The present systems, articles, and methods generally relate to electromyography and particularly relate to capacitive electromyography sensors that resistively couple to the user's body.
Wearable Electronic Devices
Electronic devices are commonplace throughout most of the world today. Advancements in integrated circuit technology have enabled the development of electronic devices that are sufficiently small and lightweight to be carried by the user. Such “portable” electronic devices may include on-board power supplies (such as batteries or other power storage systems) and may be designed to operate without any wire-connections to other electronic systems; however, a small and lightweight electronic device may still be considered portable even if it includes a wire-connection to another electronic system. For example, a microphone may be considered a portable electronic device whether it is operated wirelessly or through a wire-connection.
The convenience afforded by the portability of electronic devices has fostered a huge industry. Smartphones, audio players, laptop computers, tablet computers, and ebook readers are all examples of portable electronic devices. However, the convenience of being able to carry a portable electronic device has also introduced the inconvenience of having one's hand(s) encumbered by the device itself. This problem is addressed by making an electronic device not only portable, but wearable.
A wearable electronic device is any portable electronic device that a user can carry without physically grasping, clutching, or otherwise holding onto the device with their hands. For example, a wearable electronic device may be attached or coupled to the user by a strap or straps, a band or bands, a clip or clips, an adhesive, a pin and clasp, an article of clothing, tension or elastic support, an interference fit, an ergonomic form, etc. Examples of wearable electronic devices include digital wristwatches, electronic armbands, electronic rings, electronic ankle-bracelets or “anklets,” head-mounted electronic display units, hearing aids, and so on.
A wearable electronic device may provide direct functionality for a user (such as audio playback, data display, computing functions, etc.) or it may provide electronics to interact with, communicate with, or control another electronic device. For example, a wearable electronic device may include sensors that are responsive to (i.e., detect and provide one or more signal(s) in response to detecting) inputs effected by a user and transmit signals to another electronic device based on those inputs. Sensor-types and input-types may each take on a variety of forms, including but not limited to: tactile sensors (e.g., buttons, switches, touchpads, or keys) providing manual control, acoustic sensors providing voice-control, electromyography sensors providing gesture control, or accelerometers providing gesture control.
A human-computer interface (“HCl”) is an example of a human-electronics interface. The present systems, articles, and methods may be applied to HCIs, but may also be applied to any other form of human-electronics interface.
Electromyography (“EMG”) is a process for detecting and processing the electrical signals generated by muscle activity. EMG devices employ EMG sensors that are responsive to the range of electrical potentials (typically μV-mV) involved in muscle activity. EMG signals may be used in a wide variety of applications, including: medical monitoring and diagnosis, muscle rehabilitation, exercise and training, prosthetic control, and even in controlling functions of electronic devices (i.e., in human-electronics interfaces).
There are two main types of EMG sensors: intramuscular EMG sensors and surface EMG sensors. As the names suggest, intramuscular EMG sensors are designed to penetrate the skin and measure EMG signals from within the muscle tissue, while surface EMG sensors are designed to rest on an exposed surface of the skin and measure EMG signals from there. Intramuscular EMG sensor measurements can be much more precise than surface EMG sensor measurements; however, intramuscular EMG sensors must be applied by a trained professional, are obviously more invasive, and are less desirable from the patient's point of view. The use of intramuscular EMG sensors is generally limited to clinical settings.
Surface EMG sensors can be applied with ease, are much more comfortable for the patient/user, and are therefore more appropriate for non-clinical settings and uses. For example, human-electronics interfaces that employ EMG, such as those proposed in U.S. Pat. Nos. 6,244,873 and 8,170,656, usually employ surface EMG sensors. Surface EMG sensors are available in two forms: resistive EMG sensors and capacitive EMG sensors. The electrode of a resistive EMG sensor is typically directly electrically coupled to the user's skin while the electrode of a capacitive EMG sensor is typically capacitively coupled to the user's skin. That is, for a resistive EMG sensor, the electrode typically comprises a plate of electrically conductive material that is in direct physical contact with the user's skin, while for a capacitive EMG sensor, the electrode typically comprises a plate of electrically conductive material that is electrically insulated from the user's skin by at least one thin intervening layer of dielectric material or cloth.
Resistive EMG sensors and capacitive EMG sensors both have relative advantages and disadvantages. For example, the resistive coupling to the skin realized by a resistive EMG sensor provides a relatively low impedance (compared to a capacitive coupling) between the skin and the sensor and this can greatly simplify the circuitry needed to amplify the detected EMG signals; however, because this resistive coupling is essentially galvanic and uninterrupted, it can also undesirably couple DC voltage to the amplification circuitry and/or result in a voltage applied to the skin of the user. Both of these effects potentially impact the quality of the EMG signals detected. On the other hand, the capacitive coupling to the skin realized by a capacitive EMG sensor galvanically isolates the amplification circuitry from the skin and thereby prevents a DC voltage from coupling to the amplification circuitry and prevents a voltage from being applied to the skin; however, this capacitive coupling provides a relatively high impedance between the skin and the sensor and this can complicate the circuitry needed to amplify the detected EMG signals (thus making the amplification circuitry more expensive). The strength of the capacitive coupling can also vary widely from user to user. Clearly, neither type of surface EMG sensor is ideal and there is a need in the art for improved surface EMG sensor designs.
An electromyography (“EMG”) sensor may be summarized as including a first sensor electrode formed of an electrically conductive material; an amplifier; a first electrically conductive pathway that communicatively couples the first sensor electrode and the amplifier; a first capacitor electrically coupled in series between the first sensor electrode and the amplifier in the first electrically conductive pathway; and a first resistor electrically coupled in series between the first sensor electrode and the amplifier in the first electrically conductive pathway. The first capacitor and the first resistor may be electrically coupled in series with one another in the first electrically conductive pathway. The EMG sensor may further include: a second electrically conductive pathway that communicatively couples to ground; a third electrically conductive pathway that communicatively couples the first electrically conductive pathway and the second electrically conductive pathway; a second capacitor electrically coupled in the third electrically conductive pathway in between the first electrically conductive pathway and the second electrically conductive pathway; a fourth electrically conductive pathway that communicatively couples the first electrically conductive pathway and the second electrically conductive pathway; and a second resistor electrically coupled in the fourth electrically conductive pathway in between the first electrically conductive pathway and the second electrically conductive pathway. The EMG sensor may be a differential EMG sensor that further includes: a second sensor electrode formed of an electrically conductive material; a fifth electrically conductive pathway that communicatively couples the second sensor electrode and the amplifier; a third capacitor electrically coupled in series between the second sensor electrode and the amplifier in the fifth electrically conductive pathway; and a third resistor electrically coupled in series between the second sensor electrode and the amplifier in the fifth electrically conductive pathway. The third capacitor and the third resistor may be electrically coupled in series with one another in the fifth electrically conductive pathway. The EMG sensor may further include: a sixth electrically conductive pathway that communicatively couples the fifth electrically conductive pathway and the second electrically conductive pathway; a fourth capacitor electrically coupled in the sixth electrically conductive pathway in between the fifth electrically conductive pathway and the second electrically conductive pathway; a seventh electrically conductive pathway that communicatively couples the fifth electrically conductive pathway and the second electrically conductive pathway; and a fourth resistor electrically coupled in the seventh electrically conductive pathway in between the fifth electrically conductive pathway and the second electrically conductive pathway. The EMG sensor may further include a ground electrode formed of an electrically conductive material and communicatively coupled to the second electrically conductive pathway.
The first sensor electrode may comprise a first layer formed of a first electrically conductive material and a second layer formed of a second electrically conductive material. The first electrically conductive material may include copper. The second electrically conductive material may include at least one material selected from the group consisting of: gold, steel, stainless steel, silver, titanium, electrically conductive rubber, and electrically conductive silicone.
The EMG sensor may further include a housing, wherein the amplifier, the first electrically conductive pathway, the first capacitor, the first resistor, and the first layer of the first sensor electrode are all substantially contained within the housing, the housing including a hole, and wherein at least a portion of the second layer of the first sensor electrode extends out of the housing through the hole. The EMG sensor may further include a substrate having a first surface and a second surface, the second surface opposite the first surface across a thickness of the substrate, wherein the first sensor electrode is carried by the first surface of the substrate and the amplifier, the first capacitor, and the first resistor are all carried by the second surface of the substrate. The first electrically conductive pathway may include at least one via that extends through the substrate. The first electrically conductive pathway may include at least one electrically conductive trace carried by the second surface of the substrate. The first capacitor and the first resistor may include respective discrete electronic components.
A method of fabricating an electromyography (“EMG”) sensor may be summarized as including: forming a first sensor electrode on a first surface of a substrate, wherein forming a first sensor electrode on a first surface of a substrate includes depositing at least a first layer of a first electrically conductive material on the first surface of the substrate; depositing an amplifier on a second surface of the substrate, the second surface opposite the first surface across a thickness of the substrate; depositing a first capacitor on the second surface of the substrate; depositing a first resistor on the second surface of the substrate; and forming a first electrically conductive pathway that communicatively couples the first sensor electrode and the amplifier through the first capacitor and the first resistor. Forming the first electrically conductive pathway may include forming a via through the substrate. Depositing at least a first layer of a first electrically conductive material on the first surface of the substrate may include depositing a first layer including copper on the first surface of the substrate, and forming the first sensor electrode may further include depositing a second layer of a second electrically conductive material on the first layer of the first electrically conductive material, the second electrically conductive material including a material selected from the group consisting of: gold, steel, stainless steel, silver, titanium, electrically conductive rubber, and electrically conductive silicone.
The method may further include enclosing the substrate in a housing, wherein the housing includes a hole, and wherein enclosing the substrate in a housing includes enclosing the amplifier, the first capacitor, and the first resistor in the housing and aligning the first sensor electrode with the hole, wherein at least a portion of the second layer of the second electrically conductive material protrudes out of the housing through the hole.
The method may further include forming a ground electrode on the first surface of the substrate; forming a second electrically conductive pathway that communicatively couples to the ground electrode; depositing a second capacitor on the second surface of the substrate; forming a third electrically conductive pathway that communicatively couples the first electrically conductive pathway and the second electrically conductive pathway through the second capacitor; depositing a second resistor on the second surface of the substrate; and forming a fourth electrically conductive pathway that communicatively couples the first electrically conductive pathway and the second electrically conductive pathway through the second resistor. The EMG sensor may be a differential EMG sensor, and the method may further include: forming a second sensor electrode on the first surface of the substrate; depositing a third capacitor on the second surface of the substrate; depositing a third resistor on the second surface of the substrate; and forming a fifth electrically conductive pathway that communicatively couples the second sensor electrode and the amplifier through the third capacitor and the third resistor. The method may further include: depositing a fourth capacitor on the second surface of the substrate; forming a sixth electrically conductive pathway that communicatively couples the fifth electrically conductive pathway and the second electrically conductive pathway through the fourth capacitor; depositing a fourth resistor on the second surface of the substrate; and forming a seventh electrically conductive pathway that communicatively couples the fifth electrically conductive pathway and the second electrically conductive pathway through the fourth resistor.
Depositing the amplifier on the second surface of the substrate may include soldering the amplifier on the second surface of the substrate; depositing the first capacitor on the second surface of the substrate may include soldering the first capacitor on the second surface of the substrate; and/or depositing the first resistor on the second surface of the substrate may include soldering the first resistor on the second surface of the substrate.
A wearable electromyography (“EMG”) device may be summarized as including: at least one EMG sensor responsive to (i.e., to detect and provide at least one signal in response to) muscle activity corresponding to a gesture performed by a user of the wearable EMG device, wherein in response to muscle activity corresponding to a gesture performed by a user the at least one EMG sensor provides signals, and wherein the at least one EMG sensor includes: a first sensor electrode formed of an electrically conductive material; an amplifier; a first electrically conductive pathway that communicatively couples the first sensor electrode and the amplifier; a first capacitor electrically coupled in series between the first sensor electrode and the amplifier in the first electrically conductive pathway; and a first resistor electrically coupled in series between the first sensor electrode and the amplifier in the first electrically conductive pathway; a processor communicatively coupled to the at least one EMG sensor to in use process signals provided by the at least one EMG sensor; and an output terminal communicatively coupled to the processor to transmit signals output by the processor. The at least one EMG sensor may further include: a second electrically conductive pathway that communicatively couples to ground; a third electrically conductive pathway that communicatively couples the first electrically conductive pathway and the second electrically conductive pathway; a second capacitor electrically coupled in between the first electrically conductive pathway and the second electrically conductive pathway in the third electrically conductive pathway; a fourth electrically conductive pathway that communicatively couples the first electrically conductive pathway and the second electrically conductive pathway; and a second resistor electrically coupled in between the first electrically conductive pathway and the second electrically conductive pathway in the fourth electrically conductive pathway. The at least one EMG sensor may include at least one differential EMG sensor, and the at least one differential EMG sensor may further include: a second sensor electrode formed of an electrically conductive material; a fifth electrically conductive pathway that communicatively couples the second sensor electrode and the amplifier; a third capacitor electrically coupled in between the second sensor electrode and the amplifier in the fifth electrically conductive pathway; and a third resistor electrically coupled in between the second sensor electrode and the amplifier in the fifth electrically conductive pathway. The at least one EMG sensor may further include a ground electrode formed of an electrically conductive material and communicatively coupled to the second electrically conductive pathway.
The first sensor electrode of the at least one EMG sensor may comprise a first layer formed of a first electrically conductive material and a second layer formed of a second electrically conductive material. The first electrically conductive material may include copper. The second electrically conductive material may include at least one material selected from the group consisting of: gold, steel, stainless steel, silver, titanium, electrically conductive rubber, and electrically conductive silicone. The wearable EMG device may further include: at least one housing that at least partially contains the at least one EMG sensor, wherein the amplifier, the first electrically conductive pathway, the first capacitor, the first resistor, and the first layer of the first sensor electrode are all substantially contained within the at least one housing, the at least one housing including a hole, and wherein at least a portion of the second layer of the first sensor electrode extends out of the at least one housing through the hole.
A capacitive electromyography (“EMG”) sensor may be summarized as including: a first sensor electrode to in use resistively couple to a user's skin, wherein the first sensor electrode includes a plate of electrically conductive material; circuitry communicatively coupled to the first sensor electrode of the capacitive EMG sensor; and a first capacitor to in use galvanically isolate the circuitry from the user's skin, the first capacitor electrically coupled in series between the first sensor electrode and the circuitry. Resistive coupling between the first sensor electrode and the user's skin may include an impedance, and the capacitive EMG sensor may further include a first resistor to in use dominate the impedance of the resistive coupling between the first sensor electrode and the user's skin, wherein the first resistor is electrically coupled in series between the first sensor electrode and the circuitry and wherein the first resistor has a magnitude of at least 1 kΩ. The first resistor may have a magnitude of at least 10 kΩ. The circuitry may include at least a portion of at least one circuit selected from the group consisting of: an amplification circuit, a filtering circuit, and an analog-to-digital conversion circuit. The capacitive EMG sensor may further include a ground electrode to in use resistively couple to the user's skin, wherein the ground electrode includes a plate of electrically conductive material, and wherein the ground electrode is communicatively coupled to the circuitry. The circuitry may include: a high-pass filter that includes the first capacitor and a second resistor; and a low-pass filter that includes the first resistor and a second capacitor.
The first sensor electrode may comprise: a first layer of a first electrically conductive material; and a second layer of a second electrically conductive material. The first electrically conductive material may include copper. The second electrically conductive material may include at least one material selected from the group consisting of: gold, steel, stainless steel, silver, titanium, electrically conductive rubber, and electrically conductive silicone. The capacitive EMG sensor may further include a housing, wherein the circuitry, the first capacitor, and the first layer of the first sensor electrode are all substantially contained within the housing, the housing including a hole, and wherein at least a portion of the second layer of the first sensor electrode extends out of the housing through the hole. The capacitive EMG sensor may be a differential capacitive EMG sensor that further includes: a second sensor electrode to in use resistively couple to the user's skin, wherein the second sensor electrode includes a plate of electrically conductive material; and a second capacitor to in use galvanically isolate the circuitry from the user's skin, the second capacitor electrically coupled in series between the second sensor electrode and the circuitry.
A wearable electromyography (“EMG”) device may be summarized as including: at least one capacitive EMG sensor responsive to (i.e., to detect and provide at least one signal in response to detecting) muscle activity corresponding to a gesture performed by a user of the wearable EMG device, wherein in response to muscle activity corresponding to a gesture performed by a user the at least one capacitive EMG sensor provides signals, and wherein the at least one capacitive EMG sensor includes: a first sensor electrode to in use resistively couple to the user's skin, wherein the first sensor electrode includes a plate of electrically conductive material; circuitry communicatively coupled to the first sensor electrode of the capacitive EMG sensor; and a first capacitor to in use galvanically isolate the circuitry from the user's skin, the first capacitor electrically coupled in series between the first sensor electrode and the circuitry; a processor communicatively coupled to the at least one capacitive EMG sensor to in use process signals provided by the at least one capacitive EMG sensor; and an output terminal communicatively coupled to the processor to transmit signals output by the processor
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with electric circuits, and in particular printed circuit boards, have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense, that is as meaning “and/or” unless the content clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
The various embodiments described herein provide systems, articles, and methods for surface EMG sensors that improve upon existing resistive and capacitive EMG sensor designs. The surface EMG sensors described herein may be understood as hybrid surface EMG sensors that incorporate elements from both resistive EMG sensors and capacitive EMG sensors. In particular, the present systems, articles, and methods describe capacitive EMG sensors that employ at least one sensor electrode that resistively couples to the user's body (e.g., skin) and at least one discrete component capacitor that interrupts the signal path between the at least one sensor electrode and the sensor circuitry. In this way, the capacitive element of the capacitive EMG sensor remains but is essentially moved downstream in the sensor circuit, affording many benefits discussed in detail below. An example application in a wearable EMG device that forms part of a human-electronics interface is also described.
Throughout this specification and the appended claims, the term “capacitive EMG sensor” is used to describe a surface EMG sensor in which communicative coupling between the user's body (e.g., skin) and the sensor circuitry is mediated by at least one capacitive element such that the sensor circuitry is galvanically isolated from the body of the user. In the art, this at least one capacitive element is typically realized at the sensor electrode by configuring the sensor electrode to capacitively couple to the user's skin (e.g., by coating the electrically conductive plate of the sensor electrode with a thin layer of dielectric material). In accordance with the present systems, articles, and methods, the at least one capacitive element may be moved downstream in the sensor such that the sensor electrode resistively/galvanically couples to the user's skin but at least one discrete component capacitor mediates communicative coupling between the sensor electrode and the sensor circuitry.
For comparison purposes, the elements of a capacitive EMG sensor that implements a sensor electrode that capacitively couples to the user's skin are first described.
Sensor 100 includes circuitry that comprises, at least: electrically conductive pathways 111a, 111b, 112, 113a, 113b; resistors 130a, 130b; and amplifier 150. First sensor electrode 101a is communicatively coupled to amplifier 150 through electrically conductive pathway 111a and to ground electrode 140 through a path that comprises electrically conductive pathway 113a, resistor 130a, and electrically conductive pathway 112. Second sensor electrode 101b is communicatively coupled to amplifier 150 through electrically conductive pathway 111b and to ground electrode 140 through a path that comprises electrically conductive pathway 113b, resistor 130b, and electrically conductive pathway 112.
Sensor 100 is a capacitive EMG sensor in the traditional sense because it implements sensor electrodes 101a, 101b that are configured to capacitively couple to the skin of the user. Amplifier 150 is galvanically isolated from the user's skin by the dielectric layers 172a, 172b that coat sensor electrodes 101a, 101b, respectively. As discussed previously, this galvanic isolation is advantageous, at least because it prevents DC voltage(s) from coupling to amplifier 150 and prevents voltage(s) from being applied to the user's skin. However, the capacitive coupling to the skin through sensor electrodes 101a, 101b introduces a relatively large impedance between the user's skin and amplifier 150. This impedance imposes stringent requirements on amplifier 150 and, ultimately, increases the cost of amplifier 150 in sensor 100. Furthermore, the magnitude of the capacitive coupling between sensor electrodes 101a, 101b and the user's skin is highly dependent on parameters such as skin conductance, skin moisture/sweat levels, hair density, and so on, all of which can vary considerably from user to user (and even in different scenarios for the same user, such as at different levels of physical activity). Thus, even though the galvanic isolation realized by dielectric layers 172a and 172b is desirable in a surface EMG sensor, capacitive coupling between sensor electrodes 101a, 101b and the user's skin has undesirable consequences. In accordance with the present systems, articles, and methods, the benefits of galvanically isolating the amplifier (e.g., 150) from the user's skin may be realized without the drawbacks of capacitively coupling the sensor electrode(s) to the user's skin by a capacitive EMG sensor design in which the capacitive interruption between the user's skin and the amplifier is moved downstream in the sensor circuit and realized by a discrete component capacitor coupled in between a resistive sensor electrode and an amplification circuit.
Sensor 200 is illustrated as a differential capacitive EMG sensor that employs a first sensor electrode 201a and a second sensor electrode 201b, though a person of skill in the art will appreciate that the description of sensor 200 herein is also applicable to single-ended sensor systems that employ only a single sensor electrode (i.e., one of sensor electrodes 201a or 201b).
Sensor 200 includes an amplification circuit (i.e., an amplifier) 250. First sensor electrode 201a is communicatively coupled to amplifier 250 by a first electrically conductive pathway 211a. A first capacitor 221a is electrically coupled in series between first sensor electrode 201a and amplifier 250 in first electrically conductive pathway 211a. First capacitor 221a galvanically isolates amplifier 250 from the user's body (e.g., skin) and thereby affords some of the benefits typically associated with a capacitive EMG sensor (i.e., capacitor 221a prevents DC voltage(s) from coupling to amplifier 250 and prevents voltage(s) from being applied to the user's skin). While a traditional capacitive EMG sensor achieves this galvanic isolation by capacitively coupling to the user's skin at the sensor electrode (e.g., as per sensor electrode 101a from sensor 100), in sensor 200 electrode 201a is resistively coupled to the user's skin and galvanic isolation is moved downstream to discrete component capacitor 221a. As previously described, resistive coupling to the user's skin as per electrode 201a from sensor 200 provides a lower impedance between the user's skin and amplifier 250 than capacitive coupling to the user's skin as in electrode 101a from sensor 100, and this lower impedance simplifies and lowers the cost of amplifier 250 in sensor 200 compared to amplifier 150 in sensor 100. Furthermore, because capacitor 221a is a discrete component, the magnitude of its capacitance can be selected and will remain essentially constant from user to user, regardless of variations such as skin conductance, moisture/sweat levels, hair density, and so on. An example implementation may employ, as capacitors 221a (and similarly as capacitor 221b), a discrete component capacitor having a magnitude of about 100 nF. Typical capacitive coupling between a dielectric-coated cEMG sensor and a user's skin is significantly less than this, thus 100 nF may dominate the range of variations in skin:electrode capacitance typically seen in cEMG across different users and/or use conditions. The incorporation of a discrete component capacitor 221a in lieu of condition-dependent capacitive coupling between the electrode and the user's skin is very easy and inexpensive to manufacture and provides an essentially fixed capacitance to which the rest of the sensor circuitry may be tuned for improved performance.
In addition to first capacitor 221a, sensor 200 also includes a first resistor 231a that is electrically coupled in series between first sensor electrode 201a and amplifier 250 in first electrically conductive pathway 211a. Similar to first capacitor 221a, first resistor 231a may be a discrete electronic component with a magnitude that can be selected, accurately embodied, and held substantially constant during use. In the illustrated example of
The amplifier(s) used in the capacitive EMG sensors described herein may include one or more of various types of amplifier(s), including one or more instrumentation amplifier(s) and/or one or more single or dual operational amplifier(s), depending, for example, on whether the EMG sensor is single-ended or differential. As sensor 200 is differential, amplifier 250 may include a dual operational amplifier (e.g., a “two-op-amp instrumentation amplifier”) such as the MAX9916 or the MAX9917, both available from Maxim Integrated, or any of various other amplifier configurations, including but not limited to amplifiers embodied in integrated circuits. A person of skill in the art will appreciate that the output(s) and/or some of the inputs of amplifier 250 may be connected through various resistor configurations for at least the purpose of determining the gain of amplifier 250.
Sensor 200 includes a second electrically conductive pathway 212 that communicatively couples to ground through a ground electrode 240. Ground electrode 240 comprises a plate of electrically conductive material that resistively couples to the user's skin. As sensor 200 is differential, ground electrode 240 may not necessarily be used as a reference potential but may primarily provide a path for electrical currents to return to the user's body (e.g., skin). Using second electrically conductive pathway 212, together with first capacitor 221a and first resistor 231a, circuitry connected to first sensor electrode 201a also includes both a low-pass filtering configuration and a high-pass filtering configuration “in front of” or upstream of amplifier 250 in a direction in which signals pass. Specifically, sensor 200 includes a third electrically conductive pathway 213a that communicatively couples first electrically conductive pathway 211a and second electrically conductive pathway 212. Third electrically conductive pathway 213a includes a second capacitor 222a electrically coupled in between first electrically conductive pathway 211a and second electrically conductive pathway 212. The configuration of first resistor 231a and second capacitor 222a (with respect to sensor electrode 201a, amplifier 250, and ground electrode 240) forms a low-pass filtering circuit. As an example, when first resistor 231a has a magnitude of about 100 kΩ, second capacitor 222a may have a magnitude of about 10 pF in order to provide desirable low-pass filtering performance. Similarly, sensor 200 includes a fourth electrically conductive pathway 214a that communicatively couples first electrically conductive pathway 211a and second electrically conductive pathway 212. Fourth electrically conductive pathway 214a includes a second resistor 232a electrically coupled in between first electrically conductive pathway 211a and second electrically conductive pathway 212. The configuration of first capacitor 221a and second resistor 232a (with respect to sensor electrode 201a, amplifier 250, and ground electrode 240) forms a high-pass filtering circuit.
In comparing sensor 200 from
As previously described, the illustrated example in
The various examples of capacitive EMG sensors described herein, including sensor 200 from
Sensor 300 includes a substrate 360 formed of an insulating material (e.g., FR-4) and having a first surface 360a and a second surface 360b. Second surface 360b is opposite first surface 360a across a thickness of substrate 360. Sensor 300 is a differential EMG sensor comprising two sensor electrodes 30a, 301b (analogous to sensor electrodes 201a, 201b of sensor 200), both carried by first surface 360a of substrate 360. The circuitry that comprises the other elements of sensor 300 (e.g., an amplifier 350 analogous to amplifier 250 of sensor 200, capacitors 321a, 321b analogous to capacitors 221a, 221b of sensor 200, and resistors 331a, 331b analogous to resistors 231a, 231b of sensor 200) is carried by second surface 360b of substrate 360 and communicatively coupled to electrodes 301a, 301b by electrically conductive pathways 311a, 311b (analogous to electrically conductive pathways 211a, 211b of sensor 200), which include via portions that extend through the thickness of substrate 360 and electrically conductive trace portions that are carried by second surface 360b of substrate 360.
Throughout this specification and the appended claims, the terms “carries” and “carried by” are generally used to describe a spatial relationship in which a first layer/component is positioned proximate and physically coupled to a surface of a second layer/component, either directly or through one or more intervening layers/components. For example, electrode 301a is carried by first surface 360a of substrate 360 and amplifier 350 is carried by second surface 360b of substrate 360. Amplifier 350 is directly carried by second surface 360b of substrate 360 because there are no intervening layers/components that mediate the physical coupling between amplifier 350 and second surface 360b of substrate 360; however, amplifier 350 would still be considered “carried by” second surface 360b of substrate 360 even if the physical coupling between amplifier 350 and second surface 360b of substrate 360 was mediated by at least one intervening layer/component. The terms “carries” and “carried by” are not intended to denote a particular orientation with respect to top and bottom and/or left and right.
Each resistive sensor electrode of the capacitive EMG sensors described herein (e.g., electrodes 301a, 301b of sensor 300) comprises a respective electrically conductive plate that physically and electrically (i.e., galvanically/resistively) couples to the user's skin during use. For each such sensor electrode, the electrically conductive plate may be formed of, for example, a material that includes copper (such as pure elemental copper or a copper alloy), deposited and etched in accordance with established lithography techniques. While copper is an excellent material from which to form sensor electrodes 301a, 301b from a manufacturing point of view (because lithography techniques for processing copper are very well established in the art), an exposed surface of pure copper will ultimately form an insulating oxide layer and/or react with the skin of a user in other undesirable ways. This effect may be acceptable for traditional capacitive sensor electrodes that capacitively couple to the user because, as described previously, such electrodes are typically coated with an insulating dielectric layer anyway. However, the formation of such an insulating layer can undesirably effect the operation of a sensor electrode that resistively couples to the user's skin. In some cases, a user's skin may even react with copper, resulting in a rash or other discomfort for the user. For at least these reasons, in accordance with the present systems, articles, and methods it can be advantageous to form each of sensor electrodes 301a, 301b (and likewise electrodes 201a and 201b of
The use of multilayer (e.g., bi-layer) structures for sensor electrodes 301a, 301b is advantageous because it enables the first layer 371a, 371b to be formed of copper using established lithography techniques and the second layer 372a, 372b to be subsequently applied in order to protect the copper from exposure to the user/environment and to protect the user from exposure to the copper. Furthermore, an EMG sensor (e.g., sensor 300) may be packaged in a housing for both protective and aesthetic purposes, and a second layer 372a, 372b of electrically conductive material may be used to effectively increase the thickness of sensor electrodes 301a, 301b such that they protrude outwards from the housing to resistively couple to the user's skin during use.
Bi-layer sensor electrodes 401a, 401b are similar to bi-layer sensor electrodes 301a, 301b of sensor 300 in that they each comprise a respective first layer 471a, 471b formed of a first electrically conductive material (e.g., copper, or a material including copper) and a respective second layer 472a, 472b formed of a second electrically conductive material (e.g., gold, steel, stainless steel, conductive rubber, etc.); however, in sensor 400 the respective second layer 472a, 472b of each of electrodes 401a, 401b is substantially thicker than the respective first layer 471a, 471b of each of electrodes 401a, 401b. At least two holes 480a, 480b in housing 490 provide access to the inner volume of housing 490, and the thickness of second layers 472a, 472b of electrodes 401a, 401b (respectively) is sufficient such that at least respective portions of second layers 472a, 472b protrude out of housing 490 through holes 480a, 480b. More specifically, first sensor electrode 401a includes a first layer 471a and a second layer 472a, housing 490 includes a first hole 480a, and at least a portion of second layer 472a of first sensor electrode 401a extends out of housing 490 through first hole 480a. Likewise, second sensor electrode 401b includes a first layer 471b and a second layer 472b, housing 490 includes a second hole 480b, and at least a portion of second layer 472b of second sensor electrode 401b extends out of housing 490 through second hole 480b. In this way, housing 490 protects sensor 400 from the elements and affords opportunities to enhance aesthetic appeal, while the protruding portions of second layers 472a, 472b of sensor electrodes 401a, 401b are still able to resistively couple to the skin of the user during use. Housing 490 also helps to electrically insulate electrodes 401a, 401b from one another. In some applications, it can be advantageous to seal any gap between the perimeter of first hole 480a and the protruding portion of second layer 472a of first electrode 401a (using, e.g., a gasket, an epoxy or other sealant or, in the case of electrically conductive rubber or electrically conductive silicone as the material forming second layer 472a of first electrode 401a, a tight interference fit between the perimeter of first hole 480a and the protruding portion of second layer 472a of first electrode 401a) to prevent moisture or contaminants from entering housing 490. Likewise, it can be advantageous to seal any gap between the perimeter of second hole 480b and the protruding portion of second layer 472b of second electrode 401b.
As previously described, the various embodiments of capacitive EMG sensors described herein may include at least one ground electrode. For example, sensor 200 from
In accordance with the present systems, articles, and methods, multilayer (e.g., bi-layer) electrodes, including multilayer sensor electrodes and/or multilayer ground electrodes, may be formed by, for example: electroplating a second layer of electrically conductive material on a first layer of electrically conductive material; depositing a second layer of electrically conductive material on a first layer of electrically conductive material using deposition or growth techniques such as chemical vapor deposition, physical vapor deposition thermal oxidation, or epitaxy; adhering a second layer of electrically conductive material to a first layer of electrically conductive material using, for example, an electrically conductive epoxy or an electrically conductive solder; pressing a second layer of electrically conductive material against a first layer of electrically conductive material using, for example, an interference fit, one or more spring(s), or one or more elastic band(s); or otherwise generally bonding a second electrically conductive material to a first electrically conductive material in such a way that the second electrically conductive material is electrically coupled to the first electrically coupled material.
At 501, a first sensor electrode is formed on a first surface of a substrate. The first sensor electrode may comprise an electrically conductive plate such as for example electrode 301a of sensor 300 or electrode 401a of sensor 400, formed using, as an example, lithography techniques. The first sensor electrode may include a single layer of electrically conductive material or multiple (i.e., at least two) layers of one or more electrically conductive material(s). Forming the first sensor electrode may therefore include depositing at least a first layer of a first electrically conductive material (e.g., copper) on the first surface of the substrate. Where, in accordance with the present systems, articles, and methods, it is desirable for the first sensor electrode to comprise multiple layers, forming the first sensor electrode may further include depositing a second layer of a second electrically conductive material (e.g., gold, steel, stainless steel, electrically conductive rubber, etc.) on the first layer of the first electrically conductive material (either directly by, for example, a plating process or indirectly by, for example, employing an intervening adhesive layer such as an electrically conductive epoxy or an electrically conductive solder).
At 502, an amplifier (e.g., amplifier 250 of sensor 200, amplifier 350 of sensor 300, or amplifier 450 of sensor 400) is deposited on a second surface of the substrate. The amplifier may include an amplification circuit and/or one or more discrete electronic component amplifier(s), such as for example on or more operational amplifier(s), differential amplifier(s), and/or instrumentation amplifier(s). Depositing the amplifier on the second surface of the substrate may include soldering a discrete component amplifier to one or more electrically conductive trace(s) and/or bonding pad(s) carried by the second surface of the substrate (i.e., soldering the amplifier on the second surface of the substrate using, for example, a surface-mount technology, or “SMT,” process).
At 503, a first capacitor (e.g., capacitor 221a of sensor 200, capacitor 321a of sensor 300, or capacitor 421a of sensor 400) is deposited on the second surface of the substrate. The first capacitor may include a discrete electronic component capacitor and depositing the first capacitor on the second surface of the substrate may include soldering the first capacitor to one or more electrically conductive trace(s) and/or bonding pad(s) carried by the second surface of the substrate (i.e., soldering the first capacitor on the second surface of the substrate using, for example, a SMT process).
At 504, a first resistor (e.g., resistor 231a of sensor 200, resistor 331a of sensor 300, or resistor 431a of sensor 400) is deposited on the second surface of the substrate. The first resistor may include a discrete electronic component resistor and depositing the first resistor on the second surface of the substrate may include soldering the first resistor to one or more electrically conductive trace(s) and/or bonding pad(s) carried by the second surface of the substrate (i.e., soldering the first resistor on the second surface of the substrate using, for example, a SMT process).
As described previously, a person of skill in the art will appreciate that the order of the acts in method 500, and in particular the order of acts 501, 502, 503, and 504, is provided as an example only and in practice acts 501, 502, 503, and 504 may be carried out in virtually any order or combination, and any/all of acts 501, 502, 503, and 504 may be carried out substantially concurrently or even simultaneously (in, for example, an SMT process).
At 505, a first electrically conductive pathway (e.g., pathway 211a of sensor 200 or pathway 311a of sensor 300) that communicatively couples the first sensor electrode to the amplifier through the first capacitor and the first resistor is formed. The first electrically conductive pathway may include one or more section(s) of electrically conductive trace carried by the second surface of the substrate and at least one via that electrically couples at least one of the one or more section(s) of electrically conductive trace to the first sensor electrode carried by the first surface of the substrate. Thus, forming the first electrically conductive pathway may employ established lithography techniques to form the one or more section(s) of electrically conductive trace and to form a via through the substrate.
As previously described, the EMG sensor may include or otherwise be packaged in a housing, such as housing 490 of sensor 400. In this case, method 500 may be extended to include enclosing the substrate in a housing. Enclosing the substrate in the housing includes enclosing the amplifier, the first capacitor, and the first resistor in the housing. The housing may include a hole providing access to the inner volume thereof, and enclosing the substrate in the housing may include aligning the first sensor electrode with the hole so that at least a portion of the first senor electrode protrudes out of the housing through the hole. For implementations in which the first sensor electrode comprises a first layer and a second layer, aligning the first sensor electrode with the hole may include aligning the first sensor electrode with the hole so that at least a portion of the second layer protrudes out of the housing through the hole.
As previously described, the EMG sensor may include a ground electrode. For example, sensor 200 from
With or without a ground electrode (240), the EMG sensor may be differential. For example, sensor 200 from
Capacitive EMG sensors having sensor electrodes that resistively couple to the user's skin as described herein may be implemented in virtually any system, device, or process that makes use of capacitive EMG sensors; however, the capacitive EMG sensors described herein are particularly well-suited for use in EMG devices that are intended to be worn by (or otherwise coupled to) a user for an extended period of time and/or for a range of different skin and/or environmental conditions. As an example, the capacitive EMG sensors described herein may be implemented in a wearable EMG device that provides gesture-based control in a human-electronics interface. Some details of exemplary wearable EMG devices that may be adapted to include at least one capacitive EMG sensor from the present systems, articles, and methods are described in, for example, U.S. Provisional Patent Application Ser. No. 61/768,322 (now U.S. Non-Provisional patent application Ser. No. 14/186,889); U.S. Provisional Patent Application Ser. No. 61/857,105 (now U.S. Non-Provisional patent application Ser. No. 14/335,668); U.S. Provisional Patent Application Ser. No. 61/860,063 (now U.S. Non-Provisional patent application Ser. No. 14/276,575); U.S. Provisional Patent Application Ser. No. 61/866,960 (now U.S. Non-Provisional patent application Ser. No. 14/461,044); U.S. Provisional Patent Application Ser. No. 61/869,526 (now U.S. Non-Provisional patent application Ser. No. 14/465,194); U.S. Provisional Patent Application Ser. No. 61/881,064 (now U.S. Non-Provisional patent application Ser. No. 14/494,274); and U.S. Provisional Patent Application Ser. No. 61/894,263 (now U.S. Non-Provisional patent application Ser. No. 14/520,081), all of which are incorporated herein by reference in their entirety.
Throughout this specification and the appended claims, the term “gesture” is used to generally refer to a physical action (e.g., a movement, a stretch, a flex, a pose, etc.) performed or otherwise effected by a user. Any physical action performed or otherwise effected by a user that involves detectable muscle activity (detectable, e.g., by at least one appropriately positioned EMG sensor) may constitute a gesture in the present systems, articles, and methods.
Device 600 includes a set of eight pod structures 601, 602, 603, 604, 605, 606, 607, and 608 that form physically coupled links of the wearable EMG device 600. Each pod structure in the set of eight pod structures 601, 602, 603, 604, 605, 606, 607, and 608 is positioned adjacent and in between two other pod structures in the set of eight pod structures such that the set of pod structures forms a perimeter of an annular or closed loop configuration. For example, pod structure 601 is positioned adjacent and in between pod structures 602 and 608 at least approximately on a perimeter of the annular or closed loop configuration of pod structures, pod structure 602 is positioned adjacent and in between pod structures 601 and 603 at least approximately on the perimeter of the annular or closed loop configuration, pod structure 603 is positioned adjacent and in between pod structures 602 and 604 at least approximately on the perimeter of the annular or closed loop configuration, and so on. Each of pod structures 601, 602, 603, 604, 605, 606, 607, and 608 is physically coupled to the two adjacent pod structures by at least one adaptive coupler (not visible in
Throughout this specification and the appended claims, the term “pod structure” is used to refer to an individual link, segment, pod, section, structure, component, etc. of a wearable EMG device. For the purposes of the present systems, articles, and methods, an “individual link, segment, pod, section, structure, component, etc.” (i.e., a “pod structure”) of a wearable EMG device is characterized by its ability to be moved or displaced relative to another link, segment, pod, section, structure component, etc. of the wearable EMG device. For example, pod structures 601 and 602 of device 600 can each be moved or displaced relative to one another within the constraints imposed by the adaptive coupler providing adaptive physical coupling therebetween. The desire for pod structures 601 and 602 to be movable/displaceable relative to one another specifically arises because device 600 is a wearable EMG device that advantageously accommodates the movements of a user and/or different user forms. As described in more detail later on, each of pod structures 601, 602, 603, 604, 605, 606, 607, and 608 may correspond to a respective housing (e.g., housing 490 of sensor 400) of a respective capacitive EMG sensor adapted to, in use, resistively couple to the user's skin in accordance with the present systems, articles, and methods.
Device 600 includes eight pod structures 601, 602, 603, 604, 605, 606, 607, and 608 that form physically coupled links thereof. Wearable EMG devices employing pod structures (e.g., device 600) are used herein as exemplary wearable EMG device designs, while the present systems, articles, and methods may be applied to wearable EMG devices that do not employ pod structures (or that employ any number of pod structures). Thus, throughout this specification, descriptions relating to pod structures (e.g., functions and/or components of pod structures) should be interpreted as being applicable to any wearable EMG device design, even wearable EMG device designs that do not employ pod structures (except in cases where a pod structure is specifically recited in a claim).
In exemplary device 600 of
Throughout this specification and the appended claims the term “communicative” as in “communicative pathway,” “communicative coupling,” and in variants such as “communicatively coupled,” is generally used to refer to any engineered arrangement for transferring and/or exchanging information. Exemplary communicative pathways include, but are not limited to, electrically conductive pathways (e.g., electrically conductive wires, electrically conductive traces), magnetic pathways (e.g., magnetic media), and/or optical pathways (e.g., optical fiber), and exemplary communicative couplings include, but are not limited to, electrical couplings, magnetic couplings, and/or optical couplings.
Each individual pod structure within a wearable EMG device may perform a particular function, or particular functions. For example, in device 600, each of pod structures 601, 602, 603, 604, 605, 606, and 607 includes a respective capacitive EMG sensor 610 (akin to sensor 200 from
Pod structure 608 of device 600 includes a processor 630 that processes the signals provided by the capacitive EMG sensors 610 of sensor pods 601, 602, 603, 604, 605, 606, and 607 in response to detected muscle activity. Pod structure 608 may therefore be referred to as a “processor pod.” Throughout this specification and the appended claims, the term “processor pod” is used to denote an individual pod structure that includes at least one processor to process signals. The processor may be any type of processor, including but not limited to: a digital microprocessor or microcontroller, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a digital signal processor (DSP), a graphics processing unit (GPU), a programmable gate array (PGA), a programmable logic unit (PLU), or the like, that analyzes or otherwise processes the signals to determine at least one output, action, or function based on the signals. A person of skill in the art will appreciate that implementations that employ a digital processor (e.g., a digital microprocessor or microcontroller, a DSP, etc.) may advantageously include a non-transitory processor-readable storage medium or memory communicatively coupled thereto and storing data and/or processor-executable instructions that control the operations thereof, whereas implementations that employ an ASIC, FPGA, or analog processor may or may optionally not include a non-transitory processor-readable storage medium, or may include on-board registers or other non-transitory storage structures.
As used throughout this specification and the appended claims, the terms “sensor pod” and “processor pod” are not necessarily exclusive. A single pod structure may satisfy the definitions of both a “sensor pod” and a “processor pod” and may be referred to as either type of pod structure. For greater clarity, the term “sensor pod” is used to refer to any pod structure that includes a sensor and performs at least the function(s) of a sensor pod, and the term processor pod is used to refer to any pod structure that includes a processor and performs at least the function(s) of a processor pod. In device 600, processor pod 608 includes a capacitive EMG sensor 610 (not visible in
In device 600, processor 630 includes and/or is communicatively coupled to a non-transitory processor-readable storage medium or memory 640. Memory 640 may store processor-executable gesture identification instructions that, when executed by processor 630, cause processor 630 to process the EMG signals from capacitive EMG sensors 610 and identify a gesture to which the EMG signals correspond. For communicating with a separate electronic device (not shown), wearable EMG device 600 includes at least one communication terminal. Throughout this specification and the appended claims, the term “communication terminal” is generally used to refer to any physical structure that provides a telecommunications link through which a data signal may enter and/or leave a device. A communication terminal represents the end (or “terminus”) of communicative signal transfer within a device and the beginning of communicative signal transfer to/from an external device (or external devices). As examples, device 600 includes a first communication terminal 651 and a second communication terminal 652. First communication terminal 651 includes a wireless transmitter (i.e., a wireless communication terminal) and second communication terminal 652 includes a tethered connector port 652. Wireless transmitter 651 may include, for example, a Bluetooth® transmitter (or similar) and connector port 652 may include a Universal Serial Bus port, a mini-Universal Serial Bus port, a micro-Universal Serial Bus port, a SMA port, a THUNDERBOLT® port, or the like.
For some applications, device 600 may also include at least one inertial sensor 660 (e.g., an inertial measurement unit, or “IMU,” that includes at least one accelerometer and/or at least one gyroscope) responsive to (i.e., to detect, sense, or measure and provide at least one signal in response to detecting, sensing, or measuring) motion effected by a user. Signals provided by inertial sensor 660 may be combined or otherwise processed in conjunction with signals provided by capacitive EMG sensors 610.
As previously described, each of pod structures 601, 602, 603, 604, 605, 606, 607, and 608 may include circuitry (i.e., electrical and/or electronic circuitry).
Each of EMG sensors 610 includes a respective capacitive EMG sensor responsive to muscle activity corresponding to a gesture performed by the user, wherein in response to muscle activity corresponding to a gesture performed by the user each of EMG sensors 610 provides signals. EMG sensors 610 are capacitive EMG sensors that are adapted to, in use, resistively couple to the user's skin per the present systems, articles, and methods, as described for sensor 200 from
The capacitive EMG sensors 610 of wearable EMG device 600 are differential sensors that each implement two respective sensor electrodes 671, 672 and a respective ground electrode 673, though the teachings herein may similarly be applied to wearable EMG devices that employ single-ended capacitive EMG sensors that each implement a respective single sensor electrode and/or capacitive EMG sensors that share a common ground electrode.
Signals that are provided by capacitive EMG sensors 610 in device 600 are routed to processor pod 608 for processing by processor 630. To this end, device 600 employs a set of communicative pathways (e.g., 621 and 622) to route the signals that are output by sensor pods 601, 602, 603, 604, 605, 606, and 607 to processor pod 608. Each respective pod structure 601, 602, 603, 604, 605, 606, 607, and 608 in device 600 is communicatively coupled to, over, or through at least one of the two other pod structures between which the respective pod structure is positioned by at least one respective communicative pathway from the set of communicative pathways. Each communicative pathway (e.g., 621 and 622) may be realized in any communicative form, including but not limited to: electrically conductive wires or cables, ribbon cables, fiber-optic cables, optical/photonic waveguides, electrically conductive traces carried by a rigid printed circuit board, electrically conductive traces carried by a flexible printed circuit board, and/or electrically conductive traces carried by a stretchable printed circuit board.
Device 600 from
Throughout this specification and the appended claims, infinitive verb forms are often used. Examples include, without limitation: “to detect,” “to provide,” “to transmit,” “to communicate,” “to process,” “to route,” and the like. Unless the specific context requires otherwise, such infinitive verb forms are used in an open, inclusive sense, that is as “to, at least, detect,” to, at least, provide,” “to, at least, transmit,” and so on.
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art. The teachings provided herein of the various embodiments can be applied to other portable and/or wearable electronic devices, not necessarily the exemplary wearable electronic devices generally described above.
In the context of this disclosure, a memory is a processor-readable medium that is an electronic, magnetic, optical, or other physical device or means that contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any processor-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.
In the context of this specification, a “non-transitory processor-readable medium” can be any element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The processor-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, provided that it is tangible and/or non-transitory. More specific examples (a non-exhaustive list) of the processor-readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), digital tape, and other non-transitory media.
The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Non-Provisional patent application Ser. No. 14/553,657; U.S. Provisional Patent Application Ser. No. 61/909,786; U.S. Provisional Patent Application Ser. No. 61/768,322 (now U.S. Non-Provisional patent application Ser. No. 14/186,889); U.S. Provisional Patent Application Ser. No. 61/771,500 (now U.S. Non-Provisional patent application Ser. No. 14/194,252); U.S. Provisional Patent Application Ser. No. 61/857,105 (now U.S. Non-Provisional patent application Ser. No. 14/335,668); U.S. Provisional Patent Application Ser. No. 61/860,063 (now U.S. Non-Provisional patent application Ser. No. 14/276,575); U.S. Provisional Patent Application Ser. No. 61/866,960 (now U.S. Non-Provisional patent application Ser. No. 14/461,044); U.S. Provisional Patent Application Ser. No. 61/869,526 (now U.S. Non-Provisional patent application Ser. No. 14/465,194); U.S. Provisional Patent Application Ser. No. 61/881,064 (now U.S. Non-Provisional patent application Ser. No. 14/494,274); U.S. Provisional Patent Application Ser. No. 61/894,263 (now U.S. Non-Provisional patent application Ser. No. 14/520,081), and U.S. Provisional Patent Application Ser. No. 61/903,238 (now U.S. Non-Provisional patent application Ser. No. 14/539,773), are all incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
This application is a continuation of U.S. application Ser. No. 16/292,609, filed Mar. 5, 2019, which is a continuation of U.S. application Ser. No. 15/799,628, filed Oct. 31, 2017, now U.S. Pat. No. 10,251,577, which is a division of U.S. application Ser. No. 14/553,657, filed Nov. 25, 2014, now U.S. Pat. No. 10,188,309, which claims the benefit of U.S. Provisional Application No. 61/909,786, filed Nov. 27, 2013, the disclosures of each of which are incorporated, in their entirety, by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1411995 | Dull | Apr 1922 | A |
3408133 | Lee | Oct 1968 | A |
3580243 | Johnson | May 1971 | A |
3620208 | Higley et al. | Nov 1971 | A |
3712716 | Cornsweet et al. | Jan 1973 | A |
3735425 | Hoshall et al. | May 1973 | A |
3880146 | Everett et al. | Apr 1975 | A |
4055168 | Miller et al. | Oct 1977 | A |
4602639 | Hoogendoorn et al. | Jul 1986 | A |
4705408 | Jordi | Nov 1987 | A |
4817064 | Milles | Mar 1989 | A |
4896120 | Kamil | Jan 1990 | A |
4978213 | El Hage | Dec 1990 | A |
5003978 | Dunseath, Jr. | Apr 1991 | A |
D322227 | Warhol | Dec 1991 | S |
5081852 | Cox | Jan 1992 | A |
5103323 | Magarinos et al. | Apr 1992 | A |
5231674 | Cleveland et al. | Jul 1993 | A |
5251189 | Thorp | Oct 1993 | A |
D348660 | Parsons | Jul 1994 | S |
5445869 | Ishikawa et al. | Aug 1995 | A |
5462065 | Cusimano | Oct 1995 | A |
5467104 | Furness, III et al. | Nov 1995 | A |
5482051 | Reddy et al. | Jan 1996 | A |
5589956 | Morishima et al. | Dec 1996 | A |
5596339 | Furness, III et al. | Jan 1997 | A |
5605059 | Woodward | Feb 1997 | A |
5625577 | Kunii et al. | Apr 1997 | A |
5683404 | Johnson | Nov 1997 | A |
5742421 | Wells et al. | Apr 1998 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6008781 | Furness, III et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6027216 | Guyton et al. | Feb 2000 | A |
6032530 | Hock | Mar 2000 | A |
D422617 | Simioni | Apr 2000 | S |
6066794 | Longo | May 2000 | A |
6184847 | Fateh et al. | Feb 2001 | B1 |
6236476 | Son et al. | May 2001 | B1 |
6238338 | DeLuca et al. | May 2001 | B1 |
6244873 | Hill et al. | Jun 2001 | B1 |
6317103 | Furness, III et al. | Nov 2001 | B1 |
6377277 | Yamamoto | Apr 2002 | B1 |
D459352 | Giovanniello | Jun 2002 | S |
6411843 | Zarychta | Jun 2002 | B1 |
6487906 | Hock | Dec 2002 | B1 |
6510333 | Licata et al. | Jan 2003 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6619836 | Silvant et al. | Sep 2003 | B1 |
6639570 | Furness, III et al. | Oct 2003 | B2 |
6658287 | Litt et al. | Dec 2003 | B1 |
6720984 | Jorgensen et al. | Apr 2004 | B1 |
6743982 | Biegelsen et al. | Jun 2004 | B2 |
6771294 | Pulli et al. | Aug 2004 | B1 |
6774885 | Even-Zohar | Aug 2004 | B1 |
6807438 | Brun Del Re et al. | Oct 2004 | B1 |
D502661 | Rapport | Mar 2005 | S |
D502662 | Rapport | Mar 2005 | S |
6865409 | Getsla et al. | Mar 2005 | B2 |
D503646 | Rapport | Apr 2005 | S |
6880364 | Vidolin et al. | Apr 2005 | B1 |
6901286 | Sinderby et al. | May 2005 | B1 |
6927343 | Watanabe et al. | Aug 2005 | B2 |
6942621 | Avinash et al. | Sep 2005 | B2 |
6965842 | Rekimto | Nov 2005 | B2 |
6972734 | Oshima et al. | Dec 2005 | B1 |
6984208 | Zheng | Jan 2006 | B2 |
7022919 | Brist et al. | Apr 2006 | B2 |
7028507 | Rapport | Apr 2006 | B2 |
7086218 | Pasach | Aug 2006 | B1 |
7089148 | Bachmann et al. | Aug 2006 | B1 |
D535401 | Travis et al. | Jan 2007 | S |
7173437 | Hervieux et al. | Feb 2007 | B2 |
7209114 | Radley-Smith | Apr 2007 | B2 |
D543212 | Marks | May 2007 | S |
7265298 | Maghribi et al. | Sep 2007 | B2 |
7271774 | Puuri | Sep 2007 | B2 |
7333090 | Tanaka et al. | Feb 2008 | B2 |
7351975 | Brady et al. | Apr 2008 | B2 |
7450107 | Radley-Smith | Nov 2008 | B2 |
7473888 | Wine et al. | Jan 2009 | B2 |
7491892 | Wagner et al. | Feb 2009 | B2 |
7517725 | Reis | Apr 2009 | B2 |
7558622 | Tran | Jul 2009 | B2 |
7574253 | Edney et al. | Aug 2009 | B2 |
7580742 | Tan et al. | Aug 2009 | B2 |
7596393 | Jung et al. | Sep 2009 | B2 |
7618260 | Daniel et al. | Nov 2009 | B2 |
7636549 | Ma et al. | Dec 2009 | B2 |
7640007 | Chen et al. | Dec 2009 | B2 |
7660126 | Cho et al. | Feb 2010 | B2 |
7684105 | Lamontagne et al. | Mar 2010 | B2 |
7747113 | Mukawa et al. | Jun 2010 | B2 |
7761390 | Ford | Jul 2010 | B2 |
7773111 | Cleveland et al. | Aug 2010 | B2 |
7787946 | Stahmann et al. | Aug 2010 | B2 |
7805386 | Greer | Sep 2010 | B2 |
7809435 | Ettare et al. | Oct 2010 | B1 |
7844310 | Anderson | Nov 2010 | B2 |
D628616 | Yuan | Dec 2010 | S |
7850306 | Uusitalo et al. | Dec 2010 | B2 |
7870211 | Pascal et al. | Jan 2011 | B2 |
D633939 | Puentes et al. | Mar 2011 | S |
D634771 | Fuchs | Mar 2011 | S |
7901368 | Flaherty et al. | Mar 2011 | B2 |
7925100 | Howell et al. | Apr 2011 | B2 |
7948763 | Chuang | May 2011 | B2 |
D640314 | Yang | Jun 2011 | S |
D643428 | Janky et al. | Aug 2011 | S |
D646192 | Woode | Oct 2011 | S |
D649177 | Cho et al. | Nov 2011 | S |
8054061 | Prance et al. | Nov 2011 | B2 |
D654622 | Hsu | Feb 2012 | S |
8120828 | Schwerdtner | Feb 2012 | B2 |
8170656 | Tan et al. | May 2012 | B2 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8188937 | Amafuji et al. | May 2012 | B1 |
8190249 | Gharieb et al. | May 2012 | B1 |
D661613 | Demeglio | Jun 2012 | S |
8203502 | Chi et al. | Jun 2012 | B1 |
8207473 | Axisa et al. | Jun 2012 | B2 |
8212859 | Tang et al. | Jul 2012 | B2 |
D667482 | Healy et al. | Sep 2012 | S |
D669522 | Klinar et al. | Oct 2012 | S |
D669523 | Wakata et al. | Oct 2012 | S |
D671590 | Klinar et al. | Nov 2012 | S |
8311623 | Sanger | Nov 2012 | B2 |
8348538 | Van Loenen et al. | Jan 2013 | B2 |
8351651 | Lee | Jan 2013 | B2 |
8355671 | Kramer et al. | Jan 2013 | B2 |
8384683 | Luo | Feb 2013 | B2 |
8386025 | Hoppe | Feb 2013 | B2 |
8389862 | Arora et al. | Mar 2013 | B2 |
8421634 | Tan et al. | Apr 2013 | B2 |
8427977 | Workman et al. | Apr 2013 | B2 |
D682343 | Waters | May 2013 | S |
D682727 | Bulgari | May 2013 | S |
8435191 | Barboutis et al. | May 2013 | B2 |
8437844 | Syed Momen et al. | May 2013 | B2 |
8447704 | Tan et al. | May 2013 | B2 |
D685019 | Li | Jun 2013 | S |
8467270 | Gossweiler, III et al. | Jun 2013 | B2 |
8469741 | Oster et al. | Jun 2013 | B2 |
D687087 | Iurilli | Jul 2013 | S |
8484022 | Vanhoucke | Jul 2013 | B1 |
D689862 | Liu | Sep 2013 | S |
D692941 | Klinar et al. | Nov 2013 | S |
8591411 | Banet et al. | Nov 2013 | B2 |
D695333 | Farnam et al. | Dec 2013 | S |
D695454 | Moore | Dec 2013 | S |
8620361 | Bailey et al. | Dec 2013 | B2 |
8624124 | Koo et al. | Jan 2014 | B2 |
8634119 | Bablumyan et al. | Jan 2014 | B2 |
D701555 | Markovitz et al. | Mar 2014 | S |
8666212 | Amirparviz | Mar 2014 | B1 |
8702629 | Giuffrida et al. | Apr 2014 | B2 |
8704882 | Turner | Apr 2014 | B2 |
D704248 | DiChiara | May 2014 | S |
8718980 | Garudadri et al. | May 2014 | B2 |
8743052 | Keller et al. | Jun 2014 | B1 |
8744543 | Li et al. | Jun 2014 | B2 |
8754862 | Zaliva | Jun 2014 | B2 |
8777668 | Ikeda et al. | Jul 2014 | B2 |
D716457 | Brefka et al. | Oct 2014 | S |
D717685 | Bailey et al. | Nov 2014 | S |
8879276 | Wang | Nov 2014 | B2 |
8880163 | Barachant et al. | Nov 2014 | B2 |
8883287 | Boyce et al. | Nov 2014 | B2 |
8890875 | Jammes et al. | Nov 2014 | B2 |
8892479 | Tan et al. | Nov 2014 | B2 |
8895865 | Lenahan et al. | Nov 2014 | B2 |
D719568 | Heinrich et al. | Dec 2014 | S |
D719570 | Heinrich et al. | Dec 2014 | S |
8912094 | Koo et al. | Dec 2014 | B2 |
8914472 | Lee et al. | Dec 2014 | B1 |
8922481 | Kauffmann et al. | Dec 2014 | B1 |
D723093 | Li | Feb 2015 | S |
8954135 | Yuen et al. | Feb 2015 | B2 |
D724647 | Rohrbach | Mar 2015 | S |
8970571 | Wong et al. | Mar 2015 | B1 |
8971023 | Olsson et al. | Mar 2015 | B2 |
9018532 | Wesselmann et al. | Apr 2015 | B2 |
9037530 | Tan et al. | May 2015 | B2 |
9086687 | Park et al. | Jul 2015 | B2 |
9092664 | Forutanpour et al. | Jul 2015 | B2 |
D736664 | Paradise et al. | Aug 2015 | S |
9107586 | Tran | Aug 2015 | B2 |
D738373 | Davies et al. | Sep 2015 | S |
9135708 | Ebisawa | Sep 2015 | B2 |
9146730 | Lazar | Sep 2015 | B2 |
D741855 | Park et al. | Oct 2015 | S |
9170674 | Forutanpour et al. | Oct 2015 | B2 |
D742272 | Bailey et al. | Nov 2015 | S |
D742874 | Cheng et al. | Nov 2015 | S |
D743963 | Osterhout | Nov 2015 | S |
9182826 | Powledge et al. | Nov 2015 | B2 |
9211417 | Heldman et al. | Dec 2015 | B2 |
9218574 | Phillipps et al. | Dec 2015 | B2 |
D747714 | Erbeus | Jan 2016 | S |
D747759 | Ho | Jan 2016 | S |
9235934 | Mandella et al. | Jan 2016 | B2 |
9240069 | Li | Jan 2016 | B1 |
D750623 | Park et al. | Mar 2016 | S |
D751065 | Magi | Mar 2016 | S |
9278453 | Assad | Mar 2016 | B2 |
9299248 | Lake et al. | Mar 2016 | B2 |
D756359 | Bailey et al. | May 2016 | S |
9329694 | Slonneger | May 2016 | B2 |
9341659 | Poupyrev et al. | May 2016 | B2 |
9349280 | Baldwin et al. | May 2016 | B2 |
9351653 | Harrison | May 2016 | B1 |
D758476 | Ho | Jun 2016 | S |
D760313 | Ho et al. | Jun 2016 | S |
9367139 | Ataee et al. | Jun 2016 | B2 |
9372535 | Bailey et al. | Jun 2016 | B2 |
9389694 | Ataee et al. | Jun 2016 | B2 |
9393418 | Giuffrida et al. | Jul 2016 | B2 |
9402582 | Parviz et al. | Aug 2016 | B1 |
9408316 | Bailey et al. | Aug 2016 | B2 |
9418927 | Axisa et al. | Aug 2016 | B2 |
D766895 | Choi | Sep 2016 | S |
9439566 | Arne et al. | Sep 2016 | B2 |
D768627 | Rochat et al. | Oct 2016 | S |
9459697 | Bedikian et al. | Oct 2016 | B2 |
9472956 | Michaelis et al. | Oct 2016 | B2 |
9477313 | Mistry et al. | Oct 2016 | B2 |
D771735 | Lee et al. | Nov 2016 | S |
9483123 | Aleem et al. | Nov 2016 | B2 |
9529434 | Choi et al. | Dec 2016 | B2 |
D780828 | Bonaventura et al. | Mar 2017 | S |
D780829 | Bonaventura et al. | Mar 2017 | S |
9597015 | McNames et al. | Mar 2017 | B2 |
9600030 | Bailey et al. | Mar 2017 | B2 |
9612661 | Wagner et al. | Apr 2017 | B2 |
9613262 | Holz | Apr 2017 | B2 |
9654477 | Kotamraju | May 2017 | B1 |
9659403 | Horowitz | May 2017 | B1 |
9687168 | John | Jun 2017 | B2 |
9696795 | Marcolina et al. | Jul 2017 | B2 |
9720515 | Wagner et al. | Aug 2017 | B2 |
9741169 | Holz | Aug 2017 | B1 |
9766709 | Holz | Sep 2017 | B2 |
9785247 | Horowitz et al. | Oct 2017 | B1 |
9788789 | Bailey | Oct 2017 | B2 |
9807221 | Bailey et al. | Oct 2017 | B2 |
9864431 | Keskin et al. | Jan 2018 | B2 |
9867548 | Le et al. | Jan 2018 | B2 |
9880632 | Ataee et al. | Jan 2018 | B2 |
9891718 | Connor | Feb 2018 | B2 |
9921641 | Worley, III et al. | Mar 2018 | B1 |
9996983 | Mullins | Jun 2018 | B2 |
10042422 | Morun et al. | Aug 2018 | B2 |
10070799 | Ang et al. | Sep 2018 | B2 |
10078435 | Noel | Sep 2018 | B2 |
10101809 | Morun et al. | Oct 2018 | B2 |
10152082 | Bailey | Dec 2018 | B2 |
10185416 | Mistry et al. | Jan 2019 | B2 |
10188309 | Morun et al. | Jan 2019 | B2 |
10199008 | Aleem et al. | Feb 2019 | B2 |
10203751 | Keskin et al. | Feb 2019 | B2 |
10216274 | Chapeskie et al. | Feb 2019 | B2 |
10251577 | Morun et al. | Apr 2019 | B2 |
10310601 | Morun et al. | Jun 2019 | B2 |
10331210 | Morun et al. | Jun 2019 | B2 |
10362958 | Morun et al. | Jul 2019 | B2 |
10409371 | Kaifosh et al. | Sep 2019 | B2 |
10429928 | Morun et al. | Oct 2019 | B2 |
10437335 | Daniels | Oct 2019 | B2 |
10460455 | Giurgica-Tiron et al. | Oct 2019 | B2 |
10489986 | Kaifosh et al. | Nov 2019 | B2 |
10496168 | Kaifosh et al. | Dec 2019 | B2 |
10504286 | Kaifosh et al. | Dec 2019 | B2 |
10520378 | Brown et al. | Dec 2019 | B1 |
10528135 | Bailey et al. | Jan 2020 | B2 |
10558273 | Park et al. | Feb 2020 | B2 |
10592001 | Berenzweig et al. | Mar 2020 | B2 |
10610737 | Crawford | Apr 2020 | B1 |
10676083 | De Sapio et al. | Jun 2020 | B1 |
10687759 | Guo et al. | Jun 2020 | B2 |
10905350 | Berenzweig et al. | Feb 2021 | B2 |
10905383 | Barachant | Feb 2021 | B2 |
10937414 | Berenzweig et al. | Mar 2021 | B2 |
10990174 | Kaifosh et al. | Apr 2021 | B2 |
11009951 | Bailey et al. | May 2021 | B2 |
11150730 | Anderson et al. | Oct 2021 | B1 |
20010033402 | Popovich | Oct 2001 | A1 |
20020003627 | Rieder | Jan 2002 | A1 |
20020009972 | Amento et al. | Jan 2002 | A1 |
20020030636 | Richards | Mar 2002 | A1 |
20020032386 | Sackner et al. | Mar 2002 | A1 |
20020077534 | DuRousseau | Jun 2002 | A1 |
20020094701 | Biegelsen et al. | Jul 2002 | A1 |
20020120415 | Millott et al. | Aug 2002 | A1 |
20020120916 | Snider, Jr. | Aug 2002 | A1 |
20020198472 | Kramer | Dec 2002 | A1 |
20030030595 | Radley-Smith | Feb 2003 | A1 |
20030036691 | Stanaland et al. | Feb 2003 | A1 |
20030051505 | Robertson et al. | Mar 2003 | A1 |
20030144586 | Tsubata | Jul 2003 | A1 |
20030144829 | Geatz et al. | Jul 2003 | A1 |
20030171921 | Manabe et al. | Sep 2003 | A1 |
20030182630 | Saund et al. | Sep 2003 | A1 |
20030184544 | Prudent | Oct 2003 | A1 |
20040010210 | Avinash et al. | Jan 2004 | A1 |
20040024312 | Zheng | Feb 2004 | A1 |
20040054273 | Finneran et al. | Mar 2004 | A1 |
20040068409 | Tanaka et al. | Apr 2004 | A1 |
20040073104 | Brun del Re et al. | Apr 2004 | A1 |
20040080499 | Lui | Apr 2004 | A1 |
20040092839 | Shin et al. | May 2004 | A1 |
20040194500 | Rapport | Oct 2004 | A1 |
20040210165 | Marmaropoulos et al. | Oct 2004 | A1 |
20040243342 | Rekimoto | Dec 2004 | A1 |
20040254617 | Hemmerling et al. | Dec 2004 | A1 |
20050005637 | Rapport | Jan 2005 | A1 |
20050012715 | Ford | Jan 2005 | A1 |
20050070227 | Shen et al. | Mar 2005 | A1 |
20050070791 | Edney et al. | Mar 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050119701 | Lauter et al. | Jun 2005 | A1 |
20050177038 | Kolpin et al. | Aug 2005 | A1 |
20050179644 | Alsio et al. | Aug 2005 | A1 |
20060018833 | Murphy et al. | Jan 2006 | A1 |
20060037359 | Stinespring | Feb 2006 | A1 |
20060058699 | Vitiello et al. | Mar 2006 | A1 |
20060061544 | Min et al. | Mar 2006 | A1 |
20060121958 | Jung et al. | Jun 2006 | A1 |
20060129057 | Maekawa et al. | Jun 2006 | A1 |
20060132705 | Li | Jun 2006 | A1 |
20060149338 | Flaherty et al. | Jul 2006 | A1 |
20060211956 | Sankai | Sep 2006 | A1 |
20060238707 | Elvesjo et al. | Oct 2006 | A1 |
20070009151 | Pittman et al. | Jan 2007 | A1 |
20070016265 | Davoodi et al. | Jan 2007 | A1 |
20070023662 | Brady et al. | Feb 2007 | A1 |
20070078308 | Daly | Apr 2007 | A1 |
20070132785 | Ebersole et al. | Jun 2007 | A1 |
20070148624 | Nativ | Jun 2007 | A1 |
20070172797 | Hada et al. | Jul 2007 | A1 |
20070177770 | Derchak et al. | Aug 2007 | A1 |
20070185697 | Tan et al. | Aug 2007 | A1 |
20070256494 | Nakamura et al. | Nov 2007 | A1 |
20070276270 | Tran | Nov 2007 | A1 |
20070279852 | Daniel et al. | Dec 2007 | A1 |
20070285399 | Lund | Dec 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080032638 | Anderson | Feb 2008 | A1 |
20080051673 | Kong et al. | Feb 2008 | A1 |
20080052643 | Ike et al. | Feb 2008 | A1 |
20080058668 | Seyed Momen et al. | Mar 2008 | A1 |
20080103639 | Troy et al. | May 2008 | A1 |
20080103769 | Schultz et al. | May 2008 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20080152217 | Greer | Jun 2008 | A1 |
20080163130 | Westerman | Jul 2008 | A1 |
20080214360 | Stirling et al. | Sep 2008 | A1 |
20080221487 | Zohar et al. | Sep 2008 | A1 |
20080262772 | Luinge et al. | Oct 2008 | A1 |
20080278497 | Jammes et al. | Nov 2008 | A1 |
20080285805 | Luinge et al. | Nov 2008 | A1 |
20090005700 | Joshi et al. | Jan 2009 | A1 |
20090007597 | Hanevold | Jan 2009 | A1 |
20090027337 | Hildreth | Jan 2009 | A1 |
20090031757 | Harding | Feb 2009 | A1 |
20090040016 | Ikeda | Feb 2009 | A1 |
20090051544 | Niknejad | Feb 2009 | A1 |
20090079607 | Denison et al. | Mar 2009 | A1 |
20090079813 | Hildreth | Mar 2009 | A1 |
20090082692 | Hale et al. | Mar 2009 | A1 |
20090082701 | Zohar et al. | Mar 2009 | A1 |
20090085864 | Kutliroff et al. | Apr 2009 | A1 |
20090102580 | Uchaykin | Apr 2009 | A1 |
20090109241 | Tsujimoto | Apr 2009 | A1 |
20090112080 | Matthews | Apr 2009 | A1 |
20090124881 | Rytky | May 2009 | A1 |
20090147004 | Ramon et al. | Jun 2009 | A1 |
20090179824 | Tsujimoto et al. | Jul 2009 | A1 |
20090189864 | Walker et al. | Jul 2009 | A1 |
20090189867 | Krah et al. | Jul 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090204031 | McNames et al. | Aug 2009 | A1 |
20090207464 | Wiltshire et al. | Aug 2009 | A1 |
20090209878 | Sanger | Aug 2009 | A1 |
20090251407 | Flake et al. | Oct 2009 | A1 |
20090258669 | Nie et al. | Oct 2009 | A1 |
20090265671 | Sachs et al. | Oct 2009 | A1 |
20090318785 | Ishikawa et al. | Dec 2009 | A1 |
20090319230 | Case, Jr. et al. | Dec 2009 | A1 |
20090322653 | Putilin et al. | Dec 2009 | A1 |
20090326406 | Tan et al. | Dec 2009 | A1 |
20090327171 | Tan et al. | Dec 2009 | A1 |
20100030532 | Arora et al. | Feb 2010 | A1 |
20100041974 | Ting et al. | Feb 2010 | A1 |
20100063794 | Hernandez-Rebollar | Mar 2010 | A1 |
20100066664 | Son et al. | Mar 2010 | A1 |
20100106044 | Linderman | Apr 2010 | A1 |
20100113910 | Brauers et al. | May 2010 | A1 |
20100142015 | Kuwahara et al. | Jun 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100150415 | Atkinson et al. | Jun 2010 | A1 |
20100228487 | Leuthardt et al. | Sep 2010 | A1 |
20100234696 | Li et al. | Sep 2010 | A1 |
20100240981 | Barboutis et al. | Sep 2010 | A1 |
20100249635 | Van Der Reijden | Sep 2010 | A1 |
20100280628 | Sankai | Nov 2010 | A1 |
20100292595 | Paul | Nov 2010 | A1 |
20100292606 | Prakash et al. | Nov 2010 | A1 |
20100292617 | Lei et al. | Nov 2010 | A1 |
20100293115 | Seyed Momen | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100315266 | Gunawardana et al. | Dec 2010 | A1 |
20100317958 | Beck et al. | Dec 2010 | A1 |
20110007035 | Shai | Jan 2011 | A1 |
20110018754 | Tojima et al. | Jan 2011 | A1 |
20110025982 | Takahashi | Feb 2011 | A1 |
20110054360 | Son et al. | Mar 2011 | A1 |
20110065319 | Oster et al. | Mar 2011 | A1 |
20110066381 | Garudadri et al. | Mar 2011 | A1 |
20110072510 | Cheswick | Mar 2011 | A1 |
20110077484 | Van Slyke et al. | Mar 2011 | A1 |
20110082838 | Niemela | Apr 2011 | A1 |
20110092826 | Lee et al. | Apr 2011 | A1 |
20110119216 | Wigdor | May 2011 | A1 |
20110133934 | Tan et al. | Jun 2011 | A1 |
20110134026 | Kang et al. | Jun 2011 | A1 |
20110151974 | Deaguero | Jun 2011 | A1 |
20110166434 | Gargiulo | Jul 2011 | A1 |
20110172503 | Knepper et al. | Jul 2011 | A1 |
20110173204 | Murillo et al. | Jul 2011 | A1 |
20110173574 | Clavin et al. | Jul 2011 | A1 |
20110181527 | Capela et al. | Jul 2011 | A1 |
20110205242 | Friesen | Aug 2011 | A1 |
20110213278 | Horak et al. | Sep 2011 | A1 |
20110221672 | Osterhout et al. | Sep 2011 | A1 |
20110224507 | Banet et al. | Sep 2011 | A1 |
20110224556 | Moon et al. | Sep 2011 | A1 |
20110224564 | Moon et al. | Sep 2011 | A1 |
20110230782 | Bartol et al. | Sep 2011 | A1 |
20110248914 | Sherr | Oct 2011 | A1 |
20110262002 | Lee | Oct 2011 | A1 |
20110270135 | Dooley et al. | Nov 2011 | A1 |
20110295100 | Hegde et al. | Dec 2011 | A1 |
20110313762 | Ben-David et al. | Dec 2011 | A1 |
20120002256 | Lacoste et al. | Jan 2012 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120029322 | Wartena et al. | Feb 2012 | A1 |
20120051005 | Vanfleteren et al. | Mar 2012 | A1 |
20120052268 | Axisa et al. | Mar 2012 | A1 |
20120053439 | Ylostalo et al. | Mar 2012 | A1 |
20120066163 | Balls et al. | Mar 2012 | A1 |
20120071092 | Pasquero et al. | Mar 2012 | A1 |
20120071780 | Barachant et al. | Mar 2012 | A1 |
20120101357 | Hoskuldsson et al. | Apr 2012 | A1 |
20120117514 | Kim et al. | May 2012 | A1 |
20120139817 | Freeman | Jun 2012 | A1 |
20120157789 | Kangas et al. | Jun 2012 | A1 |
20120157886 | Tenn et al. | Jun 2012 | A1 |
20120165695 | Kidmose et al. | Jun 2012 | A1 |
20120182309 | Griffin et al. | Jul 2012 | A1 |
20120184838 | John | Jul 2012 | A1 |
20120188158 | Tan et al. | Jul 2012 | A1 |
20120203076 | Fatta et al. | Aug 2012 | A1 |
20120209134 | Morita et al. | Aug 2012 | A1 |
20120226130 | De Graff et al. | Sep 2012 | A1 |
20120249797 | Haddick et al. | Oct 2012 | A1 |
20120265090 | Fink et al. | Oct 2012 | A1 |
20120265480 | Oshima | Oct 2012 | A1 |
20120275621 | Elko | Nov 2012 | A1 |
20120283526 | Gommesen et al. | Nov 2012 | A1 |
20120283896 | Persaud et al. | Nov 2012 | A1 |
20120293548 | Perez et al. | Nov 2012 | A1 |
20120302858 | Kidmose et al. | Nov 2012 | A1 |
20120320532 | Wang | Dec 2012 | A1 |
20120323521 | De Foras et al. | Dec 2012 | A1 |
20130004033 | Trugenberger | Jan 2013 | A1 |
20130005303 | Song et al. | Jan 2013 | A1 |
20130016292 | Miao et al. | Jan 2013 | A1 |
20130016413 | Saeedi et al. | Jan 2013 | A1 |
20130020948 | Han et al. | Jan 2013 | A1 |
20130027341 | Mastandrea | Jan 2013 | A1 |
20130038707 | Cunningham et al. | Feb 2013 | A1 |
20130077820 | Marais et al. | Mar 2013 | A1 |
20130080794 | Hsieh | Mar 2013 | A1 |
20130106686 | Bennett | May 2013 | A1 |
20130123656 | Heck | May 2013 | A1 |
20130123666 | Giuffrida | May 2013 | A1 |
20130127708 | Jung et al. | May 2013 | A1 |
20130131538 | Gaw et al. | May 2013 | A1 |
20130135223 | Shai | May 2013 | A1 |
20130135722 | Yokoyama | May 2013 | A1 |
20130141375 | Ludwig et al. | Jun 2013 | A1 |
20130144629 | Johnston et al. | Jun 2013 | A1 |
20130165813 | Chang et al. | Jun 2013 | A1 |
20130191741 | Dickinson et al. | Jul 2013 | A1 |
20130198694 | Rahman et al. | Aug 2013 | A1 |
20130207889 | Chang et al. | Aug 2013 | A1 |
20130215235 | Russell | Aug 2013 | A1 |
20130217998 | Mahfouz et al. | Aug 2013 | A1 |
20130221996 | Poupyrev et al. | Aug 2013 | A1 |
20130222384 | Futterer | Aug 2013 | A1 |
20130232095 | Tan et al. | Sep 2013 | A1 |
20130259238 | Xiang et al. | Oct 2013 | A1 |
20130265229 | Forutanpour et al. | Oct 2013 | A1 |
20130265437 | Thorn et al. | Oct 2013 | A1 |
20130271292 | McDermott | Oct 2013 | A1 |
20130285901 | Lee et al. | Oct 2013 | A1 |
20130285913 | Griffin et al. | Oct 2013 | A1 |
20130293580 | Spivack | Nov 2013 | A1 |
20130310979 | Herr et al. | Nov 2013 | A1 |
20130312256 | Wesselmann et al. | Nov 2013 | A1 |
20130317382 | Le | Nov 2013 | A1 |
20130317648 | Assad | Nov 2013 | A1 |
20130332196 | Pinsker | Dec 2013 | A1 |
20130335302 | Crane et al. | Dec 2013 | A1 |
20140005743 | Giuffrida et al. | Jan 2014 | A1 |
20140020945 | Hurwitz et al. | Jan 2014 | A1 |
20140028539 | Newham et al. | Jan 2014 | A1 |
20140028546 | Jeon et al. | Jan 2014 | A1 |
20140045547 | Singamsetty et al. | Feb 2014 | A1 |
20140049417 | Abdurrahman et al. | Feb 2014 | A1 |
20140051946 | Arne et al. | Feb 2014 | A1 |
20140052150 | Taylor et al. | Feb 2014 | A1 |
20140074179 | Heldman et al. | Mar 2014 | A1 |
20140092009 | Yen et al. | Apr 2014 | A1 |
20140094675 | Luna et al. | Apr 2014 | A1 |
20140098018 | Kim et al. | Apr 2014 | A1 |
20140100432 | Golda et al. | Apr 2014 | A1 |
20140107493 | Yuen et al. | Apr 2014 | A1 |
20140121471 | Walker | May 2014 | A1 |
20140122958 | Greenberg et al. | May 2014 | A1 |
20140132512 | Gomez Sainz-Garcia | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140142937 | Powledge et al. | May 2014 | A1 |
20140143064 | Tran | May 2014 | A1 |
20140147820 | Snow et al. | May 2014 | A1 |
20140157168 | Albouyeh et al. | Jun 2014 | A1 |
20140194062 | Palin et al. | Jul 2014 | A1 |
20140196131 | Lee | Jul 2014 | A1 |
20140198034 | Bailey et al. | Jul 2014 | A1 |
20140198035 | Bailey et al. | Jul 2014 | A1 |
20140198944 | Forutanpour et al. | Jul 2014 | A1 |
20140200432 | Banerji et al. | Jul 2014 | A1 |
20140201666 | Bedikian et al. | Jul 2014 | A1 |
20140202643 | Hikmet et al. | Jul 2014 | A1 |
20140204455 | Popovich et al. | Jul 2014 | A1 |
20140223462 | Aimone et al. | Aug 2014 | A1 |
20140226193 | Sun | Aug 2014 | A1 |
20140232651 | Kress et al. | Aug 2014 | A1 |
20140236031 | Banet et al. | Aug 2014 | A1 |
20140240103 | Lake et al. | Aug 2014 | A1 |
20140240223 | Lake et al. | Aug 2014 | A1 |
20140245200 | Holz | Aug 2014 | A1 |
20140249397 | Lake et al. | Sep 2014 | A1 |
20140257141 | Giuffida et al. | Sep 2014 | A1 |
20140258864 | Shenoy et al. | Sep 2014 | A1 |
20140277622 | Raniere | Sep 2014 | A1 |
20140278139 | Hong et al. | Sep 2014 | A1 |
20140278441 | Ton et al. | Sep 2014 | A1 |
20140279860 | Pan et al. | Sep 2014 | A1 |
20140282282 | Holz | Sep 2014 | A1 |
20140285326 | Luna et al. | Sep 2014 | A1 |
20140285429 | Simmons | Sep 2014 | A1 |
20140297528 | Agrawal et al. | Oct 2014 | A1 |
20140299362 | Park et al. | Oct 2014 | A1 |
20140304665 | Holz | Oct 2014 | A1 |
20140310595 | Acharya et al. | Oct 2014 | A1 |
20140330404 | Abdelghani et al. | Nov 2014 | A1 |
20140334083 | Bailey | Nov 2014 | A1 |
20140334653 | Luna et al. | Nov 2014 | A1 |
20140337861 | Chang et al. | Nov 2014 | A1 |
20140340857 | Hsu et al. | Nov 2014 | A1 |
20140344731 | Holz | Nov 2014 | A1 |
20140349257 | Connor | Nov 2014 | A1 |
20140364703 | Kim et al. | Nov 2014 | A1 |
20140354528 | Laughlin et al. | Dec 2014 | A1 |
20140354529 | Laughlin et al. | Dec 2014 | A1 |
20140355825 | Kim et al. | Dec 2014 | A1 |
20140358024 | Nelson et al. | Dec 2014 | A1 |
20140358825 | Phillipps et al. | Dec 2014 | A1 |
20140359540 | Kelsey et al. | Dec 2014 | A1 |
20140361988 | Katz et al. | Dec 2014 | A1 |
20140365163 | Jallon | Dec 2014 | A1 |
20140368424 | Choi et al. | Dec 2014 | A1 |
20140368428 | Pinault | Dec 2014 | A1 |
20140368474 | Kim et al. | Dec 2014 | A1 |
20140368896 | Nakazono et al. | Dec 2014 | A1 |
20140375465 | Fenuccio et al. | Dec 2014 | A1 |
20140376773 | Holz | Dec 2014 | A1 |
20150006120 | Sett et al. | Jan 2015 | A1 |
20150010203 | Muninder et al. | Jan 2015 | A1 |
20150011857 | Henson et al. | Jan 2015 | A1 |
20150019135 | Kacyvenski et al. | Jan 2015 | A1 |
20150025355 | Bailey et al. | Jan 2015 | A1 |
20150029092 | Holz et al. | Jan 2015 | A1 |
20150035827 | Yamaoka et al. | Feb 2015 | A1 |
20150036221 | Stephenson | Feb 2015 | A1 |
20150045689 | Barone | Feb 2015 | A1 |
20150045699 | Mokaya et al. | Feb 2015 | A1 |
20150051470 | Bailey et al. | Feb 2015 | A1 |
20150057506 | Luna et al. | Feb 2015 | A1 |
20150057770 | Bailey et al. | Feb 2015 | A1 |
20150065840 | Bailey | Mar 2015 | A1 |
20150070270 | Bailey et al. | Mar 2015 | A1 |
20150070274 | Morozov | Mar 2015 | A1 |
20150072326 | Mauri et al. | Mar 2015 | A1 |
20150084860 | Aleem et al. | Mar 2015 | A1 |
20150091790 | Forutanpour et al. | Apr 2015 | A1 |
20150094564 | Tashman et al. | Apr 2015 | A1 |
20150099946 | Sahin | Apr 2015 | A1 |
20150106052 | Balakrishnan et al. | Apr 2015 | A1 |
20150109202 | Ataee et al. | Apr 2015 | A1 |
20150124566 | Lake et al. | May 2015 | A1 |
20150128094 | Baldwin et al. | May 2015 | A1 |
20150141784 | Morun et al. | May 2015 | A1 |
20150148641 | Morun et al. | May 2015 | A1 |
20150148728 | Sallum et al. | May 2015 | A1 |
20150157944 | Gottlieb | Jun 2015 | A1 |
20150160621 | Yilmaz | Jun 2015 | A1 |
20150169074 | Ataee et al. | Jun 2015 | A1 |
20150170421 | Mandella et al. | Jun 2015 | A1 |
20150177841 | Vanblon et al. | Jun 2015 | A1 |
20150182113 | Utter, II | Jul 2015 | A1 |
20150182130 | Utter, II | Jul 2015 | A1 |
20150182160 | Kim et al. | Jul 2015 | A1 |
20150182163 | Utter | Jul 2015 | A1 |
20150182164 | Utter, II | Jul 2015 | A1 |
20150182165 | Miller et al. | Jul 2015 | A1 |
20150185838 | Camacho-Perez et al. | Jul 2015 | A1 |
20150186609 | Utter, II | Jul 2015 | A1 |
20150187355 | Parkinson et al. | Jul 2015 | A1 |
20150193949 | Katz et al. | Jul 2015 | A1 |
20150199025 | Holz | Jul 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150205134 | Bailey et al. | Jul 2015 | A1 |
20150213191 | Abdelghani et al. | Jul 2015 | A1 |
20150216475 | Luna et al. | Aug 2015 | A1 |
20150220152 | Tait et al. | Aug 2015 | A1 |
20150223716 | Korkala et al. | Aug 2015 | A1 |
20150230756 | Luna et al. | Aug 2015 | A1 |
20150234426 | Bailey et al. | Aug 2015 | A1 |
20150237716 | Su et al. | Aug 2015 | A1 |
20150242009 | Xiao et al. | Aug 2015 | A1 |
20150242120 | Rodriguez | Aug 2015 | A1 |
20150242575 | Abovitz et al. | Aug 2015 | A1 |
20150261306 | Lake | Sep 2015 | A1 |
20150261318 | Scavezze et al. | Sep 2015 | A1 |
20150272483 | Etemad et al. | Oct 2015 | A1 |
20150277575 | Ataee et al. | Oct 2015 | A1 |
20150288944 | Nistico et al. | Oct 2015 | A1 |
20150289995 | Wilkinson et al. | Oct 2015 | A1 |
20150296553 | DiFranco et al. | Oct 2015 | A1 |
20150302168 | De Sapio et al. | Oct 2015 | A1 |
20150305672 | Grey et al. | Oct 2015 | A1 |
20150309563 | Connor | Oct 2015 | A1 |
20150309582 | Gupta | Oct 2015 | A1 |
20150310766 | Alshehri et al. | Oct 2015 | A1 |
20150312175 | Langholz | Oct 2015 | A1 |
20150313496 | Connor | Nov 2015 | A1 |
20150323998 | Kudekar et al. | Nov 2015 | A1 |
20150325202 | Lake et al. | Nov 2015 | A1 |
20150332013 | Lee et al. | Nov 2015 | A1 |
20150346701 | Gordon et al. | Dec 2015 | A1 |
20150351690 | Toth et al. | Dec 2015 | A1 |
20150355716 | Balasubramanian et al. | Dec 2015 | A1 |
20150355718 | Slonneger | Dec 2015 | A1 |
20150362734 | Moser et al. | Dec 2015 | A1 |
20150366504 | Connor | Dec 2015 | A1 |
20150370326 | Chapeskie et al. | Dec 2015 | A1 |
20150370333 | Ataee et al. | Dec 2015 | A1 |
20150378161 | Bailey et al. | Dec 2015 | A1 |
20150378162 | Bailey et al. | Dec 2015 | A1 |
20150378164 | Bailey et al. | Dec 2015 | A1 |
20150379770 | Haley, Jr. et al. | Dec 2015 | A1 |
20160011668 | Gilad-Bachrach et al. | Jan 2016 | A1 |
20160020500 | Matsuda | Jan 2016 | A1 |
20160026853 | Wexler et al. | Jan 2016 | A1 |
20160033771 | Tremblay et al. | Feb 2016 | A1 |
20160049073 | Lee | Feb 2016 | A1 |
20160050037 | Webb | Feb 2016 | A1 |
20160071319 | Fallon et al. | Mar 2016 | A1 |
20160092504 | Mitri et al. | Mar 2016 | A1 |
20160099010 | Sainath et al. | Apr 2016 | A1 |
20160107309 | Walsh et al. | Apr 2016 | A1 |
20160113587 | Kothe et al. | Apr 2016 | A1 |
20160144172 | Hsueh et al. | May 2016 | A1 |
20160150636 | Otsubo | May 2016 | A1 |
20160156762 | Bailey et al. | Jun 2016 | A1 |
20160162604 | Xiaoli et al. | Jun 2016 | A1 |
20160170710 | Kim et al. | Jun 2016 | A1 |
20160187992 | Yamamoto et al. | Jun 2016 | A1 |
20160195928 | Wagner et al. | Jul 2016 | A1 |
20160199699 | Klassen | Jul 2016 | A1 |
20160202081 | Debieuvre et al. | Jul 2016 | A1 |
20160206206 | Avila et al. | Jul 2016 | A1 |
20160207201 | Herr et al. | Jul 2016 | A1 |
20160217614 | Kraver et al. | Jul 2016 | A1 |
20160235323 | Tadi et al. | Aug 2016 | A1 |
20160238845 | Alexander et al. | Aug 2016 | A1 |
20160239080 | Marcolina et al. | Aug 2016 | A1 |
20160242646 | Obma | Aug 2016 | A1 |
20160246384 | Mullins et al. | Aug 2016 | A1 |
20160259407 | Schick | Sep 2016 | A1 |
20160262687 | Vaidyanathan et al. | Sep 2016 | A1 |
20160263458 | Mather et al. | Sep 2016 | A1 |
20160274365 | Bailey et al. | Sep 2016 | A1 |
20160274732 | Bang et al. | Sep 2016 | A1 |
20160274758 | Bailey | Sep 2016 | A1 |
20160282947 | Schwarz et al. | Sep 2016 | A1 |
20160291768 | Cho et al. | Oct 2016 | A1 |
20160292497 | Kehtarnavaz et al. | Oct 2016 | A1 |
20160309249 | Wu et al. | Oct 2016 | A1 |
20160313798 | Connor | Oct 2016 | A1 |
20160313801 | Wagner et al. | Oct 2016 | A1 |
20160313890 | Walline et al. | Oct 2016 | A1 |
20160313899 | Noel | Oct 2016 | A1 |
20160314623 | Coleman et al. | Oct 2016 | A1 |
20160327796 | Bailey et al. | Nov 2016 | A1 |
20160327797 | Bailey et al. | Nov 2016 | A1 |
20160342227 | Natzke et al. | Nov 2016 | A1 |
20160349514 | Alexander et al. | Dec 2016 | A1 |
20160349515 | Alexander et al. | Dec 2016 | A1 |
20160349516 | Alexander et al. | Dec 2016 | A1 |
20160350973 | Shapira et al. | Dec 2016 | A1 |
20160377865 | Alexander et al. | Dec 2016 | A1 |
20160377866 | Alexander et al. | Dec 2016 | A1 |
20170025026 | Ortiz Catalan | Jan 2017 | A1 |
20170031502 | Rosenberg et al. | Feb 2017 | A1 |
20170035313 | Hong et al. | Feb 2017 | A1 |
20170061817 | Mettler May | Mar 2017 | A1 |
20170068095 | Holland et al. | Mar 2017 | A1 |
20170068445 | Lee et al. | Mar 2017 | A1 |
20170075426 | Camacho Perez et al. | Mar 2017 | A1 |
20170080346 | Abbas | Mar 2017 | A1 |
20170090604 | Barbier | Mar 2017 | A1 |
20170091567 | Wang et al. | Mar 2017 | A1 |
20170095178 | Schoen et al. | Apr 2017 | A1 |
20170097753 | Bailey et al. | Apr 2017 | A1 |
20170115483 | Aleem et al. | Apr 2017 | A1 |
20170119472 | Herrmann et al. | May 2017 | A1 |
20170123487 | Hazra et al. | May 2017 | A1 |
20170124474 | Kashyap | May 2017 | A1 |
20170124816 | Yang et al. | May 2017 | A1 |
20170127354 | Garland et al. | May 2017 | A1 |
20170147077 | Park et al. | May 2017 | A1 |
20170153701 | Mahon et al. | Jun 2017 | A1 |
20170161635 | Oono et al. | Jun 2017 | A1 |
20170188878 | Lee | Jul 2017 | A1 |
20170188980 | Ash | Jul 2017 | A1 |
20170197142 | Stafford et al. | Jul 2017 | A1 |
20170205876 | Vidal et al. | Jul 2017 | A1 |
20170209055 | Pantelopoulos et al. | Jul 2017 | A1 |
20170212290 | Alexander et al. | Jul 2017 | A1 |
20170212349 | Bailey et al. | Jul 2017 | A1 |
20170219829 | Bailey | Aug 2017 | A1 |
20170220923 | Bae et al. | Aug 2017 | A1 |
20170237789 | Harner et al. | Aug 2017 | A1 |
20170259167 | Cook et al. | Sep 2017 | A1 |
20170262064 | Ofir et al. | Sep 2017 | A1 |
20170277282 | Go | Sep 2017 | A1 |
20170285744 | Juliato | Oct 2017 | A1 |
20170285756 | Wang et al. | Oct 2017 | A1 |
20170285757 | Robertson et al. | Oct 2017 | A1 |
20170285848 | Rosenberg et al. | Oct 2017 | A1 |
20170296363 | Yetkin et al. | Oct 2017 | A1 |
20170299956 | Holland et al. | Oct 2017 | A1 |
20170301630 | Nguyen et al. | Oct 2017 | A1 |
20170308118 | Ito | Oct 2017 | A1 |
20170312614 | Tran et al. | Nov 2017 | A1 |
20170329392 | Keskin et al. | Nov 2017 | A1 |
20170329404 | Keskin et al. | Nov 2017 | A1 |
20170340506 | Zhang et al. | Nov 2017 | A1 |
20170344706 | Torres et al. | Nov 2017 | A1 |
20170347908 | Watanabe et al. | Dec 2017 | A1 |
20170371403 | Wetzler et al. | Dec 2017 | A1 |
20180000367 | Longinotti-Buitoni | Jan 2018 | A1 |
20180018825 | Kim et al. | Jan 2018 | A1 |
20180020285 | Zass | Jan 2018 | A1 |
20180020951 | Kaifosh et al. | Jan 2018 | A1 |
20180020978 | Kaifosh et al. | Jan 2018 | A1 |
20180020990 | Park et al. | Jan 2018 | A1 |
20180024634 | Kaifosh et al. | Jan 2018 | A1 |
20180024635 | Kaifosh et al. | Jan 2018 | A1 |
20180024641 | Mao et al. | Jan 2018 | A1 |
20180064363 | Morun et al. | Mar 2018 | A1 |
20180067553 | Morun et al. | Mar 2018 | A1 |
20180068489 | Kim et al. | Mar 2018 | A1 |
20180074332 | Li et al. | Mar 2018 | A1 |
20180081439 | Daniels | Mar 2018 | A1 |
20180088675 | Vogel et al. | Mar 2018 | A1 |
20180088765 | Bailey | Mar 2018 | A1 |
20180092599 | Kerth et al. | Apr 2018 | A1 |
20180093181 | Goslin et al. | Apr 2018 | A1 |
20180095542 | Mallinson | Apr 2018 | A1 |
20180095630 | Bailey | Apr 2018 | A1 |
20180101235 | Bodensteiner et al. | Apr 2018 | A1 |
20180101289 | Bailey | Apr 2018 | A1 |
20180107275 | Chen et al. | Apr 2018 | A1 |
20180120948 | Aleem et al. | May 2018 | A1 |
20180133551 | Chang et al. | May 2018 | A1 |
20180140441 | Poirters | May 2018 | A1 |
20180150033 | Lake et al. | May 2018 | A1 |
20180153430 | Ang et al. | Jun 2018 | A1 |
20180153444 | Yang et al. | Jun 2018 | A1 |
20180154140 | Bouton et al. | Jun 2018 | A1 |
20180168905 | Goodall et al. | Jun 2018 | A1 |
20180178008 | Bouton et al. | Jun 2018 | A1 |
20180217249 | La Salla et al. | Aug 2018 | A1 |
20180239430 | Tadi et al. | Aug 2018 | A1 |
20180240459 | Weng et al. | Aug 2018 | A1 |
20180247443 | Briggs et al. | Aug 2018 | A1 |
20180279919 | Bansbach et al. | Oct 2018 | A1 |
20180301057 | Hargrove et al. | Oct 2018 | A1 |
20180307314 | Connor | Oct 2018 | A1 |
20180314879 | Khwaja et al. | Nov 2018 | A1 |
20180321745 | Morun et al. | Nov 2018 | A1 |
20180321746 | Morun et al. | Nov 2018 | A1 |
20180330549 | Brenton | Nov 2018 | A1 |
20180333575 | Bouton | Nov 2018 | A1 |
20180344195 | Morun et al. | Dec 2018 | A1 |
20180356890 | Zhang et al. | Dec 2018 | A1 |
20180360379 | Harrison et al. | Dec 2018 | A1 |
20190008453 | Spoof | Jan 2019 | A1 |
20190025919 | Tadi et al. | Jan 2019 | A1 |
20190027141 | Strong et al. | Jan 2019 | A1 |
20190033967 | Morun et al. | Jan 2019 | A1 |
20190033974 | Mu et al. | Jan 2019 | A1 |
20190038166 | Tavabi et al. | Feb 2019 | A1 |
20190056422 | Park et al. | Feb 2019 | A1 |
20190076716 | Chiou et al. | Mar 2019 | A1 |
20190113973 | Coleman et al. | Apr 2019 | A1 |
20190121305 | Kaifosh et al. | Apr 2019 | A1 |
20190121306 | Kaifosh et al. | Apr 2019 | A1 |
20190146809 | Lee et al. | May 2019 | A1 |
20190150777 | Guo et al. | May 2019 | A1 |
20190192037 | Morun et al. | Jun 2019 | A1 |
20190196585 | Laszlo et al. | Jun 2019 | A1 |
20190196586 | Laszlo et al. | Jun 2019 | A1 |
20190197778 | Sachdeva et al. | Jun 2019 | A1 |
20190212817 | Kaifosh et al. | Jul 2019 | A1 |
20190223748 | Al-Natsheh et al. | Jul 2019 | A1 |
20190227627 | Kaifosh et al. | Jul 2019 | A1 |
20190228330 | Kaifosh et al. | Jul 2019 | A1 |
20190228533 | Giurgica-Tiron et al. | Jul 2019 | A1 |
20190228579 | Kaifosh et al. | Jul 2019 | A1 |
20190228590 | Kaifosh et al. | Jul 2019 | A1 |
20190228591 | Giurgica-Tiron et al. | Jul 2019 | A1 |
20190247650 | Tran | Aug 2019 | A1 |
20190279407 | McHugh et al. | Sep 2019 | A1 |
20190294243 | Laszlo et al. | Sep 2019 | A1 |
20190324549 | Araki et al. | Oct 2019 | A1 |
20190348026 | Berenzweig et al. | Nov 2019 | A1 |
20190348027 | Berenzweig et al. | Nov 2019 | A1 |
20190357787 | Barachant et al. | Nov 2019 | A1 |
20190362557 | Lacey et al. | Nov 2019 | A1 |
20200042089 | Ang et al. | Feb 2020 | A1 |
20200057661 | Bendfeldt | Feb 2020 | A1 |
20200065569 | Nduka et al. | Feb 2020 | A1 |
20200069210 | Berenzweig et al. | Mar 2020 | A1 |
20200069211 | Berenzweig et al. | Mar 2020 | A1 |
20200073483 | Berenzweig et al. | Mar 2020 | A1 |
20200097081 | Stone et al. | Mar 2020 | A1 |
20200097083 | Mao et al. | Mar 2020 | A1 |
20200111260 | Osborn et al. | Apr 2020 | A1 |
20200125171 | Morun et al. | Apr 2020 | A1 |
20200142490 | Xiong et al. | May 2020 | A1 |
20200159322 | Morun et al. | May 2020 | A1 |
20200163562 | Neaves | May 2020 | A1 |
20200225320 | Belskikh et al. | Jul 2020 | A1 |
20200245873 | Frank et al. | Aug 2020 | A1 |
20200249752 | Parshionikar | Aug 2020 | A1 |
20200275895 | Barachant | Sep 2020 | A1 |
20200301509 | Liu et al. | Sep 2020 | A1 |
20200320335 | Shamun et al. | Oct 2020 | A1 |
20210109598 | Zhang et al. | Apr 2021 | A1 |
20210117523 | Kim et al. | Apr 2021 | A1 |
20210290159 | Bruinsma et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2902045 | Aug 2014 | CA |
2921954 | Feb 2015 | CA |
2939644 | Aug 2015 | CA |
1838933 | Sep 2006 | CN |
102246125 | Nov 2011 | CN |
103777752 | May 2014 | CN |
105190578 | Dec 2015 | CN |
106102504 | Nov 2016 | CN |
110300542 | Oct 2019 | CN |
111902077 | Nov 2020 | CN |
112074225 | Dec 2020 | CN |
112469469 | Mar 2021 | CN |
112822992 | May 2021 | CN |
4 412 278 | Oct 1995 | DE |
0 301 790 | Feb 1989 | EP |
1345210 | Sep 2003 | EP |
1408443 | Oct 2006 | EP |
2198521 | Jun 2012 | EP |
2541763 | Jan 2013 | EP |
2733578 | May 2014 | EP |
2959394 | Dec 2015 | EP |
3104737 | Dec 2016 | EP |
3200051 | Aug 2017 | EP |
3487395 | May 2019 | EP |
2959394 | May 2021 | EP |
S61198892 | Sep 1986 | JP |
H05277080 | Oct 1993 | JP |
07248873 | Sep 1995 | JP |
3103427 | Oct 2000 | JP |
2002287869 | Oct 2002 | JP |
2003303047 | Oct 2003 | JP |
2005095561 | Apr 2005 | JP |
2005352739 | Dec 2005 | JP |
2008-192004 | Aug 2008 | JP |
2009-50679 | Mar 2009 | JP |
2010520561 | Jun 2010 | JP |
2013160905 | Aug 2013 | JP |
2016507851 | Mar 2016 | JP |
2017509386 | Apr 2017 | JP |
2019023941 | Feb 2019 | JP |
2021072136 | May 2021 | JP |
20110040165 | Apr 2011 | KR |
10-2012-0094870 | Aug 2012 | KR |
10-2012-0097997 | Sep 2012 | KR |
20150123254 | Nov 2015 | KR |
20160121552 | Oct 2016 | KR |
20170067873 | Jun 2017 | KR |
20170107283 | Sep 2017 | KR |
101790147 | Oct 2017 | KR |
2020061440 | Mar 2020 | NO |
2020061451 | Mar 2020 | NO |
2020072915 | Apr 2020 | NO |
9527341 | Oct 1995 | WO |
2006086504 | Aug 2006 | WO |
2008109248 | Sep 2008 | WO |
2009042313 | Apr 2009 | WO |
2010104879 | Sep 2010 | WO |
2011011750 | Jan 2011 | WO |
2011070554 | Jun 2011 | WO |
2012155157 | Nov 2012 | WO |
2014130871 | Aug 2014 | WO |
2014155288 | Oct 2014 | WO |
2014186370 | Nov 2014 | WO |
2014194257 | Dec 2014 | WO |
2014197443 | Dec 2014 | WO |
2015027089 | Feb 2015 | WO |
2015063520 | May 2015 | WO |
2015073713 | May 2015 | WO |
2015081113 | Jun 2015 | WO |
2015100172 | Jul 2015 | WO |
2015123445 | Aug 2015 | WO |
2015123775 | Aug 2015 | WO |
2015184760 | Dec 2015 | WO |
2015192117 | Dec 2015 | WO |
2015199747 | Dec 2015 | WO |
2016041088 | Mar 2016 | WO |
2017062544 | Apr 2017 | WO |
2017075611 | May 2017 | WO |
2017092225 | Jun 2017 | WO |
2017120669 | Jul 2017 | WO |
2017172185 | Oct 2017 | WO |
2018022602 | Feb 2018 | WO |
2018098046 | May 2018 | WO |
2019099758 | May 2019 | WO |
2019147953 | Aug 2019 | WO |
2019147958 | Aug 2019 | WO |
2019147996 | Aug 2019 | WO |
2019217419 | Nov 2019 | WO |
2019226259 | Nov 2019 | WO |
2019231911 | Dec 2019 | WO |
2020047429 | Mar 2020 | WO |
Entry |
---|
Restriction Requirement received for U.S. Appl. No. 14/553,657 dated Aug. 8, 2017, 7 pages. |
Costanza et al., “Toward Subtle Intimate Interfaces for Mobile Devices Using an EMG Controller,” CHI 2005, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 481-489, 2005. |
Gourmelon et al., “Contactless sensors for Surface Electromyography,” Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, NY, Aug. 30-Sep. 3, 2006, pp. 2514-2517. |
International Search Report and Written Opinion, dated May 16, 2014, for corresponding International Application No. PCT/US2014/017799, 9 pages. |
International Search Report and Written Opinion, dated Aug. 21, 2014, for corresponding International Application No. PCT/US2014/037863, 10 pages. |
International Search Report and Written Opinion, dated Nov. 21, 2014, for corresponding International Application No. PCT/US2014/052143, 9 pages. |
International Search Report and Written Opinion, dated Feb. 27, 2015, for corresponding International Applicatior No. PCT/US2014/067443, 10 pages. |
International Search Report and Written Opinion, dated May 27, 2015, for corresponding International Application No. PCT/US2015/015675, 9 pages. |
Morris et al., “Emerging Input Technologies for Always-Available Mobile Interaction,” Foundations and Trends in Human-Computer Interaction 4(4):245-316, 2010. (74 total pages). |
Naik et al., “Real-Time Hand Gesture Identification for Human Computer Interaction Based on ICA of Surface Electromyogram,” IADIS International Conference Interfaces and Human Computer Interaction 2007, 8 pages. |
Picard et al., “Affective Wearables,” Proceedings of the IEEE 1st International Symposium on Wearable Computers, SWC, Cambridge, MA, USA, Oct. 13-14, 1997, pp. 90-97. |
Rekimoto, “Gesture Wrist and GesturePad: Unobtrusive Wearable Interaction Devices,” ISWC '01 Proceedings of the 5th IEEE International Symposium on Wearable Computers, 2001, 7 pages. |
Sato et al., “Touch: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects,” CHI' 12, May 5-10, 2012, Austin, Texas. |
Ueno et al., “A Capacitive Sensor System for Measuring Laplacian Electromyogram through Cloth: A Pilot Study,” Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Internationale, Lyon, France, Aug. 23-26, 2007. |
Zhang et al., “A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 41, No. 6, pp. 1064-1076, Nov. 2011. |
Xu et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors,” Proceedings of the 14th international conference on Intelligent user interfaces, D211Sanibel Island, Florida, Feb. 8-11, 2009, pp. 401-406. |
Merriam-Webster, “Radio Frequencies,” URL=https://www.merriamwebster.com/table/collegiate/radiofre.htm, download date Jul. 12, 2017, 2 pages. |
Techopedia, “Radio Frequency (RF),” as archived on Jul. 26, 2013,URL=https://web.archive.org/web/20130726153946/https://www.techopedia.com/definition/5083/radio-frequency-rf, download date Jul. 12, 2017, 2 pages. |
Non Final office Action received for U.S. Appl. No. 14/553,657 dated Mar. 1, 2018, 29 pages. |
Notice of Allowance received for U.S. Appl. No. 14/553,657 dated Sep. 25, 2018, 25 pages. |
Non Final Office Action received for U.S. Appl. No. 15/799,628 dated May 2, 2018, 25 pages. |
Brownlee, “Finite State Machines (FSM): Finite state machines as a control technique in Artificial Intelligence (AI),” Jun. 2002, 12 pages. |
Communication pursuant to Rule 164(1) EPC, dated Sep. 30, 2016, for corresponding EP Application No. 14753949.8, 7 pages. |
Costanza et al., “EMG as a Subtle Input Interface for Mobile Computing,” Mobile HCI 2004, LNCS 3160, edited by S. Brewster and M. Dunlop, Springer-Verlag Berlin Heidelberg, pp. 426-430, 2004. |
Ghasemzadeh et al., “A Body Sensor Network With Electromyogram and Inertial Sensors: Multimodal Interpretation of Muscular Activities,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, No. 2, pp. 198-206, Mar. 2010. |
International Search Report and Written Opinion, dated Aug. 21, 2014, for International Application No. PCT/US2014/037863, 12 pages. |
International Search Report and Written Opinion, dated Feb. 27, 2015, for International Application No. PCT/US2014/067443, 13 pages. |
International Search Report and Written Opinion, dated May 16, 2014, for International Application No. PCT/US2014/0l 7799, 11 pages. |
International Search Report and Written Opinion, dated May 27, 2015, for International Application No. PCT/US2015/015675, 9 pages. |
International Search Report and Written Opinion, dated Nov. 21, 2014, for International Application No. PCT/US2014/052143, 11 pages. |
Janssen, “Radio Frequency (RF)” 2013, retrieved from https://web.archive.org/web/20130726153946/https://www.techopedia.com/definition/5083/radiofrequency-rf, retrieved on Jul. 12, 2017, 2 pages. |
Merriam-Webster, “Radio Frequencies” retrieved from https://www.merriamwebster.com/table/collegiate/radiofre.htm, retrieved on Jul. 12, 2017, 2 pages. |
Morris et al., “Emerging Input Technologies for Always-Available Mobile Interaction,” Foundations and Trends in Human-Computer Interaction 4(4):245-316, 2011. (74 total pages). |
Naik et al., “Real-Time Hand Gesture Identification for Human Computer Interaction Based on ICA of Surface Electromyogram,” JADIS International Conference Interfaces and Human Computer Interaction 2007, 8 pages. |
Picard et al., “Affective Wearables,” Proceedings of the IEEE Ft International Symposium on Wearable Computers, ISWC, Cambridge, MA, USA, Oct. 13-14, 1997, pp. 90-97. |
Saponas et al., “Making Muscle-Computer Interfaces More Practical,” CHI 2010, Atlanta, Georgia, USA, Apr. 10-15, 2010, 4 pages. |
Sato et al., “Touche: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects,” CHI' 12, May 5-10, 2012, Austin, Texas. |
Ueno et al., “A Capacitive Sensor System for Measuring Laplacian Electromyogram through Cloth: A Pilot Study,” Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Internationale, Lyon, France, Aug. 23-26, 2007, pp. 5731-5734. |
Ueno et al., “Feasibility of Capacitive Sensing of Surface Electromyographic Potential through Cloth,” Sensors and Materials 24(6):335-346, 2012. |
Xiong et al., “A Novel HCI based on EMG and IMU,” Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, Dec. 7-11, 2011, 5 pages. |
Xu et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors,” Proceedings of the 14th international conference on Intelligent user interfaces, Sanibel Island, Florida, Feb. 8-11, 2009, pp. 401-406. |
Notice of Allowance received for U.S. Appl. No. 15/799,628 dated Nov. 30, 2018, 19 pages. |
Non Final Office Action received for U.S. Appl. No. 16/057,573 dated Nov. 6, 2018, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 16/057,573 dated Mar. 5, 2019, 31 pages. |
Non Final Office Action received for U.S. Appl. No. 16/292,609 dated Jun. 15, 2020, 26 pages. |
Notice of Allowance received for U.S. Appl. No. 16/292,609 dated Sep. 24, 2020, 20 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/067443, dated Jun. 9, 2016, 7 pages. |
Cui L., et al., “Diffraction From Angular Multiplexing Slanted vol. Hologram Gratings,” Optik, 2005, vol. 116, pp. 118-122. |
Curatu C., et al., “Dual Purpose Lens for an Eye-Tracked Projection Head-Mounted Display,” International Optical Design Conference SPIE-OSA, 2006, vol. 6342, pp. 63420X-1-63420X-7. |
Curatu C., et al., “Projection-Based Head-Mounted Display With Eye-Tracking Capabilities,” Proceedings of SPIE, 2005, vol. 5875, pp. 58750J-1-58750J-9. |
Davoodi R., et al., “Development of a Physics-Based Target Shooting Game to Train Amputee Users of Multi joint Upper Limb Prostheses,” Presence, Massachusetts Institute of Technology, 2012, vol. 21 (1), pp. 85-95. |
Delis A.L., et al., “Development of a Myoelectric Controller Based on Knee Angle Estimation,” Biodevices, International Conference on Biomedical Electronics and Devices, Jan. 17, 2009, 7 pages. |
Diener L., et al., “Direct Conversion From Facial Myoelectric Signals to Speech Using Deep Neural Networks,” International Joint Conference on Neural Networks (IJCNN), Oct. 1, 2015, 7 pages. |
DING I-J., et al., “HMM with Improved Feature Extraction-Based Feature Parameters for Identity Recognition of Gesture Command Operators by Using a Sensed Kinect-Data Stream,” Neurocomputing, 2017, vol. 262, pp. 108-119. |
Essex D., “Tutorial on Optomechanical Beam Steering Mechanisms,” OPTI 521 Tutorial, College of Optical Sciences, University of Arizona, 2006, 8 pages. |
European Search Report for European Application No. 19861903.3, dated Oct. 12, 2021, 2 pages. |
European Search Report for European Application No. 19863248.1, dated Oct. 19, 2021, 2 pages. |
Furopean Search Report for European Application No. 19868789.9, dated May 9, 2022, 9 pages. |
European Search Report for European Application No. 19890394.0, dated Apr. 29, 2022, 9 pages. |
Extended European Search Report for European Application No. 17835111.0, dated Nov. 21, 2019, 6 pages. |
Extended European Search Report for European Application No. 17835112.8, dated Feb. 5, 2020, 17 pages. |
Extended European Search Report for European Application No. 17835140.9, dated Nov. 26, 2019, 10 Pages. |
Extended European Search Report for European Application No. 18869441.8, dated Nov. 17, 2020, 20 Pages. |
Extended European Search Report for European Application No. 18879156.0, dated Mar. 12, 2021, 11 pages. |
Extended European Search Report for European Application No. 19743717.1, dated Mar. 3, 2021, 12 pages. |
Extended European Search Report for European Application No. 19744404.5, dated Mar. 29, 2021, 11 pages. |
Extended European Search Report for European Application No. 19799947.7, dated May 26, 2021, 10 pages. |
Extended European Search Report for European Application No. 19806723.3, dated Jul. 7, 2021, 13 pages. |
Extended European Search Report for European Application No. 19810524.9, dated Mar. 17, 2021, 11 pages. |
Extended European Search Report for European Application No. 19850130.6, dated Sep. 1, 2021, 14 Pages. |
Extended European Search Report for European Application No. 19855191.3, dated Dec. 6, 2021, 11 pages. |
Extended European Search Report for European Application No. 19883839.3, dated Dec. 15, 2021, 7 pages. |
Farina D., et al., “Man/Machine Interface Based on the Discharge Timings of Spinal Motor Neurons After Targeted Muscle Reinnervation,” Nature Biomedical Engineering, Feb. 6, 2017, vol. 1, Article No. 0025, pp. 1-12. |
Favorskaya M., et al., “Localization and Recognition of Dynamic Hand Gestures Based on Hierarchy of Manifold Classifiers,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, May 25-27, 2015, vol. XL-5/W6, pp. 1-8. |
Fernandez E., et al., “Optimization of a Thick Polyvinyl Alcohol-Acrylamide Photopolymer for Data Storage Using a Combination of Angular and Peristrophic Holographic Multiplexing,” Applied Optics, Oct. 10, 2009, vol. 45 (29), pp. 7661-7666. |
Final Office Action dated Jun. 2, 2020 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 127 Pages. |
Final Office Action dated Jun. 2, 2020 for U.S. Appl. No. 16/557,383, filed Aug. 30, 2019, 66 Pages. |
Final Office Action dated Jan. 3, 2019 for U.S. Appl. No. 14/465,194, filed Aug. 21, 2014, 61 Pages. |
Final Office Action dated Nov. 3, 2020 for U.S. Appl. No. 15/974,430, filed May 8, 2018, 27 Pages. |
Final Office Action dated Feb. 4, 2020 for U.S. Appl. No. 16/577,207, filed Sep. 20, 2019, 76 Pages. |
Final Office Action dated Feb. 4, 2021 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 42 Pages. |
Final Office Action dated Jun. 5, 2020 for U.S. Appl. No. 16/557,427, filed Aug. 30, 2019, 95 Pages. |
Final Office Action dated Oct. 8, 2020 for U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 73 Pages. |
Final Office Action dated Apr. 9, 2020 for U.S. Appl. No. 15/974,454, filed May 8, 2018, 19 Pages. |
Final Office Action dated Jan. 10, 2018 for U.S. Appl. No. 14/465,194, filed Aug. 21, 2014, 50 Pages. |
Final Office Action dated Dec. 11, 2019 for U.S. Appl. No. 15/974,430, filed May 8, 2018, 30 Pages. |
Final Office Action dated Jan. 13, 2021 for U.S. Appl. No. 16/577,207, filed Sep. 20, 2019, 91 Pages. |
Final Office Action dated Dec. 18, 2019 for U.S. Appl. No. 16/258,279, filed Jan. 25, 2019, 45 Pages. |
Final Office Action dated Nov. 18, 2020 for U.S. Appl. No. 14/461,044, filed Aug. 15, 2014, 14 Pages. |
Final Office Action dated Feb. 19, 2021 for U.S. Appl. No. 16/258,279, filed Jan. 25, 2019, 58 Pages. |
Final Office Action dated Oct. 21, 2021 for U.S. Appl. No. 16/899,843, filed Jun. 12, 2020, 29 Pages. |
Final Office Action dated Jul. 23, 2021 for U.S. Appl. No. 14/461,044, filed Aug. 15, 2014, 15 Pages. |
Final Office Action dated Sep. 23, 2020 for U.S. Appl. No. 15/816,435, filed Nov. 17, 2017, 70 Pages |
Final Office Action dated Jan. 28, 2020 for U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 15 Pages. |
Final Office Action dated Jul. 28, 2017 for U.S. Appl. No. 14/505,836, filed Oct. 3, 2014, 52 Pages. |
Final Office Action dated Jun. 28, 2021 for U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 11 Pages. |
Final Office Action dated Nov. 29, 2019 for U.S. Appl. No. 15/659,072, filed Jul. 25, 2017, 36 Pages. |
Al-Jumaily A., et al., “Electromyogram(EMG) Driven System based Virtual Reality for Prosthetic and Rehabilitation Devices,” Proceedings of the 11th International Conference on Information Integration Andweb-Based Applications & Services, Jan. 1, 2009, pp. 582-586. |
Al-Mashhadany Y.I., “Inverse Kinematics Problem (IKP) of 6-DOF Manipulator by Locally Recurrent Neural Networks (LRNNs),” Management and Service Science (MASS), International Conference on Management and Service Science., IEEE, Aug. 24, 2010, 5 pages. |
Al-Timemy A.H., et al., “Improving the Perfonnance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees,” IEEE Transactions on Neural Systems and Rehabilitation Engineering; Jun. 2016, vol. 24(6), 12 Pages. |
Amitai Y., “P-27: A Two-Dimensional Aperture Expander for Ultra-Compact, High-Performance Head-Worn Displays,” SID Symposium Digest of Technical Papers, 2005, vol. 36 (1), pp. 360-363. |
Arkenbout E.A., et al., “Robust Hand Motion Tracking through Data Fusion of 5DT Data Glove and Nimble VR Kinect Camera Measurements,” Sensors, 2015, vol. 15, pp. 31644-31671. |
Ayras P., et al., “Exit Pupil Expander With a Large Field of View Based on Diffractive Optics,” Journal of the SID, 2009, vol. 17 (8), pp. 659-664. |
Bailey et al., Wearable Muscle Interface Systems, Devices and Methods That Interact With Content Displayed on an Electronic Display, Office Action dated Mar. 31, 2015, for U.S. Appl. No. 14/155,107, 17 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Amendment filed Aug. 25, 2015, for US. Appl. No. 14/155,087, 10 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Amendment filed Aug. 9, 2016, for U.S. Appl. No. 14/155,087, 8 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Amendment filed May 17, 2016, for U.S. Appl. No. 14/155,087, 13 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Office Action dated Feb. 17, 2016, for U.S. Appl. No. 14/155,087, 16 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Office Action dated Jul. 20, 2015, for U.S. Appl. No. 14/155,087, 14 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Office Action dated Jul. 8, 2016, for U.S. Appl. No. 14/155,087, 16 pages |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Office Action dated Mar. 31, 2015, for U.S. Appl. No. 14/155,087, 15 pages. |
Bailey et al., “Muscle Interface Device and Method for Interacting With Content Displayed on Wearable Head Mounted Displays,” Preliminary Amendment filed Jan. 28, 2014, for U.S. Appl. No. 14/155,087, 8 pages. |
Bailey et al., “Wearable Muscle Interface Systems, Devices and Methods That Interact With. Content Displayed on an Electronic Display,” Amendment filed Aug. 9, 2016, for U.S. Appl. No. 14/155,107, 8 pages. |
Bailey et al., “Wearable Muscle Interface Systems, Devices and Methods That Interact With Content Displayed on an Electronic Display,” Amendment filed May 11, 2016, for U.S. Appl. No. 14/155,107, 15 pages. |
Bailey et al., Wearable Muscle Interface Systems, Devices and Methods That Interact With Content Displayed on an Electronic Display/ Office Action dated Feb. 11, 2016, for U.S. Appl. No. 14/155,107, 20 pages. |
Bailey et al., Wearable Muscle Interface Systems, Devices and Methods That Interact With Content Displayed on an Electronic Display, Office Action dated Jul. 16, 2015, forU.S. Appl. No. 14/155,107, 20 pages. |
Bailey et al., Wearable Muscle Interface Systems. Devices and Methods That Interact With Content Displayed on an Electronic Display/ Office Action dated Jul. 8, 2016, for U.S. Appl. No. 14/155,107, 21 pages. |
Benko H., et al., “Enhancing Input on and Above the Interactive Surface with Muscle Sensing,” The ACM International Conference on Interactive Tabletops and Surfaces (ITS), Nov. 23-25, 2009, pp. 93-100. |
Berenzweig A., et al., “Wearable Devices and Methods for Improved Speech Recognition,” U.S. Appl. No. 16/785,680, filed Feb. 10, 2020, 67 pages. |
Boyali A., et al., “Spectral Collaborative Representation based Classification for Hand Gestures Recognition on Electromyography Signals,” Biomedical Signal Processing and Control, 2016, vol. 24, pp. 11-18. |
Cannan J., et al., “A Wearable Sensor Fusion Armband for Simple Motion Control and Selection for Disabled and Non-Disabled Users,” Computer Science and Electronic Engineering Conference, IEEE, Sep. 12, 2012, pp. 216-219, XP032276745. |
Chellappan K.V., et al., “Laser-Based Displays: A Review,”Applied Optics, Sep. 1, 2010, vol. 49 (25), pp. F79-F98. |
Cheng J., et al., “A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors,” Sensors, 2015, vol. 15, pp. 23303-23324. |
Communication Pursuant to Article 94(3) for European Patent Application No. 17835112.8, dated Dec. 14, 2020, 6 Pages. |
Co-Pending U.S. Appl. No. 15/659,072, inventors Patrick; Kaifosh et al., filed Jul. 25, 2017. |
Co-Pending U.S. Appl. No. 15/816,435, inventors Ning; Guo et al., filed Nov. 17, 2017. |
Co-Pending U.S. Appl. No. 15/882,858, inventors Stephen; Lake et al., filed Jan. 29, 2018. |
Co-Pending U.S. Appl. No. 15/974,430, inventors Adam; Berenzweig et al., filed May 8, 2018. |
Co-Pending U.S. Appl. No. 16/353,998, inventors Patrick; Kaifosh et al., filed Mar. 14, 2019. |
Co-Pending U.S. Appl. No. 16/557,383, inventors Adam; Berenzweig et al., filed Aug. 30, 2019. |
Co-Pending U.S. Appl. No. 16/557,427, inventors Adam; Berenzweig et al., filed Aug. 30, 2019. |
Co-Pending U.S. Appl. No. 15/974,430, filed May 8, 2018, 44 Pages. |
Co-Pending U.S. Appl. No. 16/353,998, filed Mar. 14, 2019, 43 pages. |
Co-Pending U.S. Appl. No. 16/557,383, filed Aug. 30, 2019, 94 Pages. |
Co-Pending U.S. Appl. No. 16/557,427, filed Aug. 30, 2019, 93 Pages. |
Co-Pending U.S. Appl. No. 16/577,207, filed Sep. 20, 2019, 67 Pages. |
Co-Pending U.S. Appl. No. 14/505,836, filed Oct. 3, 2014, 59 Pages. |
Co-Pending U.S. Appl. No. 15/816,435, filed Nov. 17, 2017, 24 Pages. |
Co-Pending U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 54 Pages. |
Co-Pending U.S. Appl. No. 15/974,384, filed May 8, 2018, 44 Pages. |
Co-Pending U.S. Appl. No. 15/974,454, filed May 8, 2018, 45 Pages. |
Co-Pending U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 93 Pages. |
Co-Pending U.S. Appl. No. 16/430,299, filed Jun. 3, 2019, 42 Pages. |
Corazza S., et al.,“A Markerless Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hull and Simulated Annealing Approach,” Annals of Biomedical Engineering, Jul. 2006, vol. 34 (6), pp. 1019-1029, [Retrieved on Dec. 11, 2019], 11 pages, Retrieved from the lnternet: URL: https://www.researchgate.net/publication/6999610_A_Markerless_Motion_Capture_System_to_Study_Musculoskeletal_Biomechanics_Visual_Hull_and_Simulated_Annealing_Approach. |
Cote-Allard U., et al., “Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Jan. 26, 2019, vol. 27 (4), 11 Pages. |
Csapo A.B., et al., “Evaluation of Human-Myo Gesture Control Capabilities in Continuous Search and Select Operations,” 7th IEEE International Conference on Cognitive Infocommunications, Oct. 16-18, 2016, pp. 000415-000420. |
Notice of Allowance dated Nov. 3, 2022 for U.S. Appl. No. 16/899,843, filed Jun. 12, 2020, 10 pages. |
Notice of Allowance dated Mar. 30, 2018 for U.S. Appl. No. 14/539,773, filed Nov. 12, 2014, 17 pages. |
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 16/257,979, filed Jan. 25, 2019, 22 Pages. |
Notice of Allowance received for U.S. Appl. No. 14/155,107 dated Aug. 30, 2019, 16 pages. |
Office action for European Application No. 17835112.8, dated Feb. 11, 2022, 11 Pages. |
Office Action for European Patent Application No. 19743717.1, dated Apr. 11, 2022, 10 pages. |
Office Action dated Sep. 28, 2022 for Chinese Application No. 201780059093.7, filed Jul. 25, 2017, 16 pages. |
Partial Supplementary European Search Report for European Application No. 18879156.0, dated Dec. 7, 2020, 9 pages. |
Preinterview First Office Action dated Jun. 24, 2020 for U.S. Appl. No. 16/085,680, filed Feb. 10, 2020, 90 Pages. |
Saponas T.S., et al., “Demonstrating the Feasibility of Using Forearm Electromyography for Muscle-Computer Interfaces,” CHI Proceedings, Physiological Sensing for Input, Apr. 5-10, 2008, pp. 515-524. |
Saponas T.S., et al., “Enabling Always-Available Input with Muscle-Computer Interfaces,” Conference: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, Oct. 7, 2009, pp. 167-176. |
Sartori M., et al., “Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies,” IEEE Transactions on Biomedical Engineering, May 5, 2016, vol. 63 (5), pp. 879-893. |
Sauras-Perez P., et al., “A Voice and Pointing Gesture Interaction System for Supporting Human Spontaneous Decisions in Autonomous Cars,” Clemson University, All Dissertations, May 2017, 174 pages. |
Schowengerdt B.T., et al., “Stereoscopic Retinal Scanning Laser Display With Integrated FocUs Cues for Ocular Accommodation,” Proceedings of SPIE-IS&T Electronic Imaging, 2004, vol. 5291, pp. 366-376. |
Shen S., et al., “I Am a SmartWatch and I Can Track My User's Arm,” University of Illinois at Urbana-Champaign, MobiSys, Jun. 25-30, 2016, 12 pages. |
Silverman N.L., et al., “58.5L: Late-News Paper: Engineering a Retinal Scanning Laser Display with Integrated Accommodative Depth Cues,” SID 03 Digest, 2003, pp. 1538-1541. |
Son M., et al., “EValuating the Utility of Two Gestural Discomfort Evaluation Methods,” PLOS One, Apr. 19, 2017, 21 pages. |
Strbac M., et al., “Microsoft Kinect-Based Artificial Perception System for Control of Functional Electrical Stimulation Assisted Grasping,” Hindawi Publishing Corporation, BioMed Research International [online], 2014, Article No. 740469, 13 pages, Retrieved from the Internet: URL: https://dx.doi.org/10.1155/2014/740469. |
Takatsuka Y., et al., “Retinal Projection Display Using Diffractive Optical Element,” Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE, 2014, pp. 403-406. |
Torres T., “Myo Gesture Control Armband,” PCMag, Jun. 8, 2015, 9 pages, Retrieved from the Internet URL: https://www.pcmag.com/article2/0,2817,2485462,00.asp. |
Urey H., “Diffractive Exit-Pupil Expander for Display Applications,” Applied Optics, Nov. 10, 2001, vol. 40 (32), pp. 5840-5851. |
Urey H., et al., “Optical Performance Requirements for MEMS-Scanner Based Microdisplays,” Conferences on MOEMS and Miniaturized Systems, SPIE, 2000, vol. 4178, pp. 176-185. |
Valero-Cuevas F.J., et al., “Computational Models for Neuromuscular Function,” IEEE Reviews in Biomedical Engineering, 2009, vol. 2, NIH Public Access Author Manuscript [online], Jun. 16, 2011 [Retrieved on Jul. 29, 2019], 52 pages, Retrieved from the Internet: URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116649/. |
Viirre E., et al., “The Virtual Retinal Display: A New Technology for Virtual Reality and Augmented Vision in Medicine,” Proceedings of Medicine Meets Virtual Reality, IOS Press and Ohmsha, 1998, pp. 252-257. |
Wijk U., et al., “Forearm Amputee's Views of Prosthesis Use and Sensory Feedback,” Journal of Hand Therapy, Jul. 2015, vol. 28 (3), pp. 269-278. |
Wittevrongel B., et al., “Spatiotemporal Beamforming: A Transparent and Unified Decoding Approach to Synchronous Visual Brain-Computer Interfacing,” Frontiers in Neuroscience, Nov. 15, 2017, vol. 11, Article No. 630, 13 Pages. |
Wodzinski M., et al., “Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network or Quadrocopter Control,” Metrology and Measurement Systems, 2017, vol. 24 (2), pp. 265-276. |
Written Opinion for International Application No. PCT/US2014/057029, dated Feb. 24, 2015, 9 Pages. |
Xue Y., et al., “Multiple Sensors Based Hand Motion Recognition Using Adaptive Directed Acyclic Graph,” Applied Sciences, MDPI, 2017, vol. 7 (358), pp. 1-14. |
Yang Z., et al., “Surface EMG Based Handgrip Force Predictions Using Gene Expression Programming,” Neurocomputing, 2016, vol. 207, pp. 568-579. |
Zacharaki E.I., et al., “Spike Pattern Recognition by Supervised Classification in Low Dimensional Embedding Space,” Brain informatics, 2016, vol. 3, pp. 73-83. |
Lake et al., “Methods and Devices for Combining Muscle Activity Sensor Signals and Inertial Sensor Signals for Gesture-Based Control,” Office Action dated Nov. 5, 2015, for U.S. Appl. No. 14/186,889, 11 pages. |
Lake et al., “Methods and Devices That Combine Muscle Activity Sensor Signals and Inertial Sensor Signals for Gesture-Based Control,” U.S. Appl. No. 14/186,889, filed Feb. 21, 2014, 58 pages. |
Lee D.C., et al., “Motion and Force Estimation System of Human Fingers,” Journal of Institute of Control, Robotics and Systems, 2011, vol. 17 (10), pp. 1014-1020. |
Levola T., “7.1: Invited Paper: Novel Diffractive Optical Components for Near to Eye Displays,” SID Symposium Digest of Technical Papers, 2006, vol. 37 (1), pp. 64-67. |
Li Y., et al., “Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors,” Sensors, MDPI, 2017, vol. 17 (582), pp. 1-17. |
Liao C.D., et al., “The Evolution of MEMS Displays,” IEEE Transactions on Industrial Electronics, Apr. 2009, vol. 56 (4), pp. 1057-1065. |
Lippert T.M., “Chapter 6: Display Devices: RSD™ (Retinal Scanning Display),” The Avionics Handbook, CRC Press, 2001, 8 pages. |
Lopes J., et al., “Hand/Arm Gesture Segmentation by Motion Using IMU and EMG Sensing,” ScienceDirect, Jun. 27-30, 2017, vol. 11, pp. 107-113. |
Majaranta P., et al., “Chapter 3: Eye Tracking and Eye-Based Human-Computer Interaction,” Advances in Physiological Computing, Springer-Verlag London, 2014, pp. 39-65. |
Marcard T.V., et al., “Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs,” arxiv.org, Computer Graphics Forum, 2017, vol. 36 (2), 12 pages, XP080759137. |
Martin H., et al., “A Novel Approach of Prosthetic Arm Control using Computer Vision, Biosignals, and Motion Capture,” IEEE Symposium on Computational Intelligence in Robotic Rehabilitation and Assistive Technologies (CIR2AT), 2014, 5 pages. |
McIntee S.S., “A Task Model of Free-Space Movement-Based Geastures,” Dissertation, Graduate Faculty of North Carolina State University, Computer Science, 2016, 129 pages. |
Mendes Jr.J.J.A., et al., “Sensor Fusion and Smart Sensor in Sports and Biomedical Applications,” Sensors, 2016, vol. 16 (1569), pp. 1-31. |
Mohamed O.H., “Homogeneous Cognitive Based Biometrics for Static Authentication,” Dissertation submitted to University of Victoria, Canada, 2010, [last accessed Oct. 11, 2019], 149 pages, Retrieved from the Internet: URL: http://hdl.handle.net/1828/321. |
Morun C., et al., “Systems, Articles, and Methods for Capacitive Electromyography Sensors,” U.S. Appl. No. 16/437,351, filed Jun. 11, 2019, 51 pages. |
Naik G.R., et al., “Source Separation and Identification issues in Bio Signals: A Solution using Blind Source Separation,” Chapter 4 of Recent Advances in Biomedical Engineering, Intech, 2009, 23 pages. |
Naik G.R., et al., “Subtle Hand Gesture Identification for HCI Using Temporal Decorrelation Source Separation BSS of Surface EMG,” Digital Image Computing Techniques and Applications, IEEE Computer Society, 2007, pp. 30-37. |
Negro F., et al., “Multi-Channel Intramuscular and Surface EMG Decomposition by Convolutive Blind Source Separation,” Journal of Neural Engineering, Feb. 29, 2016, vol. 13, 18 Pages. |
Non-Final Office Action dated Mar. 2, 2021 for U.S. Appl. No. 15/974,430, filed May 8, 2018, 32 Pages. |
Non-Final Office Action dated Sep. 2, 2020 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 66 Pages. |
Non-Final Office Action dated Aug. 3, 2020 for U.S. Appl. No. 16/593,446, filed Oct. 4, 2019, 44 pages. |
Non-Final Office Action dated Jun. 3, 2021 for U.S. Appl. No. 15/816,435, filed Nov. 17, 2017, 32 Pages. |
Non-Final Office Action dated Jun. 5, 2020 for U.S. Appl. No. 15/659,072, filed Jul. 25, 2017, 59 Pages. |
Non-Final Office Action dated Oct. 5, 2022 for U.S. Appl. No. 17/576,815, filed Jan. 14, 2022, 14 pages. |
Non-Final Office Action dated Sep. 6, 2019 for U.S. Appl. No. 16/424,144, filed May 28, 2019, 11 Pages. |
Non-Final Office Action dated May 7, 2021 for U.S. Appl. No. 16/899,843, filed Jun. 12, 2020, 24 Pages. |
Non-Final Office Action dated Feb. 8, 2021 for U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 11 Pages. |
Non-Final Office Action dated Oct. 8, 2020 for U.S. Appl. No. 16/577,207, filed Sep. 20, 2019, 51 Pages. |
Non-Final Office Action dated Apr. 9, 2019 for U.S. Appl. No. 16/258,409, filed Jan. 25, 2019, 71 Pages. |
Non-Final Office Action dated Aug. 11, 2021 for U.S. Appl. No. 16/577,207, filed Sep. 20, 2019, 35 Pages. |
Non-Final Office Action dated Sep. 11, 2019 for U.S. Appl. No. 14/465,194, filed Aug. 21, 2014, 72 Pages. |
Non-Final Office Action dated May 12, 2022 for U.S. Appl. No. 16/899,843, filed Jun. 12, 2020, 34 Pages. |
Non-Final Office Action dated Jun. 13, 2019 for U.S. Appl. No. 16/258,279, filed Jan. 25, 2019, 38 Pages. |
Non-Final Office Action dated Sep. 14, 2017 for U.S. Appl. No. 14/539,773, filed Nov. 12, 2014, 28 pages. |
Non-Final Office Action dated Aug. 15, 2018 for U.S. Appl. No. 14/465,194, filed Aug. 21, 2014, 64 Pages. |
Non-Final Office Action dated Jun. 15, 2020 for U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 46 Pages. |
Non-Final Office Action dated Jan. 16, 2020 for U.S. Appl. No. 16/389,419, filed Apr. 19, 2019, 26 Pages. |
Non-Final Office Action dated May 16, 2019 for U.S. Appl. No. 15/974,384, filed May 8, 2018, 13 Pages. |
Non-Final Office Action dated May 16 2019 for U.S. Appl. No. 15/974,430, filed May 8, 2018, 12 Pages. |
Non-Final Office Action dated Aug. 17, 2017 for U.S. Appl. No. 14/465,194, filed Aug. 21, 2014, 81 Pages. |
Non-Final Office Action dated Dec. 17, 2018 for U.S. Appl. No. 16/137,960, filed Sep. 21, 2018, 10 pages. |
Non-Final Office Action dated Jan. 18, 2018 for U.S. Appl. No. 15/799,621, filed Oct. 31, 2017, 10 pages. |
Non-Final Office Action dated Nov. 19, 2019 for U.S. Appl. No. 16/577,207, filed Sep. 20, 2019, 32 Pages. |
Non-Final Office Action dated Aug. 20, 2020 for U.S. Appl. No. 15/974,454, filed May 8, 2018, 59 Pages. |
Non-Final Office Action dated Dec. 20, 2019 for U.S. Appl. No. 15/974,454, filed May 8, 2018, 41 Pages. |
Non-Final Office Action dated Jan. 22, 2020 for U.S. Appl. No. 15/816,435, filed Nov. 17, 2017, 35 Pages. |
Non-Final Office Action dated Jun. 22, 2017 for U.S. Appl. No. 14/461,044, filed Aug. 15, 2014, 21 Pages. |
Non-Final Office Action dated Oct. 22, 2019 for U.S. Appl. No. 16/557,342, filed Aug. 30, 2019, 16 Pages. |
Non-Final Office Action dated Dec. 23, 2019 for U.S. Appl. No. 16/557,383, filed Aug. 30, 2019, 53 Pages. |
Non-Final Office Action dated Dec. 23, 2019 for U.S. Appl. No. 16/557,427, filed Aug. 30, 2019, 52 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043791, dated Oct. 5, 2017, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCT/U82018/056768, dated Jan. 15, 2019, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/U82018/061409, dated Mar. 12, 2019, 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/U82018/063215, dated Mar. 21, 2019, 17 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015167, dated May 21, 2019, 7 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015174, dated May 21, 2019, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015244, dated May 16, 2019, 8 Pages. |
International Search Report and Written Opinion for International Application No. PCT/U82019/020065, dated May 16, 2019, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/028299, dated Aug. 9, 2019, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/U82019/031114, dated Dec. 20, 2019, 18 Pages. |
International Search Report and Written Opinion for International Application No. PCT/U82019/034173, dated Sep. 18, 2019, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/037302, dated Oct. 11, 2019, 13 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/042579, dated Oct. 31, 2019, 8 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/046351, dated Nov. 7, 2019, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/049094, dated Jan. 9, 2020, 27 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/052131, dated Dec. 6, 2019, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/052151, dated Jan. 15, 2020, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/054716, dated Dec. 20, 2019, 11 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/061759, dated Jan. 29, 2020, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/063587, dated Mar. 25, 2020, 16 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/025735, dated Jun. 22, 2020, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/025772, dated Aug. 3, 2020, 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/025797, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/049274, dated Feb. 1, 2021, 17 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/061392, dated Mar. 12, 2021, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043792, dated Oct. 5, 2017, 9 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015134, dated May 15, 2019, 11 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015180, dated May 28, 2019, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015183, dated May 3, 2019, 8 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015238, dated May 16, 2019, 8 Pages. |
Invitation to Pay Additional Fees for International Application No. PCT/US2019/031114, dated Aug. 6, 2019, 7 pages. |
Invitation to Pay Additional Fees for International Application No. PCT/US2019/049094, dated Oct. 24, 2019, 2 Pages. |
Itoh Y., et al., “Interaction-Free Calibration for Optical See-Through Head-Mounted Displays based on 3D Eye Localization,” IEEE Symposium on 3D User Interfaces (3DUI), 2014, pp. 75-82. |
Jiang H., “Effective and Interactive Interpretation of Gestures by Individuals with Mobility Impairments,” Thesis/Dissertation Acceptance, Purdue University Graduate School, Graduate School Form 30, Updated on Jan. 15, 2015, 24 pages. |
Kainz et al., “Approach to Hand Tracking and Gesture Recognition Based on Depth-Sensing Cameras and EMG Monitoring,” Acta Informatica Pragensia, vol. 3, Jan. 1, 2014, pp. 104-112, Retrieved from the Internet URL: https://aip.vse.cz/pdfs/aip/2014/01/08.pdf. |
Kawaguchi J., et al., “Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Sep. 2017, vol. 25 (9), pp. 1409-1418. |
Kessler D “Optics of Near to Eye Displays (NEDs),” Presentation—Oasis, Tel Aviv, Feb. 19, 2013, 37 pages. |
Kim H., et al., “Real-Time Human Pose Estimation and Gesture Recognition from Depth Images Using Superpixels and SVM Classifier,” Sensors, 2015, vol. 15, pp. 12410-12427. |
Kipke D.R., et al., “Silicon-Substrate Intracortical Microelectrode Arrays for Long-Term Recording of Neuronal Spike Activity in Cerebral Cortex,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Jun. 2003, vol. 11 (2), 5 pages, Retrieved on Oct. 7, 2019 [Oct. 7, 2019] Retrieved from the Internet: URL:. |
Koerner M.D., “Design and Characterization of the Exo-Skin Haptic Device: A Novel Tendon Actuated Textile Hand Exoskeleton,” Abstract of thesis for Drexel University Masters Degree [online], Nov. 2, 2017, 5 pages, Retrieved from the Internet: URL: https://dialog.proquest.eom/professional/docview/1931047627?accountid=153692. |
Krees B.C., et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays,” UbiComp, Zurich, Switzerland, Sep. 8-12, 2013, pp. 1479-1482. |
Kress B., et al., “A Review of Head-Mounted Displays (HMD) Technologies and Applications for Consumer Electronics,” Proceedings of SPIE, 2013, vol. 8720, pp. 87200A-1-87200A-13. |
Kress B., “Optical Architectures for See-Through Wearable Displays,” Presentation, Bay Area SID Seminar, Apr. 30, 2014, 156 pages. |
Lake et al., “Method and Apparatus for Analyzing Capacitive EMG and IMU Sensor Signals for Gesture Control,” Amendment filed Aug. 21, 2015, for U.S. Appl. No. 14/186,878, 13 pages. |
Lake et al., “Method and Apparatus for Analyzing Capacitive EMG and IMU Sensor Signals for Gesture Control,” Office Action dated Jun. 17, 2015, for U.S. Appl. No. 14/186,878, 13 pages. |
Lake et al. “Method and Apparatus for Analyzing Capacitive EMG and IMU Sensor Signals for Gesture Control,” Preliminary Amendment filed May 9, 2014, for U.S. Appl. No. 14/186,878, 9 pages. |
Lake et al., “Method and Apparatus for Analyzing Capacitive EMG and IMU Sensor Signals for Gesture Control,” U.S. Appl. No. 14/186,878, filed Feb. 21, 2014, 29 pages. |
Lake et al., “Methods and Devices for Combining Muscle Activity Sensor Signals and Inertial Sensor Signals for Gesture-Based Control,” Amendment filed Jan. 8, 2016, for U.S. Appl. No. 14/186,889, 16 pages. |
Lake et al., “Methods and Devices for Combining Muscle Activity Sensor Signals and Inertial Sensor Signals for Gesture-Based Control,” Amendment filed Jul. 13, 2016, for U.S. Appl. No. 14/186,889, 12 pages. |
Lake et al., “Methods and Devices for Combining Muscle Activity Sensor Signals and Inertial Sensor Signals for Gesture-Based Control,” Office Action dated Jun. 16, 2016, for U.S. Appl. No. 14/186,889, 13 pages. |
Final Office Action dated Nov. 29, 2019 for U.S. Appl. No. 16/353,998, filed Mar. 14, 2019, 33 Pages. |
Final Office Action received for U.S. Appl. No. 14/155,087 dated Dec. 16, 2016, 32 pages. |
Final Office Action received for U.S. Appl. No. 14/155,087 dated Jul. 20, 2015, 27 pages. |
Final Office Action received for U.S. Appl. No. 14/155,087 dated Jul. 8, 2016, 27 pages. |
Final Office Action received for U.S. Appl. No. 14/155,087 dated Nov. 27, 2017, 40 pages. |
Final Office Action received for U.S. Appl. No. 14/155,107 dated Dec. 19, 2016, 35 pages. |
Final Office Action received for U.S. Appl. No. 14/155,107 dated Jan. 17, 2019, 46 pages. |
Final Office Action received for U.S. Appl. No. 14/155,107 dated Jul. 16, 2015, 28 pages. |
Final Office Action received for U.S. Appl. No. 14/155,107 dated Jul. 8, 2016, 31 pages. |
Final Office Action received for U.S. Appl. No. 14/155,107 dated Nov. 27, 2017, 44 pages. |
First Office Action dated Nov. 25, 2020, for Canadian Application No. 2921954, filed Aug. 21, 2014, 4 pages. |
Fong H.C., et al., “PepperGram With Interactive Control,” 22nd International Conference Onvirtual System Multimedia (VSMM), Oct. 17, 2016, 5 pages. |
Gallina A., et al., “Surface EMG Biofeedback,” Surface Electromyography: Physiology, Engineering, and Applications, 2016, pp. 485-500. |
Gargiulo G., et al., “Giga-Ohm High-Impedance FET Input Amplifiers for Dry Electrode Biosensor Circuits and Systems,” Integrated Microsystems: Electronics, Photonics, and Biotechnology, Dec. 19, 2017, 41 Pages, Retrieved from the Internet: URL: https://www.researchgate.net/publication/255994293_Giga-Ohm_High-Impedance_FET_Input_Amplifiers_for_Dry_Electrode_Biosensor_Circuits_and_Systems. |
Gopura R.A.R.C., et al., “A Human Forearm and Wrist Motion Assist Exoskeleton Robot With EMG-Based Fuzzy-Neuro Control,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Oct. 19-22, 2008, 6 pages. |
Hainich R.R., et al., “Chapter 10: Near-Eye Displays,” Displays: Fundamentals & Applications, AK Peters/CRC Press, 2011,65 pages. |
Hauschild M., et al., “A Virtual Reality Environment for Designing and Fitting Neural Prosthetic Limbs,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Mar. 2007, vol. 15 (1), pp. 9-15. |
Hornstein S., et al., “Maradin's Micro-Mirror—System Level Synchronization Notes,” SID Digest, 2012, pp. 981-984. |
“IEEE 100 The Authoritative Dictionary of IEEE Standards Terms,” Seventh Edition, Standards Information Network IEEE Press, Dec. 2000, 3 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/017799, dated Sep. 3, 2015, 8 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/037863, dated Nov. 26, 2015, 8 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/052143, dated Mar. 3, 2016, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/015675, dated Aug. 25, 2016, 8 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043686, dated Feb. 7, 2019, 8 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043693, dated Feb. 7, 2019, 7 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043791, dated Feb. 7, 2019, 9 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043792, dated Feb. 7, 2019, 8 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/056768, dated Apr. 30, 2020, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/061409, dated May 28, 2020, 10 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/015174, dated Aug. 6, 2020, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/015183, dated Aug. 6, 2020, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/015238, dated Aug. 6, 2020, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/028299, dated Dec. 10, 2020,11 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/031114, dated Nov. 19, 2020, 16 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/034173, dated Dec. 10, 2020, 9 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/046351, dated Feb. 25, 2021, 8 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/049094, dated Mar. 11, 2021, 24 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/052131, dated Apr. 1, 2021, 8 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/052151, dated Apr. 1, 2021, 9 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/054716, dated Apr. 15, 2021, 10 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/061759, dated May 27, 2021, 12 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/063587, dated Jun. 10, 2021, 13 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/049274, dated Mar. 17, 2022, 14 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/061392, dated Jun. 9, 2022, 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/018293, dated Jun. 8, 2016, 17 Pages. |
International Search Report and Written Opinion for International Application No. PCTAJS2016/018298, dated Jun. 8, 2016, 14 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/018299, dated Jun. 8, 2016, 12 Pages. |
International Search Report and Written Opinion for International Application No. PCTAJS2016/067246, dated Apr. 25, 2017, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCTAJS2017/043686, dated Oct. 6, 2017, 9 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043693, dated Oct. 6, 2017, 7 Pages. |
Non-Final Office Action dated Feb. 23, 2017 for U.S. Appl. No. 14/505,836, filed Oct. 3, 2014, 54 Pages. |
Non-Final Office Action dated Jul. 23, 2020 for U.S. Appl. No. 16/593,446, filed Oct. 4, 2019, 28 pages. |
Non-Final Office Action dated May 24, 2019 for U.S. Appl. No. 16/353,998, filed Mar. 14, 2019, 20 Pages. |
Non-Final Office Action dated Feb. 25, 2021 for U.S. Appl. No. 14/461,044, filed Aug. 15, 2014, 17 Pages. |
Non-Final Office Action dated May 26, 2020 for U.S. Appl. No. 16/353,998, filed Mar. 14, 2019, 60 Pages. |
Non-Final Office Action dated Nov. 27, 2020 for U.S. Appl. No. 16/258,279, filed Jan. 25, 2019, 44 Pages. |
Non-Final Office Action dated Aug. 28, 2018 for U.S. Appl. No. 16/023,276, filed Jun. 29, 2018, 10 pages. |
Non-Final Office Action dated Aug. 28, 2018 for U.S. Appl. No. 16/023,300, filed Jun. 29, 2018, 11 pages. |
Non-Final Office Action dated Jun. 28, 2021 for U.S. Appl. No. 16/550,905, filed Aug. 26, 2019, 5 Pages. |
Non-Final Office Action dated Apr. 29, 2019 for U.S. Appl. No. 16/257,979, filed Jan. 25, 2019, 63 Pages. |
Non-Final Office Action dated Apr. 30, 2019 for U.S. Appl. No. 15/659,072, filed Jul. 25, 2017, 99 Pages. |
Non-Final Office Action dated Apr. 30, 2020 for U.S. Appl. No. 15/974,430, filed May 8, 2018, 57 Pages. |
Non-Final Office Action dated Dec. 30, 2019 for U.S. Appl. No. 16/593,446, filed Oct. 4, 2019, 43 pages. |
Non-Final Office Action dated Jun. 30, 2016 for U.S. Appl. No. 14/505,836, filed Oct. 3, 2014, 37 Pages. |
Non-Final Office Action dated Oct. 30, 2019 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 22 Pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,087 dated Aug. 16, 2016, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,087 dated Aug. 7, 2017, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,087 dated Feb. 17, 2016, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,087 dated Mar. 31, 2015, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,107 dated Aug. 17, 2016, 37 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,107 dated Aug. 7, 2017, 34 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,107 dated Feb. 11, 2016, 42 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/155,107 dated Jul. 13, 2018, 45 pages. |
Non-Final Office Action received for U.S- Appl. No. 14/155,107 dated Mar. 31, 2015, 26 pages. |
Notice of Allowance dated May 1, 2019 for U.S. Appl. No. 16/137,960, filed Sep. 21, 2018, 14 pages. |
Notice of Allowance dated Nov. 2, 2020 for U.S. Appl. No. 15/974,454, filed May 8, 2018, 24 Pages. |
Notice of Allowance dated Nov. 4, 2019 for U.S. Appl. No. 15/974,384, filed May 8, 2018, 39 Pages. |
Notice of Allowance dated Feb. 6, 2020 for U.S. Appl. No. 16/424,144, filed May 28, 2019, 28 Pages. |
Notice of Allowance dated Feb. 8, 2019 for U.S. Appl. No. 16/023,276, filed Jun. 29, 2018, 15 pages. |
Notice of Allowance dated Feb. 9, 2022 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 9 pages. |
Notice of Allowance dated Nov. 10, 2021 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 6 pages. |
Notice of Allowance dated Mar. 11, 2020 for U.S. Appl. No. 14/465,194, filed Aug. 21, 2014, 29 Pages. |
Notice of Allowance dated Dec. 14, 2022 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 10 pages. |
Notice of Allowance dated Jul. 15, 2021 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 2 pages. |
Notice of Allowance dated Jun. 15, 2018 for U.S. Appl. No. 15/799,621, filed Oct. 31, 2017, 27 pages. |
Notice of Allowance dated Dec. 16, 2020 for U.S. Appl. No. 16/593,446, filed Oct. 4, 2019, 44 pages. |
Notice of Allowance dated Jul. 18, 2022 for U.S. Appl. No. 16/550,905, filed Aug. 26, 2019, 7 pages. |
Notice of Allowance dated May 18, 2020 for U.S. Appl. No. 16/258,279, filed Jan. 25, 2019, 42 Pages. |
Notice of Allowance dated May 18, 2022 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 10 pages. |
Notice of Allowance dated Aug. 19, 2020 for U.S. Appl. No. 16/557,427, filed Aug. 30, 2019, 22 Pages. |
Notice of Allowance dated Jul. 19, 2019 for U.S. Appl. No. 16/258,409, filed Jan. 25, 2019, 86 Pages. |
Notice of Allowance dated Apr. 20, 2022 for U.S. Appl. No. 14/461,044, filed Aug. 15, 2014, 08 pages. |
Notice of Allowance dated May 20, 2020 for U.S. Appl. No. 16/389,419, filed Apr. 19, 2019, 28 Pages. |
Notice of Allowance dated Aug. 22, 2022 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 9 pages. |
Notice of Allowance dated Oct. 22, 2021 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018 , 8 pages. |
Notice of Allowance dated Aug. 23, 2021 for U.S. Appl. No. 15/974,430, filed May 8 2018, 12 pages. |
Notice of Allowance dated Dec. 23, 2020 for U.S. Appl. No. 15/659,072, filed Jul. 25, 2017, 26 Pages. |
Notice of Allowance dated Mar. 25, 2022 for U.S. Appl. No. 16/550,905, filed Aug. 26, 2019, 7 pages. |
Notice of Allowance dated Jan. 28, 2019 for U.S. Appl. No. 16/023,300, filed Jun. 29, 2018, 31 pages. |
Notice of Allowance dated Jun. 28, 2021 for U.S. Appl. No. 15/882,858, filed Jan. 29, 2018, 18 pages. |
Number | Date | Country | |
---|---|---|---|
61909786 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14553657 | Nov 2014 | US |
Child | 15799628 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16292609 | Mar 2019 | US |
Child | 17141646 | US | |
Parent | 15799628 | Oct 2017 | US |
Child | 16292609 | US |