Technical Field
The present systems, articles, and methods generally relate to stretchable printed circuit boards and particularly relate to applications of stretchable printed circuit boards in wearable electronic devices.
Description of the Related Art
Typical printed circuit boards (PCBs) are substantially planar structures formed of any number of layers of dielectric material with conductive traces carried thereupon or therebetween. The dielectric material (most commonly FR4, a composite material made up of fiberglass and epoxy resin) is typically rigid, though flexible PCBs have also been developed for some applications. Flexible PCBs typically allow a degree of bendability, but neither rigid PCBs nor flexible PCBs can typically be stretched. This limitation can render rigid PCBs and flexible PCBs inadequate for applications that impose stresses/strains on the PCB itself (e.g., where a PCB is used an electrical connector between two independently movable structures).
Stretchable PCBs have been developed to enable PCB structures to adapt to physical stresses and strains. Stretchable PCBs are also typically planar structures and may have substantially the same size and geometry as rigid/flexible PCBs. However, stretchable PCBs are formed of any number of layers of stretchable dielectric material, such as rubber or silicone, with conductive traces carried thereupon or therebetween. The conductive traces are typically laid out in serpentine or crenulated paths so that, when the stretchable dielectrics are extended, the bends in the paths of the conductive traces straighten out to accommodate the extension.
A drawback of the design of PCB 100 is that, when PCB 100 is stretched along the y-direction in the illustrated xy-plane, conductive trace 110 experiences a torsional force in the z-direction (represented in
Electronic devices are commonplace throughout most of the world today. Advancements in integrated circuit technology have enabled the development of electronic devices that are sufficiently small and lightweight to be carried by the user. Such “portable” electronic devices may include on-board power supplies (such as batteries or other power storage systems) and may be designed to operate without any wire-connections to other electronic systems; however, a small and lightweight electronic device may still be considered portable even if it includes a wire-connection to another electronic system. For example, a microphone may be considered a portable electronic device whether it is operated wirelessly or through a wire-connection.
The convenience afforded by the portability of electronic devices has fostered a huge industry. Smartphones, audio players, laptop computers, tablet computers, and ebook readers are all examples of portable electronic devices. However, the convenience of being able to carry a portable electronic device has also introduced the inconvenience of having one's hand(s) encumbered by the device itself. This problem is addressed by making an electronic device not only portable, but wearable.
A wearable electronic device is any portable electronic device that a user can carry without physically grasping, clutching, or otherwise holding onto the device with their hands. For example, a wearable electronic device may be attached or coupled to the user by a strap or straps, a band or bands, a clip or clips, an adhesive, a pin and clasp, an article of clothing, tension or elastic support, an interference fit, an ergonomic form, etc. Examples of wearable electronic devices include digital wristwatches, electronic armbands, electronic rings, electronic ankle-bracelets or “anklets,” head-mounted electronic display units, hearing aids, and so on.
A wearable electronic device may provide direct functionality for a user (such as audio playback, data display, computing functions, etc.) or it may provide electronics to interact with, receive information from, or control another electronic device. For example, a wearable electronic device may include sensors that detect inputs effected by a user and transmit signals to another electronic device based on those inputs. Sensor-types and input-types may each take on a variety of forms, including but not limited to: tactile sensors (e.g., buttons, switches, touchpads, or keys) providing manual control, acoustic sensors providing voice-control, electromyography sensors providing gesture control, and/or accelerometers providing gesture control.
A human-computer interface (“HCI”) is an example of a human-electronics interface. The present systems, articles, and methods may be applied to HCIs, but may also be applied to any other form of human-electronics interface.
Electromyography (“EMG”) is a process for detecting and processing the electrical signals generated by muscle activity. EMG devices employ EMG sensors that are responsive to the range of electrical potentials (typically μV-mV) involved in muscle activity. EMG signals may be used in a wide variety of applications, including: medical monitoring and diagnosis, muscle rehabilitation, exercise and training, prosthetic control, as wearable electronic devices, and even in human-electronics interfaces.
A stretchable printed circuit board may be summarized as including: a first dielectric layer formed of a stretchable dielectric material; a second dielectric layer formed of a stretchable dielectric material, the second dielectric layer carried by the first dielectric layer; at least one conductive trace carried by the first dielectric layer and positioned in between the first and the second dielectric layers, wherein the at least one conductive trace forms a serpentine signal path that extends along at least a portion of a length of the stretchable printed circuit board and includes a plurality of changes in direction across a width of the stretchable printed circuit board; and a plurality of cut-away sections in the first and the second dielectric layers, wherein each cut-away section includes a respective section of the first and the second dielectric layers that is removed and each cut-away section positioned at an edge of the stretchable printed circuit board proximate and in between a respective pair of segments of the serpentine signal path where the serpentine signal path changes direction. The length of the stretchable printed circuit board may be greater than the width of the stretchable printed circuit board. The stretchable printed circuit board may further include a layer of polymer material carried by the first dielectric layer, wherein the layer of polymer material is positioned in between the first dielectric layer and the at least one conductive trace and the at least one conductive trace is carried on the layer of polymer material. The polymer material may be selected from the group consisting of: a polyamide material, a polyimide material, and a polyamide-imide material.
A stretchable printed circuit board may be summarized as including at least one conductive trace that forms a serpentine signal path, wherein the serpentine signal path extends along at least a portion of a length of the stretchable printed circuit board and includes a plurality of changes in direction across a width of the stretchable printed circuit board; and a substantially planar segment of stretchable dielectric material that encloses the at least one conductive trace, wherein the substantially planar segment of stretchable dielectric material has a crenulated shape the includes a plurality of crenulations across the at least a portion of the length of the stretchable printed circuit board, and wherein each crenulation of the substantially planar segment of stretchable dielectric material is positioned proximate and corresponds to a respective portion of the at least one conductive trace where the serpentine signal path changes direction. The substantially planar segment of stretchable dielectric material may comprise a first layer of stretchable dielectric material and a second layer of stretchable dielectric material, the second layer of stretchable dielectric material carried by the first layer of stretchable dielectric material, and the at least one conductive trace carried by the first layer of stretchable dielectric material and positioned in between the first and the second layers of stretchable dielectric material. The stretchable printed circuit board may further include a layer of polymer material, wherein the at least one conductive trace is carried on the layer of polymer material and the layer of polymer material is enclosed by the substantially planar segment of stretchable dielectric material. The polymer material may be selected from the group consisting of: a polyamide material, a polyimide material, and a polyamide-imide material.
A method of fabricating a stretchable printed circuit board may be summarized as including: depositing a first layer of stretchable dielectric material; depositing at least one conductive trace on the first layer of stretchable dielectric material, wherein the at least one conductive trace forms a serpentine signal path that extends along at least a portion of a length of the stretchable printed circuit board and includes a plurality of changes in direction across a width of the stretchable printed circuit board; depositing a second layer of stretchable dielectric material on the at least one conductive trace; and cutting away sections in the first and the second layers of stretchable dielectric material, each cut-away section positioned at an edge of the stretchable printed circuit board proximate at least one respective change in direction in the serpentine signal path. Depositing at least one conductive trace on the first layer of stretchable dielectric material may include: forming a flexible printed circuit board, wherein forming a flexible printed circuit board comprises: depositing a layer of polymer material; depositing a layer of conductive metal on the layer of polymer material; patterning the layer of conductive metal to provide at least one conductive trace having a serpentine signal path; and patterning the layer of polymer material; and depositing the flexible printed circuit board on the first layer of stretchable dielectric material. The polymer material may be selected from the group consisting of: a polyamide material, a polyimide material, and a polyamide-imide material.
A method of fabricating a stretchable printed circuit board may be summarized as including: fabricating a flexible printed circuit board, wherein fabricating a flexible printed circuit board comprises: depositing a layer of flexible dielectric material; depositing a layer of conductive metal on top of the flexible dielectric material; and etching a circuit pattern into the layer of conductive metal, wherein the circuit pattern includes at least one serpentine conductive trace that includes a plurality of changes in direction, removing at least some portions of the flexible dielectric material that are not covered by the at least one serpentine conductive trace; and enclosing at least a portion of the flexible printed circuit board in a stretchable dielectric material, wherein the stretchable dielectric material forms a crenulated shape that includes a plurality of crenulations across a length thereof, wherein each crenulation is positioned proximate and corresponds to a respective change in direction in the at least one serpentine conductive trace. Enclosing the flexible printed circuit board in a stretchable dielectric material may include: placing the flexible printed circuit board into a mold that provides a crenulated shape for the stretchable dielectric material; injecting the stretchable dielectric material, in liquid form, into the mold; solidifying the stretchable dielectric material; and removing the mold. Enclosing the flexible printed circuit board in a stretchable dielectric material may include: depositing a first layer of stretchable dielectric material; depositing the flexible printed circuit board on the first layer of stretchable dielectric material; depositing a second layer of stretchable dielectric material on the first layer of stretchable dielectric material, wherein the flexible printed circuit board is positioned in between the first and the second layers of stretchable dielectric material; and cutting away sections in the first and the second layers of stretchable dielectric material, each cut-away section positioned at an edge of the stretchable printed circuit board proximate at least one respective change in direction in the at least one serpentine conductive trace of the flexible printed circuit board.
A wearable electronic device may be summarized as including: a first pod structure, wherein the first pod structure includes a first sensor to in use detect an input from a user and a first electric circuit; a second pod structure, wherein the second pod structure includes a second electric circuit, and wherein the first and the second pod structures are physically spaced apart from one another; and at least one stretchable printed circuit board that electrically couples the first electric circuit of the first pod structure with the second electric circuit of the second pod structure, wherein the at least one stretchable printed circuit board comprises: at least one conductive trace that forms a serpentine signal path, wherein the serpentine signal path extends along at least a portion of a length of the stretchable printed circuit board and includes a plurality of changes in direction across a width of the stretchable printed circuit board; and a substantially planar segment of stretchable dielectric material that encloses the at least one conductive trace, wherein the substantially planar segment of stretchable dielectric material has a crenulated shape that includes a plurality of crenulations across the length of the stretchable printed circuit board, and wherein each crenulation of the substantially planar segment of stretchable dielectric material is positioned proximate and corresponds to a respective portion of the at least one conductive trace where the serpentine signal path changes direction.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with electronic devices, and in particular portable electronic devices such as wearable electronic devices, have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense, that is as meaning “and/or” unless the content clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
The various embodiments described herein provide systems, articles, and methods for improved stretchable PCBs. Specifically, the present systems, articles, and methods provide stretchable PCB designs (and fabrication methods thereof) that reduce the torsional force in the z-direction experienced by a conductive trace when a PCB is stretched in the xy-plane.
Throughout this specification and the appended claims, the term “stretchable” (as in, “stretchable PCB” or “stretchable dielectric material”) is generally used to refer to a structure or material that permits a substantial increase in its length, width, and/or height in at least one spatial direction without loss of structural integrity. A substantial increase is understood to include an increase by at least 10% and may include an increase of 50%, 100%, or more. In accordance with the present system, articles, and methods, a stretchable PCB may be elastic (meaning it may naturally return to its unstretched state once the stretching force is removed) and/or flexible.
A flexible PCB is characterized by its ability to be bent or curved in an out-of-plane direction, so that if the flexible PCB lies in the xy-plane then it may be bent or curved in the z-direction. Flexible PCBs are not inherently stretchable, but in accordance with the present systems, articles, and methods a stretchable PCB may be flexible and may, for example, incorporate an adapted flexible PCB in its structure. The adapted flexible PCB may include one or more serpentine conductive trace(s) carried on a layer of polymer material, the serpentine nature of the conductive trace(s) characterized by a plurality of changes in direction. Throughout this specification and the appended claims, the term “serpentine” is used to denote a path or geometry that has a length greater than its width, and for which the length generally follows a circuitous pattern relative to the width that, in various implementations, may be described as meandering, a zig-zag, boustrophedonic, back-and-forth, and/or tortuous. Portions of the layer of polymer material may be patterned to produce serpentine segments that underlie the serpentine conductive traces. The adapted flexible PCB may then be incorporated into a stretchable PCB by enclosing the flexible PCB in a stretchable dielectric material, such as rubber or silicone. As described in more detail later, the torsional forces on the serpentine conductive trace(s) when the stretchable PCB is stretched may be reduced by cutting away sections of the stretchable dielectric material (or otherwise molding/patterning/shaping the stretchable dielectric material to include crenulations) that are proximate segments of the serpentine conductive traces where the serpentine conductive traces change direction, so that the stretchable dielectric material follows the serpentine paths of the conductive traces.
The first and the second dielectric layers 201, 202 include a plurality of cut-away sections 230 (only one called out in
The reduction in the torsional forces on conductive trace 210 of PCB 200 compared to the torsional forces on conductive trace 110 of PCB 100 (due, at least in part, to the inclusion of cut-away sections 230 in PCB 200) is represented by smaller vertical arrows in the z-direction in
As shown in
In accordance with the present systems, articles, and methods, PCB 200 may be fabricated by first fabricating a state-of-the-art stretchable PCB such as PCB 100 from
Stretchable PCB 200 comprises a serpentine conductive trace 210 that extends along at least a portion of a length thereof, (where serpentine conductive trace 210 includes a plurality of changes in direction across a width of PCB 200), and a substantially planar segment of stretchable dielectric material 201, 202 that encloses serpentine conductive trace 210. The substantially planar segment of stretchable dielectric material 201, 202 has a crenulated shape that also includes a plurality of crenulations 240 across the length of PCB 200, with each crenulation 240 positioned proximate and corresponding to (i.e., including) a respective portion or segment 220 of serpentine conductive trace 210 where serpentine conductive trace 210 changes direction.
In accordance with the present systems, articles, and methods, the exact shape/geometry of a serpentine conductive trace (e.g., 210), a cut-away section (i.e., 230), and or a crenulation (e.g., 240) may vary in different applications. For example, PCB 200 is illustrated with serpentine conductive trace 210 having rounded curves at segments 220 where serpentine conductive trace 210 changes direction, cut-away sections 230 having triangular or “V” shapes, and crenulations 240 being tapered towards the outer edges of PCB 200, but any or all of these geometries/configurations may vary in alternative implementations.
As previously described, serpentine conductive trace 310 may comprise an adapted flexible PCB including a polymer material (or similar material, not visible in
Throughout this specification and the appended claims, reference is often made to a “polymer material,” such as the “layer of polymer material” described above. The term “polymer material” is used to generally capture any material having the electrically insulative, physically flexible, and/or physically stretchable properties required in the present systems, articles, and methods. Specific examples of polymer materials that are well-suited for use in the present systems, articles, and methods include polyamide materials, polyimide materials, and polyamide-imide materials.
In
The stretchable PCBs described herein (e.g., PCB 200 and/or PCB 300) may include and/or electrically couple to discrete electrical/electronic components. In some implementations, the stretchable PCBs described herein may include one or more electrical connector(s) positioned at discrete positioned along a length thereof (e.g., a first electrical connector at a first end of the PCB and a second connector at a second end of the PCB) and the stretchable PCB may provide stretchable electrically conductive coupling to/from the one or more electrical connector(s).
In addition to improved stretchable PCBs themselves, the present systems, articles, and methods describe methods of fabricating, manufacturing, and/or producing improved stretchable PCBs.
At 401, a first layer of stretchable dielectric material is deposited. The first layer of stretchable dielectric material may include, for example, rubber and/or silicone.
At 402, at least one conductive trace is deposited on the first layer of stretchable dielectric material. The at least one conductive trace forms a serpentine signal path along a length of the first layer of dielectric material, where the serpentine signal path includes a plurality of changes in directions across a width of the first layer of stretchable dielectric material.
At 403, a second layer of stretchable dielectric material is deposited on the at least one conductive trace. The second layer of stretchable dielectric material may include, for example, rubber and/or silicone. Together, the first and the second layers of stretchable dielectric material enclose, encapsulate, encompass, laminate, or otherwise surround at least a portion of the at least one conductive trace.
At 404, sections of the first and the second layers of stretchable dielectric material are cut away, where each cut-away section is positioned at an edge of the stretchable printed circuit board proximate at least one respective change in direction in the serpentine signal path of the at least one conductive trace.
As previously described, depositing at least one conductive trace at 402 may include depositing a layer of conductive metal on the first layer of stretchable dielectric material and patterning the layer of conductive metal using, for example, a lithography process to form the serpentine signal path of the at least one conductive trace. Alternatively, depositing at least one conductive trace at 402 may include forming an adapted flexible PCB that includes at least one serpentine conductive trace and from which excess (i.e., uncovered by conductive metal) polymer material (or similar) is removed such that the remaining polymer material (or similar) also includes serpentine segments underlying serpentine segments of the conductive trace. In such cases, depositing at least one conductive trace at 402 may include: forming a flexible PCB, wherein forming a flexible PCB comprises: depositing a layer of polymer material; depositing a layer of conductive metal on the layer of polymer material; patterning the layer of conductive metal to provide at least one conductive trace having a serpentine signal path; and patterning the layer of polymer material; and depositing the flexible PCB on the first layer of stretchable dielectric material.
At 501, a flexible PCB (i.e., an adapted flexible PCB as previously described) is fabricated. The flexible PCB includes at least one serpentine conductive trace carried on a flexible dielectric material, such as a polymer material like polyamide, polyimide, or polyamide-imide. As previously described, fabricating at an adapted flexible PCB may include: depositing a layer of flexible dielectric material (e.g., polyamide, polyimide, or polyamide-imide); depositing a layer of conductive metal (e.g., copper or a material including copper) on top of the flexible dielectric material; and etching a circuit pattern into the layer of conductive metal, where the circuit pattern includes at least one serpentine conductive trace.
At 502, at least some portions of the flexible dielectric material that are not covered by the at least one serpentine conductive trace are removed (e.g., cut away, die-cut, etched, etc.).
At 503, at least a portion of the flexible PCB is enclosed (e.g., enrobed, encompassed, encapsulated, laminated, or otherwise surrounded) in a stretchable dielectric material (e.g., rubber or silicone) such that the stretchable dielectric material adopts a crenulated shape that includes a plurality of crenulations across a length thereof. Each crenulation is positioned proximate and corresponds to a respective change in direction in the at least one serpentine conductive trace. The crenulated shape of the stretchable dielectric material may be “adopted” or otherwise “formed” by actively cutting-away sections of the stretchable dielectric material that are proximate respective changes in direction in the at least one serpentine conductive trace, or the crenulated shape may be produced by the act of enclosing the flexible PCB in stretchable dielectric material. For example, the flexible PCB may be placed in a mold having the desired crenulated shape and the stretchable dielectric material may be injected (in liquid form) into the mold to enclose the flexible PCB. The stretchable dielectric material may then be solidified/hardened/cured to adopt/form the crenulated shape of the mold, and the mold may be removed. A person of skill in the art will appreciate that standard practices in injection molding may necessitate a second molding stage to fill in cavities left by support structures used to hold the flexible printed circuit board in place during the first (i.e., previously described) molding stage.
The improved stretchable PCBs described herein may be used in a wide-variety of applications. A particular application described herein is in wearable electronic devices, such as wearable electromyography devices providing gesture-based control in a human-electronics interface.
Throughout this specification and the appended claims, the term “pod structure” is used to refer to an individual link, segment, pod, section, structure, component, etc. of a wearable electronic device. For the purposes of the present systems, articles, and methods, an “individual link, segment, pod, section, structure, component, etc.” (i.e., a “pod structure”) of a wearable electronic device is characterized by its ability to be moved or displaced relative to another link, segment, pod, section, structure component, etc. of the wearable electronic device. For example, pod structures 601 and 602 of device 600 can each be moved or displaced relative to one another within the constraints imposed by the adaptive coupler providing adaptive physical coupling therebetween. The desire for pod structures 601 and 602 to be movable/displaceable relative to one another specifically arises because device 600 is a wearable electronic device that advantageously accommodates the movements of a user and/or different user forms. However, it is this movement/displacement that may put physical stress/strain on stretchable PCBs coupling between pod structures as described in more detail later.
Device 600 includes eight pod structures 601, 602, 603, 604, 605, 606, 607, and 608 that form physically coupled links of the device 600. The number of pod structures included in a wearable electronic device is dependent on at least the nature, function(s), and design of the wearable electronic device, and the present systems, articles, and methods may be applied to any wearable electronic device employing any number of pod structures, including wearable electronic devices employing more than eight pod structures, wearable electronic devices employing fewer than eight pod structures, and (unless pod structures are expressly recited in a claim) wearable electronic devices that employ configurations that do not make use of pod structures.
In exemplary device 600 of
Throughout this specification and the appended claims, the term “rigid” as in, for example, “substantially rigid material,” is used to describe a material that has an inherent tendency to maintain its shape and resist malformation/deformation under the moderate stresses and strains typically encountered by a wearable electronic device.
Each individual pod structure within a wearable electronic device may perform a particular function, or particular functions. For example, in device 600, each of pod structures 601, 602, 603, 604, 605, 606, and 607 includes a respective sensor 610 (only one called out in
Pod structure 608 of device 600 includes a processor 640 that in use processes the signals provided by the sensors 610 of sensor pods 601, 602, 603604, 605, 606, and 607 in response to user-effected inputs. Pod structure 608 may therefore be referred to as a “processor pod.” Throughout this specification and the appended claims, the term “processor pod” is used to denote an individual pod structure that includes at least one processor to process signals. The processor may be any type of processor, including but not limited to: a digital microprocessor or microcontroller, an application-specific integrated circuit, a field-programmable gate array, or the like, that analyzes the signals to determine at least one output, action, or function based on the signals.
As used throughout this specification and the appended claims, the terms “sensor pod” and “processor pod” are not necessarily exclusive. A single pod structure may satisfy the definitions of both a “sensor pod” and a “processor pod” and may be referred to as either type of pod structure. For greater clarity, the term “sensor pod” is used to refer to any pod structure that includes a sensor and performs at least the function(s) of a sensor pod, and the term processor pod is used to refer to any pod structure that includes a processor and performs at least the function(s) of a processor pod. In device 600, processor pod 608 includes a sensor 610 (not visible in
As previously described, each of pod structures 601, 602, 603, 604, 605, 606, 607, and 608 may include electric circuitry.
The electric circuitry of any or all of pod structures 601, 602, 603, 604, 605, 606, 607, and/or 608 may include an analog-to-digital conversion (“ADC”) circuit to in use convert analog signals into digital signals. Thus, any or all of components 631, 632, and 638 may further include a respective ADC circuit to convert analog signals provided by at least one respective sensor 610 in each of pod structures 601, 602, and 608 into digital signals. In this way, sensor pod 601 (and similarly sensor pod 602 and processor pod 608) may include an electromyography sensor 610 to provide analog signals in response to muscle activity by a user, the sensor 610 of sensor pod 601 may be communicatively coupled to an amplification circuit 631 in electrical circuitry 611 to amplify the analog signals provided by the sensor 610, and the amplification circuit 631 may be communicatively coupled to an ADC circuit 631 to convert the amplified analog signals into digital signals.
Processor pod 608 may be the only one of pod structures 601, 602, 603, 604, 605, 606, 607, and 608 that includes an ADC circuit 638 such that amplified analog signals are routed through communicative pathways (e.g., communicative pathways 621 and 622) to processor pod 608, or each of pod structures 601, 602, 603, 604, 605, 606, 607, and 608 may include a respective ADC circuit (e.g., 631, 632, and 638) such that digital signals are routed through communicative pathways (e.g., communicative pathways 621 and 622) to processor pod 608.
The electric circuitry (e.g., 611, 612, and/or 618) of any pod structure in device 600 may include other circuits, elements, or components, including but not limited to: filtering circuits, an optical signal generator to convert electrical signals into optical signals, an electrical signal generator to convert optical signals into electrical signals, a battery to provide a portable power source for device 600, a wireless transmitter (e.g., a Bluetooth® transmitter) to send signals to another electronic device based on the muscle activity signals detected by electromyography sensors 610, and/or a tethered connector port 650 (e.g., wired or optical) to provide a direct communicative coupling to another electronic device for the purpose of power transfer (e.g., recharging the battery) and/or data transfer. Connector port 650 is illustrated in
Signals that are provided by sensors 610 in device 600 are routed to processor pod 608 for processing by processor 640. In accordance with the present systems, articles, and methods, stretchable PCBs may be used to provide the communicative couplings between pod structures in device 600. Device 600 employs a plurality of communicative pathways (e.g., 621 and 622) to route the signals that are output by sensor pods 601, 602, 603, 604, 605, 606, and 607 to processor pod 608. Each respective pod structure 601, 602, 603, 604, 605, 606, 607, and 608 in device 600 is communicatively coupled to, over, or through at least one of the two other pod structures between which the respective pod structure is positioned by at least one respective communicative pathway from the plurality of communicative pathways. Each communicative pathway (e.g., 621 and 622) may include any number of communicative pathways (e.g., a single communicative pathway or multiple communicative pathways) realized by respective serpentine signal paths (i.e., respective serpentine conductive traces) in stretchable PCBs.
Each of pod structures 701, 702, 703, 704, 705, 706, 707, and 708 comprises a respective housing 760 (only one called out in
As previously described, processor 740 in processor pod 708 may advantageously process digital signals. Analog signals may first be provided by sensors 710 in response to user-effected inputs, and any or all of electric circuitries 730 may include an ADC circuit that converts the analog signals into digital signals for processing by processor 740.
In accordance with the present systems, articles, and methods, stretchable PCBs may advantageously provide communicative coupling between components in wearable electronic devices, such as wearable electromyography devices. A wearable electromyography device may employ adaptive couplers; however in accordance with the present systems, articles, and methods, stretchable PCBs may also serve as adaptive couplers. Thus, wearable electronic devices that employ stretchable PCBs may not require separate adaptive coupling devices as the function of adaptive coupling devices may be achieved by the stretchable PCBs themselves.
Furthermore, the stretchable PCBs described herein may also enable single-piece construction for all of the electrical and communicative components described for devices 600 and 700. In other words, rather than using multiple stretchable PCBs providing communicative coupling between the respective electrical circuitries of multiple pod structures, a single stretchable PCB may include all of the electric circuitry of each respective pod structure (including, e.g., EMG sensor circuitry) and provide all of the communicative pathways providing communicative coupling therebetween (and further provide the elastic/adaptive physical coupling between pod structures as described above.
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art. The teachings provided herein of the various embodiments can be applied to other portable and/or wearable electronic devices, not necessarily the exemplary wearable electronic devices generally described above.
For instance, the foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by on one or more controllers (e.g., microcontrollers) as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.
When logic is implemented as software and stored in memory, logic or information can be stored on any computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a computer-readable medium that is an electronic, magnetic, optical, or other physical device or means that contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.
In the context of this specification, a “non-transitory computer-readable medium” can be any element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), digital tape, and other non-transitory media.
The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Provisional Patent Application Ser. No. 61/872,569; U.S. Provisional Patent Application Ser. No. 61/857,105 (now U.S. Non-Provisional patent application Ser. No. 14/335,668); U.S. Provisional Patent Application Ser. No. 61/752,226 (now U.S. Non-Provisional patent application Ser. No. 14/155,107); U.S. Provisional Patent Application Ser. No. 61/768,322 (now U.S. Non-Provisional patent application Ser. No. 14/186,889); U.S. Provisional Patent Application Ser. No. 61/771,500 (now U.S. Non-Provisional patent application Ser. No. 14/194,252); U.S. Provisional Application Ser. No. 61/860,063 (now U.S. Non-Provisional patent application Ser. No. 14/276,575); U.S. Provisional Application Ser. No. 61/866,960 (now U.S. Non-Provisional patent application Ser. No. 14/461,044); and U.S. Provisional Patent Application Ser. No. 61/869,526 (now U.S. Non-Provisional patent application Ser. No. 14/465,194), are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1411995 | Dull | Apr 1922 | A |
3620208 | Higley et al. | Nov 1971 | A |
3880146 | Everett et al. | Apr 1975 | A |
4602639 | Hoogendoorn et al. | Jul 1986 | A |
4817064 | Milles | Mar 1989 | A |
5003978 | Dunseath, Jr. | Apr 1991 | A |
D322227 | Warhol | Dec 1991 | S |
5081852 | Cox | Jan 1992 | A |
5251189 | Thorp | Oct 1993 | A |
D348660 | Parsons | Jul 1994 | S |
5445869 | Ishikawa | Aug 1995 | A |
5482051 | Reddy et al. | Jan 1996 | A |
5605059 | Woodward | Feb 1997 | A |
5683404 | Johnson | Nov 1997 | A |
6032530 | Hock | Mar 2000 | A |
6184847 | Fateh et al. | Feb 2001 | B1 |
6238338 | DeLuca et al. | May 2001 | B1 |
6244873 | Hill et al. | Jun 2001 | B1 |
6377277 | Yamamoto | Apr 2002 | B1 |
D459352 | Giovanniello | Jun 2002 | S |
6487906 | Hock | Dec 2002 | B1 |
6510333 | Licata et al. | Jan 2003 | B1 |
6527711 | Stivoric | Mar 2003 | B1 |
6619836 | Silvant et al. | Sep 2003 | B1 |
6720984 | Jorgensen et al. | Apr 2004 | B1 |
6743982 | Biegelsen | Jun 2004 | B2 |
6807438 | Brun Del Re et al. | Oct 2004 | B1 |
D502661 | Rapport | Mar 2005 | S |
D502662 | Rapport | Mar 2005 | S |
6865409 | Getsla et al. | Mar 2005 | B2 |
D503646 | Rapport | Apr 2005 | S |
6880364 | Vidolin et al. | Apr 2005 | B1 |
6927343 | Watanabe | Aug 2005 | B2 |
6965842 | Rekimoto | Nov 2005 | B2 |
6972734 | Ohshima et al. | Dec 2005 | B1 |
6984208 | Zheng | Jan 2006 | B2 |
7022919 | Brist | Apr 2006 | B2 |
7086218 | Pasach | Aug 2006 | B1 |
D535401 | Travis et al. | Jan 2007 | S |
7173437 | Hervieux et al. | Feb 2007 | B2 |
7209114 | Radley-Smith | Apr 2007 | B2 |
D543212 | Marks | May 2007 | S |
7265298 | Maghribi | Sep 2007 | B2 |
7271774 | Puuri | Sep 2007 | B2 |
7333090 | Tanaka et al. | Feb 2008 | B2 |
7450107 | Radley-Smith | Nov 2008 | B2 |
7491892 | Wagner | Feb 2009 | B2 |
7517725 | Reis | Apr 2009 | B2 |
7558622 | Tran | Jul 2009 | B2 |
7596393 | Jung et al. | Sep 2009 | B2 |
7618260 | Daniel et al. | Nov 2009 | B2 |
7636549 | Ma et al. | Dec 2009 | B2 |
7640007 | Chen et al. | Dec 2009 | B2 |
7660126 | Cho | Feb 2010 | B2 |
7809435 | Ettare et al. | Oct 2010 | B1 |
7844310 | Anderson | Nov 2010 | B2 |
7870211 | Pascal et al. | Jan 2011 | B2 |
7925100 | Howell et al. | Apr 2011 | B2 |
7948763 | Chuang | May 2011 | B2 |
D643428 | Janky et al. | Aug 2011 | S |
D646192 | Woode | Oct 2011 | S |
8054061 | Prance et al. | Nov 2011 | B2 |
D654622 | Hsu | Feb 2012 | S |
8170656 | Tan et al. | May 2012 | B2 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8188937 | Amafuji et al. | May 2012 | B1 |
D661613 | Demeglio | Jun 2012 | S |
8203502 | Chi et al. | Jun 2012 | B1 |
8207473 | Axisa | Jun 2012 | B2 |
8212859 | Tang et al. | Jul 2012 | B2 |
8355671 | Kramer et al. | Jan 2013 | B2 |
8389862 | Arora | Mar 2013 | B2 |
8421634 | Tan et al. | Apr 2013 | B2 |
8427977 | Workman et al. | Apr 2013 | B2 |
D682727 | Bulgari | May 2013 | S |
8447704 | Tan et al. | May 2013 | B2 |
8467270 | Gossweiler, III et al. | Jun 2013 | B2 |
D689862 | Liu | Sep 2013 | S |
8591411 | Banet et al. | Nov 2013 | B2 |
D695454 | Moore | Dec 2013 | S |
8620361 | Bailey et al. | Dec 2013 | B2 |
8624124 | Koo | Jan 2014 | B2 |
8702629 | Giuffrida et al. | Apr 2014 | B2 |
8704882 | Turner | Apr 2014 | B2 |
D716457 | Brefka et al. | Oct 2014 | S |
D717685 | Bailey et al. | Nov 2014 | S |
8879276 | Wang | Nov 2014 | B2 |
8895865 | Lenahan | Nov 2014 | B2 |
8912094 | Koo | Dec 2014 | B2 |
8922481 | Kauffmann et al. | Dec 2014 | B1 |
8925392 | Esposito | Jan 2015 | B2 |
8954135 | Yuen et al. | Feb 2015 | B2 |
8970571 | Wong et al. | Mar 2015 | B1 |
8971023 | Olsson et al. | Mar 2015 | B2 |
8973832 | Matsumura | Mar 2015 | B2 |
9012763 | Frolov | Apr 2015 | B2 |
9018532 | Wesselmann | Apr 2015 | B2 |
9086687 | Park et al. | Jul 2015 | B2 |
D736664 | Paradise et al. | Aug 2015 | S |
9146730 | Lazar | Sep 2015 | B2 |
D741855 | Park et al. | Oct 2015 | S |
D742272 | Bailey et al. | Nov 2015 | S |
D742874 | Cheng et al. | Nov 2015 | S |
D743963 | Osterhout | Nov 2015 | S |
9211417 | Heldman et al. | Dec 2015 | B2 |
D747714 | Erbeus | Jan 2016 | S |
9247637 | Hsu | Jan 2016 | B2 |
D750623 | Park et al. | Mar 2016 | S |
D751065 | Magi | Mar 2016 | S |
9299248 | Lake et al. | Mar 2016 | B2 |
D756359 | Bailey et al. | May 2016 | S |
9367139 | Ataee et al. | Jun 2016 | B2 |
9372535 | Bailey et al. | Jun 2016 | B2 |
9393418 | Giuffrida et al. | Jul 2016 | B2 |
9439566 | Arne et al. | Sep 2016 | B2 |
9450038 | Kwon | Sep 2016 | B2 |
9472956 | Michaelis et al. | Oct 2016 | B2 |
9477313 | Mistry et al. | Oct 2016 | B2 |
9484612 | Sasaki | Nov 2016 | B2 |
9529434 | Choi et al. | Dec 2016 | B2 |
20020032386 | Sackner et al. | Mar 2002 | A1 |
20020077534 | DuRousseau | Jun 2002 | A1 |
20030036691 | Stanaland et al. | Feb 2003 | A1 |
20030051505 | Robertson et al. | Mar 2003 | A1 |
20030144586 | Tsubata | Jul 2003 | A1 |
20040068409 | Tanaka et al. | Apr 2004 | A1 |
20040073104 | Brun del Re et al. | Apr 2004 | A1 |
20040194500 | Rapport | Oct 2004 | A1 |
20040210165 | Marmaropoulos et al. | Oct 2004 | A1 |
20050005637 | Rapport | Jan 2005 | A1 |
20050012715 | Ford | Jan 2005 | A1 |
20050070227 | Shen et al. | Mar 2005 | A1 |
20050119701 | Lauter et al. | Jun 2005 | A1 |
20050177038 | Kolpin et al. | Aug 2005 | A1 |
20060037359 | Stinespring | Feb 2006 | A1 |
20060061544 | Min et al. | Mar 2006 | A1 |
20070132785 | Ebersole, Jr. et al. | Jun 2007 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20090007597 | Hanevold | Jan 2009 | A1 |
20090031757 | Harding | Feb 2009 | A1 |
20090040016 | Ikeda | Feb 2009 | A1 |
20090051544 | Niknejad | Feb 2009 | A1 |
20090102580 | Uchaykin | Apr 2009 | A1 |
20090189867 | Krah et al. | Jul 2009 | A1 |
20090251407 | Flake et al. | Oct 2009 | A1 |
20090318785 | Ishikawa et al. | Dec 2009 | A1 |
20090326406 | Tan et al. | Dec 2009 | A1 |
20090327171 | Tan et al. | Dec 2009 | A1 |
20100041974 | Ting et al. | Feb 2010 | A1 |
20100280628 | Sankai | Nov 2010 | A1 |
20100293115 | Seyed Momen | Nov 2010 | A1 |
20100317958 | Beck et al. | Dec 2010 | A1 |
20100330338 | Boyce | Dec 2010 | A1 |
20110018754 | Tojima et al. | Jan 2011 | A1 |
20110065319 | Oster | Mar 2011 | A1 |
20110134026 | Kang et al. | Jun 2011 | A1 |
20110166434 | Gargiulo | Jul 2011 | A1 |
20110172503 | Knepper et al. | Jul 2011 | A1 |
20110213278 | Horak et al. | Sep 2011 | A1 |
20110224556 | Moon et al. | Sep 2011 | A1 |
20110224564 | Moon et al. | Sep 2011 | A1 |
20120029322 | Wartena et al. | Feb 2012 | A1 |
20120051005 | Vanfleteren | Mar 2012 | A1 |
20120052268 | Axisa | Mar 2012 | A1 |
20120101357 | Hoskuldsson et al. | Apr 2012 | A1 |
20120157789 | Kangas et al. | Jun 2012 | A1 |
20120165695 | Kidmose et al. | Jun 2012 | A1 |
20120188158 | Tan et al. | Jul 2012 | A1 |
20120203076 | Fatta et al. | Aug 2012 | A1 |
20120209134 | Morita et al. | Aug 2012 | A1 |
20120231638 | Ikeda | Sep 2012 | A1 |
20120265090 | Fink et al. | Oct 2012 | A1 |
20120293548 | Perez et al. | Nov 2012 | A1 |
20120302858 | Kidmose et al. | Nov 2012 | A1 |
20120320532 | Wang | Dec 2012 | A1 |
20120323521 | De Foras et al. | Dec 2012 | A1 |
20130005303 | Song et al. | Jan 2013 | A1 |
20130020948 | Han et al. | Jan 2013 | A1 |
20130027341 | Mastandrea | Jan 2013 | A1 |
20130080794 | Hsieh | Mar 2013 | A1 |
20130127708 | Jung et al. | May 2013 | A1 |
20130165813 | Chang et al. | Jun 2013 | A1 |
20130191741 | Dickinson et al. | Jul 2013 | A1 |
20130198694 | Rahman et al. | Aug 2013 | A1 |
20130265229 | Forutanpour et al. | Oct 2013 | A1 |
20130265437 | Thörn et al. | Oct 2013 | A1 |
20130271292 | McDermott | Oct 2013 | A1 |
20130312256 | Wesselmann | Nov 2013 | A1 |
20130317648 | Assad | Nov 2013 | A1 |
20130332196 | Pinsker | Dec 2013 | A1 |
20140020945 | Hurwitz | Jan 2014 | A1 |
20140028546 | Jeon et al. | Jan 2014 | A1 |
20140045547 | Singamsetty et al. | Feb 2014 | A1 |
20140049417 | Abdurrahman et al. | Feb 2014 | A1 |
20140094675 | Luna et al. | Apr 2014 | A1 |
20140121471 | Walker | May 2014 | A1 |
20140122958 | Greenebrg et al. | May 2014 | A1 |
20140194062 | Palin et al. | Jul 2014 | A1 |
20140198034 | Bailey et al. | Jul 2014 | A1 |
20140198035 | Bailey et al. | Jul 2014 | A1 |
20140236031 | Banet et al. | Aug 2014 | A1 |
20140240103 | Lake et al. | Aug 2014 | A1 |
20140249397 | Lake et al. | Sep 2014 | A1 |
20140257141 | Giuffrida et al. | Sep 2014 | A1 |
20140285326 | Luna et al. | Sep 2014 | A1 |
20140299362 | Park | Oct 2014 | A1 |
20140334083 | Bailey | Nov 2014 | A1 |
20140334653 | Luna et al. | Nov 2014 | A1 |
20140337861 | Chang et al. | Nov 2014 | A1 |
20140340857 | Hsu | Nov 2014 | A1 |
20140349257 | Connor | Nov 2014 | A1 |
20140354528 | Laughlin et al. | Dec 2014 | A1 |
20140354529 | Laughlin et al. | Dec 2014 | A1 |
20140364703 | Kim et al. | Dec 2014 | A1 |
20140375465 | Fenuccio | Dec 2014 | A1 |
20150011857 | Henson et al. | Jan 2015 | A1 |
20150025355 | Bailey et al. | Jan 2015 | A1 |
20150051470 | Bailey et al. | Feb 2015 | A1 |
20150057506 | Luna et al. | Feb 2015 | A1 |
20150057770 | Bailey et al. | Feb 2015 | A1 |
20150084860 | Aleem et al. | Mar 2015 | A1 |
20150106052 | Balakrishnan et al. | Apr 2015 | A1 |
20150109202 | Ataee et al. | Apr 2015 | A1 |
20150124566 | Lake et al. | May 2015 | A1 |
20150141784 | Morun et al. | May 2015 | A1 |
20150148641 | Morun et al. | May 2015 | A1 |
20150160621 | Yilmaz | Jun 2015 | A1 |
20150182113 | Utter, II | Jul 2015 | A1 |
20150182130 | Utter, II | Jul 2015 | A1 |
20150182163 | Utter | Jul 2015 | A1 |
20150182164 | Utter, II | Jul 2015 | A1 |
20150186609 | Utter, II | Jul 2015 | A1 |
20150216475 | Luna et al. | Aug 2015 | A1 |
20150230756 | Luna et al. | Aug 2015 | A1 |
20150234426 | Bailey | Aug 2015 | A1 |
20150237716 | Su | Aug 2015 | A1 |
20150261306 | Lake | Sep 2015 | A1 |
20150277575 | Ataee et al. | Oct 2015 | A1 |
20150296553 | DiFranco et al. | Oct 2015 | A1 |
20150325202 | Lake et al. | Nov 2015 | A1 |
20150370333 | Ataee et al. | Dec 2015 | A1 |
20150380355 | Rogers | Dec 2015 | A1 |
20160020500 | Matsuda | Jan 2016 | A1 |
20160150636 | Otsubo | May 2016 | A1 |
20160156762 | Bailey et al. | Jun 2016 | A1 |
20160199699 | Klassen | Jul 2016 | A1 |
20160202081 | Debieuvre et al. | Jul 2016 | A1 |
20160309249 | Wu et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
4412278 | Oct 1995 | DE |
0 301 790 | Feb 1989 | EP |
2009-50679 | Mar 2009 | JP |
20120094870 | Aug 2012 | KR |
20120097997 | Sep 2012 | KR |
2011070554 | Jun 2011 | WO |
Entry |
---|
Costanza et al., “EMG as a Subtle Input Interface for Mobile Computing,” Mobile HCI 2004, LNCS 3160, edited by S. Brewster and M. Dunlop, Springer-Verlag Berlin Heidelberg, pp. 426-430, 2004. |
Costanza et al., “Toward Subtle Intimate Interfaces for Mobile Devices Using an EMG Controller,” CHI 2005, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 481-489, 2005. |
Ghasemzadeh et al., “A Body Sensor Network With Electromyogram and Inertial Sensors: Multimodal Interpretation of Muscular Activities,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, No. 2, pp. 198-206, Mar. 2010. |
Gourmelon et al., “Contactless sensors for Surface Electromyography,” Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, NY, Aug. 30-Sep. 3, 2006, pp. 2514-2517. |
International Search Report and Written Opinion, mailed May 16, 2014, for corresponding International Application No. PCT/US2014/017799, 9 pages. |
International Search Report and Written Opinion, mailed Aug. 21, 2014, for corresponding International Application No. PCT/US2014/037863, 10 pages. |
International Search Report and Written Opinion, mailed Nov. 21, 2014, for corresponding International Application No. PCT/US2014/052143, 9 pages. |
International Search Report and Written Opinion, mailed Feb. 27, 2015, for corresponding International Application No. PCT/US2014/067443, 10 pages. |
International Search Report and Written Opinion, mailed May 27, 2015, for corresponding International Application No. PCT/US2015/015675, 9 pages. |
Morris et al., “Emerging Input Technologies for Always-Available Mobile Interaction,” Foundations and Trends in Human-Computer Interaction 4(4):245-316, 2010. (74 total pages). |
Naik et al., “Real-Time Hand Gesture Identification for Human Computer Interaction Based on ICA of Surface Electromyogram,” IADIS International Conference Interfaces and Human Computer Interaction 2007, 8 pages. |
Picard et al., “Affective Wearables,” Proceedings of the IEEE 1st International Symposium on Wearable Computers, ISWC, Cambridge, MA, USA, Oct. 13-14, 1997, pp. 90-97. |
Rekimoto, “GestureWrist and GesturePad: Unobtrusive Wearable Interaction Devices,” ISWC '01 Proceedings of the 5th IEEE International Symposium on Wearable Computers, 2001, 7 pages. |
Saponas et al., “Making Muscle-Computer Interfaces More Practical,” CHI 2010, Atlanta, Georgia, USA, Apr. 10-15, 2010, 4 pages. |
Sato et al., “Touche: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects,” CHI' 12, May 5-10, 2012, Austin, Texas. |
Ueno et al., “A Capacitive Sensor System for Measuring Laplacian Electromyogram through Cloth: A Pilot Study,” Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Internationale, Lyon, France, Aug. 23-26, 2007. |
Ueno et al., “Feasibility of Capacitive Sensing of Surface Electromyographic Potential through Cloth,” Sensors and Materials 24(6):335-346, 2012. |
Xiong et al., “A Novel HCI based on EMG and IMU,” Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, Dec. 7-11, 2011, 5 pages. |
Zhang et al., “A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 41, No. 6, pp. 1064-1076, Nov. 2011. |
Xu et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors,” Proceedings of the 14th international conference on Intelligent user interfaces, Sanibel Island, Florida, Feb. 8-11, 2009, pp. 401-406. |
Communication pursuant to Rule 164(1) EPC, dated Sep. 30, 2016, for corresponding EP Application No. 14753949.8, 7 pages. |
Brownlee, “Finite State Machines (FSM): Finite state machines as a control technique in Artificial Intelligence (AI),” Jun. 2002, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20150065840 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61872569 | Aug 2013 | US |