters 106, 114 and 126 on the multi-app servers. These custom interpreters serve as wrappers for three example instances across multiple app servers. For example, custom interpreters 106, 114 and 126 may specify filters that capture profiling data for all events that make use of a particular class, and for events for a specific organization, such as Amazon. These wrappers also typically include service protection that ensures data privacy for users. In one example, an existing CRM source code wrapper for a CRM can be extended to allow capture of profiling data for a specific user (in our example, Amazon) during execution. The profiler process recognizes profiler requests and knows how to intercept method calls and attach the profiler to each request.
Governor limits are typically enforced for a runtime engine in a multitenant environment, to ensure that runaway code does not monopolize shared resources. These limits apply to each code transaction. For example, maximum CPU time on Salesforce servers for a synchronous process is 10,000 ms and the asynchronous limit is 60,000 ms. Inside the custom interpreters 106, 114 and 126, the service provider has full control over the execution of the code and can use that control to enforce governor limits and ensure isolation between users at an organization and between organizations.
Certain contents in a multi-tenant environment may optionally be obfuscated to the user. For instance, a system operator or application developers may hide protected code from users. This can include private libraries provided by independent software vendors and protected under IP laws. A profiler can be configurable so that a user is unable to inspect the contents of those libraries. In short, it can be useful to obfuscate a blacklist of content to hide protected code.
In some profiling systems, users receive a full view of everything that has been executed because, as the owner of the system, the user has rights to everything running. For a multi-tenant or hosted environment for a cloud-based system, the profiler can optionally anonymize code to be hidden. Application developers and customers can share code with other customers via a mechanism called managed packages. Selected code in the managed packages can be hidden and the user can access only certain parts of it, due to intellectual property security requirements—so that users cannot reverse engineer the code. Customer A, who developed a managed package, may share it with Customer B. When Customer B uses the profiler, Customer B need not be able to see how the managed package works through its method entries/exits. In addition, code for certain system-level methods, implemented as part of the core platform for a multi-tenant system, can be anonymized to users. Both individual customers and system level developers can track resource usage in a cloud based system, while sensitive code is anonymized to users. An example of the nesting of hidden methods is shown below:
Similarly, the host's system code can include hidden methods. A scope of profile reporting can be limited by an option to mark a service or class as a terminal profiling level. A terminal profiling level mark can include hiding the code for child services or classes invoked by the marked service or class, when reporting the results of analyzing the performance.
Profiling is a request-based system. In one implementation, an application developer enables profiling via the profiler UI 142 setting filters 112 to capture data for users, organizations and classes of interest. The custom interpreter stores the profile filter 112 specified by the developer for every instance currently active in the cloud.
When a start request 202 triggers start profiling 262, in
Developers are often interested in specific code—in a class or method that updates something—and they can enter and exit the code while a profiler is active and later view the results of the code compile sequence. Code typically implements a group of nested classes-entering and then exiting each method, as shown below.
The entry and exit points are wrapped via custom interpreters that are configured based on the filter choices entered by the developer via the profiler UI 142. The developer can profile a complete request, including the act of interpreting or compiling code, and/or the act of interacting with the profiler UI 142. For example, a transaction might start, and before the developer executes code that is being profiled, they can see that the optional compiler was run and how long it took to run. This captured data includes multiple data points to assist in solving execution problems.
Selection of the start profiling button 344 signals the beginning of logging of autonomous log units across the hardware instances, responsive to the filters. The autonomous log units capture data that records the service entries to and service exits from the multiple services. When the profiler stops logging, it spins off an asynchronous job and the overhead events stop. Due to concerns about overhead, the profiler can be configured run for up to a maximum of one hour by default. This feature ensures that no one will start the profiler and walk away, leaving it running indefinitely.
Log entries persist as individual autonomous log units in data stores 134, outside of the working memory of the app servers. To reduce the server load during profiling, low level wrapper and background thread wrapper functionality are implemented to provide context, in a layer in which the user is not involved.
Consider the following example for viewing profiler results. The developer selects start profiling button 344, and then clicks the “do something” button 510 in
The developer then selects the stop profiling and build snapshot button 364 in
During the execution of transactions, the custom interpreters determine whether entry and exits at a boundary are to be collected. At the end of the transaction we have a long list of entry and exits. A sample log segment of autonomous log units captured across the hardware instances, using at least transaction ID to organize the autonomous log units into nested service invocations with reentrant calls (time, entry/exit and boundary/method name) is shown below. Note the logging of the compiler time, which is not part of the code.
At the end of the transaction, a background job adds context to the collected raw data points and forms a complex object that is then passed to another thread to store. An example, using unique transaction ID to organize the autonomous log units into nested service invocations, is listed below.
After raw data collection stops, a background job collects the stored logs. Then various views can be built by pivoting on any of the contextual information that was added, and analyzing performance of transaction invocations that cause cascading service invocations services. The autonomous log units captured across the hardware instances are organized, and profile performance of the cascading invocations can be analyzed. A snippet of one format for the output in user logs for developers is shown below.
The disclosed technology includes using multiple formats of the logged data files for different display visualizations, and for reporting or persisting results of analyzing the performance. Developers can review profile reports and pinpoint problem code, or optimize code segments for more efficient functionality.
Continuing with our example, a generated email, in
Binary data that has been downloaded can be viewed in multiple formats. When the logger collects data, it adds contextual information so it is possible to pivot on any of the data. Data views can be combined after profiling, when creating call graphs. The profiler starts with app servers and threads, and reorganizes (pivots) the data against any filter type for which data was collected, and outputs a cloud-friendly view of the world.
Visual VM is one of several tools for viewing detailed information about Java technology-based applications; NetBeans and Eclipse Proflier are two additional examples of viewing tools.
The call tree view includes the percentage of time spent in each transaction 815, and the number of invocations 818 of a class.
Hot spots are regions in an application where a high proportion of executed instructions occur or where most time is spent during the application's execution.
The disclosed profiler offers perspective across threads of code, making it possible to discover problems in the cloud view. In the next example, developers wanted to discover why everything was going slowly, so profiled an active system for 8 minutes. In
To view a specific profile result, the developer can select the View button 1422 in
Multi-App Profiler Workflow
At action 1515, the multi-app resource usage tracking system receives and enables filter settings from a user or from a preconfigured test profile. At action 1520, the multi-app profiler logs autonomous log units that capture data recording the service entries to and service exits from multiple cascading service invocations across hardware instances. The captured data includes a transaction ID that spans services and classes invoked by a transaction invocation, a transaction invocation URI for the service, an identifier for the class or service, and time stamps of the service entries and the service exits. The captured data can optionally also include CPU time, organization ID, user ID, a server request URI, minimum elapsed time, a set of server IDs, or an identifier for a calling service that invoked the service entered.
At action 1525, the resource usage tracking profiler analyses performance of transaction invocations, organizing the autonomous log units into nested service invocations. At action 1530, the resource usage tracker profiles the performance of the cascading invocation. At action 1535, the multi-app resource usage tracking profiler reports and persists the results of analyzing the performance.
Computer System
User interface input devices 1638 may include a keyboard; pointing devices such as a mouse, trackball, touchpad, or graphics tablet; a scanner; a touch screen incorporated into the display; audio input devices such as voice recognition systems and microphones; and other types of input devices. In general, use of the term “input device” is intended to include the possible types of devices and ways to input information into computer system 1610.
User interface output devices 1678 may include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem may include a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a projection device, or some other mechanism for creating a visible image. The display subsystem may also provide a non-visual display such as audio output devices. In general, use of the term “output device” is intended to include the possible types of devices and ways to output information from computer system 1610 to the user or to another machine or computer system.
Storage subsystem 1624 stores programming and data constructs that provide the functionality of some or all of the modules and methods described herein. These software modules are generally executed by processor 1672 alone or in combination with other processors.
Memory 1622 used in the storage subsystem can include a number of memories including a main random access memory (RAM) 1634 for storage of instructions and data during program execution and a read only memory (ROM) 1632 in which fixed instructions are stored. A file storage subsystem 1636 can provide persistent storage for program and data files, and may include a hard disk drive, a floppy disk drive along with associated removable media, a CD-ROM drive, an optical drive, or removable media cartridges. The modules implementing the functionality of certain implementations may be stored by file storage subsystem 336 in the storage subsystem 1626, or in other machines accessible by the processor.
Bus subsystem 1650 provides a mechanism for letting the various components and subsystems of computer system 1610 communicate with each other as intended. Although bus subsystem 1650 is shown schematically as a single bus, alternative implementations of the bus subsystem may use multiple busses.
Computer system 1610 can be of varying types including a workstation, server, computing cluster, blade server, server farm, or any other data processing system or computing device. Due to the ever-changing nature of computers and networks, the description of computer system 1610 depicted in
Particular Implementations
In one implementation, a method of tracking resource usage of a cloud based system, the method includes setting filters responsive to user input, from a selected test profile, that control a scope of profiling of service entry and service exit data across multiple services running on multiple hardware instances wherein transaction invocations cause cascading service invocations of the multiple services. The method further includes accessing autonomous log units spawned by the multiple services, the autonomous log units generated responsive to the filters, wherein the autonomous log units capture data recording the service entries to and service exits from the multiple services, including for each service entered as a result of a transaction invocation. The captured data includes at least a transaction ID that spans services and classes invoked by a transaction invocation, a transaction invocation URI that spans services and classes invoked following the transaction invocation for the service (the thread), a class identifier, and time stamps of the service entries and the service exits.
The method of tracking resource usage also includes analyzing performance of transaction invocations, by organizing the autonomous log units logged across the hardware instances, using at least transaction ID to organize the autonomous log units into nested service invocations, and profiling performance of the cascading invocations. Further the method includes reporting, representing and persisting results of analyzing the performance.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed. In the interest of conciseness, the combinations of features disclosed in this application are not individually enumerated and are not repeated with each set of captured data in the autonomous log units.
The method further includes service invocation wrappers that wrap the multiple services and spawn the autonomous log units. In some implementations, the method can further include reporting multiple formats of the results of analyzing the performance. The method can further include setting filters with values from a selected test profile.
In some implementations, the method can further include captured data that includes CPU times of the services, and can include captured data that includes a user ID. Additionally, the method can include captured data that includes all code and users, or captured data that includes an organization (org or organization ID).
Some methods can further include captured data that includes an identifier for the class or service that invoked the service entry, or a service requested by URI. Some methods include a filter that includes a minimum elapsed time threshold to be met before spawning the autonomous log unit, making it possible to profile only long running transactions. In yet other implementations captured data can include a set of server IDs from which the multiple services will capture data, so that developers can review activity on a particular server(s).
In yet other implementations, the method can further include a scope of profile reporting limited by an option to mark a service or class as a terminal profiling level. A terminal profiling level can be used to hide code for child services or classes invoked by the marked service or class, when reporting the results of analyzing the performance.
Other implementations may include a computer implemented system to perform any of the methods described above. Yet another implementation may include a tangible computer-readable memory including computer program instructions that cause a computer to implement any of the methods described above.
While the technology disclosed is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the innovation and the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshaysky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya et al. | Jun 2006 | B1 |
7069497 | Desai | Jun 2006 | B1 |
7181758 | Chan | Feb 2007 | B1 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7412455 | Dillon | Aug 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7603483 | Psounis et al. | Oct 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
7851004 | Hirao et al. | Dec 2010 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8073850 | Hubbard et al. | Dec 2011 | B1 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8209333 | Hubbard et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
8756275 | Jakobson | Jun 2014 | B2 |
8769004 | Jakobson | Jul 2014 | B2 |
8769017 | Jakobson | Jul 2014 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040210877 | Sluiman | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20050172168 | Kilian | Aug 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20060155516 | Johnson | Jul 2006 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20110218958 | Warshaysky et al. | Sep 2011 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20120042218 | Cinarkaya et al. | Feb 2012 | A1 |
20120158454 | Saunders | Jun 2012 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20120290407 | Hubbard et al. | Nov 2012 | A1 |
20130047169 | Gagliardi | Feb 2013 | A1 |
20130212497 | Zelenko et al. | Aug 2013 | A1 |
20130247216 | Cinarkaya et al. | Sep 2013 | A1 |
20150120555 | Jung | Apr 2015 | A1 |
20150222505 | Zmievski | Aug 2015 | A1 |
20150319221 | Zmievski | Nov 2015 | A1 |
20160283207 | Nandakumar | Sep 2016 | A1 |
20170372246 | Storey | Dec 2017 | A1 |
Entry |
---|
“Salesforce: Force.com Apex Code Developer's Guide”, Ver 33.0, Feb. 6, 2015, 2120 pgs. |
“Microsoft Azure: How to Deploy your First Windows Azure application”, Dec. 4, 2014, 7 pgs. Retrieved from the Internet: <http://www.microsoft.com/bizspark/azure/howtodeployazureapp.aspx>. |
Number | Date | Country | |
---|---|---|---|
20160337215 A1 | Nov 2016 | US |