Not applicable.
This disclosure relates generally to techniques for processing audio recordings. More particularly, but not by way of limitation, this disclosure relates to systems and methods for multiplexing and synchronizing audio recordings.
Today's law enforcement officers have various means of technology at their disposal to perform their tasks. However, while technology has provided law enforcement officers powerful tools to perform their jobs, it has also added a level of complexity for officers on patrol. Officers are typically burdened with having to wear and maintain various pieces of gear while on patrol. This gear weighs down the officer, and the electronic gear generates heat which creates discomfort, particularly in hot summer conditions. Recently, officers have begun to use body-worn-cameras (BWC) to capture on-scene video while on patrol.
The BWCs used by officers are often paired with a separate microphone to transmit on-scene audio. The captured audio is typically transmitted wirelessly to a receiver in the officer's patrol car. The transmission of the audio from the body-worn microphone to the patrol car is subject to signal interference and signal loss when out of range. These limitations can hinder the use of such audio collection for evidence in legal proceedings.
A need remains for consolidation of wearable equipment and improved techniques to collect, multiplex, and synchronize audio recordings for law enforcement purposes and other functions.
In view of the aforementioned problems and trends, embodiments of the present invention provide systems and methods for multiplexing and synchronizing audio recordings.
According to an aspect of the invention, a method includes recording audio data using a first device, wherein the first device is portable, transferring the recorded audio data from the first device to a second device configured to receive audio data, and multiplexing the transferred audio data with at least one data file in the second device to synchronize the transferred audio data with the at least one data file.
According to another aspect of the invention, a system includes a first device configured to record audio data, wherein the first device is portable, and a second device configured: (a) to hold or store at least one data file, and (b) to receive audio data from the first device, wherein the second device is configured to multiplex audio data the second device receives from the first device with at least one data file held by the second device, to synchronize the received audio data with the at least one data file.
According to another aspect of the invention, a method includes recording audio data using a first device, wherein the first device is portable, transferring the recorded audio data from the first device to a second device containing at least one data file, detecting at least one marker in either of the transferred audio data or the at least one data file, and using the detected at least one marker, synchronizing the transferred audio data with the at least one data file.
According to another aspect of the invention, a method includes recording audio data using a first device, wherein the first device is portable, simultaneously with the recording audio data using the first device, wirelessly transmitting the recorded audio data from the first device to a second device configured to receive audio data, and recording the transmitted audio data using the second device.
Other aspects of the embodiments described herein will become apparent from the following description and the accompanying drawings, illustrating the principles of the embodiments by way of example only.
The following figures form part of the present specification and are included to further demonstrate certain aspects of the present claimed subject matter, and should not be used to limit or define the present claimed subject matter. The present claimed subject matter may be better understood by reference to one or more of these drawings in combination with the description of embodiments presented herein. Consequently, a more complete understanding of the present embodiments and further features and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numerals may identify like elements, wherein:
Certain terms are used throughout the following description and claims to refer to particular system components and configurations. As one skilled in the art will appreciate, the same component may be referred to by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” (and the like) and “comprising” (and the like) are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” Also, the term “couple,” “coupled,” or “linked” is intended to mean either an indirect or direct electrical, mechanical, or wireless connection. Thus, if a first device couples to or is linked to a second device, that connection may be through a direct electrical, mechanical, or wireless connection, or through an indirect electrical, mechanical, or wireless connection via other devices and connections.
As used throughout this disclosure the term “computer” encompasses special purpose microprocessor-based devices such as a digital video surveillance system primarily configured for executing a limited number of applications, and general purpose computers such as laptops, workstations, or servers which may be configured by a user to run any number of off the shelf or specially designed software applications. Computer systems and computer devices will generally interact in the same way with elements and aspects of disclosed embodiments. This disclosure also refers to memory or storage devices and storage drives interchangeably. In general, memory or a storage device/drive represents a medium accessible by a computer (via wired or wireless connection) to store data and computer program instructions. It will also be appreciated that use of the term “microprocessor” in this disclosure encompasses one or more processors.
As used throughout this disclosure the term “record” is interchangeable with the term “store” and refers to the retention of data in a storage medium designed for long-term retention (e.g., solid state memory, hard disk, CD, DVD, memory card, etc.), as compared to the temporary retention offered by conventional memory means such as volatile RAM. The temporary retention of data, audio data or otherwise, is referred to herein as the “holding” of data or as data being “held.”
The terms “multiplex” and “multiplexing” refer to the incorporation or combination of a specified file, audio track (i.e. audio communication signal), and/or data with another file, audio track, or other data.
As used throughout this disclosure the terms “video data” and “visual data” refer to still image data, moving image data, or both still and moving image data, as traditionally understood. The term “audiovisual data” encompasses not only video or visual data but also audio data and/or metadata. That is, audiovisual data may include visual or video data, audio data, metadata, or any combination of these three. This audiovisual data may be compressed using industry standard compression technology (e.g., Motion Picture Expert Group (MPEG) standards, Audio Video Interleave (AVI), etc.) or another proprietary compression or storage format. The terms “camera,” “camera device,” and the like are understood to encompass devices configured to record or capture audiovisual data. Such devices may also be referred to as video recording devices, or the like. Metadata may be included in the files containing the audiovisual (or audio, or video) data or in separate, associated data files, that may be configured in a structured text format such as eXtensible Markup Language (XML).
The term “metadata” refers to information associated with the recording of audio, video, or audiovisual data, or information included in the recording of such data, and metadata may contain information describing attributes associated with one or more acts of actual recording of audio, video, or audiovisual data. That is, the metadata may describe who (e.g., officer ID) or what (e.g., manual or automatic trigger) initiated or performed the recording. The metadata may also describe where the recording was made. For example, location may be obtained using global positioning system (GPS) information. The metadata may also describe why the recording was made (e.g., event tag describing the nature of the subject matter recorded). The metadata may also describe when the recording was made, using timestamp information obtained in association with GPS information or from an internal clock, for example. Metadata may also include information relating to the device(s) used to capture or process information (e.g. a unit serial number, mac address, etc.). Metadata may also include telemetry or other types of data. From these types of metadata, circumstances that prompted the recording may be inferred and may provide additional information about the recorded information. This metadata may include useful information to correlate recordings from multiple distinct recording systems as disclosed herein. This type of correlation information may assist in many different functions (e.g., query, data retention, chain of custody, precise synchronization and so on).
As used throughout this disclosure the term “portable” refers to the ability to be easily carried or moved. The term encompasses a wearable device (i.e. a device that can be worn or carried by a person or an animal).
The term “cloud” refers to an area or environment generally accessible across a communication network (which may or may not be the Internet) that provides shared computer storage and/or processing resources and/or data to computers and other devices. A “cloud” may refer to a public cloud, private cloud, or combination of a public and private cloud (e.g., hybrid cloud). The term “public cloud” generally refers to a cloud storage environment or area that is maintained by an unrelated third party but still has certain security measures in place to ensure that access is only allowed to authorized users. The term “private cloud” generally refers to a cloud storage environment or area that is maintained by a related entity or that is maintained on physical computer resources that are separate from any unrelated users.
The foregoing description of the figures is provided for the convenience of the reader. It should be understood, however, that the embodiments are not limited to the precise arrangements and configurations shown in the figures. Also, the figures are not necessarily drawn to scale, and certain features may be shown exaggerated in scale or in generalized or schematic form, in the interest of clarity and conciseness. The same or similar parts may be marked with the same or similar reference numerals.
While various embodiments are described herein, it should be appreciated that the present invention encompasses many inventive concepts that may be embodied in a wide variety of contexts. The following detailed description of exemplary embodiments, read in conjunction with the accompanying drawings, is merely illustrative and is not to be taken as limiting the scope of the invention, as it would be impossible or impractical to include all of the possible embodiments and contexts of the invention in this disclosure. Upon reading this disclosure, many alternative embodiments of the present invention will be apparent to persons of ordinary skill in the art. The scope of the invention is defined by the appended claims and equivalents thereof.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are necessarily described for each embodiment disclosed in this specification. In the development of any such actual embodiment, numerous implementation-specific decisions may need to be made to achieve the design-specific goals, which may vary from one implementation to another. It will be appreciated that such a development effort, while possibly complex and time-consuming, would nevertheless be a routine undertaking for persons of ordinary skill in the art having the benefit of this disclosure. It will also be appreciated that the parts and component dimensions of the embodiments disclosed herein may not be drawn to scale.
In some embodiments, the first device 10 camera 12 may be configured to wirelessly sync (e.g., via Bluetooth®, RuBee, Wi-Fi, 3G, 4G, LTE, etc.) with other data gathering/telemetry devices within a set range or proximity. Such other devices may include, for example, biometric data sensors, geospatial, distancing and orientation data devices (apart from that provided by GPS), environmental telemetry devices, etc. In such embodiments, the camera 12 can wirelessly receive data transmitted from the other devices and store the data in memory 24 as metadata. The data from the other devices can be recorded in sync with the recording of audio/video or independently (e.g. when the camera 12 is not holding/storing audio/video). The camera 12 may be configured to sync with other devices automatically or via manual activation. All of this additional data from other devices can be multiplexed and synchronized with selected data using the techniques disclosed herein.
In some embodiments, the audio, video, and/or audiovisual data captured by the camera 12 is temporarily held in the buffer 22 in a continuous circulating stream to perform “pre-event” circular buffering, without storing the data to memory 24 until the camera 12 is activated to store the data to memory 24 by a wireless command or by manual activation via the record “on/off” button 20. This “smart buffering” feature provides a circular buffer that temporarily holds the captured data in configurable file segment sizes (e.g. 1-5 minute chunks) until activated to store the data to memory 24 or the data is automatically deleted as new data is captured and streamed into the buffer 22 in a continuous manner. When activated to store the data, time points are marked in the data files. In some embodiments, if the camera 12 is activated or triggered to store the data, the camera 12 can be configured to export the data (in the above-mentioned file segments) to a removable media and/or a separate folder in the memory 24 sector where the circular recording is written. In some embodiments, the pre-event buffering can optionally be configured to continually write directly to memory 24 in a circulating stream.
When not being worn, the camera 12 can be docked into a docking module 32, as depicted in
For law enforcement applications, the docking module 32 can be mounted in a police vehicle 34, as depicted in
In operation, the first device 10 camera 12 can be used to record desired audio data (whether the audio is captured as audiovisual data or solely as audio data). In some situations, the ICV camera 40 will capture relevant audio data via a wired or wireless microphone source, while in some situations the ICV camera 40 may not (e.g., when the officer is outside of the vehicle 34 performing a traffic stop), and the first device 10 camera 12 may record the on-scene audio data when worn by the officer as a BWC. Thus, on-scene video data and audio data are obtained by both the ICV camera 40 and the first device 10 camera 12. However, separate playback of the recorded data files from the ICV camera 40 and the first device 10 camera 12 may not be in sync. This mismatch in synchronization may be particularly exacerbated when the ICV camera 40 and the first device 10 camera 12 are each activated at different times or intermittently during a recording event. The embodiments of this disclosure provide a solution in this situation.
Embodiments of the second device 36 are implemented with software configured to extract and/or multiplex the audio data recorded by the first device 10 with the file container of the data file(s) in the second device 36 memory (e.g. ICV camera 40). The data file(s) stored in the second device 36 may include audio, video, metadata, and/or audiovisual files. Some embodiments of the second device 36 are configured to multiplex the audio data recorded by the first device 10 to synchronize the audio data with the relevant data file(s) (i.e., audio data, video data, metadata, and/or audiovisual data) in the file container of the second device 36. It will be appreciated by those skilled in the art that data files (audio data, video data, metadata, and/or audiovisual data) can be multiplexed and synchronized with multiple devices 10, 36 and other audiovisual sources, and in some cases linked to several devices and/or sources, that were on the scene, for later synchronization. Such embodiments provide for enhanced audio and video data review and may also be used to identify and create a map of the location where the devices/sources were located during an event.
At module 58, once the markers have been detected in the respective data files, the audio data transferred from the first device 10 camera 12 is multiplexed and synchronized with the data file(s) in the second device ICV camera 40 file container. In some embodiments, the data files are multiplexed by linking the files together (via the software) such that opening or “playing” one file simultaneously opens/plays the linked file. In some embodiments, the synchronization is performed by: (a) selecting one of the data files (i.e., either the transferred audio data file or a data file in the ICV camera 40 file container); (b) rolling back in the selected file to a specific marker point (e.g. the earliest time mark); and (c) automatically synchronizing the files by marking points in the selected file where markers match with the data in the other data file. In an application, an officer can record the on-scene audio with the portable camera 12 affixed to his vest as a BWC. After the event is over, the officer can immediately transfer the audio data recorded with the camera 12 to the ICV camera 40, as described herein, or the officer can perform the data transfer at a later time (e.g. upon return to the station at the end of his shift). After the recorded audio data has been transferred from the camera 12 to the ICV camera 40 storage, the ICV camera 40 can roll back the transferred audio data to the proper time stamp and automatically multiplex and synchronize the data files by marking points in the transferred audio data where the markers match the data in the audiovisual file stored in the ICV camera 40. At module 60, the ICV camera 40 may create a unique identifier to identify the multiplexed data so that the synchronized data files can be logged in an audit trail and stored as desired. This way, when either data file is searched (i.e. the audio data recorded with the portable camera 12 or the data recorded with the ICV camera 40), the associated data file is automatically linked to be played back simultaneously and in sync if needed. Synchronous play from multiple data files can then be activated as desired. It will be appreciated by those skilled in the art that embodiments of this disclosure may be implemented using conventional software platforms and coding configured to perform the techniques and processes as disclosed herein.
In some embodiments where the first device 10 camera 12 and the ICV camera 40 are each configured to provide the “pre-event” circular buffering described above, the synchronization step of module 58 may be performed in a slightly different manner. With such embodiments, the selected data file that is rolled back (step (b) above) is the data file with the shortest recording time (duration). In other words, the selecting is performed based on comparing respective recording durations of (i) the audio data file transferred from the first device 10 camera 12 (BWC) and (ii) the at least one data file in the ICV camera. In this scenario the files may get synchronized starting points while maintaining the original starting points for each file. This ensures that the multiplexed data files are synced to the longest event of interest.
In some embodiments, the first device 10 is configured to simultaneously record and transmit audio data to the second device 36. The received audio transmission can be recorded in the second device 36 in real-time. For example, an embodiment of the first device 10 camera 12 could be used to record audio data as described herein, and simultaneously transmit (e.g., via RuBee, Wi-Fi, 3G, 4G, LTE, etc.) the audio data to a ICV camera 40. The ICV camera 40 can then store the transmitted audio data in the file container of the ICV camera 40 data file. Once stored in the ICV camera 40, the transmitted audio data may be multiplexed and synchronized with the data file(s) in the ICV camera 30 as disclosed herein.
In some embodiments, the audio data transferred from the first device 10 is used to replace audio data in a data file in the second device 36. For example, in a situation where the audio data captured by the ICV camera 40 is of such poor quality that it is difficult to discern (e.g. the audio signal goes faint as the officer walks away from the vehicle 34), the system software may be configured to automatically replace the poor-quality audio data in the data file from the ICV camera 40 with the audio data recorded by the first device 10. In some embodiments, only portions of audio data in the second device 36 data file are replaced in this manner. In other embodiments, the audio data transferred from the first device 10 is established as the audio data for the data file in the second device 36, such that when the multiplexed files are played, the only audio signal heard is that from the transferred audio data. For example, if the data file in the second device 36 contains only video data, without audio, the audio data recorded with first device 10 may be used as the audio data once the audio data is multiplexed into the file container of the second device data file. Other embodiments may combine and synchronize audio data captured by a separate body-worn source (e.g., a separate body-worn wireless microphone linked to the second device 36) with audio data from the first device 10, to produce a higher quality resultant audio file. Embodiments of this disclosure also encompass the multiplexing and synchronization of data (audio, video, audiovisual) obtained by multiple first devices 10 and/or second devices 36. Such embodiments provide for the synchronization of multiple audio data files to non-audio carrying video.
Although the examples presented above describe embodiments using a time stamp as a starting marker for the synchronization process, any marker or combination of markers in the data files may be used to synchronize the data sets.
It will also be appreciated by those skilled in the art having the benefit of this disclosure that embodiments may be implemented wherein the second device 36 that receives the recorded audio data from the first device 10 is a remote computer (e.g. a server at headquarters), a smartphone, a wearable device (e.g. another BWC), etc. Any of these second devices 36 may be implemented with electronics, microprocessors, and software configured to perform the techniques and processes disclosed herein. It will also be appreciated that the first device 10 may be, or include, a device configured to record and/or transmit audio data and metadata, and optionally video data.
Other embodiments may be implemented wherein the first device 10 is configured to create and store an audio track (i.e. containing solely a captured audio communication signal). The audio track can be created as a solely recorded file, i.e., without the creation of visual data, or simultaneously with creating and storing a separate audiovisual track, or non-simultaneously with creating and storing an audiovisual track. For example, an embodiment of the portable camera 12 can be configured to record an audiovisual data file of captured video and audio data, while simultaneously creating and storing a separate audio track containing only the captured audio data. In such embodiments, the markers (described above) may be automatically inserted in either or both of the audiovisual data file and the separate audio track. As another example, the portable camera 12 can be configured to create and store a separate audio track, containing only the captured audio data, at a later time after an audiovisual data file of captured video and audio data has been stored. Thus, camera 12 is configurable/operable to create/store/hold solely an audio track (file), solely a video data file, solely an audiovisual data file, or a combination thereof (such combination may be created simultaneously or non-simultaneously). With embodiments including an audio track, the transfer of only the recorded audio track (containing the audio data of interest) to the second device 36 is streamlined as audio signal data files typically entail less data and transfer at a faster rate (depending on system bandwidth) compared to audiovisual data. In all embodiments, the audio track can also be stored with automatically embedded markers (e.g., time stamp, watermark, metadata, unique identifier, GPS data, telemetry, etc.). In other embodiments, the first device 10 is configured to wirelessly transmit and stream (e.g., via the Internet, Cloud, radio network, Bluetooth, Wi-Fi, 3G, 4G, LTE, satellite, etc.) the captured audio data to a remote second device 36, in addition to recording the audio data to memory as described herein. The second device 36 is configured with a speaker to allow the received streamed audio data to be heard (e.g., in real-time or later), and the second device 36 is also operable to record the received streamed audio data to memory/storage (either or both of these functions, as desired). For example, for law enforcement applications this would allow an officer in the vehicle 34 to listen, in real-time, to the audio wirelessly streaming from his partner's BWC 12 and to manually select (e.g. by pushing a button) to record the data to the memory of the second device 36 (e.g., ICV camera 40). These features can be used as backup functions.
Among the benefits of the functionality provided by the disclosed embodiments is the elimination of the range-based limitations encountered by conventional wireless audio data transmission. Since on-scene audio of interest is recorded with the first device 10 and subsequently transferred from the first device to the second device 36, there are no longer any issues regarding wireless signal transfer range or signal interference. The embodiments also provide the ability to multiplex and/or synchronize the audio data files at a later time, after the video and/or audio files have been produced. In implementations where all files are transferred to a server, the multiplexing, synchronization, unique identifier coding, or a combination thereof, can be done at a later time as desired. For example, once the files are obtained, audio files from the first device 10 may be multiplexed and synced, or played separately yet in sync, with video files from the second device 36.
The recorded/stored/held data (audio, video, or audiovisual data) acquired by any device(s) can also be sent to the cloud in real-time, where the disclosed extraction, multiplexing, and/or synchronization techniques can be performed. For example, once uploaded to the cloud, audio data recorded by a first device 10 can be synchronized with the data file(s) (i.e., audio data, video data, metadata, and/or audiovisual data) uploaded to the cloud from a second device 36. Cloud processing can be performed concurrently with the disclosed techniques or as stand-alone processing of the data. Such cloud processing provides for rapid accessibility (e.g. by remote locations such as headquarters) and flexibility of scalability.
In a variant of the embodiment depicted in
With regard to
In light of the principles and example embodiments described and depicted herein, it will be recognized that the example embodiments can be modified in arrangement and detail without departing from such principles. Also, the foregoing discussion has focused on particular embodiments, but other configurations are also contemplated. In particular, even though expressions such as “in one embodiment,” “in another embodiment,” or the like are used herein, these phrases are meant to generally reference embodiment possibilities, and are not intended to limit the invention to particular embodiment configurations. As used herein, these terms may reference the same or different embodiments that are combinable into other embodiments. As a rule, any embodiment referenced herein is freely combinable with any one or more of the other embodiments referenced herein, and any number of features of different embodiments are combinable with one another, unless indicated otherwise.
Similarly, although example processes have been described with regard to particular operations performed in a particular sequence, numerous modifications could be applied to those processes to derive numerous alternative embodiments of the present invention. For example, alternative embodiments may include processes that use fewer than all of the disclosed operations, processes that use additional operations, and processes in which the individual operations disclosed herein are combined, subdivided, rearranged, or otherwise altered. This disclosure describes one or more embodiments wherein various operations are performed by certain systems, applications, modules, components, etc. In alternative embodiments, however, those operations could be performed by different components. Also, items such as applications, modules, components, etc., may be implemented as software constructs stored in a machine accessible storage medium, such as an optical disk, a hard disk drive, etc., and those constructs may take the form of applications, programs, subroutines, instructions, objects, methods, classes, or any other suitable form of control logic; such items may also be implemented as firmware or hardware, or as any combination of software, firmware and hardware, or any combination of any two of software, firmware and hardware.
This disclosure may include descriptions of various benefits and advantages that may be provided by various embodiments. One, some, all, or different benefits or advantages may be provided by different embodiments.
In view of the wide variety of useful permutations that may be readily derived from the example embodiments described herein, this detailed description is intended to be illustrative only, and should not be taken as limiting the scope of the invention. What is claimed as the invention, therefore, are all implementations that come within the scope of the following claims, and all equivalents to such implementations.
This application claims priority to U.S. Provisional Patent Application No. 62/333,818, filed on May 9, 2016, titled “Systems, Apparatuses and Methods for Creating, Identifying, Enhancing, and Distributing Evidentiary Data.” The entire disclosure of Application No. 62/333,818 is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4344184 | Edwards | Aug 1982 | A |
4543665 | Sotelo et al. | Sep 1985 | A |
4590614 | Erat | May 1986 | A |
4910795 | McCowen et al. | Mar 1990 | A |
5012335 | Cohodar | Apr 1991 | A |
5111289 | Lucas et al. | May 1992 | A |
5408330 | Squicciarini et al. | Apr 1995 | A |
5477397 | Naimpally et al. | Dec 1995 | A |
5613032 | Cruz et al. | Mar 1997 | A |
5724475 | Kirsten | Mar 1998 | A |
5815093 | Kikinis | Sep 1998 | A |
5841978 | Rhoads | Nov 1998 | A |
5862260 | Rhoads | Jan 1999 | A |
5926218 | Smith | Jul 1999 | A |
5946343 | Schotz et al. | Aug 1999 | A |
5970098 | Herzberg | Oct 1999 | A |
6002326 | Turner | Dec 1999 | A |
6009229 | Kawamura | Dec 1999 | A |
6028528 | Lorenzetti et al. | Feb 2000 | A |
6038257 | Brusewitz et al. | Mar 2000 | A |
6122403 | Rhoads | Sep 2000 | A |
6141611 | Mackey et al. | Oct 2000 | A |
6163338 | Johnson et al. | Dec 2000 | A |
6175860 | Gaucher | Jan 2001 | B1 |
6181711 | Zhang et al. | Jan 2001 | B1 |
6275773 | Lemelson et al. | Aug 2001 | B1 |
6298290 | Abe et al. | Oct 2001 | B1 |
6346965 | Toh | Feb 2002 | B1 |
6405112 | Rayner | Jun 2002 | B1 |
6411874 | Morgan et al. | Jun 2002 | B2 |
6421080 | Lambert | Jul 2002 | B1 |
6424820 | Burdick et al. | Jul 2002 | B1 |
6462778 | Abram et al. | Oct 2002 | B1 |
6505160 | Levy et al. | Jan 2003 | B1 |
6510177 | De Bonet et al. | Jan 2003 | B1 |
6518881 | Monroe | Feb 2003 | B2 |
6624611 | Kirmuss | Sep 2003 | B2 |
6778814 | Koike | Aug 2004 | B2 |
6788338 | Dinev et al. | Sep 2004 | B1 |
6788983 | Zheng | Sep 2004 | B2 |
6789030 | Coyle et al. | Sep 2004 | B1 |
6791922 | Suzuki | Sep 2004 | B2 |
6825780 | Saunders et al. | Nov 2004 | B2 |
6831556 | Boykin | Dec 2004 | B1 |
7010328 | Kawasaki et al. | Mar 2006 | B2 |
7091851 | Mason et al. | Aug 2006 | B2 |
7119832 | Blanco et al. | Oct 2006 | B2 |
7120477 | Huang | Oct 2006 | B2 |
7155615 | Silvester | Dec 2006 | B1 |
7167519 | Comaniciu et al. | Jan 2007 | B2 |
7190882 | Gammenthaler | Mar 2007 | B2 |
7231233 | Gosieski, Jr. | Jun 2007 | B2 |
7272179 | Siemens et al. | Sep 2007 | B2 |
7317837 | Yatabe et al. | Jan 2008 | B2 |
7356473 | Kates | Apr 2008 | B2 |
7386219 | Ishige | Jun 2008 | B2 |
7410371 | Shabtai et al. | Aug 2008 | B2 |
7414587 | Stanton | Aug 2008 | B2 |
7428314 | Henson | Sep 2008 | B2 |
7515760 | Sai et al. | Apr 2009 | B2 |
7542813 | Nam | Jun 2009 | B2 |
7551894 | Gerber et al. | Jun 2009 | B2 |
7554587 | Shizukuishi | Jun 2009 | B2 |
7618260 | Daniel et al. | Nov 2009 | B2 |
7631195 | Yu et al. | Dec 2009 | B1 |
7688203 | Rockefeller et al. | Mar 2010 | B2 |
7693289 | Stathem et al. | Apr 2010 | B2 |
7768548 | Silvernail et al. | Aug 2010 | B2 |
7778601 | Seshadri et al. | Aug 2010 | B2 |
7792189 | Finizio et al. | Sep 2010 | B2 |
7818078 | Iriarte | Oct 2010 | B2 |
7835530 | Avigni | Nov 2010 | B2 |
7868912 | Venetianer et al. | Jan 2011 | B2 |
7877115 | Seshadri et al. | Jan 2011 | B2 |
7974429 | Tsai | Jul 2011 | B2 |
7995652 | Washington | Aug 2011 | B2 |
8068023 | Dulin et al. | Nov 2011 | B2 |
8081214 | Vanman et al. | Dec 2011 | B2 |
8086277 | Ganley et al. | Dec 2011 | B2 |
8121306 | Cilia et al. | Feb 2012 | B2 |
8126276 | Bolle et al. | Feb 2012 | B2 |
8126968 | Rodman et al. | Feb 2012 | B2 |
8139796 | Nakashima et al. | Mar 2012 | B2 |
8144892 | Shemesh et al. | Mar 2012 | B2 |
8145134 | Henry et al. | Mar 2012 | B2 |
8150089 | Segawa et al. | Apr 2012 | B2 |
8154666 | Mody | Apr 2012 | B2 |
8166220 | Ben Yacov et al. | Apr 2012 | B2 |
8174577 | Chou | May 2012 | B2 |
8195145 | Angelhag | Jun 2012 | B2 |
8208024 | Dischinger | Jun 2012 | B2 |
8228364 | Cilia | Jul 2012 | B2 |
8230149 | Long et al. | Jul 2012 | B1 |
8253796 | Renkis | Aug 2012 | B2 |
8254844 | Kuffner et al. | Aug 2012 | B2 |
8260217 | Chang et al. | Sep 2012 | B2 |
8264540 | Chang et al. | Sep 2012 | B2 |
8270647 | Crawford et al. | Sep 2012 | B2 |
8289370 | Civanlar et al. | Oct 2012 | B2 |
8300863 | Knudsen et al. | Oct 2012 | B2 |
8311549 | Chang et al. | Nov 2012 | B2 |
8311983 | Guzik | Nov 2012 | B2 |
8358980 | Tajima et al. | Jan 2013 | B2 |
8380131 | Chiang | Feb 2013 | B2 |
8422944 | Flygh et al. | Apr 2013 | B2 |
8446469 | Blanco et al. | May 2013 | B2 |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8489065 | Green et al. | Jul 2013 | B2 |
8489151 | Engelen et al. | Jul 2013 | B2 |
8497940 | Green et al. | Jul 2013 | B2 |
8554145 | Fehr | Oct 2013 | B2 |
8612708 | Drosch | Dec 2013 | B2 |
8630908 | Forster | Jan 2014 | B2 |
8661507 | Hesselink et al. | Feb 2014 | B1 |
8707392 | Birtwhistle et al. | Apr 2014 | B2 |
8731742 | Zagorski et al. | May 2014 | B2 |
8780199 | Mimar | Jul 2014 | B2 |
8781292 | Ross et al. | Jul 2014 | B1 |
8849557 | Levandowski et al. | Sep 2014 | B1 |
9041803 | Chen et al. | May 2015 | B2 |
9070289 | Saund et al. | Jun 2015 | B2 |
9159371 | Ross et al. | Oct 2015 | B2 |
9201842 | Plante | Dec 2015 | B2 |
9225527 | Chang | Dec 2015 | B1 |
9253452 | Ross et al. | Feb 2016 | B2 |
9307317 | Chang et al. | Apr 2016 | B2 |
9325950 | Haler | Apr 2016 | B2 |
9471059 | Wilkins | Oct 2016 | B1 |
9589448 | Schneider et al. | Mar 2017 | B1 |
9665094 | Russell | May 2017 | B1 |
10074394 | Ross et al. | Sep 2018 | B2 |
20020003571 | Schofield et al. | Jan 2002 | A1 |
20020051061 | Peters et al. | May 2002 | A1 |
20020135679 | Scaman | Sep 2002 | A1 |
20030052970 | Dodds et al. | Mar 2003 | A1 |
20030080878 | Kirmuss | May 2003 | A1 |
20030081122 | Kirmuss | May 2003 | A1 |
20030081127 | Kirmuss | May 2003 | A1 |
20030081128 | Kirmuss | May 2003 | A1 |
20030081934 | Kirmuss | May 2003 | A1 |
20030081935 | Kirmuss | May 2003 | A1 |
20030095688 | Kirmuss | May 2003 | A1 |
20030103140 | Watkins | Jun 2003 | A1 |
20030151663 | Lorenzetti et al. | Aug 2003 | A1 |
20030197629 | Saunders et al. | Oct 2003 | A1 |
20040008255 | Lewellen | Jan 2004 | A1 |
20040051793 | Tecu et al. | Mar 2004 | A1 |
20040107030 | Nishira et al. | Jun 2004 | A1 |
20040146272 | Kessel et al. | Jul 2004 | A1 |
20040177253 | Wu et al. | Sep 2004 | A1 |
20050007458 | Benattou | Jan 2005 | A1 |
20050078195 | VanWagner | Apr 2005 | A1 |
20050083404 | Pierce et al. | Apr 2005 | A1 |
20050088521 | Blanco et al. | Apr 2005 | A1 |
20050122397 | Henson et al. | Jun 2005 | A1 |
20050154907 | Han et al. | Jul 2005 | A1 |
20050158031 | David | Jul 2005 | A1 |
20050185936 | Lao et al. | Aug 2005 | A9 |
20050243171 | Ross, Sr. et al. | Nov 2005 | A1 |
20050286476 | Crosswy et al. | Dec 2005 | A1 |
20060055521 | Blanco et al. | Mar 2006 | A1 |
20060072672 | Holcomb et al. | Apr 2006 | A1 |
20060077256 | Silvemail et al. | Apr 2006 | A1 |
20060078046 | Lu | Apr 2006 | A1 |
20060130129 | Dai et al. | Jun 2006 | A1 |
20060133476 | Page et al. | Jun 2006 | A1 |
20060165386 | Garoutte | Jul 2006 | A1 |
20060270465 | Lee et al. | Nov 2006 | A1 |
20060274116 | Wu | Dec 2006 | A1 |
20070005609 | Breed | Jan 2007 | A1 |
20070064108 | Haler | Mar 2007 | A1 |
20070086601 | Mitchler | Apr 2007 | A1 |
20070111754 | Marshall et al. | May 2007 | A1 |
20070124292 | Kirshenbaum et al. | May 2007 | A1 |
20070217761 | Chen et al. | Sep 2007 | A1 |
20070219685 | Plante | Sep 2007 | A1 |
20080005472 | Khalidi et al. | Jan 2008 | A1 |
20080030782 | Watanabe | Feb 2008 | A1 |
20080129825 | DeAngelis et al. | Jun 2008 | A1 |
20080165250 | Ekdahl et al. | Jul 2008 | A1 |
20080186129 | Fitzgibbon | Aug 2008 | A1 |
20080208755 | Malcolm | Aug 2008 | A1 |
20080294315 | Breed | Nov 2008 | A1 |
20080303903 | Bentley et al. | Dec 2008 | A1 |
20090017881 | Madrigal | Jan 2009 | A1 |
20090022362 | Gagvani et al. | Jan 2009 | A1 |
20090074216 | Bradford et al. | Mar 2009 | A1 |
20090076636 | Bradford et al. | Mar 2009 | A1 |
20090118896 | Gustafsson | May 2009 | A1 |
20090195651 | Leonard et al. | Aug 2009 | A1 |
20090195655 | Pandey | Aug 2009 | A1 |
20090213902 | Jeng | Aug 2009 | A1 |
20100026809 | Curry | Feb 2010 | A1 |
20100030929 | Ben-Yacov et al. | Feb 2010 | A1 |
20100057444 | Cilia | Mar 2010 | A1 |
20100081466 | Mao | Apr 2010 | A1 |
20100131748 | Lin | May 2010 | A1 |
20100136944 | Taylor et al. | Jun 2010 | A1 |
20100180051 | Harris | Jul 2010 | A1 |
20100238009 | Cook et al. | Sep 2010 | A1 |
20100274816 | Guzik | Oct 2010 | A1 |
20100287545 | Corbefin | Nov 2010 | A1 |
20100289648 | Ree | Nov 2010 | A1 |
20100302979 | Reunamaki | Dec 2010 | A1 |
20100309971 | Vanman et al. | Dec 2010 | A1 |
20110016256 | Hatada | Jan 2011 | A1 |
20110044605 | Vanman et al. | Feb 2011 | A1 |
20110092248 | Evanitsky | Apr 2011 | A1 |
20110142156 | Haartsen | Jun 2011 | A1 |
20110233078 | Monaco et al. | Sep 2011 | A1 |
20110234379 | Lee | Sep 2011 | A1 |
20110280143 | Li et al. | Nov 2011 | A1 |
20110280413 | Wu et al. | Nov 2011 | A1 |
20110299457 | Green, III et al. | Dec 2011 | A1 |
20120014534 | Bodley et al. | Jan 2012 | A1 |
20120078397 | Lee et al. | Mar 2012 | A1 |
20120083960 | Zhu et al. | Apr 2012 | A1 |
20120119894 | Pandy | May 2012 | A1 |
20120163309 | Ma et al. | Jun 2012 | A1 |
20120173577 | Millar et al. | Jul 2012 | A1 |
20120266251 | Birtwhistle et al. | Oct 2012 | A1 |
20120300081 | Kim | Nov 2012 | A1 |
20120307070 | Pierce | Dec 2012 | A1 |
20120310394 | El-Hoiydi | Dec 2012 | A1 |
20120310395 | El-Hoiydi | Dec 2012 | A1 |
20130114849 | Pengelly et al. | May 2013 | A1 |
20130135472 | Wu et al. | May 2013 | A1 |
20130163822 | Chigos et al. | Jun 2013 | A1 |
20130201884 | Freda et al. | Aug 2013 | A1 |
20130218427 | Mukhopadhyay et al. | Aug 2013 | A1 |
20130223653 | Chang | Aug 2013 | A1 |
20130236160 | Gentile et al. | Sep 2013 | A1 |
20130242262 | Lewis | Sep 2013 | A1 |
20130251173 | Ejima et al. | Sep 2013 | A1 |
20130268357 | Heath | Oct 2013 | A1 |
20130287261 | Lee et al. | Oct 2013 | A1 |
20130302758 | Wright | Nov 2013 | A1 |
20130339447 | Ervine | Dec 2013 | A1 |
20130346660 | Kwidzinski et al. | Dec 2013 | A1 |
20140037142 | Bhanu et al. | Feb 2014 | A1 |
20140038668 | Vasavada et al. | Feb 2014 | A1 |
20140078304 | Othmer | Mar 2014 | A1 |
20140085475 | Bhanu et al. | Mar 2014 | A1 |
20140092251 | Troxel | Apr 2014 | A1 |
20140100891 | Turner et al. | Apr 2014 | A1 |
20140114691 | Pearce | Apr 2014 | A1 |
20140143545 | McKeeman et al. | May 2014 | A1 |
20140162598 | Villa-Real | Jun 2014 | A1 |
20140184796 | Klein | Jul 2014 | A1 |
20140236414 | Droz et al. | Aug 2014 | A1 |
20140236472 | Rosario | Aug 2014 | A1 |
20140278052 | Slavin et al. | Sep 2014 | A1 |
20140280584 | Ervine | Sep 2014 | A1 |
20140281498 | Bransom et al. | Sep 2014 | A1 |
20140297687 | Lin | Oct 2014 | A1 |
20140309849 | Ricci | Oct 2014 | A1 |
20140321702 | Schmalstieg | Oct 2014 | A1 |
20140355951 | Tabak | Dec 2014 | A1 |
20140375807 | Muetzel et al. | Dec 2014 | A1 |
20150012825 | Rezvani et al. | Jan 2015 | A1 |
20150032535 | Li et al. | Jan 2015 | A1 |
20150066349 | Chan et al. | Mar 2015 | A1 |
20150084790 | Arpin et al. | Mar 2015 | A1 |
20150086175 | Lorenzetti | Mar 2015 | A1 |
20150088335 | Lambert et al. | Mar 2015 | A1 |
20150103159 | Shashua et al. | Apr 2015 | A1 |
20150161483 | Allen et al. | Jun 2015 | A1 |
20150211868 | Matsushita et al. | Jul 2015 | A1 |
20150266575 | Borko | Sep 2015 | A1 |
20150294174 | Karkowski et al. | Oct 2015 | A1 |
20160023762 | Wang | Jan 2016 | A1 |
20160035391 | Ross et al. | Feb 2016 | A1 |
20160042767 | Araya et al. | Feb 2016 | A1 |
20160062762 | Chen et al. | Mar 2016 | A1 |
20160062992 | Chen et al. | Mar 2016 | A1 |
20160063642 | Luciani et al. | Mar 2016 | A1 |
20160064036 | Chen et al. | Mar 2016 | A1 |
20160065908 | Chang et al. | Mar 2016 | A1 |
20160144788 | Perrin et al. | May 2016 | A1 |
20160148638 | Ross et al. | May 2016 | A1 |
20160285492 | Vembar et al. | Sep 2016 | A1 |
20160332747 | Bradlow | Nov 2016 | A1 |
20170032673 | Scofield et al. | Feb 2017 | A1 |
20170053169 | Cuban et al. | Feb 2017 | A1 |
20170053674 | Fisher | Feb 2017 | A1 |
20170059265 | Winter et al. | Mar 2017 | A1 |
20170066374 | Hoye | Mar 2017 | A1 |
20170076396 | Sudak | Mar 2017 | A1 |
20170085829 | Waniguchi et al. | Mar 2017 | A1 |
20170113664 | Nix | Apr 2017 | A1 |
20170178422 | Wright | Jun 2017 | A1 |
20170178423 | Wright | Jun 2017 | A1 |
20170193828 | Holtzman et al. | Jul 2017 | A1 |
20170253330 | Saigh et al. | Sep 2017 | A1 |
20170324897 | Swaminathan et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2907145 | May 2007 | CN |
101309088 | Nov 2008 | CN |
102355618 | Feb 2012 | CN |
102932703 | Feb 2013 | CN |
202957973 | May 2013 | CN |
103617005 | Mar 2014 | CN |
1148726 | Oct 2001 | EP |
1655855 | May 2006 | EP |
2107837 | Oct 2009 | EP |
2391687 | Nov 2004 | GB |
2003150450 | May 2003 | JP |
2005266934 | Sep 2005 | JP |
2009169922 | Jul 2009 | JP |
2012058832 | Mar 2012 | JP |
1997038526 | Oct 1997 | WO |
2000013410 | Mar 2000 | WO |
2000021258 | Apr 2000 | WO |
2000045587 | Aug 2000 | WO |
2000072186 | Nov 2000 | WO |
2002061955 | Aug 2002 | WO |
2004066590 | Aug 2004 | WO |
2004111851 | Dec 2004 | WO |
2005053325 | Jun 2005 | WO |
2005054997 | Jun 2005 | WO |
2007114988 | Oct 2007 | WO |
2009058611 | May 2009 | WO |
2009148374 | Dec 2009 | WO |
2012001143 | Jan 2012 | WO |
2012100114 | Jul 2012 | WO |
2012116123 | Aug 2012 | WO |
2013020588 | Feb 2013 | WO |
2013074947 | May 2013 | WO |
2013106740 | Jul 2013 | WO |
2013107516 | Jul 2013 | WO |
2013150326 | Oct 2013 | WO |
2014057496 | Apr 2014 | WO |
2016033523 | Mar 2016 | WO |
2016061516 | Apr 2016 | WO |
2016061525 | Apr 2016 | WO |
2016061533 | Apr 2016 | WO |
Entry |
---|
Office Action issued in U.S. Appl. No. 15/413,205 dated Mar. 17, 2017, 7 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Mar. 16, 2010, 10 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Sep. 30, 2010, 12 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Jul. 14, 2011, 17 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Jan. 31, 2012, 18 pages. |
Examiner's Answer (to Appeal Brief) issued in U.S. Appl. No. 11/369,502 dated Oct. 24, 2012, 20 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Mar. 22, 2013, 6 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Jun. 26, 2013, 6 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Sep. 10, 2013, 7 pages. |
Advisory Action issued in U.S. Appl. No. 13/723,747 dated Feb. 24, 2014, 4 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Mar. 20, 2014, 6 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Nov. 10, 2014, 9 pages. |
Notice of Allowance and Fees Due issued in U.S. Appl. No. 13/723,747 dated Mar. 30, 2015, 6 pages. |
First Action Interview Pilot Program Pre-Interview Communication issued in U.S. Appl. No. 14/588,139 dated May 14, 2015, 4 pages. |
Office Action issued in U.S. Appl. No. 14/593,853 dated Apr. 20, 2015, 30 pages. |
Office Action issued in U.S. Appl. No. 14/593,956 dated May 6, 2015, 10 pages. |
PCT International Search Report and Written Opinion issued in Application No. PCT/US07/63485 dated Feb. 8, 2008, 10 pages. |
Chapter 5: “Main Memory,” Introduction to Computer Science course, 2004, 20 pages, available at http://www2.cs.ucy.ac.cy/˜nicolast/courses/lectures/MainMemory.pdf. |
Sony Corporation, Digital Still Camera (MVC-CD200/CD300), Operation Manual, 2001, 108 pages, Sony, Japan. |
Steve'S Digicams, Kodak Professional DCS 620 Digital Camera, 1999, 11 pages, United States, available at: http://www.steves-digicams.com/dcs620.html. |
Gregory J. Allen, “The Feasibility of Implementing Video Teleconferencing Systems Aboard Afloat Naval Units” (Master's Thesis, Naval Postgraduate School, Monterey, California), Mar. 1990, 143 pages. |
Bell-Northern Research Ltd., “A Multi-Bid Rate Interframe Movement Compensated Multimode Coder for Video Conferencing” (Final Report prepared for DARPA), Apr. 1982, 92 pages, Ottawa, Ontario, Canada. |
Xiaoqing Zhu, Eric Setton, Bernd Girod, “Rate Allocation for Multi-Camera Surveillance Over an Ad Hoc Wireless Network,” 2004, 6 pages, available at http://msw3.stanford.edu/˜zhuxq/papers/pcs2004.pdf. |
Office Action issued in U.S. Appl. No. 14/593,722 dated Sep. 25, 2015, 39 pages. |
Office Action issued in U.S. Appl. No. 14/593,853 dated Sep. 11, 2015 (including Summary of Interview conducted on May 9, 2015), 45 pages. |
Notice of Allowance issued in U.S. Appl. No. 14/593,956 dated Oct. 26, 2015, 10 pages. |
“IEEE 802.1X,” Wikipedia, Aug. 23, 2013, 8 pages, available at: http://en.wikipedia.org/w/index.php?title=IEEE_802.1X&oldid=569887090. |
Notice of Allowance issued in U.S. Appl. No. 14/588,139 dated Aug. 14, 2015, 19 pages. |
“Near Field Communication,” Wikipedia, Jul. 19, 2014, 8 pages, available at: https://en.wikipedia.org/w/index.php?title=near_field_communication&oldid=617538619. |
PCT International Search Report and Written Opinion issued in Application No. PCT/US15/47532 dated Jan. 8, 2016, 22 pages. |
Office Action issued in U.S. Appl. No. 14/686,192 dated Apr. 8, 2016, 19 pages. |
Office Action issued in U.S. Appl. No. 14/715,742 dated Aug. 21, 2015, 13 pages. |
Office Action issued in U.S. Appl. No. 14/715,742 dated Mar. 11, 2016, 14 pages. |
Office Action issued in U.S. Appl. No. 14/593,722 dated Apr. 10, 2015, 28 pages. |
Office Action issued in U.S. Appl. No. 14/686,192 dated Dec. 24, 2015, 12 pages. |
“Portable Application,” Wikipedia, Jun. 26, 2014, 4 pages, available at: http://en.wikipedia.org/index.php?title=Portable_application&oldid=614543759. |
“Radio-Frequency Identification,” Wikipedia, Oct. 18, 2013, 31 pages, available at: http://en.wikipedia.org/w/index.php?title=Radio-frequency_identification&oldid=577711262. |
Advisory Action issued in U.S. Appl. No. 14/715,742 dated May 20, 2016 (including Summary of Interview conducted on May 12, 2016), 4 pages. |
Advisory Action issued in U.S. Appl. No. 14/715,742 dated Jun. 14, 2016, 3 pages. |
Office Action issued in U.S. Appl. No. 14/715,742 dated Sep. 23, 2016, 17 pages. |
Office Action issued in U.S. Appl. No. 15/412,044 dated Jun. 1, 2017, 10 pages. |
Office Action issued in U.S. Appl. No. 15/467,924 dated May 8, 2017, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170323663 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62333818 | May 2016 | US |