This invention relates generally to the field of cardiopulmonary resuscitation, and in particular to techniques to increase circulation when performing CPR. More specifically, the invention relates to systems and methods for increasing survival with favorable neurological function after cardiac arrest.
Despite current methods of CPR most people die after cardiac arrest. One of the major reasons is that blood flow to the heart and brain is very poor with traditional manual closed chest CPR. Greater circulation of blood during CPR will result in improved outcomes.
Embodiments of the present invention provide systems and methods for increasing survival with favorable neurological function after cardiac arrest. In one embodiment, a system to increase survival with favorable neurological function after cardiac arrest includes a guidance device that may be configured to provide user feedback as to whether the chest compressions are being performed at a rate between 80 to 120 compressions per minute (preferably at 90 to 110 compressions per minute) and at a depth of 4.5 cm per compression to about 6 cm per compression. The system may also include a pressure regulation system having a pressure-responsive valve that may be configured to be coupled to a patient's airway. The pressure-responsive valve may be configured to remain closed during successive chest compressions in order to permit removal at least about 3 ml/kg from the lungs in order to lower intracranial pressure and increase cerebral brain flow to improve survival with favorable neurological function. To provide some respiratory gas exchange, the pressure-responsive valve may be configured to remain closed until the negative pressure within the patient's airway reaches about −7 cm H2O, at which time the pressure-responsive valve may be configured to open to provide respiratory gases to flow to the lungs through the pressure-responsive valve. When the pressure-responsive valve opens, it provides resistance to the incoming gas flow at a level of about 7 to about 18 cm H2O at a flow rate of 20 L/min.
In another embodiment, a method to increase survival with favorable neurological function after cardiac arrest is provided. The method may include providing a valve system having a pressure-responsive valve that may be configured to be coupled to a person's airway. The method may also include providing instructions to reduce blood volume from the brain by compressing the chest at a rate between about 80 to about 120 per minute, and more preferably from about 90 to about 110 per minute, at a depth of about 4.5 to about 6 cm. The method may further include providing a guidance device that may be configured to provide user feedback as to whether the chest compressions are being performed at a rate between about 80 to about 120 per minute, and more preferably between 90 to 110 compressions per minute, and at a depth of 4.5 cm per compression to about 6 cm per compression. The method also may include providing instructions to provide positive pressure ventilation at a rate of 6 to 14 breaths/minute with a tidal volume of between about 400 ml and 700 ml.
In another embodiment, a method to increase survival with favorable neurological function after cardiac arrest is provided. The method may include providing a pressure regulation system comprising a pressure-responsive valve that may be configured to be coupled to a patient's airway. The pressure-responsive valve may be configured to remain closed during successive chest compressions in order to permit removal at least about 200 ml from the lungs in order to lower intracranial pressure to improve survival with favorable neurological function. To provide some level of respiratory gas flow to the lungs, the pressure-responsive valve remains closed during successive chest compressions in order to permit removal at least about 200 ml from the lungs in order to lower intracranial pressure to improve survival with favorable neurological function. Further, the pressure-responsive valve is configured to remain closed until the negative pressure within the patient's airway reaches about −7 cm H2O, at which time the pressure-responsive valve is configured to open to provide respiratory gases to flow to the lungs through the pressure-responsive valve. In some cases, the pressure responsive valve is configured so that when the pressure-responsive valve opens, it provides resistance to the incoming gas flow at a level of about 7 to about 18 cm H2O at a flow rate of 20 L/min. The method may also include providing instructions to reduce blood volume from the brain by compressing the chest at a rate between about 90 to about 110 per minute at a depth of about 4.5 to about 6 cm. The method may further include providing a guidance device that may be configured to provide user feedback as to whether the chest compressions are being performed at a rate between 90 to 110 compressions per minute and at a depth of 4.5 cm per compression to about 6 cm per compression.
Multiple methods of chest compression may be used when performing CPR in patients in cardiac arrest. In this life-threatening situation, the heart is not capable of circulating blood so non-invasive external means are used to assist in the circulation of blood to the vital organs including the heart, lungs, and brain. The methods and devices that may be used to circulate blood during cardiac arrest include manual closed chest CPR, active compression decompression (ACD) CPR where the patient's chest is actively pulled upward (including by use of a mechanical assistance device that is adhered to the chest) to achieve complete chest wall recoil, mechanical CPR with manual or automated devices that compress the chest and either allow the chest to recoil passively or actively, and devices that compress the chest wall and then function like an iron lung and actively expand the thoracic cage. Some of these approaches and devices only compress the anterior aspect of the chest such as the sternum while other approaches and devices compress all or part of the thorax circumferentially. Some approaches and devices also compress the thorax and abdomen in an alternating sequence. Some approaches also involve compressing the lower extremities to enhance venous blood flow back to the heart and augment arterial pressure so that more blood goes to the brain. Some approaches also involve compressing the back, with the patient lying on his/her stomach. Some devices include both non-invasive methods and devices outlined above that are coupled with invasive devices, such as an intra-aortic balloon, and devices to simultaneously cool the patient
Because the cardiac valves remain essentially intact during CPR, blood is pushed out of the heart into the aorta during the chest compression phase of CPR. When the chest wall recoils, blood from extrathoracic compartments (e.g. the abdomen, upper limbs, and head) enters the thorax, specifically the heart and lungs. Without the next chest compression, the blood would pool in the heart and lungs during cardiac arrest as there is insufficient intrinsic cardiac pump activity to promote forward blood flow. Thus, chest compressions are an essential part of CPR.
During the compression phase of standard manual closed chest CPR, air is pushed out of the thorax and into the atmosphere via the trachea and airways. During the decompression phase it passively returns back into the thorax via the same airway system. As such, respiratory gases move out of and back into the thorax. With each compression the pressure within the chest is nearly instantaneously transmitted to the heart and also to the brain via the spinal column and via vascular connections. Thus, with each external chest compression pressure in the thorax and within all of the organs in the thorax is increased. Application of the methods and devices described in this application, in conjunction with any of the methods of CPR noted above, result in less and less air in the thorax, making room for more and more blood to return to the heart during the chest wall recoil phase. This increases circulation to the coronary arteries and lowers intracranial pressure during the chest wall decompression phase and with each subsequent compression increases blood flow to the vital organs, especially the brain. Since the delivery of oxygen is an important aspect of CPR, periodically a positive pressure ventilation needs to be delivered to inflate the lungs and provide oxygen. For example, a positive pressure ventilation device may be used that is configured to supply respiratory gases to the lungs at a rate in the range of about 6 to about 14 breaths/minute with a tidal volume of at least about 600 ml. The lungs can also be inflated by periodic negative pressure ventilation with, for example, an iron lung or chest cuirass device. With both positive and negative pressure ventilation, typically a patient receives a tidal volume of about 500-1000 cc during each active ventilation (positive pressure ventilation). Thus, with the practice of this invention, an equal volume of respiratory gas is extruded from lungs over the course of several compressions so that after about 2 to 6 compressions the delivered volume has been removed from the thorax and its space can be replaced by blood that refills the thoracic space. This exchange is made possible by the fact that pressures within the thorax are transduced from one organ to another nearly instantaneously. This pressure transfer occurs between different thoracic compartments, for example the lungs and the right heart, very rapidly, especially between organs in the thorax with a high degree of compliance. For example, positive pressures are transferred during the compression phase from the lungs to the right heart, and as such right heart pressures are markedly increased with each chest compression. The increase in pressure within the lungs is transferred to the heart, propelling blood within the heart chambers in a forward direction along the course from right atrium to right ventricle to pulmonary artery pulmonary vein, left ventricle, and out the aorta. The inverse is also true, with chest wall recoil the negative pressures are transmitted throughout the thorax, including the spinal cord. This pulls blood into the heart and lungs from outside the thorax. The decreases in pressures within the thorax are augmented by the methods and devices described herein. The more gas that is pushed out of the lungs with each compression and not allowed back in, the more space is made available for blood to flow into the organs within the thorax each time the chest wall recoils. The volume of respiratory gas that is expelled over a series of chest compression/recoil cycles may be about 5 to about 15 cc/kg as long as it is not allowed back into the thorax. It would typically be expelled after about 2 to 6 compression/recoil cycles. The volume of air expelled from the chest could be expelled against a low level of fixed or variable resistance, typically in the range from about 0 cm H2O to about 10 cm H2O. This could be adjustable and could be provided by a valve system or other means having a flow of positive pressure gases, such as oxygen. This process can be further augmented by active compressions and active decompressions. This process can also be further augmented by actively extracting a volume of respiratory gases between positive pressure breaths, creating even more space in the thorax to be filled with blood with each decompression phase of CPR to prime the heart for the next compression.
Periodically the lungs need to be inflated so that the pulmonary vascular resistance (blood pressure in the blood vessels in the lungs) does not get too high (which happens when the lungs are empty and collapse) which would limit blood flow through the lungs. Periodic inflation of the lungs also provides oxygen and helps to clear carbon dioxide. This process is depicted graphically in
A variety of valves may be coupled to the patient's airway to permit respiratory gases to escape from the lungs during chest compressions, while permitting periodic ventilation. One type of valve could be a one-way valve, typically used in combination with another one-way valve that opens in the opposite direction and which is biased in the closed position so that gases cannot enter the lungs during chest recoil or chest decompression. Other valves system that may be used is described in U.S. Pat. Nos. 5,692,498; 6,062,219; 6,526,973; and 6,604,523, incorporated herein by reference. With such valves, the threshold cracking pressure could be set high enough so that respiratory gases were always prevented from entering into the lungs until actively ventilated. In some embodiments, the pressure-responsive valve may be configured to remain closed during successive chest compressions in order to permit removal of at least about 2 ml/kg or 3 ml/kg from the lungs in order to lower intracranial pressure and increase cerebral brain flow to improve survival with favorable neurological function. For example, the pressure-responsive valve may be configured to remain closed during successive chest compressions in order to permit removal at least about 100 ml, preferably 200 ml, from the lungs of a 70 kg patient in order to lower intracranial pressure to improve survival with favorable neurological function. When respiratory gases are needed (such as when ventilating the patient after several successive chest compressions or if the patient begins to spontaneously breath), the pressure-responsive valve may be further configured to open after the negative pressure within the patient's airway reaches about −7 to −18 cm H2O, at which time the pressure-responsive valve may be configured to open to provide respiratory gases to flow to the lungs through the pressure-responsive valve. In some cases, the pressure-responsive valve is configured so that when the pressure-responsive valve opens, it provides resistance to the incoming gas flow at a level of about 7 to about 18 cm H2O at a flow rate of 20 L/min.
Airflow into and out of the chest through one embodiment of the invention is shown schematically in
In some cases, the patient may begin to breathe or gasp spontaneously. As shown in
The invention may employ a variety of techniques to enhance circulation. For example, a device to augment circulation during the performance of cardiopulmonary resuscitation in a patient in cardiac arrest may be configured to allow a volume of respiratory gas from the lungs to exit the airway with each external chest compression but prevents oxygen containing gases from passively reentering the lungs each time the chest wall recoils. This may be done using a valve system having a one-way valve and a means to periodically expand the lungs with oxygen-containing gases. Such a device may be particularly useful when the chest is compressed and allowed to recoil at a rate of about 60 to about 120 times/min and even more useful with a range of 90 to 110 times/min. Such a device may also permit a volume of respiratory gases to be expelled from the lungs with each compression. Such a device can be used with manual CPR, ACD CPR, manually operated CPR devices, or automated CPR devices. With each chest wall recoil, respiratory gases are prevented from returning to the lungs by means of a one-way valve. Over each successive chest compression/chest recoil cycle there is a successive decrease in respiratory gases within the lungs. Periodically, the lungs are actively expanded with oxygen-containing gas.
The valve system can be made of one or more check valves, spring valves, duck valves, other mechanical or electronically controlled valves and switches. The lungs are periodically expanded by a ventilation source that could include: mouth-mouth ventilation, mouth-mask, a resuscitator bag, an automatic or semi-automatic ventilator, a body cuirass or iron-lung like device, or the like. A variety of sensors could be incorporated into the system to guide the ventilation rate and/or determine the degree of chest compression and/or degree of chest wall recoil including: airway pressure sensors, carbon dioxide sensors, motion detectors, force detectors, and/or impedance sensors to detect air/blood ratio in the thorax to help guide ventilation and compression rate.
The valve system could include a one-way valve with a means to impede exhalation or the exodus of respiratory gases with a fixed or variable resistance. This could be in the range from about 0 to about 20 cm H2O, and in some cases about 0 to about 10 cm H2O. This may also be adjustable. In some cases such expiratory resistance helps to push blood out of the lungs back into the left heart, and serves as a means to help prevent buildup of blood in the lungs during CPR.
One particular embodiment of a valve system 20 is shown in
As shown in
Port 28 may be coupled to a patient interface 21, which could include a facial mask, endotracheal tube, other airway device or any of the other interfaces described herein. Port 26 may be coupled to a ventilation source 23, such as a ventilator bag, ventilator, tube for performing mouth-to-mouth resuscitation, or any of the other devices described herein.
Further, a controller 25 may be employed to control any of the electronic equipment. Controller 25 may include a storage device, such as memory, one or more processors and appropriate hardware, and/or software for performing operations under the direction of the processor. For example, if ventilation source 23 were a ventilator, controller 25 may be employed to control operation of the ventilator. One or more sensors 27 may be coupled to controller to monitor various physiological parameters of the patient as described herein. Also, controller 25 could modify application of chest compressions and/or ventilations based on the sensed parameters.
Controller 25 may also be coupled to one or more timing lights 29 which could be used to indicate to a rescuer as to when to provide chest compressions and/or ventilations.
In
Another exemplary valve system that functions in a similar manner is the ResQPOD® ITD valve system, commercially available from Advanced Circulatory Systems. Such a valve system is also described in U.S. Pat. No. 8,408,204 and U.S. patent application Ser. No. 14/197,996, both of which are incorporated herein by reference. Such a valve system was used to generate the data described hereinafter with reference to the Example.
Any of the valve systems described herein could also include or be associated with physiological sensors, timing lights, impedance sensors to detect air/blood ratio in the thorax, and a way to communicate with a CPR device or other apparatus used during resuscitation (e.g. defibrillator) to provide feedback in terms of how to perform CPR, the optimal time to actively inflate the lungs with respiratory gases or the optimal time to defibrillate. For example, the feedback could be used to determine the proper rate of chest compressions, the proper depth of chest compressions and/or the proper rate or volume of ventilations.
The valve systems or associated devices could also include a way to deliver a low flow and volume of continuous oxygen into the lungs which is less than or just equal to the total volume of the expelled volume of respiratory gases with chest compressions so that the number of times that the lungs are expanded with oxygen-rich gases is reduced by the low level of continuous oxygen insufflation.
One method for controlling gas flow into and out of a patient's lungs is illustrated in
For a plurality of chest recoils, respiratory gases are prevented from returning to the lungs such that over successive chest compression/chest recoil cycles there is a successive decrease in respiratory gases within the lungs (see step 42). This allows more blood to enter the thoracic space (the volume of respiratory gas expelled over a series of chest compression/recoil cycles optionally being in the range from about 4 to about 15 cc/kg). Hence, over each successive chest compression/chest recoil cycle there is a successive decrease in respiratory gases within the lungs thereby allowing more blood to enter the thoracic space.
Periodically, the patient may be ventilated (see step 46), such as by periodically actively expanding the lungs with an oxygen-containing gas. During the chest recoil phase of CPR, intracranial pressures are decreased more rapidly and to a lower value thereby further increasing the duration and magnitude of cerebral perfusion pressure. Optionally, the volume of respiratory gas expelled from the chest may be expelled against a low level of fixed or variable resistance that is in the range from about 0 to about 10 cm H2O (see step 48).
The devices and methods described herein may be used with any type of CPR technique that involves manipulation of the chest to change pressures within the thorax would benefit from this improved method of invention. Also, the method for providing periodic expansion of the lungs could include mouth-mouth ventilation, a resuscitator bag, an automatic or semi-automatic ventilator, an anesthesia machine, a body cuirass or iron-lung like device. The method could also include a way to deliver a low flow and volume of continuous oxygen into the lungs which is less than the total volume of the expelled volume of respiratory gases so that the frequency of positive pressure ventilations by an external ventilation source could be reduced by the low level of continuous oxygen insufflation (see step 50).
A variety of sensors could be used to guide the periodic ventilation rate or determine the rate and/or depth of chest compression or degree of chest wall recoil. Sensors could include airway pressure sensors, timing lights, carbon dioxide sensor, electrocardiogram signal sensors, motion detectors, force detectors, and/or impedance sensors to detect air/blood ratio in the thorax to help guide ventilation and compression rate and determine if CPR should be continued, the optimal time and way to defibrillate, and when to stop CPR efforts because of futility.
The method could include a number of different airway adjuncts to maintain a seal between the trachea and the ventilation source or pharynx and ventilation source or mouth and ventilation source (e.g. endotracheal tube, face mask, laryngeal mask airway, supraglottic airway, and the like). Sensors within these airways could be used to verify proper airway adjunct placement. Such sensors could include a carbon dioxide detector which could be housed in a manner that is protected from bodily fluids.
The method could include a means to transmit the amount of respiratory gas volume delivered or expelled from the chest to a monitoring system that could be used as part of a closed loop circuit to maximize the number of compressions interspersed between active ventilations in order to maximize circulation during CPR. Circulation during CPR could be measured by a variety of means including measurement of end tidal carbon dioxide, the change in expired end tidal carbon dioxide levels over a given time interval, measurement of other respiratory gases, a change in impedance within the body, and changes in other physiological parameters such as temperature.
In some embodiments, the invention provides the ability to utilize one or more sensors that are associated with the valve systems described herein to indirectly measure the rate and depth of chest compression. For instance, the sensors may measure the respiratory gases (also referred to as “air”) delivered to the patient, the airway pressure and the like, and then used to estimate the rate and depth of chest compression. This provides a convenient way to measure the quality of CPR. This may be done, for example, by comparing variations in amount of air delivered (or airway pressure) produced by positive-pressure ventilation to the air expelled (or airway pressure variations) produced during chest compressions. This provides an easy way to monitor, analyze and report the depth of compressions, particularly to the user in real time. This feedback allows the user an opportunity to continuously adjust or change the depth of manual (or automatic) compressions to achieve a targeted depth of compressions. Also, the pressure or volume of air generated by positive-pressure ventilation or delivered by a manual resuscitation bag can be analyzed and reported to the caregiver for monitoring and adjustment purposes. In addition to calculations which report actual compression depth and breathing pressure, the frequency and duration of both breaths and compressions can be monitored and reported to the user. Hence, frequency of compressions and ventilation can be controlled to provide a targeted frequency or rate.
As one example, measurements may be taken using one or more sensors disposed anywhere within valve system 20, such as within the housing or one of the valves. For example, a sensor could be disposed in inspiration interface housing 22 or in patient interface housing 24. As another option, the sensor could be positioned within ventilation source port 26, or within one-way check valves 32 or 34. Pressure or air volume measurements may be transmitted to a controller, such as controller 25, either wirelessly or by a wired connection. Controller 25 may be programmed to determine the depth of chest compressions, timing, frequency, and the like, as described above using the pressure or air volume readings. Further, various visual and/or audio signals may be provided to the rescuer giving feedback as to depth or compressions, rate of compressions, rate of ventilation and the like. Controller 25 may be programmed to provide this feedback, such as to timing lights, computer display screens, speakers, and the like.
ITD and CPR
Volume exchange, the movement of air out of the thorax and blood into the thorax, during CPR can be a factor not only in the survival of a patient, but also in increasing neurological function in a patient after cardiac arrest. Increases in survival with increased neurological function may be realized when chest compressions are performed at a proper rate and depth in conjunction with the use of an ITD that may be configured to be coupled to a patient's airway. The ITD may be similar to any of the ITDs described herein, including the ResQPOD® ITD as described in U.S. Pat. No. 8,408,204 and U.S. patent application Ser. No. 14/197,996, both of which are incorporated herein by reference. With standard CPR (when chest compressions are being performed at a rate between 90 to 110 compressions per minute and at a depth of 4.5 cm per compression to about 6 cm per compression) in conjunction with such an ITD, the intracranial pressure is lowered to improve survival with favorable neurological function. These rates may apply for either manual or automated standard CPR. However, it will be appreciated that the optimal ranges may vary depending on the method of CPR used. For example, ACD-CPR may have a different range of compression rate and/or depth. Additionally, the choice of ITD or intrathoracic pressure regulation (ITPR) device may alter the optimum range of compression rate and/or depth. Along with increased intracranial pressure and survival rates, usage of an ITD with proper CPR may increase blood flow to the heart and brain. In some cases blood flow to the heart may be doubled and blood flow to the brain increased by up to 50%. The combination of ITD and proper CPR as described above may also result in up to a twofold increase of systolic blood pressure, while increasing the likelihood of successful defibrillation.
In some embodiments, an ITD may be used in conjunction with proper standard CPR. The compression rate and/or depth may be monitored and/or directed using a guidance device. For example, a guidance device may include a light emitting diode or other light producing device and/or a speaker that may produce audible sounds. The lights and/or sounds may be produced at a rate of proper chest compressions, such as between 80-120 compressions/minute, more preferably between 90-110 compressions/minute. The guidance device may also include a load cell, accelerometer, and/or other device to accurately monitor the chest compressions. Such sensors allow the guidance device to produce a visual and/or audible signal as feedback to a user that the chest compression rate and/or depth is above, below, or within a proper range. In some embodiments, the guidance device may include CPR assist devices as described herein.
Embodiments of the present invention may use a variety of devices to perform chest compressions in a repeated manner (in combination with the use of the ITD as just described). As one example, the chest compression device may enable manual and automated cardiopulmonary resuscitation (CPR), optionally in combination with electrocardiographic monitoring (ECM) and/or electrical defibrillation as part of advanced cardiac life support (ACLS) procedures. One chest compression device that may be used is described in U.S. Pat. No. 8,702,633, the entire contents of which is herein incorporated by reference.
Such a compression device is well suited for administering enhanced active compression/decompression (ACD) CPR and ACLS procedures, as well as standard CPR procedures. In some cases, the compression device may include a disposable adhesive pad which sticks to the chest of the patient, a detachable handle that detaches from the adhesive pad when excessive decompression force (upward pull) is applied, and a display which indicates to the operator the appropriate amount of force to be applied. Moreover, the device can be configured or customized for use on a particular individual based on body weight or size.
ACD CPR systems and techniques provided herein can enable a rescuer or operator to perform ACD CPR, which differs from standard CPR in that it actively re-expands (decompresses) the chest after each compression. This approach allows the operator to use the same body position and compression technique as in standard CPR. Active chest decompression is achieved when the rescuer maintains a firm grip on the ACD CPR system and swings his or her body weight upwards after compression. A single-use disposable adhesive pad can be applied to the chest and transfers the lifting force to the lower part of the ribcage. Compression force is transferred to the chest as in standard CPR via the device's piston and compression pad. A force gauge in the handle assists the rescuer in applying the force needed to achieve desired compression (e.g. 4.5 to 6 cm), and the lift necessary for adequate decompression. A visual metronome can guide the rescuer to compress and decompress at the appropriate rate and force. For example, the visual metronome or other indicator mechanism may guide a user to deliver chest compressions at a rate of between about 90 and 110 compressions per minute. The force gauge and/or visual metronome may provide feedback to a user, such as by illuminating one or more lights when a user within or out of the optimum ranges of compression depth and/or compression rate.
In some embodiments, one or more colors of lights or displays on a screen of the chest compression device may be used to differentiate when a user is within an optimum range and when a user is outside of the optimum range. For example, a green light may illuminate when a user is compressing a patient's chest within an optimum range, while a red light may indicate that a user is compressing the patient's chest either too little or too much. In other embodiments, different colors may be used for too much or too little compression to further guide a user. Lights may also be used to direct a user to compress the patient's chest at a particular rate. For example, one color of light may be used to indicate that a compression rate is within a desired range, while a second color of light may indicate that a user is compressing the chest too slowly or too quickly. Alternatively, a light may flash at the optimum compression rate to help guide a user. In some embodiments, audio signals, such as sounds produced from a speaker of the chest compression device, may be produced to help alert a user if a compression depth and/or rate is within or out of an optimum range.
In use, the operator can attach the system with the patient's chest via the adhesive pad, and apply compressive and decompressive forces to the patient by maneuvering the system handle. For example, the operator can press downwardly on the handle with a sufficient force so as to compress the patient's chest and induce blood circulation from the chest. The operator can then pulls upwardly on the handle so that the adhesive pad actively expands the patient's chest to induce blood circulation into the chest and ventilate the patient's lungs. The downward and upward strokes can be repeated at a rate sufficient to maintain blood circulation and enhance ventilation, typically with a compression distance in the range from about 4.5 cm to about 6 cm and a rate in the range from about 80 repetitions to about 110 repetitions per minute. This technique may be particularly effective when the operator kneels beside the patient and grasps the handle with fully-extended arms, with the operator's palms engaging the upper surface of the handle and fingers grasped around the peripheral flange of the handle. The operator may then apply the necessary or desired downward and upward strokes with fully-extended, locked arms while holding the system in a very stable configuration.
Force guide 570b provides an indication or guide to the operator of how hard to push during a chest compression, how hard to pull during a chest decompression, and how fast to push and pull while administering the compressions and decompressions. For example, in some cases the system may determine that a compression force of 100 lbs and a decompression force of 20 lbs should be applied during the treatment, at a rate of 100 compressions per minute. During the compression and decompression phases of the cycle, indicator bars 571b-578b light up or activate in sequence at the prescribed rate, to provide the operator with a visual guide of how forcefully and how quickly to administer the compressions and decompressions.
Force display 580b provides an indication of how hard the operator is actually pushing during the compression phase and pulling during the decompression phase, and how fast the operator is pushing and pulling when administering the compressions and decompressions. For example, during the compression and decompression phases of the cycle, indicator bars 581b-588b light up or activate depending on how forcefully and how quickly the operator administers the compressions and decompressions. Accordingly, force display 580b enables the operator to track or visualize his or her actual applied force and rate, and compare the applied force and rate with the target force and rate as provided by force guide 570b. By using force guide 570b as a target reference and force display 580b as an indication of the efforts applied during treatment, the operator can realize or approach the goal of matching the applied forces and rates with the target forces and rates.
Force application display 560b also includes a decompression indicator 562b, a compression indicator 564b, a decompression limit warning indicator 566b, and a compression limit warning indicator 568b. According to the embodiment depicted here, decompression indicator 562b provides the user with a reference or indication that force guide 570b and force display 580b signals displayed toward the top of GUI 520b are associated with the decompression phase of ACD CPR Likewise, compression indicator 564b provides the user with a reference or indication that force guide 570b and force display 580b signals displayed toward the bottom of GUI 520b are associated with the compression phase of ACD CPR. The system can be configured so that decompression limit warning indicator 566b lights up or activates when the operator applies a decompression force that exceeds a prescribed decompression force or force range. Similarly, system can be configured so that compression limit warning indicator 568b lights up or activates when the operator applies a compression force that exceeds a prescribed decompression force or force range. These features can help the operator avoid application of excessive forces during treatment, which in some cases could cause injury to the patient.
In some cases, red caution lights may illuminate when the applied force exceeds the prescribed force range. For example, if the operator approaches or exceeds the decompression target limit, a caution light may illuminate and the handle can disconnect from the adhesive pad either immediately or shortly thereafter. In the event the handle becomes detached, the rescuer may reattach the handle by bringing the handle close to the adhesive pad, whereby the handle and the adhesive pad are coupled via magnetic attraction. Once the handle and the pad are attached, the operator can resume the compression and decompression actions of the ACD CPR method. The rescuer can avoid or minimize frequent handle detachment by following the direction provided by a force guide.
When preparing the system for use on a patient, the operator can power on the system by pushing the power button 556b. According to some embodiments, the lights on the right side of the display will illuminate in response to activation of the power switch. In some cases, the operator may take caution not to push on the chest when pressing the power button. For example, in order for the force gauge to appropriately calibrate, it may be beneficial to have no load placed on the handle when the system is initially powered on.
In many instances, it is beneficial for the operator to compress the chest a certain number of times (e.g. about 30) without actively pulling up beyond neutral or applying a decompression force, to ensure appropriate adhesion of the adhesive pad before beginning active decompressions. Hence, the system can be configured or programmed to illuminate the guiding light or force guide 570b so as to guide the user to perform a certain number of compressions (e.g. about 30) before beginning ACD CPR. For example, the force guide 570b may initiate a series of signal displays for indicators 571b-575b (compression phase), but not for indicators 576b-578b (decompression phase). When the predetermined number of compressions are complete, the guiding light or force guide 570b can then direct the operator to compress and decompress in accordance with ACD CPR procedures.
It may be desirable to provide at least one element associated with the device that can measure a physiological parameter and/or display patient status information and/or feedback to the person performing the CPR. Preferably, the measuring element is associated with the surface element. Examples of physiological parameters include ventilation rates, temperature, blood pressure, heart rate, respiratory rate, and other vital signs. Some parameters may require separate monitoring devices (not illustrated) attached to the patient, and the display on the device makes the information immediately available to the person performing the CPR. Feedback information includes pressure or force applied to the patient, depth of compression, compression rate (i.e., cycles per minute), duty cycle (i.e., portion of each cycle in which the patient is compressed), and the like. Such feedback information can be provided as discrete values, e.g., with gauges or digital readouts, or may be provided with a light or sound system which indicates when certain threshold values have been met or exceeded. It may be further desirable to provide a pacing signal, e.g., either a sound or flashing light, to facilitate maintaining a desired compression rate. Other features are further described in U.S. patent Ser. No. 13/554,986, previously incorporated by reference.
A double-blind trial was conducted that compared the effectiveness of a sham (placebo) ITD with an active ITD. The inventor has unique access to the database based upon a contractual relationship with the researchers and Advanced Circulatory Systems. The sham ITD allowed for the free flow of respiratory gases to and from the lungs when performing chest compressions. The active ITD used was a ResQPOD® ITD as described in U.S. Pat. No. 8,408,204 and U.S. patent application Ser. No. 14/197,996, both of which were previously incorporated by reference. The trial included 8718 patients, with 4345 of the patients being randomly assigned treatment with a sham ITD and 4373 patients being randomly assigned to treatment with an active ITD. Standard manual closed chest CPR was performed. During the trial, chest compression rates varied between 50 and 240 per minute. Chest compression depth varied between 1 and 9 cm. Survival with favorable neurological function rates were highest when chest compression rates (in combination with the use of the active ITD) were within an optimal range between 90 and 110 chest compressions/min, with noticeably lower survival rates for patients receiving chest compressions at rates exceeding this range. In this trial, the ITD has a resistance of 16 mmHg. When the pressure within the thorax was <16 mmHg, the resistance valve within the ITD opened.
The mean compression depth for the patients was 41.9 mm, with the following ranges:
Maximum survival was associated with a compression depth of 45.8 mm, followed by a decline in survival by 50 mm, with an optimal interval of 44-49 mm. As seen in
The invention has now been described in detail for purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practiced within the scope of the appended claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 15/158,738, filed May 19, 2016, which is a continuation of U.S. patent application Ser. No. 14/522,402, filed Oct. 23, 2014, and issued as U.S. Pat. No. 9,352,111, which is a continuation-in-part of U.S. patent application Ser. No. 13/411,230, filed Mar. 2, 2012, and issued as U.S. Pat. No. 8,985,098, which is a continuation-in-part of U.S. patent application Ser. No. 11/871,879, filed Oct. 12, 2007 and issued as U.S. Pat. No. 8,151,790, which claims the benefit of U.S. Provisional Application No. 60/912,891, filed Apr. 19, 2007, the complete disclosures of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1848232 | Swope et al. | Mar 1932 | A |
2325049 | Frye et al. | Jul 1943 | A |
2774346 | Halliburton | Dec 1956 | A |
2854982 | Pagano | Oct 1958 | A |
2904898 | Marsden | Sep 1959 | A |
3009266 | Brook | Nov 1961 | A |
3049811 | Ruben | Aug 1962 | A |
3068590 | Padellford | Dec 1962 | A |
3077884 | Batrow et al. | Feb 1963 | A |
3191596 | Bird et al. | Jun 1965 | A |
3199225 | Robertson et al. | Aug 1965 | A |
3209469 | James | Oct 1965 | A |
3216413 | Arecheta Mota | Nov 1965 | A |
3274705 | Breakspear | Sep 1966 | A |
3276147 | Padellford | Oct 1966 | A |
3307541 | Hewson | Mar 1967 | A |
3357426 | Cohen | Dec 1967 | A |
3420232 | Bickford | Jan 1969 | A |
3459216 | Bloom et al. | Aug 1969 | A |
3467092 | Bird et al. | Sep 1969 | A |
3509899 | Hewson | May 1970 | A |
3515163 | Freeman | Jun 1970 | A |
3523529 | Kissen | Aug 1970 | A |
3552390 | Muller | Jan 1971 | A |
3562924 | Baerman et al. | Feb 1971 | A |
3562925 | Baermann et al. | Feb 1971 | A |
3568333 | Clark | Mar 1971 | A |
3662751 | Barkalow et al. | May 1972 | A |
3669108 | Sundblom et al. | Jun 1972 | A |
3734100 | Walker et al. | May 1973 | A |
3739776 | Bird et al. | Jun 1973 | A |
3794043 | McGinnis | Feb 1974 | A |
3815606 | Mazal | Jun 1974 | A |
3834383 | Weigl et al. | Sep 1974 | A |
3872609 | Smrcka | Mar 1975 | A |
3874093 | Garbe | Apr 1975 | A |
3875626 | Tysk et al. | Apr 1975 | A |
3933171 | Hay | Jan 1976 | A |
3949388 | Fuller | Apr 1976 | A |
3973564 | Carden | Aug 1976 | A |
3981398 | Boshoff | Sep 1976 | A |
3993059 | Sjostrand | Nov 1976 | A |
4037595 | Elam | Jul 1977 | A |
4041943 | Miller | Aug 1977 | A |
4054134 | Kritzer | Oct 1977 | A |
4077400 | Harrigan | Mar 1978 | A |
4077404 | Elam | Mar 1978 | A |
4095590 | Harrigan | Jun 1978 | A |
4166458 | Harrigan | Sep 1979 | A |
4193406 | Jinotti | Mar 1980 | A |
4198963 | Barkalow et al. | Apr 1980 | A |
4226233 | Kritzer | Oct 1980 | A |
4237872 | Harrigan | Dec 1980 | A |
4240419 | Furlong et al. | Dec 1980 | A |
4259951 | Chernack et al. | Apr 1981 | A |
4262667 | Grant | Apr 1981 | A |
4297999 | Kitrell | Nov 1981 | A |
4298023 | McGinnis | Nov 1981 | A |
4316458 | Hammerton-Fraser | Feb 1982 | A |
4320754 | Watson et al. | Mar 1982 | A |
4326507 | Barkalow | Apr 1982 | A |
4331426 | Sweeney | May 1982 | A |
4349015 | Alferness | Sep 1982 | A |
4360345 | Hon | Nov 1982 | A |
4397306 | Weisfeldt et al. | Aug 1983 | A |
4424806 | Newman et al. | Jan 1984 | A |
4446864 | Watson et al. | May 1984 | A |
4448192 | Stawitcke et al. | May 1984 | A |
4449526 | Elam | May 1984 | A |
4481938 | Lindley | Nov 1984 | A |
4501582 | Schulz | Feb 1985 | A |
4513737 | Mabuchi | Apr 1985 | A |
4519388 | Schwanbom et al. | May 1985 | A |
4520811 | White et al. | Jun 1985 | A |
4533137 | Sonne | Aug 1985 | A |
4543951 | Phuc | Oct 1985 | A |
4588383 | Parker et al. | May 1986 | A |
4598706 | Darowski et al. | Jul 1986 | A |
4601465 | Roy | Jul 1986 | A |
4602653 | Ruiz-Vela et al. | Jul 1986 | A |
4637386 | Baum | Jan 1987 | A |
4738249 | Linman et al. | Apr 1988 | A |
4750493 | Brader | Jun 1988 | A |
4774941 | Brader | Oct 1988 | A |
4797104 | Laerdal et al. | Jan 1989 | A |
4807638 | Sramek | Feb 1989 | A |
4809683 | Hanson | Mar 1989 | A |
4827935 | Geddes et al. | May 1989 | A |
4828501 | Ingenito et al. | May 1989 | A |
4863385 | Pierce | Sep 1989 | A |
4881527 | Lerman | Nov 1989 | A |
4898166 | Rose et al. | Feb 1990 | A |
4898167 | Pierce et al. | Feb 1990 | A |
4928674 | Halperin et al. | May 1990 | A |
4932879 | Ingenito et al. | Jun 1990 | A |
4971042 | Lerman | Nov 1990 | A |
4971051 | Toffolon | Nov 1990 | A |
4984987 | Brault et al. | Jan 1991 | A |
5014698 | Cohen | May 1991 | A |
5016627 | Dahrendorf et al. | May 1991 | A |
5029580 | Radford et al. | Jul 1991 | A |
5042500 | Norlien et al. | Aug 1991 | A |
5050593 | Poon | Sep 1991 | A |
5056505 | Warwick et al. | Oct 1991 | A |
5083559 | Brault et al. | Jan 1992 | A |
5109840 | Daleiden | May 1992 | A |
5119825 | Huhn | Jun 1992 | A |
5150291 | Cummings et al. | Sep 1992 | A |
5163424 | Kohnke | Nov 1992 | A |
5183038 | Hoffman et al. | Feb 1993 | A |
5184620 | Cudahy et al. | Feb 1993 | A |
5188098 | Hoffman et al. | Feb 1993 | A |
5193529 | Labaere | Mar 1993 | A |
5193544 | Jaffe | Mar 1993 | A |
5195896 | Sweeney et al. | Mar 1993 | A |
5217006 | McCulloch | Jun 1993 | A |
5231086 | Sollevi | Jul 1993 | A |
5235970 | Augustine | Aug 1993 | A |
5238409 | Brault et al. | Aug 1993 | A |
5239988 | Swanson et al. | Aug 1993 | A |
5263476 | Henson | Nov 1993 | A |
5265595 | Rudolph | Nov 1993 | A |
5282463 | Hammersley | Feb 1994 | A |
5295481 | Geeham | Mar 1994 | A |
5301667 | McGrail et al. | Apr 1994 | A |
5305743 | Brain | Apr 1994 | A |
5306293 | Zacouto | Apr 1994 | A |
5312259 | Flynn | May 1994 | A |
5313938 | Garfield et al. | May 1994 | A |
5316907 | Lurie et al. | May 1994 | A |
5330514 | Egelandsdal et al. | Jul 1994 | A |
5335654 | Rapoport | Aug 1994 | A |
5353788 | Miles | Oct 1994 | A |
5355879 | Brain | Oct 1994 | A |
5359998 | Lloyd | Nov 1994 | A |
5366231 | Hung | Nov 1994 | A |
5377671 | Biondi et al. | Jan 1995 | A |
5383786 | Kohnke | Jan 1995 | A |
5388575 | Taube | Feb 1995 | A |
5392774 | Sato | Feb 1995 | A |
5395399 | Rosenwald | Mar 1995 | A |
5397237 | Dhont et al. | Mar 1995 | A |
5398714 | Price | Mar 1995 | A |
5413110 | Cummings et al. | May 1995 | A |
5423685 | Adamson et al. | Jun 1995 | A |
5423772 | Lurie et al. | Jun 1995 | A |
5425742 | Joy | Jun 1995 | A |
5437272 | Fuhrman | Aug 1995 | A |
5452715 | Boussignac | Sep 1995 | A |
5454779 | Lurie et al. | Oct 1995 | A |
5458562 | Cooper | Oct 1995 | A |
5468151 | Egelandsdal et al. | Nov 1995 | A |
5474533 | Ward et al. | Dec 1995 | A |
5477860 | Essen-Moller | Dec 1995 | A |
5490820 | Schock et al. | Feb 1996 | A |
5492115 | Abramov et al. | Feb 1996 | A |
5492116 | Scarberry et al. | Feb 1996 | A |
5496257 | Kelly | Mar 1996 | A |
5507282 | Younes | Apr 1996 | A |
5517986 | Starr et al. | May 1996 | A |
5544648 | Fischer, Jr. | Aug 1996 | A |
5549106 | Gruenke et al. | Aug 1996 | A |
5549581 | Lurie et al. | Aug 1996 | A |
5551420 | Lurie et al. | Sep 1996 | A |
5557049 | Ratner | Sep 1996 | A |
5580255 | Flynn | Dec 1996 | A |
5582182 | Hillsman | Dec 1996 | A |
5588422 | Lurie et al. | Dec 1996 | A |
5593306 | Kohnke | Jan 1997 | A |
5606968 | Mang | Mar 1997 | A |
5614490 | Przybelski | Mar 1997 | A |
5617844 | King | Apr 1997 | A |
5618665 | Lurie et al. | Apr 1997 | A |
5619665 | Emma | Apr 1997 | A |
5628305 | Melker | May 1997 | A |
5632298 | Artinian | May 1997 | A |
5643231 | Lurie et al. | Jul 1997 | A |
5645522 | Lurie et al. | Jul 1997 | A |
5657751 | Karr, Jr. | Aug 1997 | A |
5678535 | DiMarco | Oct 1997 | A |
5685298 | Idris | Nov 1997 | A |
5692498 | Lurie et al. | Dec 1997 | A |
5697364 | Chua et al. | Dec 1997 | A |
5701883 | Hete et al. | Dec 1997 | A |
5701889 | Danon | Dec 1997 | A |
5704346 | Inoue | Jan 1998 | A |
5720282 | Wright | Feb 1998 | A |
5722963 | Lurie et al. | Mar 1998 | A |
5730122 | Lurie | Mar 1998 | A |
5735876 | Kroll et al. | Apr 1998 | A |
5738637 | Kelly et al. | Apr 1998 | A |
5743864 | Baldwin, II | Apr 1998 | A |
5782883 | Kroll et al. | Jul 1998 | A |
5794615 | Estes | Aug 1998 | A |
5806512 | Abramov et al. | Sep 1998 | A |
5814086 | Hirschberg et al. | Sep 1998 | A |
5817997 | Wernig | Oct 1998 | A |
5823185 | Chang | Oct 1998 | A |
5823787 | Gonzalez et al. | Oct 1998 | A |
5827893 | Lurie et al. | Oct 1998 | A |
5832920 | Field | Nov 1998 | A |
5853292 | Eggert | Dec 1998 | A |
5881725 | Hoffman et al. | Mar 1999 | A |
5885084 | Pastrick et al. | Mar 1999 | A |
5891062 | Schock et al. | Apr 1999 | A |
5896857 | Hely et al. | Apr 1999 | A |
5916165 | Duchon et al. | Jun 1999 | A |
5919210 | Lurie et al. | Jul 1999 | A |
5927273 | Federowicz et al. | Jul 1999 | A |
5937853 | Strom | Aug 1999 | A |
5941710 | Lampotang et al. | Aug 1999 | A |
5975081 | Hood et al. | Nov 1999 | A |
5977091 | Nieman et al. | Nov 1999 | A |
5984909 | Lurie et al. | Nov 1999 | A |
5988166 | Hayek | Nov 1999 | A |
6001085 | Lurie et al. | Dec 1999 | A |
6010470 | Albery et al. | Jan 2000 | A |
6029667 | Lurie | Feb 2000 | A |
6042532 | Freed et al. | Mar 2000 | A |
6062219 | Lurie et al. | May 2000 | A |
6078834 | Lurie et al. | Jun 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6123074 | Hete et al. | Sep 2000 | A |
6131571 | Lampotang et al. | Oct 2000 | A |
6155257 | Lurie et al. | Dec 2000 | A |
6155647 | Albecker, III | Dec 2000 | A |
6165105 | Boutellier et al. | Dec 2000 | A |
6167879 | Sievers et al. | Jan 2001 | B1 |
6174295 | Cantrell et al. | Jan 2001 | B1 |
6176237 | Wunderlich et al. | Jan 2001 | B1 |
6193519 | Eggert et al. | Feb 2001 | B1 |
6209540 | Sugiura et al. | Apr 2001 | B1 |
6224562 | Lurie et al. | May 2001 | B1 |
6234916 | Carusillo et al. | May 2001 | B1 |
6234985 | Lurie et al. | May 2001 | B1 |
6277107 | Lurie et al. | Aug 2001 | B1 |
6296490 | Bowden | Oct 2001 | B1 |
6312399 | Lurie et al. | Nov 2001 | B1 |
6334441 | Zowtiak et al. | Jan 2002 | B1 |
6356785 | Snyder et al. | Mar 2002 | B1 |
6369114 | Weil et al. | Apr 2002 | B1 |
6374827 | Bowden et al. | Apr 2002 | B1 |
6390996 | Halperin et al. | May 2002 | B1 |
6425393 | Lurie et al. | Jul 2002 | B1 |
6439228 | Hete et al. | Aug 2002 | B1 |
6459933 | Lurie et al. | Oct 2002 | B1 |
6463327 | Lurie et al. | Oct 2002 | B1 |
6486206 | Lurie | Nov 2002 | B1 |
6526970 | DeVries et al. | Mar 2003 | B2 |
6526973 | Lurie et al. | Mar 2003 | B1 |
6536432 | Truschel | Mar 2003 | B2 |
6544172 | Toeppen-Sprigg | Apr 2003 | B2 |
6555057 | Barbut et al. | Apr 2003 | B1 |
6578574 | Kohnke | Jun 2003 | B1 |
6584973 | Biondi et al. | Jul 2003 | B1 |
6587726 | Lurie et al. | Jul 2003 | B2 |
6595213 | Bennarsten | Jul 2003 | B2 |
6604523 | Lurie et al. | Aug 2003 | B2 |
6622274 | Lee et al. | Sep 2003 | B1 |
6622724 | Truitt et al. | Sep 2003 | B1 |
6631716 | Robinson et al. | Oct 2003 | B1 |
6656166 | Lurie et al. | Dec 2003 | B2 |
6662032 | Gavish et al. | Dec 2003 | B1 |
6676613 | Cantrell et al. | Jan 2004 | B2 |
6726634 | Freeman | Apr 2004 | B2 |
6729334 | Baran | May 2004 | B1 |
6758217 | Younes | Jul 2004 | B1 |
6776156 | Lurie et al. | Aug 2004 | B2 |
6780017 | Pastrick et al. | Aug 2004 | B2 |
6792947 | Bowden | Sep 2004 | B1 |
6863656 | Lurie | Mar 2005 | B2 |
6877511 | DeVries et al. | Apr 2005 | B2 |
6935336 | Lurie et al. | Aug 2005 | B2 |
6938618 | Lurie et al. | Sep 2005 | B2 |
6951546 | Palmer | Oct 2005 | B2 |
6986349 | Lurie | Jan 2006 | B2 |
6988499 | Holt et al. | Jan 2006 | B2 |
7011622 | Kuyava et al. | Mar 2006 | B2 |
7032596 | Thompson et al. | Apr 2006 | B2 |
7044128 | Lurie et al. | May 2006 | B2 |
7066173 | Banner et al. | Jun 2006 | B2 |
7082945 | Lurie | Aug 2006 | B2 |
7096866 | Be'eri et al. | Aug 2006 | B2 |
7174891 | Lurie et al. | Feb 2007 | B2 |
7185649 | Lurie | Mar 2007 | B2 |
7188622 | Martin et al. | Mar 2007 | B2 |
7195012 | Lurie | Mar 2007 | B2 |
7195013 | Lurie | Mar 2007 | B2 |
7204251 | Lurie | Apr 2007 | B2 |
7210480 | Lurie et al. | May 2007 | B2 |
7220235 | Geheb et al. | May 2007 | B2 |
7226427 | Steen | Jun 2007 | B2 |
7275542 | Lurie et al. | Oct 2007 | B2 |
7311668 | Lurie | Dec 2007 | B2 |
7469700 | Baran | Dec 2008 | B2 |
7487773 | Li | Feb 2009 | B2 |
7500481 | Delache et al. | Mar 2009 | B2 |
7594508 | Doyle | Sep 2009 | B2 |
7650181 | Freeman et al. | Jan 2010 | B2 |
7682312 | Lurie | Mar 2010 | B2 |
7766011 | Lurie | Aug 2010 | B2 |
7793659 | Breen | Sep 2010 | B2 |
7824436 | Barbut et al. | Nov 2010 | B2 |
7836881 | Lurie et al. | Nov 2010 | B2 |
7899526 | Benditt et al. | Mar 2011 | B2 |
8011367 | Lurie et al. | Sep 2011 | B2 |
8108204 | Gabrilovich et al. | Jan 2012 | B2 |
8151790 | Lurie et al. | Apr 2012 | B2 |
8210176 | Metzger et al. | Jul 2012 | B2 |
8287474 | Koenig et al. | Oct 2012 | B1 |
8388682 | Hendricksen et al. | Mar 2013 | B2 |
8408204 | Lurie | Apr 2013 | B2 |
8702633 | Voss et al. | Apr 2014 | B2 |
8755902 | Lurie et al. | Jun 2014 | B2 |
8939922 | Strand et al. | Jan 2015 | B2 |
9238115 | Marshall et al. | Jan 2016 | B2 |
20010003984 | Bennarsten et al. | Jun 2001 | A1 |
20010029339 | Orr et al. | Oct 2001 | A1 |
20010047140 | Freeman | Nov 2001 | A1 |
20020007832 | Doherty | Jan 2002 | A1 |
20020069878 | Lurie et al. | Jun 2002 | A1 |
20020104544 | Ogushi et al. | Aug 2002 | A1 |
20020170562 | Lurie et al. | Nov 2002 | A1 |
20020179090 | Boussignac | Dec 2002 | A1 |
20030000526 | Gobel | Jan 2003 | A1 |
20030037784 | Lurie | Feb 2003 | A1 |
20030062040 | Lurie et al. | Apr 2003 | A1 |
20030062041 | Keith et al. | Apr 2003 | A1 |
20030192547 | Lurie et al. | Oct 2003 | A1 |
20040016428 | Lurie | Jan 2004 | A9 |
20040058305 | Lurie et al. | Mar 2004 | A1 |
20040200473 | Lurie et al. | Oct 2004 | A1 |
20040200474 | Lurie | Oct 2004 | A1 |
20040210281 | Dzeng et al. | Oct 2004 | A1 |
20040211415 | Lurie | Oct 2004 | A1 |
20040211416 | Lurie | Oct 2004 | A1 |
20040211417 | Lurie | Oct 2004 | A1 |
20040231664 | Lurie et al. | Nov 2004 | A1 |
20040267325 | Geheb et al. | Dec 2004 | A1 |
20050016534 | Ost | Jan 2005 | A1 |
20050075531 | Loeb et al. | Apr 2005 | A1 |
20050126567 | Lurie | Jun 2005 | A1 |
20050165334 | Lurie | Jul 2005 | A1 |
20050199237 | Lurie | Sep 2005 | A1 |
20050217677 | Lurie et al. | Oct 2005 | A1 |
20050267381 | Benditt et al. | Dec 2005 | A1 |
20060089574 | Paradis | Apr 2006 | A1 |
20060129191 | Sullivan et al. | Jun 2006 | A1 |
20060270952 | Freeman et al. | Nov 2006 | A1 |
20070017523 | Be-Eri et al. | Jan 2007 | A1 |
20070021683 | Benditt et al. | Jan 2007 | A1 |
20070060785 | Freeman et al. | Mar 2007 | A1 |
20070199566 | Be'eri | Aug 2007 | A1 |
20070221222 | Lurie | Sep 2007 | A1 |
20070277826 | Lurie | Dec 2007 | A1 |
20080039748 | Palmer et al. | Feb 2008 | A1 |
20080047555 | Lurie et al. | Feb 2008 | A1 |
20080092891 | Cewers | Apr 2008 | A1 |
20080097258 | Walker | Apr 2008 | A1 |
20080097385 | Vinten-Johansen et al. | Apr 2008 | A1 |
20080108905 | Lurie | May 2008 | A1 |
20080255482 | Lurie | Oct 2008 | A1 |
20080257344 | Lurie et al. | Oct 2008 | A1 |
20090020128 | Metzger et al. | Jan 2009 | A1 |
20090062701 | Yannopoulos et al. | Mar 2009 | A1 |
20090076573 | Burnett et al. | Mar 2009 | A1 |
20090164000 | Shirley | Jun 2009 | A1 |
20090277447 | Voss et al. | Nov 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20100000535 | Wickham et al. | Jan 2010 | A1 |
20100147302 | Selvarajan et al. | Jun 2010 | A1 |
20100174278 | Barbut et al. | Jul 2010 | A1 |
20100179442 | Lurie | Jul 2010 | A1 |
20100247682 | Gladwin et al. | Sep 2010 | A1 |
20100319691 | Lurie et al. | Dec 2010 | A1 |
20110056491 | Rumph et al. | Mar 2011 | A1 |
20110098612 | Lurie | Apr 2011 | A1 |
20110160782 | Lurie et al. | Jun 2011 | A1 |
20110201979 | Voss et al. | Aug 2011 | A1 |
20110297147 | Lick et al. | Dec 2011 | A1 |
20120016279 | Banville et al. | Jan 2012 | A1 |
20120203147 | Lurie et al. | Aug 2012 | A1 |
20120302908 | Hemnes et al. | Nov 2012 | A1 |
20120330199 | Lurie et al. | Dec 2012 | A1 |
20120330200 | Voss et al. | Dec 2012 | A1 |
20130118498 | Robitaille et al. | May 2013 | A1 |
20130172768 | Lehman | Jul 2013 | A1 |
20130231593 | Yannopoulos et al. | Sep 2013 | A1 |
20130269701 | Lurie | Oct 2013 | A1 |
20140005566 | Homuth et al. | Jan 2014 | A1 |
20140048061 | Yannopoulos et al. | Feb 2014 | A1 |
20160287834 | Bennett | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
1487792 | Oct 1992 | AU |
60539 | Nov 1994 | AU |
687942 | May 1995 | AU |
668771 | Aug 1963 | CA |
2077608 | Mar 1993 | CA |
2214887 | Sep 1996 | CA |
1183731 | Jun 1998 | CN |
2453490 | May 1975 | DE |
4308493 | Sep 1994 | DE |
0029352 | May 1981 | EP |
0139363 | May 1985 | EP |
0245142 | Nov 1987 | EP |
0367285 | May 1990 | EP |
0411714 | Feb 1991 | EP |
0509773 | Oct 1992 | EP |
0560440 | Sep 1993 | EP |
0623033 | Nov 1994 | EP |
1344862 | Jan 1974 | GB |
1465127 | Feb 1977 | GB |
2117250 | Oct 1983 | GB |
2139099 | Nov 1984 | GB |
2005000675 | Jan 2005 | JP |
2006524543 | Nov 2006 | JP |
2007504859 | Mar 2007 | JP |
9005518 | May 1990 | WO |
9302439 | Feb 1993 | WO |
9321982 | Nov 1993 | WO |
9426229 | Nov 1994 | WO |
9513108 | May 1995 | WO |
9528193 | Oct 1995 | WO |
9628215 | Sep 1996 | WO |
9820938 | May 1998 | WO |
9947197 | Sep 1999 | WO |
9963926 | Dec 1999 | WO |
0020061 | Apr 2000 | WO |
0102049 | Jan 2001 | WO |
0170092 | Sep 2001 | WO |
0170332 | Sep 2001 | WO |
02092169 | Nov 2002 | WO |
2004096109 | Nov 2004 | WO |
2006088373 | Aug 2006 | WO |
2008147229 | Dec 2008 | WO |
2010044034 | Apr 2010 | WO |
2013064888 | May 2013 | WO |
2013096495 | Jun 2013 | WO |
2014026193 | Feb 2014 | WO |
Entry |
---|
US 5,584,866 A, 12/1996, Kroll et al. (withdrawn) |
Advanced Circulatory Systems, Inc. (Jan. 2014), Emerging Data: The Resuscitation Outcomes Consortium (ROC) PRIMED Study on the Efficacy of the ITD (#49-0864-000,06) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (Jan. 2013), Emerging Data: The Resuscitation Outcomes Consortium (ROC) Primed Study on the Efficacy of the ITD (#49-0864-000,05) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (Mar. 2012), Benefits of the ResQPOD Based Upon the ROC PRIMED Study (#49-0864-000,04) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (Jan. 2012), Benefits of the ResQPOD Based Upon the ROC PRIMED Study (#49-0864-000,03) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (Aug. 2011),Early Intervention is Life-Saving in Cardiac Arrest (#49-0864-000,01) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (Aug. 2011),Early Intervention is Life-Saving in Cardiac Arrest (#49-0864-000,02) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (2013), ResQPOD More than a Heartbeat (#49-0336-000,08) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (2011), ResQPOD ITD:Strengthening the Chain of Survival (#49-0336000,06) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (2010), ResQPOD Impedance Threshold Device:Strengthening the Chain of Survival (#49-0336000,05) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (2010), ResQPOD Impedance Threshold Device:Strengthening the Chain of Survival (#49-0336000,04) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (2010), ResQPOD Impedance Threshold Device 10.0: Strengthening the Chain of Survival (#49-0336000,03) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems, Inc. (2006). ResQPOD® Circulatory Enhancer: Strengthening the Chain of Survival [#49-0336-000, 02). [Brochure]. Roseville.MN: Advanced Circulatory Systems,Inc., 2 pages. |
Advanced Circulatory Systems, Inc. (2006). ResQPOD® Circulatory Enhancer: Strengthening the Chain of Survival [#49-0336-000, 01) [Brochure). Roseville, MN: Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems. Inc. (2011). ResQPOD® Perfusion on Demand: ResQPOD Impedance Threshold Device (#49-0324-001, 05) [Brochure). Roseville, MN: Advanced Circulatory Systems, Inc., 2 pages. |
Advanced Circulatory Systems, Inc. (2011). ResQPOD® Perfusion on Demand: ResQPOD Impedance Threshold Device (#49-0324-001, 04) [Brochure). Roseville, MN: Advanced Circulatory Systems, Inc. 2 pages. |
Advanced Circulatory Systems,Inc. (2010). ResQPOD® Perfusion on Demand: ResQPOD Impedance Threshold Device (#49-0324-001, 03) [Brochure). Roseville, MN: Advanced Circulatory Systems, Inc., 2 pages. |
Advanced Circulatory Systems,Inc. (2009). ResQPOD® Perfusion on Demand: ResQPOD Impedance Threshold Device (#49-0324-001, 02) [Brochure). Roseville, MN: Advanced Circulatory Systems, Inc., 2 pages. |
Advanced Circulatory Systems,Inc. (2005). Introducing ResQPOD® (#49-0324-000, 01) [Brochure). Roseville, MN: Advanced Circulatory Systems, Inc., 2 pages. |
Ambu InternationaINS Directions for use of Ambu® CardioPump™⋅Sep. 1992, 8 pages. |
Aufderheide et al., “Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: A randomized trial,” 2011, Lancet, vol. 377, pp. 301-311. |
Aufderheide et al., “Hyperventilation-Induced Hypotension During Cardiopulmonary Resuscitation,” Circulation; 2004, vol. 109:16, pp. 1960-1965. |
Babbs, “CPR Techniques that Combine Chest and Abdominal Compression and Decompression: Hemodynamic Insights from a Spreadsheet Model,” Circulation,1999, pp. 2146-2152. |
Christenson et al., “Abdominal Compressions During CPR: Hemodynamic Effects of Altering Timing and Force”, The Journal of Emergency Medicine, 1992,vol. 10, pp. 257-266. |
Cohen et al., “Active compression-decompression resuscitation: A novel method of cardiopulmonary resuscitation,” American Heart Journal vol. 124:5, pp. 1145-1150. |
Cohen et al., “Active Compression-Decompression: A New Method of Cardiopulmonary Resuscitation,” 1992, JAMA, vol. 267:29, pp. 2916-2923. |
Dupuis, “Ventilators—Theory and Clinical Application,” Jan. 1986, The C.V. Mosby Company, pp. 447-448, 481, 496. |
Geddes et al., “Inspiration Produced by Bilateral Electromagnetic, Cervical Phrenic Nerve Stimulation in Man,” IEEE Transactions on Biomedical Engineering, 1991, vol. 38:9, pp. 1047-1048. |
Geddes et al., “Optimum Stimulus Frequency for Contracting the Inspiratory Muscles with Chest-Surface Electrodes to Produce Artificial respiration,” Annals of Biomedical Engineering, 1990, vol. 18, pp. 103-108. |
Geddes et al., “Electrically Produced Artificial Ventilation,” Medical Instrumentation, 1988, vol. 22:5; pp. 263-271. |
Geddes, “Electroventilation—A Missed Opportunity?” Biomedical Instrumentation & Technology, 1998, pp. 401-414. |
Glen et al., “Diaphragm Pacing by Electrical Stimulation of the Phrenic Nerve,” Neurosurgery, 1985, vol. 17:6, pp. 974-984. |
Glenn et al., “Twenty Years of Experience in Phrenic Nerve Stimulation to Pace the Diaphragm,” Nov./Dec. 1986, Part I, Pace 9, pp. 780-784. |
Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care, JAMA, 1992, vol. 268; pp. 2172-2177. |
Kotze et al., “Diaphragm pacing in the treatment of ventilatory failure,” SAMT, 1995, vol. 68, pp. 223-224. |
Laghi et al., “Comparison of Magnetic and Electrical Phrenic Nerve Stimulation in assessment of Diaphragmantic Contractility,” American Physiological Society, 1996, pp. 1731-1742. |
Lindner et al., “Effects of Active Compression-Decompression Resuscitation on Myocardialand Cerebral Blood Flow in Pigs,” Circulation, 1993, vol. 88:3, 1254-1263. |
Lurie et al., “Comparison of a 10-Breaths-Per-Minute Versus a 2-Breaths-Per-Minute Strategy During Cardiopulmonary Resuscitation in a Porcine Model of Cardiac Arrest,” Respiratory Care, 2008, vol. 53:7, pp. 862-870. |
Lurie et al., “Regulated to Death: The Matter of Informed Consent for Human Experimentation in Emergency Resuscitation Research,” PACE, 1995, vol. 8, pp. 1443-1447. |
Michigan Instruments, Inc.Thumper 1007CC Continuous Compression Cardiopulmonary Resuscitation System, obtained online 715/2006 at http://WwW.michiganinstruments.com/resus-thumper.htm, 1 page. |
Mushin et al., “Automatic Ventilation of the Lungs—The Lewis-Leigh Inflating Valve,” 1969, Blackwell Scientific, Oxford, GB, p. 838. |
Schultz et al., “Sodium nitroprusside enhanced cardiopulmonary resuscitation (SNPeCPR) improves vital organ perfusion pressures and carotid blood flow in a porcine model of cardiac arrest,” Resuscitation, 2012, vol. 83, pp. 374-377. |
Segal et al., “Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates cardiac and cerebral recovery after prolonged untreated ventricular fibrillation,” Resuscitation, 2012, pp. 1-7. |
Shapiro et al., “Neurosurgical Anesthesia and Intracranial Hypertension,” Anesthesia, 3rd Edition, 1990, Church Livingston, New York, Chapter 54. |
Yannopoulos et al., “Controlled pauses at the initiation of sodium nitroprussdi e-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 minutes of untreated ventricular fibrillation,” Critical Care Medicine , 2012, vol. 40:5, pp. 1-8. |
Yannopoulos et al., “Intrathoracic Pressure Regulator During Continuous-Chest-Compression Advanced Cardiac Resuscitation Improves Vital Organ Perfusion Pressures in a Porcine Modelof Cardiac Arrest”, Circulation, 2005, pp. 803-811. |
Yannopoulos et al., “Intrathoracic Pressure Regulation Improves 24⋅ Hour Survival in a Porcine Modelof Hypovolemic Shock,” Anesthesia & Analgesia, ITPR and Survival in Hypovolemic Shock, 2007, vol. 104:1, pp. 157-162. |
Yannopoulos et al.,“Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs,” Resuscitation, 2006, vol. 70, pp. 445-453. |
Yannopoulos et al., “Sodium nitroprusside enhanced cardiopulmonary resuscitation improves survival with good neurological function in a porcine model of prolonged cardiac arrest,” Critical Care Medicine, 2011, vol. 39:6 pp. 1-6. |
Zhao et. al., “Inhibation of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning,” AJP Heart Circ Physiol, 2003, vol. 285, pp. H579-H588. |
Zoll Autopulse Non-Invasive Cardiac Support Pump, obtained online on 715106 at http://www.zoll.com/product.aspx?id=84,1 page. |
U.S. Appl. No. 11/871,879, “Volume Exchanger Valve System and Method to Increase Circulation During CPR”, filed Oct. 12, 2007. |
U.S. Appl. No. 13/411,230, “CPR Volume Exchanger Valve System with Safety Feature and Methods”, filed Mar. 2, 2012. |
U.S. Appl. No. 14/522,402, “Systems and Methods to Increase Survival With Favorable Neurological Function After Cardiac Arrest”, filed Oct. 23, 2014. |
U.S. Appl. No. 14/635,525, “CPR Volume Exchanger Valve System With Safety Feature and Methods”, filed Mar. 2, 2015. |
U.S. Appl. No. 15/158,738, “Systems and Methods to Increase Survival With Favorable Neurological Function After Cardiac Arrest”, filed May 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20200069514 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
60912891 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15158738 | May 2016 | US |
Child | 16596097 | US | |
Parent | 14522402 | Oct 2014 | US |
Child | 15158738 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13411230 | Mar 2012 | US |
Child | 14522402 | US | |
Parent | 11871879 | Oct 2007 | US |
Child | 13411230 | US |