When solid freeform fabrication uses a three-dimensional (3D) printing process, a number of printed planar layers are combined together to form a non-planar, three-dimensional object. Objects are fabricated by printing or ejecting an adhesive or binder onto a flat bed of powder. Where the binder is ejected, the powder is solidified into a cross section of the object being formed. This printing is performed layer-by-layer, with each layer representing another cross section of the final desired product. Adjacent printed layers are adhered to one another in predetermined patterns to build up the desired product.
In addition to selectively forming each layer of the desired object from the powder in the fabrication chamber, the system can print a color or color pattern on each layer of the object. For example, inkjet printing technology can be employed in which a number of different colored binders (or non-colored binders) are selectively ejected from the nozzles of a print head to provide a full spectrum of colors. On each individual layer, two-dimensional multi-pass printing techniques and half-toning algorithms can be used to hide printing defects and achieve a broad range of desired color hues.
With powder-based 3D printers, an operator typically scoops powder from a container provided by the powder supplier, and pours the powder into one or more bins in the 3D printer. The powder is then spread back and forth, planarized and packed, to prepare the powder for the powder spreading and subsequent printing processes. This typically causes at least some of the powder to spill in an around the sides of a supply bin in the 3D printer, and this spill must be cleaned up prior to printing. Additionally, the uncontained airborne powder-particles that can create a respiratory hazard and a widely distributed mess. Additionally, powder must also be scooped or vacuumed out if the user desires to recycle the unused powder, to clean the bins, or to change powder types. It would be desirable to have a solid freeform applicator that is easier and less messy to use, or to change powder types.
Many aspects of this disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding, but not necessarily identical, parts throughout the several views.
The disclosed solid freeform fabrication systems have incorporated therein a convenient supply powder packaging. The supply powder bin can include a removable top, four side walls, and a piston-like bottom that supports the powder, and allows a printer piston to feed powder to the spreader during the printing and object fabrication process. The disclosed supply powder bins can be either disposable or reusable. The disclosed supply powder bins simplify the set-up process, as well as cut down on powder-related mess caused by the powder spilling and the clean up that has typically been associated with three-dimensional (3D) printing and selective laser sintering (SLS) processes.
Having thus generally described the disclosed solid freeform fabrication systems, reference will now be made to the figures.
In the solid freeform fabrication system 100 of
The powder becomes bonded in the areas where the adhesive or binder is deposited, thereby forming a layer of the desired product. After each layer of the 3D object is fabricated, the build bin 102 (in which the object sits) is repositioned downward along the z-axis so that the next layer of the object can be formed on top of the previously formed layer. By way of example, the build bin 102 can have dimensions such as 8″×10″×10″ or 6″×6″×6″ to accommodate fabricators and 3D objects of various sizes.
The process is repeated with a new layer of powder being applied over the top of the previous layer in the build bin 102. The next cross section of the desired product is then printed with adhesive or binder into the new powder layer. The adhesive also serves to bind the adjacent or successive layers of the desired product together. This process continues until the entire object is formed within the powder bed in the build bin 102. The extra powder that is not bonded by the adhesive is then brushed away leaving the base or “green” object. A user interface or control panel 104 can be provided to allow the user to control the fabrication process.
The solid freeform fabrication system 100 also includes a controller (not shown) which is programmed to, among other things, control the positioning and repositioning of the print head 103 during the 3D object fabrication process. The controller can take the form of a discrete module positioned proximate to the print head; alternatively, the operations performed by the controller can be distributed among a plurality of controllers, processors or the like, and/or the controller can be remotely located relative to the print head.
Such a printing process offers the advantages of speedy fabrication and low materials cost. It is considered one of the fastest solid freeform fabrication methods, and can be performed using a variety of colors.
The print head in the solid freeform fabrication system 100 may include inkjet technology for ejecting a binder or adhesive on a powder layer to form the layers of the desired object. In inkjet technology, the print head ejects drops of binder in a selective pattern to create the image being printed, or in the case of solid freeform fabrication, to color the object being fabricated. As used herein and in the attached claims, the term “binder” is used broadly to mean any substance ejected by a print head to form an object being fabricated. Consequently, the term “binder” includes, but is not limited to, binders, adhesives, etc. The binder can be, for example, clear (to create non-colored parts) or colored (to create colored objects or parts of objects).
As shown in
Alternatively, or in addition, the powder bin 110 can include vertical registration components such vertical pins with hardened points on the tips, located in the system 100, that contact either the bottom surface 118 or the flanges 122 or lip around the bin 110. Use of registration components minimize the possibility of powder interfering with the registration interface. Further, the bin 110 can include one or more seating sensors (not shown) to detect when the bin 110 is properly seated in the system 100. Seating sensor(s) can be, for example, an electrical continuity check, a Hall effect sensor, a through-beam or reflected light sensor, and/or a high precision switch.
In one embodiment, the linear motion actuator 119 pushes upward on the bottom moveable platform 118, which fits exactly inside the side walls 116 of the supply powder bin 110. In one embodiment, the supply bin 110 has a pair of lower flanges 120 that extend beneath and parallel to the bottom moveable platform 118, on which the platform 118 rests when the supply bin 110 is initially inserted into the system 100, as shown in
As depicted in
The optional removable lid 114 can be, for example, a lid that peels back, or even completely off, or that snaps onto and off of a lip (not shown) of an upper surface of the supply bin 110. The lid can also be designated, as in a snap-fit lid, to be re-installed after fabrication of an object. The material of the supply bin 110 can be any material that is sufficiently rigid to support a bin full of powder or slurry. For example, the material can be a metal or metal alloy, cellulosic material, or hard, stiff plastic (e.g., thermosets and thermoplastics, including for example, acetals, acrylics, terpolymers, alkyds, melamines, phenolic resins, polyarylates, polycarbonates, high density polyethylene, polyphenylene sulfide, polystyrene, polyvinyl chloride, styrene acrylonitrile, polyphenylsulfone, sulfones, unsaturated polyesters, polypropylene, polytetrafluoroethylene, polyethersulfone, polyetherketone, liquid crystalline polymers, or urea-formaldehyde molding compounds, etc.). The material of the supply bin 110 can also include fillers for the polymers, the fillers being designed to be compatible with each polymer. The fillers can impart various properties to the polymeric material, such as increased strength. The supply bin 110 can be designed to be either disposable or reusable, depending on the material selected for the supply bin 110.
The bag compartment 132 includes an optional crinkle zone 133 that enables the bag to fold easily as a platform 140 and the actuator 119 operate on the bag compartment 132 in the z-direction. The platform 140 and actuator 119 can be already in place in the system 100, and the supply bin 130 is inserted to rest on top of the platform 140. The actuator 119 in one embodiment can have optional struts 142 to stabilize the actuator 119 during movement. The struts 142 can be, for example, a stiff metal, metal alloy, or a hard plastic material.
The supply bin 110 can have a pair of upper flanges 122 that extend beyond the side walls. The upper flanges 122 engage an upper surface 124 of the bin housing 126 and aid in placement of the supply bin 130. Preferably, the upper flanges 122 are of a stiffer material than the bag compartment 132 in order to aid in proper placement of the bag compartment 132. The upper flanges can be made of, for example, a cellulose-based material (e.g., cardboard), a metal, or a hard plastic.
In one embodiment, the linear motion actuator 119 pushes upward on the platform 140, which fits exactly inside the side walls of a bin housing 144 in the system 100. As depicted in
The optional removable lid 114 can be, for example, a lid that peels back, or even completely off, or that snaps onto and off of a lip (not shown) of an upper surface of the supply bin 130. The material of the bag compartment 132 can be any material that is sufficiently rigid to support a bin full of powder or slurry, yet sufficiently pliable to fold up, upon compression by the actuator 119 and platform 140. The bag compartment is chosen to provide a barrier to environmental conditions such as, for example, air, humidity, moisture, grease, and/or light, etc. For example, the material of the bag compartment 132 can be any flexible polymeric material. These include but are not limited to flexible films of polyvinyl chloride, polyvinylidene, polyethylene, polyethylene copolymers, polyethylene naphthalate, polyester, polyamide, polyarylates, polybutylene terepthalate, polypropylene, polyurethane, cellulosics, and polysaccharides. The supply bin 130 can be designed to be either disposable or reusable, depending on the material selected for the supply bin 130. By using a bag compartment 132 for the supply bin 30, the tolerance between the platform 140 and the side walls of the bin housing 144 can be reduced, as well as eliminating the need for o-rings that are typically used to create a tight seal.
By using a removable supply bin, unused powder that is contained in the supply bin can be easily removed from the solid freeform fabrication system for disposal or reuse by removing the packaging without the need for powder scooping or vacuuming. The supply bin can be reused at a later time, or the powder recycled from the supply bin for other uses.
In addition, as illustrated by
Communication with the IC can be via contact pads or wireless via radio frequency signals. Generally the bar codes are read only, whereas the IC can be written to. The memory mechanism 146 can be placed anywhere on the supply bin, so long as it can be read by a sensor in or on the solid freeform fabrication system.
The supply bin 110 can include a handle 148. The handle 148 can be in any configuration (e.g., square or semicircular) and can be removable, collapsible, telescoping, and/or magnetic. In addition, the handle can be a notch or set of notches, inset into the supply bin 110. The bin 110 is designed so that it can be removed from the system 100 by grasping and pulling on the handle 148.
Also disclosed are methods of solid freeform fabrication, using the disclosed supply bins.
Many variations and modifications may be made to the above-described embodiments. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.