The disclosure relates generally to the field of motion tracking, and more specifically to systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan.
There are various modalities for performing medical imaging of patients. For example, magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to visualize internal structures of the body in detail. An MRI scanner is a device in which the patient or a portion of the patient's body is positioned within a powerful magnet where a magnetic field is used to align the magnetization of some atomic nuclei (usually hydrogen nuclei—protons) and radio frequency magnetic fields are applied to systematically alter the alignment of this magnetization. This causes the nuclei to produce a rotating magnetic field detectable by the scanner and this information is recorded to construct an image of the scanned region of the body. These scans typically take several minutes (up to about one hour in some instances), and in prior art devices any movement can degrade or ruin the images and require the scan to be repeated. For example, a scanner can be any medical or biomedical imaging system, such as MRI, CAT, PET, SPECT, nuclear medicine or the like.
Additionally, there are various radiation therapies, proton therapies, and other therapies that can be applied to patients. For example, radiation therapy can be applied to a targeted tissue region. In some systems, radiation therapy can be dynamically applied in response to patient movements. However, in many such systems, the tracking of patient movements does not have a high degree of accuracy. Accordingly, the use of such systems can result in the application of radiation therapy to non-targeted tissue regions, thereby unintentionally harming healthy tissue while intentionally affecting diseased tissue. The foregoing is also true for proton therapies and other therapies.
In order to track motion of patient movements during a medical imaging and/or therapeutic procedure, some modalities utilize one or more markers. For example, in some motion tracking technologies related to medical imaging, one or more markers can be placed on one or more portions of a patient's body, which are then tracked by one or more detectors. However, not all movement of such markers truly reflects motion of the patient, or the organ or organs of interest. For example, a marker may slip on the skin, or skin may slip relative to the organ(s) of interest, resulting in unwanted motion signals, which can be referred to herein as “false movement” or “false motion,” and incorrect motion correction.
The disclosure herein provides systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan, such as during a magnetic resonance imaging scan.
An accurate and reliable method of determining the dynamic position and orientation of a patient's head or other body portion during MRI scanning or therapeutic procedures is a requirement in any attempt to compensate for subject motion during such procedures. Toward this end, one or more markers may be placed on one or more portions of a subject's body, which are then detected by one or more motion detectors. Such markers can provide points of reference in detecting subject motion, thereby facilitating the motion detection process. However, in some instances, marker movement may not reflect true movement of the subject. For example, a marker may slip or a marker may move due to skin movement rather than rigid body movement. As such, it can be advantageous to detect such false movements in correcting motion of a subject for medical imaging and/or therapeutic procedures in order to correct for only true movements of the subject.
In some embodiments, a computer-implemented method for determining false motion tracked by a motion correction system during a medical imaging scan, comprises: obtaining tracking data, wherein the tracking data reflects motion of a subject of the medical imaging scan or a portion thereof; determining by a false motion discriminator a likelihood of the obtained tracking data reflecting false motion, wherein the false motion is not reflective of true motion of the subject of the medical imaging scan or the portion thereof; and generating by the false motion discriminator a confidence level of the determined likelihood of the obtained tracking data reflecting false motion, wherein the motion correction system is configured to adjust output based on the confidence level, wherein the false motion discriminator comprises a computer processor and an electronic storage medium. In certain embodiments, the likelihood of the obtained tracking data reflecting false motion is based on at least one of velocity, acceleration, center of rotation, and axis of rotation of the motion of the subject. In certain embodiments, the likelihood of the obtained tracking data reflecting false motion is based on machine learning.
In some embodiments, a false motion classifier system for determining false motion tracked by a motion correction system during a medical imaging scan comprises: a first false motion discriminator configured to determine a center of rotation of a detected motion and further determine a first confidence level based on the center of rotation of the detected motion, wherein the first confidence level is indicative of the detected motion being true or false; a second false motion discriminator configured to determine a velocity of the detected motion and further determine a second confidence level based on the velocity of the detected motion, wherein the second confidence level is indicative of the detected motion being true or false; and a combination module configured to combine the first and second confidence levels to generate an output indicative of the detected motion being true or false, wherein an output indicative of the detected motion being false causes the motion correction system not to apply one or more motion correction processes to the detected motion.
In certain embodiments, the false motion classifier system further comprises a third false motion discriminator configured to determine a third confidence level indicative of the detected motion being true or false based on machine learning. In certain embodiments, the false motion classifier system further comprises a differential motion discriminator configured to determine a third confidence level indicative of the detected motion being true or false based on relative motion of two or more motion trackers used by the motion correction system. In certain embodiments, the false motion classifier system further comprises one or more external discriminators configured to determine one or more external confidence levels indicative of the detected motion being true or false. In certain embodiments, the one or more external discriminators are configured to determine the one or more external confidence levels based on at least one or more of noise and video tracking. In certain embodiments, the output is binary.
In some embodiments, a motion correction system for detecting and correcting motion by a subject during a medical imaging scan comprises: one or more markers placed on one or more portions of the subject; one or more detectors configured to track motion of the one or more markers; and a tracking quality classifier for determining false motion of the one or more markers, wherein the tracking quality classifier system comprises one or more false motion discriminators, wherein determination by the tracking quality classifier that a false motion of the one or more markers occurred causes the motion correction system not to apply one or more motion correction processes to the false motion.
In certain embodiments, the one or more false motion discriminators are configured to determine false motion of the one or more markers based on at least one or more of velocity, rotational center, and machine learning. In certain embodiments, the tracking quality classifier further comprises one or more external discriminators. In certain embodiments, the motion correction system further comprises a scanner control module configured to control a scanner for the medical imaging scan not to utilize acquired data during the false motion. In certain embodiments, the motion correction system further comprises a scanner control module configured to control a scanner for the medical imaging scan to repeat acquisitions of data initially acquired during the false motion.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages are described herein. Of course, it is to be understood that not necessarily all such objects or advantages need to be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that can achieve or optimize one advantage or a group of advantages without necessarily achieving other objects or advantages.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the invention not being limited to any particular disclosed embodiment(s).
The foregoing and other features, aspects, and advantages of the present inventions are described in detail below with reference to the drawings of various embodiments, which are intended to illustrate and not to limit the inventions. The drawings comprise the following figures in which:
Although several embodiments, examples, and illustrations are disclosed below, it will be understood by those of ordinary skill in the art that the inventions described herein extend beyond the specifically disclosed embodiments, examples, and illustrations and includes other uses of the inventions and obvious modifications and equivalents thereof. Embodiments of the inventions are described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being used in conjunction with a detailed description of certain specific embodiments of the inventions. In addition, embodiments of the inventions can comprise several novel features and no single feature is solely responsible for its desirable attributes or is essential to practicing the inventions herein described.
With the use of diagnostic technologies and therapeutic technologies, it can be advantageous to track patient movement with a high degree of accuracy. Such high accuracy tracking can improve the imaging quality obtained and produced by diagnostic equipment, such as imaging technologies. Further, the use of high accuracy patient movement tracking technology can improve the application of patient therapies, such as radiation treatment, proton treatment, and the like. By accounting for patient movement with a high degree of accuracy, therapeutic technologies can apply therapies only to the targeted tissue and avoid healthy surrounding tissue. One of such methods to address motion during a medical imaging scan or therapeutic procedure is prospective motion correction, which involves tracking of the object of interest, such as the head or brain of a subject, and adjusting scan planes in real-time or near real-time such that they follow the movement, resulting in images without motion artifacts.
When an external tracking system is used, such as a camera-based system, the tracking system usually tracks the position of a marker that is assumed to reflect the position of the object to be imaged, such as the brain. For example, many existing technologies relating to motion detection and/or correction in the field of medical imaging and/or therapeutic procedures utilize one or more markers. One or more markers can be attached or placed on one or more different portions of a subject's body that is subject to the medical imaging or therapeutic procedure. Such markers can be detected by the motion detection and/or correction system. As such, prospective motion correction can generally involve (1) continuously tracking the motion of the object of interest with a sensor device, commonly using a marker attached to the object of interest, (2) sending tracking information from the sensor to the imaging device, and (3) continuously adjusting scan parameters of the imaging device in real-time or near real-time such that the image acquisition is locked relative to the mobile object of interest. The results can be images that show no, or reduced, motion artifacts compared to a scan that does not use prospective motion correction.
However, some problems may arise with the use of such markers. It is possible that such markers transiently do not reflect true subject movement. For instance, prospective motion correction relies on the assumption that the tracking marker accurately represents the motion of the object of interest. However, the actual tissue of interest can be situated inside the subject, whereas the marker can be attached to the surface or skin of the subject. As such, while the motion of a marker attached to the forehead skin would normally be assumed to reflect movement of the brain inside the skull, the skin and thus the marker may slip relative to the brain, for example when a subject is squinting or twitching. In such circumstances, the marker may fail to accurately reproduce motion of the tissue of interest and result in false marker movements. This can result in false correction signals and image artifacts. Such false marker movements can greatly reduce the robustness of prospective motion correction when applied to uncooperative subjects, and in the worst-case scenario can render otherwise high-quality images unusable.
As such, although the markers have moved thereby triggering the motion correction process, it may be advantageous to ignore such movements of the markers. Such movements of markers that ideally should not be accounted for by the system in the motion correction process can be called “false movements” or “false motions.” In contrast, movements or motions of the markers that indeed should be accounted for in the motion correction process can be called “true motions” or “true movements.”
The systems, methods, and devices described herein generally relate to achieving accurate and robust motion correction by detecting and accounting for such false movements. In other words, in some embodiments of the systems, methods, and devices described herein can be configured to detect false movements for motion correction during a medical imaging scan and/or therapeutic procedure, and thereby ensure that such false marker movements are not accounted for in the motion correction process. In certain embodiments, the systems, methods, and devices described herein detect the presence of or a high likelihood of such false marker movements. Upon detection of false movements, the imaging or therapeutic apparatus can be configured to transiently suppress acquisitions and subsequently repeat acquisitions or reconstruct images with partially missing data.
In other words, some of the systems, devices, and methods described herein involve detecting biomechanically unlikely motions of a marker, which can suggest a high probability that false marker movements are present. Based on such detection, a medical or biomedical imaging device or therapeutic device can be informed of potentially false marker movement conditions and may take measures to avoid applying false corrections, for instance, by not updating positions or by suspending acquisition of imaging data until the false motion condition is no longer present.
In certain embodiments, the systems, devices, and methods described herein can be utilized to determine false movement or motion without use of markers. In some embodiments, the systems, devices, and methods described herein can be applied to tracking systems where the sensing device or devices are directly located on the object of interest, such as the skin of the subject. In certain embodiments, the systems, devices, and methods described herein can be configured to detect false marker movement or false movement for body organs other than the head and/or brain of a subject.
Motion Compensation Systems and Medical Imaging Scanners or Therapeutic Procedures
The motion compensation system 100 illustrated in
As depicted in
Markers
As briefly discussed above, in many medical imaging scanning systems and/or therapeutic procedure systems that utilize motion detection and correction systems or methods, one or more markers can be utilized to track the position and movement or motion of the patient or subject.
As depicted in
However, while such markers 202 can help the motion correction or detection system detect motion of the subject and correct for any unwanted movement by the subject, one or more of such markers 202 can also move unexpectedly and/or separately from a rigid body movement. For example, when one or more markers 202 are placed on the face of a subject or patient, any twitches on the skin of the patient, for example, if the patient sneezes, squints, frowns or makes any other facial expression, such markers 202 can move. However, if taking an MRI scan of a subject's brain, such false movements along the skin or surface of the patient only without any or substantial movement of the head or brain of the subject, ideally should not have any impact on the resulting scanned image. However if all such false movements or motions along the skin of a patient are accounted for by the motion correction system, the resulting scanned image may in fact be even more blurry compared to when no such motion correction was applied, because the brain or head of the subject did not actually move.
Tracking Quality Classifier—General
In some embodiments, the system can comprise one or more motion classifiers. For example, such motion classifiers can be configured to detect and/or classify a particular motion as being a false movement and/or true movement. Such motion classifier can be based on a physical model. In certain embodiments, the classifier may run in real-time, substantially real-time, or near real-time during a medical imaging process or therapeutic process and receive input from one or more motion tracking devices and/or systems.
In certain embodiments, tracking data obtained by the motion classifier can be sent to a false motion discriminator. A false motion discriminator can be configured to estimate a confidence level for false marker movement and forward the decision to the medical imaging or therapeutic device or system.
In some embodiments, the one or more false motion discriminators 304 can be configured to output one or more confidence levels 306 of the detected movement. For example, the system can be configured to output a confidence level that is high when the false motion discriminator determines that the detected movement or motion of the subject is highly likely to be false movement that should not be accounted for by the motion correction system. In contrast, the system can be configured to output a confidence level that is high when the false motion discriminator determines that the detected movement or motion of the subject is highly likely to be true movement that should be accounted for by the motion correction system. Similarly, in some embodiments, a low confidence level can correspond to a low likelihood of false movement or high likelihood of true movement. In certain embodiments, a low confidence level can correspond to a low likelihood of true movement or high likelihood of false movement.
In some embodiments, the confidence level that is determined by the one or more false motion discriminators 304 can be a unit-less number. For example, the confidence level can be on a scale of 0 to 1, 1 to 10, 1 to 100, and 1 to 1,000. In certain embodiments, the confidence level can be a percentage or ratio.
Based on the confidence level that is determined by the false motion discriminator 304, the system can be configured to output a decision 308 of the nature of the detected movement, which can then be utilized by the motion correction system of a medical imaging scanner or therapeutic procedure to either account for or not account for the tracked motion.
In some embodiments, the system comprises only one false motion discriminator. In other embodiments, the system can comprise a plurality of false motion discriminators. In certain embodiments, such false motion discriminators can be based on one or more parameters. For example, in some embodiments, a false motion discriminator 304 can be configured to determine the likelihood of a false motion or movement based on the velocity, acceleration, axis of rotation, central point of rotation, machine learning, and/or any combination of the above.
Velocity/Acceleration-Based Discriminator
In some embodiments, the system or one or false motion discriminators thereof can be configured to determine the likelihood of a false motion being present based on the velocity of movement or motion of one or more markers or trackers. For example, when a subject twitches or sneezes or the like movement of the marker can be substantially faster than when there is rigid body movement or physiological movement. Conditions associated with false marker movement, such as squinting, coughing or frowning are typically transient and involve velocities that are substantially higher than those for a typical physiologic motions, since the head has a high inertia compared to skin or marker. Accordingly, the velocity discriminator can be configured to provide a confidence level that the velocity of a given movement is outside of the physiologic range.
In certain embodiments, the system or one or false motion discriminators thereof can be configured to detect or otherwise receive the raw tracking data and further analyze such data by obtaining their first and/or second temporal derivatives of velocity and/or acceleration. Such velocities and/or acceleration may be used by a velocity-based discriminator to determine a likelihood of false movement. In certain embodiments, such obtained velocities and/or acceleration may be further sent to a set of discriminators, each of which can be configured to estimate confidence levels for conditions of false marker movement.
In some embodiments, if the velocity of a particular movement or motion of a marker at any given time is greater or equal to 10-20 mm/sec or 10-20°/sec, depending on whether the velocity is determined based on distance or angle of rotation, the system or velocity-based false motion discriminator can be configured to determine a high likelihood of false movement. Similarly, if the velocity of a particular movement or motion of a marker at any given time is lower or equal to 10-20 mm/sec or 10-20°/sec, the system or velocity-based false motion discriminator can be configured to determine a low likelihood of false movement or high likelihood of true movement.
In certain embodiments, the boundary for determining a high likelihood of false or true movement based on velocity of a particular marker can be about 1 mm/sec, about 2 mm/sec, about 3 mm/sec, about 4 mm/sec, about 5 mm/sec, about 6 mm/sec, about 7 mm/sec, about 8 mm/sec, about 9 mm/sec, about 10 mm/sec, about 11 mm/sec, about 12 mm/sec, about 13 mm/sec, about 14 mm/sec, about 15 mm/sec, about 16 mm/sec, about 17 mm/sec, about 18 mm/sec, about 19 mm/sec, about 20 mm/sec, about 21 mm/sec, about 22 mm/sec, about 23 mm/sec, about 24 mm/sec, about 25 mm/sec, about 26 mm/sec, about 27 mm/sec, about 28 mm/sec, about 29 mm/sec, about 30 mm/sec, about 1°/sec, about 2°/sec, about 3°/sec, about 4°/sec, about 5°/sec, about 6°/sec, about 7°/sec, about 8°/sec, about 9°/sec, about 10°/sec, about 11°/sec, about 12°/sec, about 13°/sec, about 14°/sec, about 15°/sec, about 16°/sec, about 17°/sec, about 18°/sec, about 19°/sec, about 20°/sec, about 21°/sec, about 22°/sec, about 23°/sec, about 24°/sec, about 25°/sec, 26°/sec, 27°/sec, 28°/sec, 29°/sec, 30°/sec, and/or within a range defined by any two of the above-identified values.
Similarly, in some embodiments, the boundary for determining a high likelihood of false or true movement based on acceleration of a particular marker can be about 1 mm/sec2, about 2 mm/sec2, about 3 mm/sec2, about 4 mm/sec2, about 5 mm/sec2, about 6 mm/sec2, about 7 mm/sec2, about 8 mm/sec2, about 9 mm/sec2, about 10 mm/sec2, about 11 mm/sec2, about 12 mm/sec2, about 13 mm/sec2, about 14 mm/sec2, about 15 mm/sec2, about 16 mm/sec2, about 17 mm/sec2, about 18 mm/sec2, about 19 mm/sec2, about 20 mm/sec2, about 21 mm/sec2, about 22 mm/sec2, about 23 mm/sec2, about 24 mm/sec2, about 25 mm/sec2, about 26 mm/sec2, about 27 mm/sec2, about 28 mm/sec2, about 29 mm/sec2, about 30 mm/sec2, about 1°/sec2, about 2°/sec2, about 3°/sec2, about 4°/sec2, about 5°/sec2, about 6°/sec2, about 7°/sec2, about 8°/sec2, about 9°/sec2, about 10°/sec2, about 11°/sec2, about 12°/sec2, about 13°/sec2, about 14°/sec2, about 15°/sec2, about 16°/sec2, about 17°/sec2, about 18°/sec2, about 19°/sec2, about 20°/sec2, about 21°/sec2, about 22°/sec2, about 23°/sec2, about 24°/sec2, about 25°/sec2, 26°/sec2, 27°/sec2, 28°/sec2, 29°/sec2, 30°/sec2, and/or within a range defined by any two of the above-identified values.
Center of Rotation-Based Discriminator
In some embodiments, the system or one or false motion discriminators thereof can be configured to determine the likelihood of a false motion being present based on the center of rotation of a movement or motion of one or more markers or trackers. In other words, in certain embodiments, a false motion discriminator can be configured to determine or estimate the likelihood of false movement or motion of a subject based on the anterior-posterior center (y) position of head rotations.
Physiological head movements commonly have a posterior rotational center. If the center or substantially center of a head of a patient or subject is assumed to be at a y=0 position, physiological head movements commonly have a rotational center that is below 0 on the y axis. For example, the rotational center of a physiological head movement can be located along the y axis at around y=−50 mm, wherein y=0 is located at substantially the center of the subject's head. In contrast, a false marker motion or rotation can be thought of as being centered at an anterior attachment point. In a false marker motion, the rotational center can be assumed to be at a position along the y axis with a positive value. For example, the rotational center of a false marker motion can be at roughly y=80 mm. This is because most subjects inside a medical imaging scanner or therapeutic system are in a position with their head in contact with the bed of the scanner. As such, when the subject rotates his or her head the rotational center will usually be located near or at the center of the back of the subject's head that is contact with the bed of the scanner. In contrast, any movement along the skin or surface of the patient's head will tend to rotate along a rotational center that is located much higher than the back of the subject's head.
In other words, since brain MRI is generally performed with patients in a supine position, physiologic head rotations are typically centered where the back of the head is supported, which can be approximately 50 to 100 millimeters posterior of the MRI isocenter. Conversely, false marker movements typically involve skin motion at the marker attachment point, which can be at the forehead, nose, teeth, or any other position, and therefore a rotational center can be located 50 to 100 millimeters interior of the MRI isocenter. Based on such assumptions, in some embodiments, a false motion discriminator can be configured to utilize the tracking data from a single marker to estimate the anterior-posterior position of the axis of rotation. Accordingly, in certain embodiments, the false motion discriminator can be configured to provide a confidence level that a given rotation is centered close to the skin attachment point.
In some embodiments, the system or one or more false motion discriminators can be configured to detect or otherwise receive tracking data of one or more markers and determine the center of rotation of the movement. To determine the center of rotation, the system or one or more false motion discriminators can be configured to utilize one or more processes or methods. An embodiment of one of such methods is described below in connection with Appendix A below.
A-P Axis Rotation-Based Discriminator
In certain embodiments, a false motion discriminator can be configured to determine false motion based on the fact that human head movements in the tight space of an MRI radiofrequency (RF) coil are unlikely to involve major rotations about the anterior-posterior (A-P) axis, which can be thought of as connecting the nose to the back of the head of a subject. Additionally, if such rotations occur, they are generally centered at a point towards the neck. In other words, A-P rotations generally occur during motions dominated by left-right movements of the head or head shaking. Conversely, facial skin movements, such as squinting can result in relatively large and fast A-P rotations without proportionate left-right head movements. As such, in certain embodiments, the system or a false motion discriminator thereof can be configured to track and determine the rotation of a particular movement along the A-P axis and the scope thereof and/or determine left-right head movement in order to determine a likelihood of false of true motion. Consequently, a false motion discriminator based on A-P rotations can provide a confidence level that a given A-P rotation is outside of a biomechanically reasonable range in terms of velocity and not associated with a rotational center distant from the neck.
As such, in some embodiments, the system or a false motion discriminator thereof can be configured to determine the velocity of a particular movement or motion and also the rotational movement aroung the A-P axis using one or methods described herein. Based on such data, the system or false motion discriminator thereof can be further configured to determine whether the determined velocity, A-P rotation trend or movement, and/or both is within or outside of a biomechanically reasonable range for determining the likelihood of false or true movement.
Neural Network-Based Discriminator
In some embodiments, the system can comprise one or more false motion discriminators that involve sophisticated pattern recognition or machine learning approaches. For instance, in certain embodiments, a false motion discriminator can be configured to use an artificial neural network that is trained on tracking data from sample subjects who perform rigid head movements as well as non-rigid face movements or false movements, such as squinting, coughing, frowning or the like.
A neural network can be trained to classify motion into rigid-body motion and skin-movement based on data collected from one or more volunteers or sample subjects who can perform both rigid and skin movement. For example, one or more markers can be attached to one or more portions of a volunteer, such as forehead, nose, etc., and a plurality of rigid and skin movement can be inputted into the system. In some embodiments, while the network can be trained using data from one marker, the presence of two markers can provide the network with the true information about the type of motion. In certain embodiments, the system can be binary, for example 0 can correspond to rigid-body motion and 1 can correspond to skin-movement.
Additionally, other well-established and/or non-neural discrimination methods can be utilized to detect conditions indicating false marker movements. For example, some embodiments may utilize a support vector machine for detecting conditions indicating false marker movements.
Complex Tracking Quality Classifier
In some embodiments, the system can comprise a plurality of false motion discriminators, wherein the determined confidence levels or other output of each of the false motion discriminators can be combined in some manner to generate a final output. By utilizing a plurality of false motion discriminators, the accuracy and quality of the system to detect false motions can be substantially improved.
As depicted in
Further, in certain embodiments, the system can further comprise one or more additional false motion discriminators 606. For example, the one or more additional false motion discriminators 606 can utilize one or more neural or probabilistic methods or processes in determining false motion as discussed herein. In some embodiments, the system can be configured to determine first and/or second temporal derivatives of the tracked motion at block 608, which correspond to velocity and acceleration as discussed above. In certain embodiments, the one or more additional false motion discriminators 606 can be configured to utilize the determined velocity and/or acceleration data of the tracked motion in determining the likelihood of false or true motion. In other embodiments, the one or more additional false motion discriminators 606 can be configured to determine a likelihood of false or true motion without utilizing data relating to the velocity and/or acceleration of the tracked motion. In certain embodiments, one or more of a plurality of false motion discriminators can be configured to utilize velocity and/or acceleration data generated from tracked motion while other one or more of the plurality of false motion discriminators can be configured not to utilize the velocity and/or acceleration data in determining the likelihood of false and/or true motion.
In some embodiments, the system can comprise a velocity-based false motion discriminator 610 configured to determine a confidence level regarding the true or false nature of tracked motion. Any such false motion discriminator 610 configured to utilize velocity of the tracked data as basis for determining a likelihood of false motion can use any of such processes or methods described herein.
In certain embodiments, each or some subset of false motion discriminators 604, 606, 610 of the system can be configured to produce or output a confidence level 612. In some embodiments, such confidence levels 612 can be combined in block 614 according to one or more methods or processes. For example, in some embodiments, the system can comprise one or more combination modules.
The system or one or more combination modules thereof can be configured to use one or more methods to combine the one or more confidence levels. For example, the system can be configured to utilize a simple “winner takes all” process. In such embodiments, the overall probability of false marker movement can be defined as the highest confidence level value of individual discriminators, wherein a high confidence level corresponds to a high likelihood of false motion being present. Further, in certain embodiments, the system can be configured to utilize a more sophisticated approach, such as a Bayesian approach.
In some embodiments, the combination module 614 can be configured to combine the one or more confidence levels 612 and generate an output 616. The output 616 can be binary. For example, in certain embodiments, the system can be configured to generate an output of 0 when it determines that a particular movement or motion corresponds to rigid body movement and can generate an output of 1 when it determines that the movement corresponds to skin motion or false movement. In certain embodiments, if the output is 0, then the system can be configured to apply one or more motion correction processes to clarify the image. In contrast, if the output is 1, the system can be configured not to apply any motion correction process despite the fact that motion tracking data was obtained.
Complex Tracking Quality Classifier with External Input
In some embodiments, a system can comprise an additional external input in addition to the one or more false motion discriminators. The system can comprise an additional external input in order to provide an additional input or confidence level generator to further improve the accuracy of the one or more false motion discriminators. For example, in some embodiments, one or more external inputs can be configured to determine one or more external confidence levels. In certain embodiments, such one or more external confidence levels can be combined with the one or more confidence levels determined by the one or more false motion discriminators.
For example, in some embodiments where the system comprises more than one sensor to track motion, an external discriminator of the system may be configured to calculate a confidence measure based on internal consistency of data from multiple sensors. In certain embodiments, an external discriminator may be configured to detect and process acoustic noise from a patient in the medical imaging scanner or therapeutic device, since high acoustic noise levels can be associated with patient discomfort and/or pain and thus an increased probability of false marker movements. Further, in some embodiments, an external discriminator of the system can be configured to utilize video tracking to determine actual movement of the subject.
In some embodiments, one or more confidence levels determined by one or more false motion discriminators 704, 706, 710, utilizing one or more methods or processes described herein can then be further combined in block 716 together and with the one or more external confidence levels 712. The one or more confidence levels determined by the one or more false motion discriminators 704, 706, 710 and the one or more external discriminators can be combined based on a winner takes all process and/or a more complex statistical approach such as a Bayesian approach.
Medical Imaging Scanning System with a Tracking Quality Classifier
As discussed herein, in some embodiments, one or more tracking quality classifiers can be combined with or be part of a medical imaging scanner and/or therapeutic device or system that utilizes motion detection and/or correction systems in order to improve scan quality.
The acquisition of images by the scanner can be controlled by a scanner control module. In some embodiments, prospective motion correction is achieved by sending tracking data to the scanner control module, which continuously adjusts scan parameters, such as slice positions and/or rotations, such that the scan tracks motion of the object of interest. In certain embodiments, the scanner control module can be configured to additionally receive information regarding false marker movement from any one or more tracking quality classifiers as described herein.
If the false marker movement information indicates false marker movement, the system or scanner control module can be configured to take appropriate action to avoid false motion corrections. For example, in some embodiments, the scanner control module or other part or device of the system can be configured to (1) not apply motion correction updates, (2) pause image acquisition until the false marker condition has resolve, (3) acquire “dummy” or place-holder acquisitions and re-acquire real acquisitions once the condition has resolved and/or (4) apply other corrective measures.
As illustrated in
In some embodiments, the tracking quality classifier 804 can comprise one or more false motion discriminators. For example, the tracking quality classifier 804 can comprise a rotation center-based false motion discriminator 806. The tracking quality classifier 804 may comprise one or more additional false motion discriminators 808. For example, the one or more additional discriminators 808 can be configured to detect or determine false motion based on a neural network and/or via a probabilistic process. In certain embodiments, the one or more additional discriminators 808 can be configured to determine or detect false motion based on velocity 810 and/or acceleration of the tracked data.
In certain embodiments, the tracking quality classifier 804 can be configured to determine a first order temporal derivative 810 and/or second or higher order temporal derivatives. In some embodiments, the tracking quality classifier 804 can comprise a velocity-based false motion discriminator 812.
Confidence levels 816 determined by the one or more false motion discriminators and/or one or more external confidence levels 814 can be combined in block 818. For example, the combination may involve a winner takes all approach and/or statistical approach, such as a Bayesian process.
If the tracking quality classifier 804 determines that false movement or false marker movement was likely present for a particular period of time, the system can be configured to transmit the false marker movement related data 820 and the tracking data 802 of that period to a scanner control module 822. The scanner control module 822 can be configured to respond utilizing any of the methods discussed above in controlling the scanner 824.
False Motion Classifier with Differential Motion Discriminator
As discussed above, in some embodiments, a motion detection and/or correction system for a medical imaging scanner and/or therapeutic device can comprise one or more markers or trackers. For such systems, in certain embodiments, a false motion classifier or tracking quality classifier can comprise one or more differential motion discriminators. Such differential motion discriminators can be configured to track the motion of two or more markers relative to each other and utilize such data to determine whether rigid body movement or facial movement or false movement was involved.
A differential motion discriminator 918 can be configured to detect and/or track movement or motion of the plurality of markers 902, 904 relative to each other. For example, the differential motion discriminator 918 can be configured to determine the distance and/or relative location of two or more markers 902, 904 relative to each other. In certain embodiments, the differential motion discriminator 918 can further be configured to determine a first order and/or second order temporal derivative of the relative location of the two or more markers 902, 904 to determine a velocity and/or acceleration of movement of the two or more markers 902, 904 relative to each other. The basic assumption can be that when a rigid body movement occurs, all or substantially all markers located on the subject move together, thereby not moving or substantially not moving relative to each other. However, when skin movement or false movement occurs, the location of one or more markers relative to others can change, rather abruptly in certain circumstances.
As such, in some embodiments, the system can be configured to determine that a high likelihood of false movement is present when the relative movement between two or more markers present on a subject is above a certain threshold, percentage, or ratio. Similarly, in certain embodiments, the system can be configured to determine that a high likelihood of false movement is present when a first order temporal derivative of relative location of two or more markers or velocity of relative movement is above a certain threshold, percentage, or ratio.
In certain embodiments, the differential motion discriminator 918 can be configured to generate a confidence level 916, 918 similar to those discussed above. In some embodiments, confidence levels 916 determined by one or more false movement discriminators 910, 912, 914 with respect to a first marker 902, confidence levels 918 determined by one or more false movement discriminators 922, 924, 926 with respect to a second marker 904, and/or a confidence level determined by a differential motion discriminator 918 based on both the first and second markers 902, 904 can be combined in block 930 using any of the combination methods or process discussed herein. Further, the system can be configured to generate one or more outputs, such as a binary output as discussed above in block 932.
In some embodiments, the differential motion discriminator 918 may provide the highest overall accuracy compared to the other false motion discriminators based on a single marker. However, for systems that utilize only a single marker, other false motion discriminators configured to determine false motion based on tracking data provided by a single marker may be important. Further, since false-negative events, where false tracking is not detected, but not false-positive events, may cause deterioration of MRI scan quality, it can be important to minimize the false-negative rate. The false-negative rate can be minimized by optimizing one or more thresholds for the one or more false motion discriminators.
Variations
Specific embodiments have been described in detail above with emphasis on medical application and in particular MRI examination of a patient's head. However, the teachings of the present invention can be utilized for other MRI examinations of other body parts where movements of up to six degrees of freedom are possible. In addition medical procedures involving imaging devices other than MRI equipment (e.g., CT, PET, ultrasound, plain radiography, and others) may benefit from the teaching of the present invention. The teachings of the present invention may be useful in many non-medical applications where tracking of a target having several degrees of freedom are possible. Some of these applications could be military applications. Furthermore, while particular algorithms are disclosed, variations, combinations, and subcombinations are also possible.
Computing System
In some embodiments, the computer clients and/or servers described above take the form of a computing system illustrated in
False Motion Detection System
In an embodiment, the system 1000 comprises a false motion detection system module 1014 that carries out the functions described herein with reference to false motion detection, including any one of the false motion detection and/or combination methods described above. The false motion detection system module 1014 may be executed on the computing system 1000 by a central processing unit 1004 discussed further below.
In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, COBOL, CICS, Java, Lua, C or C++ or Objective C. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.
Computing System Components
In an embodiment, the computing system 1000 also comprises a workstation or other computing devices suitable for controlling and/or communicating with large databases, performing transaction processing, and generating reports from large databases. The computing system 1000 also comprises a central processing unit (“CPU”) 1004, which may comprise a conventional microprocessor. The computing system 1000 further comprises a memory 1008, such as random access memory (“RAM”) for temporary storage of information and/or a read only memory (“ROM”) for permanent storage of information, and a mass storage device 1002, such as a hard drive, diskette, or optical media storage device. Typically, the modules of the computing system 1000 are connected to the computer using a standards based bus system. In different embodiments, the standards based bus system could be Peripheral Component Interconnect (PCI), Microchannel, SCSI, Industrial Standard Architecture (ISA) and Extended ISA (EISA) architectures, for example.
The computing system 1000 comprises one or more commonly available input/output (I/O) devices and interfaces 1012, such as a keyboard, mouse, touchpad, and printer. In one embodiment, the I/O devices and interfaces 1012 comprise one or more display devices, such as a monitor, that allows the visual presentation of data to a user. More particularly, a display device provides for the presentation of GUIs, application software data, and multimedia presentations, for example. In the embodiment of
Computing System Device/Operating System
The computing system 1000 may run on a variety of computing devices, such as, for example, a mobile device or a server or a desktop or a workstation, a Windows server, an Structure Query Language server, a Unix server, a personal computer, a mainframe computer, a laptop computer, a cell phone, a personal digital assistant, a kiosk, an audio player, a smartphone, a tablet computing device, and so forth. The computing system 1000 is generally controlled and coordinated by operating system software, such as iOS, z/OS, Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Linux, BSD, SunOS, Solaris, or other compatible operating systems. In Macintosh systems, the operating system may be any available operating system, such as MAC OS X. In other embodiments, the computing system 1000 may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, and I/O services, and provide a user interface, such as a graphical user interface (“GUI”), among other things.
Network
In the embodiment of
Access to the motion correction control system module 1014 of the computer system 1000 by computing systems 1020 and/or by data sources 1022 may be through a web-enabled user access point such as the computing systems' 1020 or data source's 1022 personal computer, cellular phone, laptop, or other device capable of connecting to the network 1018. Such a device may have a browser module is implemented as a module that uses text, graphics, audio, video, and other media to present data and to allow interaction with data via the network 1018.
The browser module may be implemented as a combination of an all points addressable display such as a cathode-ray tube (CRT), a liquid crystal display (LCD), a plasma display, touch screen display or other types and/or combinations of displays. In addition, the browser module may be implemented to communicate with input devices 1012 and may also comprise software with the appropriate interfaces which allow a user to access data through the use of stylized screen elements such as, for example, menus, windows, dialog boxes, toolbars, and controls (for example, radio buttons, check boxes, sliding scales, and so forth). Furthermore, the browser module may communicate with a set of input and output devices to receive signals from the user.
The input device(s) may comprise a keyboard, roller ball, pen and stylus, mouse, trackball, voice recognition system, or pre-designated switches or buttons. The output device(s) may comprise a speaker, a display screen, a printer, or a voice synthesizer. In addition a touch screen may act as a hybrid input/output device. In another embodiment, a user may interact with the system more directly such as through a system terminal connected to the score generator without communications over the Internet, a WAN, or LAN, or similar network.
In some embodiments, the system 1000 may comprise a physical or logical connection established between a remote microprocessor and a mainframe host computer for the express purpose of uploading, downloading, or viewing interactive data and databases on-line in real time. The remote microprocessor may be operated by an entity operating the computer system 1000, including the client server systems or the main server system, an/or may be operated by one or more of the data sources 1022 and/or one or more of the computing systems. In some embodiments, terminal emulation software may be used on the microprocessor for participating in the micro-mainframe link.
In some embodiments, computing systems 1020 that are internal to an entity operating the computer system 1000 may access the motion correction control system module 1014 internally as an application or process run by the CPU 1004.
User Access Point
In an embodiment, the computing system 1000 comprises a computing system, a smartphone, a tablet computing device, a mobile device, a personal computer, a laptop computer, a portable computing device, a server, a computer workstation, a local area network of individual computers, an interactive kiosk, a personal digital assistant, an interactive wireless communications device, a handheld computer, an embedded computing device, or the like.
Other Systems
In addition to the systems that are illustrated in
Although this invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while several variations of the embodiments of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the embodiments of the disclosed invention. Any methods disclosed herein need not be performed in the order recited. Thus, it is intended that the scope of the invention herein disclosed should not be limited by the particular embodiments described above.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The headings used herein are for the convenience of the reader only and are not meant to limit the scope of the inventions or claims.
The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 3 mm” includes “3 mm.”
The headings provided herein, if any, are for convenience only and do not necessarily affect the scope or meaning of the devices and methods disclosed herein.
The present application is a continuation of U.S. patent application Ser. No. 15/222,811, filed Jul. 28, 2016, and titled “SYSTEMS, DEVICES, AND METHODS FOR DETECTING FALSE MOVEMENTS FOR MOTION CORRECTION DURING A MEDICAL IMAGING SCAN,” which claims the benefit under 35 U.S.C. § 119(c) of U.S. Provisional Application No. 62/198,079, filed Jul. 28, 2015, and titled “DETECTION OF FALSE MOVEMENTS FOR PROSPECTIVE MOTION CORRECTION FOR BIOMEDICAL IMAGING.” Each of the foregoing applications is hereby incorporated herein by reference in its entirety under 37 C.F.R. § 1.57.
This invention was made with government support under grant number R01DA021146-01A1 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3811213 | Eaves | May 1974 | A |
4689999 | Shkedi | Sep 1987 | A |
4724386 | Haacke et al. | Feb 1988 | A |
4894129 | Leiponen et al. | Jan 1990 | A |
4923295 | Sireul et al. | May 1990 | A |
4953554 | Zerhouni et al. | Sep 1990 | A |
4988886 | Palum et al. | Jan 1991 | A |
5075562 | Greivenkamp et al. | Dec 1991 | A |
5318026 | Pelc | Jun 1994 | A |
5515711 | Hinkle | May 1996 | A |
5545993 | Taguchi et al. | Aug 1996 | A |
5615677 | Pelc et al. | Apr 1997 | A |
5687725 | Wendt | Nov 1997 | A |
5728935 | Czompo | Mar 1998 | A |
5802202 | Yamada et al. | Sep 1998 | A |
5808376 | Gordon et al. | Sep 1998 | A |
5835223 | Zawemer et al. | Nov 1998 | A |
5877732 | Ziarati | Mar 1999 | A |
5886257 | Gustafson et al. | Mar 1999 | A |
5889505 | Toyama | Mar 1999 | A |
5891060 | McGregor | Apr 1999 | A |
5936722 | Armstrong et al. | Aug 1999 | A |
5936723 | Schmidt et al. | Aug 1999 | A |
5947900 | Derbyshire et al. | Sep 1999 | A |
5987349 | Schulz | Nov 1999 | A |
6016439 | Acker | Jan 2000 | A |
6031888 | Ivan et al. | Feb 2000 | A |
6044308 | Huissoon | Mar 2000 | A |
6057680 | Foo et al. | May 2000 | A |
6057685 | Zhou | May 2000 | A |
6061644 | Leis | May 2000 | A |
6088482 | He | Jul 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6175756 | Ferre | Jan 2001 | B1 |
6236737 | Gregson et al. | May 2001 | B1 |
6246900 | Cosman et al. | Jun 2001 | B1 |
6279579 | Riaziat et al. | Aug 2001 | B1 |
6285902 | Kienzle, III et al. | Sep 2001 | B1 |
6289235 | Webber | Sep 2001 | B1 |
6292683 | Gupta et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6381485 | Hunter et al. | Apr 2002 | B1 |
6384908 | Schmidt et al. | May 2002 | B1 |
6390982 | Bova et al. | May 2002 | B1 |
6402762 | Hunter et al. | Jun 2002 | B2 |
6405072 | Cosman | Jun 2002 | B1 |
6421551 | Kuth et al. | Jul 2002 | B1 |
6467905 | Stahl et al. | Oct 2002 | B1 |
6474159 | Foxlin et al. | Nov 2002 | B1 |
6484131 | Amoral-Moriya et al. | Nov 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6587707 | Nehrke et al. | Jul 2003 | B2 |
6621889 | Mostafavi | Sep 2003 | B1 |
6650920 | Schaldach et al. | Nov 2003 | B2 |
6662036 | Cosman | Dec 2003 | B2 |
6687528 | Gupta et al. | Feb 2004 | B2 |
6690965 | Riaziat et al. | Feb 2004 | B1 |
6711431 | Sarin et al. | Mar 2004 | B2 |
6731970 | Schlossbauer et al. | May 2004 | B2 |
6758218 | Anthony | Jul 2004 | B2 |
6771997 | Schaffer | Aug 2004 | B2 |
6794869 | Brittain | Sep 2004 | B2 |
6856827 | Seeley et al. | Feb 2005 | B2 |
6856828 | Cossette et al. | Feb 2005 | B2 |
6876198 | Watanabe et al. | Apr 2005 | B2 |
6888924 | Claus et al. | May 2005 | B2 |
6891374 | Brittain | May 2005 | B2 |
6892089 | Prince et al. | May 2005 | B1 |
6897655 | Brittain et al. | May 2005 | B2 |
6913603 | Knopp et al. | Jul 2005 | B2 |
6937696 | Mostafavi | Aug 2005 | B1 |
6959266 | Mostafavi | Oct 2005 | B1 |
6973202 | Mostafavi | Dec 2005 | B2 |
6980679 | Jeung et al. | Dec 2005 | B2 |
7007699 | Martinelli et al. | Mar 2006 | B2 |
7107091 | Jutras et al. | Sep 2006 | B2 |
7110805 | Machida | Sep 2006 | B2 |
7123758 | Jeung et al. | Oct 2006 | B2 |
7171257 | Thomson | Jan 2007 | B2 |
7173426 | Bulumulla et al. | Feb 2007 | B1 |
7176440 | Cofer et al. | Feb 2007 | B2 |
7191100 | Mostafavi | Mar 2007 | B2 |
7204254 | Riaziat et al. | Apr 2007 | B2 |
7209777 | Saranathan et al. | Apr 2007 | B2 |
7209977 | Acharya et al. | Apr 2007 | B2 |
7260253 | Rahn et al. | Aug 2007 | B2 |
7260426 | Schweikard et al. | Aug 2007 | B2 |
7295007 | Dold | Nov 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7327865 | Fu et al. | Feb 2008 | B2 |
7348776 | Aksoy et al. | Mar 2008 | B1 |
7403638 | Jeung et al. | Jul 2008 | B2 |
7494277 | Setala | Feb 2009 | B2 |
7498811 | Macfarlane et al. | Mar 2009 | B2 |
7502413 | Guillaume | Mar 2009 | B2 |
7505805 | Kuroda | Mar 2009 | B2 |
7535411 | Falco | May 2009 | B2 |
7551089 | Sawyer | Jun 2009 | B2 |
7561909 | Pai et al. | Jul 2009 | B1 |
7567697 | Mostafavi | Jul 2009 | B2 |
7573269 | Yao | Aug 2009 | B2 |
7602301 | Stirling et al. | Oct 2009 | B1 |
7603155 | Jensen | Oct 2009 | B2 |
7623623 | Raanes et al. | Nov 2009 | B2 |
7657300 | Hunter et al. | Feb 2010 | B2 |
7657301 | Mate et al. | Feb 2010 | B2 |
7659521 | Pedroni | Feb 2010 | B2 |
7660623 | Hunter et al. | Feb 2010 | B2 |
7668288 | Conwell et al. | Feb 2010 | B2 |
7689263 | Fung et al. | Mar 2010 | B1 |
7702380 | Dean | Apr 2010 | B1 |
7715604 | Sun et al. | May 2010 | B2 |
7742077 | Sablak et al. | Jun 2010 | B2 |
7742621 | Hammoud et al. | Jun 2010 | B2 |
7742804 | Faul et al. | Jun 2010 | B2 |
7744528 | Wallace et al. | Jun 2010 | B2 |
7760908 | Curtner et al. | Jul 2010 | B2 |
7766837 | Pedrizzetti et al. | Aug 2010 | B2 |
7769430 | Mostafavi | Aug 2010 | B2 |
7772569 | Bewersdorf et al. | Aug 2010 | B2 |
7787011 | Zhou et al. | Aug 2010 | B2 |
7787935 | Dumoulin et al. | Aug 2010 | B2 |
7791808 | French et al. | Sep 2010 | B2 |
7792249 | Gertner et al. | Sep 2010 | B2 |
7796154 | Senior et al. | Sep 2010 | B2 |
7798730 | Westerweck | Sep 2010 | B2 |
7801330 | Zhang et al. | Sep 2010 | B2 |
7805987 | Smith | Oct 2010 | B1 |
7806604 | Bazakos et al. | Oct 2010 | B2 |
7817046 | Coveley et al. | Oct 2010 | B2 |
7817824 | Liang et al. | Oct 2010 | B2 |
7819818 | Ghajar | Oct 2010 | B2 |
7833221 | Voegele | Nov 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7835783 | Aletras | Nov 2010 | B1 |
7839551 | Lee et al. | Nov 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7844094 | Jeung et al. | Nov 2010 | B2 |
7844320 | Shahidi | Nov 2010 | B2 |
7850526 | Zalewski et al. | Dec 2010 | B2 |
7860301 | Se et al. | Dec 2010 | B2 |
7866818 | Schroeder et al. | Jan 2011 | B2 |
7868282 | Lee et al. | Jan 2011 | B2 |
7878652 | Chen et al. | Feb 2011 | B2 |
7883415 | Larsen et al. | Feb 2011 | B2 |
7889907 | Engelbart et al. | Feb 2011 | B2 |
7894877 | Lewin et al. | Feb 2011 | B2 |
7902825 | Bammer et al. | Mar 2011 | B2 |
7907987 | Dempsey | Mar 2011 | B2 |
7908060 | Basson et al. | Mar 2011 | B2 |
7908233 | Angell et al. | Mar 2011 | B2 |
7911207 | Macfarlane et al. | Mar 2011 | B2 |
7912532 | Schmidt et al. | Mar 2011 | B2 |
7920250 | Robert et al. | Apr 2011 | B2 |
7920911 | Hoshino et al. | Apr 2011 | B2 |
7925066 | Ruohonen et al. | Apr 2011 | B2 |
7925549 | Looney et al. | Apr 2011 | B2 |
7931370 | Bartomeu | Apr 2011 | B2 |
7944354 | Kangas et al. | May 2011 | B2 |
7944454 | Zhou et al. | May 2011 | B2 |
7945304 | Feinberg | May 2011 | B2 |
7946921 | Ofek et al. | May 2011 | B2 |
7962197 | Rioux et al. | Jun 2011 | B2 |
7971999 | Zinser | Jul 2011 | B2 |
7977942 | White | Jul 2011 | B2 |
7978925 | Souchard | Jul 2011 | B1 |
7988288 | Donaldson | Aug 2011 | B2 |
7990365 | Marvit et al. | Aug 2011 | B2 |
8005571 | Sutherland et al. | Aug 2011 | B2 |
8009198 | Alhadef | Aug 2011 | B2 |
8019170 | Wang et al. | Sep 2011 | B2 |
8021231 | Walker et al. | Sep 2011 | B2 |
8022982 | Thorn | Sep 2011 | B2 |
8024026 | Groszmann | Sep 2011 | B2 |
8031909 | Se et al. | Oct 2011 | B2 |
8031933 | Se et al. | Oct 2011 | B2 |
8036425 | Hou | Oct 2011 | B2 |
8041077 | Bell | Oct 2011 | B2 |
8041412 | Glossop et al. | Oct 2011 | B2 |
8048002 | Ghajar | Nov 2011 | B2 |
8049867 | Bridges et al. | Nov 2011 | B2 |
8055020 | Meuter et al. | Nov 2011 | B2 |
8055049 | Stayman et al. | Nov 2011 | B2 |
8060185 | Hunter et al. | Nov 2011 | B2 |
8063929 | Kurtz et al. | Nov 2011 | B2 |
8073197 | Xu et al. | Dec 2011 | B2 |
8077914 | Kaplan | Dec 2011 | B1 |
8085302 | Zhang et al. | Dec 2011 | B2 |
8086026 | Schulz | Dec 2011 | B2 |
8086299 | Adler et al. | Dec 2011 | B2 |
RE43147 | Aviv | Jan 2012 | E |
8094193 | Peterson | Jan 2012 | B2 |
8095203 | Wright et al. | Jan 2012 | B2 |
8095209 | Flaherty | Jan 2012 | B2 |
8098889 | Zhu et al. | Jan 2012 | B2 |
8113991 | Kutliroff | Feb 2012 | B2 |
8116527 | Sabol | Feb 2012 | B2 |
8121356 | Friedman | Feb 2012 | B2 |
8121361 | Ernst et al. | Feb 2012 | B2 |
8134597 | Thorn | Mar 2012 | B2 |
8135201 | Smith et al. | Mar 2012 | B2 |
8139029 | Boillot | Mar 2012 | B2 |
8139896 | Ahiska | Mar 2012 | B1 |
8144118 | Hildreth | Mar 2012 | B2 |
8144148 | El Dokor | Mar 2012 | B2 |
8150063 | Chen | Apr 2012 | B2 |
8150498 | Gielen et al. | Apr 2012 | B2 |
8160304 | Rhoads | Apr 2012 | B2 |
8165844 | Luinge et al. | Apr 2012 | B2 |
8167802 | Baba et al. | May 2012 | B2 |
8172573 | Sonenfeld et al. | May 2012 | B2 |
8175332 | Herrington | May 2012 | B2 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8180428 | Kaiser et al. | May 2012 | B2 |
8180432 | Sayeh | May 2012 | B2 |
8187097 | Zhang | May 2012 | B1 |
8189869 | Bell | May 2012 | B2 |
8189889 | Pearlstein et al. | May 2012 | B2 |
8189926 | Sharma | May 2012 | B2 |
8190233 | Dempsey | May 2012 | B2 |
8191359 | White et al. | Jun 2012 | B2 |
8194134 | Furukawa | Jun 2012 | B2 |
8195084 | Xiao | Jun 2012 | B2 |
8199983 | Qureshi | Jun 2012 | B2 |
8206219 | Shum | Jun 2012 | B2 |
8207967 | El Dokor | Jun 2012 | B1 |
8208758 | Wang | Jun 2012 | B2 |
8213693 | Li | Jul 2012 | B1 |
8214012 | Zuccolotto et al. | Jul 2012 | B2 |
8214016 | Lavallee et al. | Jul 2012 | B2 |
8216016 | Yamagishi et al. | Jul 2012 | B2 |
8218818 | Cobb | Jul 2012 | B2 |
8218819 | Cobb | Jul 2012 | B2 |
8218825 | Gordon | Jul 2012 | B2 |
8221399 | Amano | Jul 2012 | B2 |
8223147 | El Dokor | Jul 2012 | B1 |
8224423 | Faul | Jul 2012 | B2 |
8226574 | Whillock | Jul 2012 | B2 |
8229163 | Coleman | Jul 2012 | B2 |
8229166 | Teng | Jul 2012 | B2 |
8229184 | Benkley | Jul 2012 | B2 |
8232872 | Zeng | Jul 2012 | B2 |
8235529 | Raffle | Aug 2012 | B1 |
8235530 | Maad | Aug 2012 | B2 |
8241125 | Huges | Aug 2012 | B2 |
8243136 | Aota | Aug 2012 | B2 |
8243269 | Matousek | Aug 2012 | B2 |
8243996 | Steinberg | Aug 2012 | B2 |
8248372 | Saila | Aug 2012 | B2 |
8249691 | Chase et al. | Aug 2012 | B2 |
8253770 | Kurtz | Aug 2012 | B2 |
8253774 | Huitema | Aug 2012 | B2 |
8253778 | Atsushi | Aug 2012 | B2 |
8259109 | El Dokor | Sep 2012 | B2 |
8260036 | Hamza et al. | Sep 2012 | B2 |
8279288 | Son | Oct 2012 | B2 |
8284157 | Markovic | Oct 2012 | B2 |
8284847 | Adermann | Oct 2012 | B2 |
8287373 | Marks et al. | Oct 2012 | B2 |
8289390 | Aggarwal | Oct 2012 | B2 |
8289392 | Senior et al. | Oct 2012 | B2 |
8290208 | Kurtz | Oct 2012 | B2 |
8290229 | Qureshi | Oct 2012 | B2 |
8295573 | Bredno et al. | Oct 2012 | B2 |
8301226 | Csavoy et al. | Oct 2012 | B2 |
8306260 | Zhu | Nov 2012 | B2 |
8306267 | Gossweiler, III | Nov 2012 | B1 |
8306274 | Grycewicz | Nov 2012 | B2 |
8306663 | Wickham | Nov 2012 | B2 |
8310656 | Zalewski | Nov 2012 | B2 |
8310662 | Mehr | Nov 2012 | B2 |
8311611 | Csavoy et al. | Nov 2012 | B2 |
8314854 | Yoon | Nov 2012 | B2 |
8315691 | Sumanaweera et al. | Nov 2012 | B2 |
8316324 | Boillot | Nov 2012 | B2 |
8320621 | McEldowney | Nov 2012 | B2 |
8320709 | Arartani et al. | Nov 2012 | B2 |
8323106 | Zalewski | Dec 2012 | B2 |
8325228 | Mariadoss | Dec 2012 | B2 |
8330811 | Maguire, Jr. | Dec 2012 | B2 |
8330812 | Maguire, Jr. | Dec 2012 | B2 |
8331019 | Cheong | Dec 2012 | B2 |
8334900 | Qu et al. | Dec 2012 | B2 |
8339282 | Noble | Dec 2012 | B2 |
8351651 | Lee | Jan 2013 | B2 |
8368586 | Mohamadi | Feb 2013 | B2 |
8369574 | Hu | Feb 2013 | B2 |
8374393 | Cobb | Feb 2013 | B2 |
8374411 | Ernst et al. | Feb 2013 | B2 |
8374674 | Gertner | Feb 2013 | B2 |
8376226 | Dennard | Feb 2013 | B2 |
8376827 | Cammegh | Feb 2013 | B2 |
8379927 | Taylor | Feb 2013 | B2 |
8380284 | Saranathan et al. | Feb 2013 | B2 |
8386011 | Wieczorek | Feb 2013 | B2 |
8390291 | Macfarlane et al. | Mar 2013 | B2 |
8390729 | Long | Mar 2013 | B2 |
8395620 | El Dokor | Mar 2013 | B2 |
8396654 | Simmons et al. | Mar 2013 | B1 |
8400398 | Schoen | Mar 2013 | B2 |
8400490 | Apostolopoulos | Mar 2013 | B2 |
8405491 | Fong | Mar 2013 | B2 |
8405656 | El Dokor | Mar 2013 | B2 |
8405717 | Kim | Mar 2013 | B2 |
8406845 | Komistek et al. | Mar 2013 | B2 |
8411931 | Zhou | Apr 2013 | B2 |
8427538 | Ahiska | Apr 2013 | B2 |
8428319 | Tsin et al. | Apr 2013 | B2 |
8571293 | Ernst et al. | Oct 2013 | B2 |
8600213 | Mestha et al. | Dec 2013 | B2 |
8615127 | Fitzpatrick | Dec 2013 | B2 |
8617081 | Mestha et al. | Dec 2013 | B2 |
8744154 | Van Den Brink | Jun 2014 | B2 |
8747382 | D'Souza | Jun 2014 | B2 |
8768438 | Mestha et al. | Jul 2014 | B2 |
8790269 | Xu et al. | Jul 2014 | B2 |
8792969 | Bernal et al. | Jul 2014 | B2 |
8805019 | Jeanne et al. | Aug 2014 | B2 |
8848977 | Bammer et al. | Sep 2014 | B2 |
8855384 | Kyal et al. | Oct 2014 | B2 |
8862420 | Ferran et al. | Oct 2014 | B2 |
8873812 | Larlus-Larrondo et al. | Oct 2014 | B2 |
8953847 | Moden | Feb 2015 | B2 |
8971985 | Bernal et al. | Mar 2015 | B2 |
8977347 | Mestha et al. | Mar 2015 | B2 |
8995754 | Wu et al. | Mar 2015 | B2 |
8996094 | Schouenborg et al. | Mar 2015 | B2 |
9020185 | Mestha et al. | Apr 2015 | B2 |
9036877 | Kyal et al. | May 2015 | B2 |
9076212 | Ernst et al. | Jul 2015 | B2 |
9082177 | Sebok | Jul 2015 | B2 |
9084629 | Rosa | Jul 2015 | B1 |
9103897 | Herbst et al. | Aug 2015 | B2 |
9138175 | Ernst et al. | Sep 2015 | B2 |
9173715 | Baumgartner | Nov 2015 | B2 |
9176932 | Baggen et al. | Nov 2015 | B2 |
9194929 | Siegert et al. | Nov 2015 | B2 |
9226691 | Bernal et al. | Jan 2016 | B2 |
9305365 | Lovberg et al. | Apr 2016 | B2 |
9318012 | Johnson | Apr 2016 | B2 |
9336594 | Kyal et al. | May 2016 | B2 |
9395386 | Corder et al. | Jul 2016 | B2 |
9433386 | Mestha et al. | Sep 2016 | B2 |
9436277 | Furst et al. | Sep 2016 | B2 |
9443289 | Xu et al. | Sep 2016 | B2 |
9451926 | Kinahan et al. | Sep 2016 | B2 |
9453898 | Nielsen et al. | Sep 2016 | B2 |
9504426 | Kyal et al. | Nov 2016 | B2 |
9606209 | Ernst et al. | Mar 2017 | B2 |
9607377 | Lovberg et al. | Mar 2017 | B2 |
9629595 | Walker | Apr 2017 | B2 |
9693710 | Mestha et al. | Jul 2017 | B2 |
9717461 | Yu et al. | Aug 2017 | B2 |
9734589 | Yu et al. | Aug 2017 | B2 |
9779502 | Lovberg et al. | Oct 2017 | B1 |
9782141 | Yu et al. | Oct 2017 | B2 |
9943247 | Ernst | Apr 2018 | B2 |
20020082496 | Kuth | Jun 2002 | A1 |
20020087101 | Barrick et al. | Jul 2002 | A1 |
20020091422 | Greenberg et al. | Jul 2002 | A1 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20020180436 | Dale et al. | Dec 2002 | A1 |
20020188194 | Cosman | Dec 2002 | A1 |
20030063292 | Mostafavi | Apr 2003 | A1 |
20030088177 | Totterman et al. | May 2003 | A1 |
20030116166 | Anthony | Jun 2003 | A1 |
20030130574 | Stoyle | Jul 2003 | A1 |
20030195526 | Vilsmeier | Oct 2003 | A1 |
20040071324 | Norris et al. | Apr 2004 | A1 |
20040116804 | Mostafavi | Jun 2004 | A1 |
20040140804 | Polzin et al. | Jul 2004 | A1 |
20040171927 | Lowen et al. | Sep 2004 | A1 |
20050027194 | Adler et al. | Feb 2005 | A1 |
20050054910 | Tremblay et al. | Mar 2005 | A1 |
20050070784 | Komura et al. | Mar 2005 | A1 |
20050105772 | Voronka et al. | May 2005 | A1 |
20050107685 | Seeber | May 2005 | A1 |
20050137475 | Dold | Jun 2005 | A1 |
20050148845 | Dean et al. | Jul 2005 | A1 |
20050148854 | Ito et al. | Jul 2005 | A1 |
20050283068 | Zuccoloto et al. | Dec 2005 | A1 |
20060004281 | Saracen | Jan 2006 | A1 |
20060045310 | Tu et al. | Mar 2006 | A1 |
20060074292 | Thomson et al. | Apr 2006 | A1 |
20060241405 | Leitner et al. | Oct 2006 | A1 |
20070049794 | Glassenberg et al. | Mar 2007 | A1 |
20070093709 | Abernathie | Apr 2007 | A1 |
20070189386 | Imagawa | Aug 2007 | A1 |
20070206836 | Yoon | Sep 2007 | A1 |
20070239169 | Plaskos et al. | Oct 2007 | A1 |
20070280508 | Ernst et al. | Dec 2007 | A1 |
20080039713 | Thomson et al. | Feb 2008 | A1 |
20080181358 | Van Kampen et al. | Jul 2008 | A1 |
20080183074 | Carls et al. | Jul 2008 | A1 |
20080208012 | Ali | Aug 2008 | A1 |
20080212835 | Tavor | Sep 2008 | A1 |
20080221442 | Tolowsky et al. | Sep 2008 | A1 |
20080273754 | Hick et al. | Nov 2008 | A1 |
20080287728 | Mostafavi | Nov 2008 | A1 |
20080287780 | Chase et al. | Nov 2008 | A1 |
20080317313 | Goddard et al. | Dec 2008 | A1 |
20090028411 | Pfeuffer | Jan 2009 | A1 |
20090041200 | Lu | Feb 2009 | A1 |
20090052760 | Smith et al. | Feb 2009 | A1 |
20090185663 | Gaines, Jr. et al. | Jul 2009 | A1 |
20090187112 | Meir et al. | Jul 2009 | A1 |
20090209846 | Bammer | Aug 2009 | A1 |
20090253985 | Shachar et al. | Oct 2009 | A1 |
20090304297 | Adabala et al. | Dec 2009 | A1 |
20090306499 | Van Vorhis et al. | Dec 2009 | A1 |
20100054579 | Okutomi | Mar 2010 | A1 |
20100057059 | Makino | Mar 2010 | A1 |
20100059679 | Albrecht | Mar 2010 | A1 |
20100069742 | Partain et al. | Mar 2010 | A1 |
20100091089 | Cromwell et al. | Apr 2010 | A1 |
20100099981 | Fishel | Apr 2010 | A1 |
20100125191 | Sahin | May 2010 | A1 |
20100137709 | Gardner et al. | Jun 2010 | A1 |
20100148774 | Kamata | Jun 2010 | A1 |
20100149099 | Elias | Jun 2010 | A1 |
20100149315 | Qu | Jun 2010 | A1 |
20100160775 | Pankratov | Jun 2010 | A1 |
20100164862 | Sullivan | Jul 2010 | A1 |
20100165293 | Tanassi et al. | Jul 2010 | A1 |
20100167246 | Ghajar | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100177929 | Kurtz | Jul 2010 | A1 |
20100178966 | Suydoux | Jul 2010 | A1 |
20100179390 | Davis | Jul 2010 | A1 |
20100179413 | Kadour et al. | Jul 2010 | A1 |
20100183196 | Fu et al. | Jul 2010 | A1 |
20100191631 | Weidmann | Jul 2010 | A1 |
20100194879 | Pasveer | Aug 2010 | A1 |
20100198067 | Mahfouz | Aug 2010 | A1 |
20100198101 | Song | Aug 2010 | A1 |
20100198112 | Maad | Aug 2010 | A1 |
20100199232 | Mistry | Aug 2010 | A1 |
20100210350 | Walker | Aug 2010 | A9 |
20100214267 | Radivojevic | Aug 2010 | A1 |
20100231511 | Henty | Sep 2010 | A1 |
20100231692 | Perlman | Sep 2010 | A1 |
20100245536 | Huitema | Sep 2010 | A1 |
20100245593 | Kim | Sep 2010 | A1 |
20100251924 | Taylor | Oct 2010 | A1 |
20100253762 | Cheong | Oct 2010 | A1 |
20100268072 | Hall et al. | Oct 2010 | A1 |
20100277571 | Xu | Nov 2010 | A1 |
20100282902 | Rajasingham | Nov 2010 | A1 |
20100283833 | Yeh | Nov 2010 | A1 |
20100284119 | Coakley | Nov 2010 | A1 |
20100289899 | Hendron | Nov 2010 | A1 |
20100290668 | Friedman | Nov 2010 | A1 |
20100292841 | Wickham | Nov 2010 | A1 |
20100295718 | Mohamadi | Nov 2010 | A1 |
20100296701 | Hu | Nov 2010 | A1 |
20100302142 | French | Dec 2010 | A1 |
20100303289 | Polzin | Dec 2010 | A1 |
20100311512 | Lock | Dec 2010 | A1 |
20100321505 | Kokubun | Dec 2010 | A1 |
20100328055 | Fong | Dec 2010 | A1 |
20100328201 | Marbit | Dec 2010 | A1 |
20100328267 | Chen | Dec 2010 | A1 |
20100330912 | Saila | Dec 2010 | A1 |
20110001699 | Jacobsen | Jan 2011 | A1 |
20110006991 | Elias | Jan 2011 | A1 |
20110007939 | Teng | Jan 2011 | A1 |
20110007946 | Liang | Jan 2011 | A1 |
20110008759 | Usui | Jan 2011 | A1 |
20110015521 | Faul | Jan 2011 | A1 |
20110019001 | Rhoads | Jan 2011 | A1 |
20110025853 | Richardson | Feb 2011 | A1 |
20110038520 | Yui | Feb 2011 | A1 |
20110043631 | Marman | Feb 2011 | A1 |
20110043759 | Bushinsky | Feb 2011 | A1 |
20110050562 | Schoen | Mar 2011 | A1 |
20110050569 | Marvit | Mar 2011 | A1 |
20110050947 | Marman | Mar 2011 | A1 |
20110052002 | Cobb | Mar 2011 | A1 |
20110052003 | Cobb | Mar 2011 | A1 |
20110052015 | Saund | Mar 2011 | A1 |
20110054870 | Dariush | Mar 2011 | A1 |
20110057816 | Noble | Mar 2011 | A1 |
20110058020 | Dieckmann | Mar 2011 | A1 |
20110064290 | Punithakaumar | Mar 2011 | A1 |
20110069207 | Steinberg | Mar 2011 | A1 |
20110074675 | Shiming | Mar 2011 | A1 |
20110081000 | Gertner | Apr 2011 | A1 |
20110081043 | Sabol | Apr 2011 | A1 |
20110085704 | Han | Apr 2011 | A1 |
20110092781 | Gertner | Apr 2011 | A1 |
20110102549 | Takahashi | May 2011 | A1 |
20110105883 | Lake et al. | May 2011 | A1 |
20110105893 | Akins et al. | May 2011 | A1 |
20110115793 | Grycewicz | May 2011 | A1 |
20110115892 | Fan | May 2011 | A1 |
20110116683 | Kramer et al. | May 2011 | A1 |
20110117528 | Marciello et al. | May 2011 | A1 |
20110118032 | Zalewski | May 2011 | A1 |
20110133917 | Zeng | Jun 2011 | A1 |
20110142411 | Camp | Jun 2011 | A1 |
20110150271 | Lee | Jun 2011 | A1 |
20110157168 | Bennett | Jun 2011 | A1 |
20110157358 | Bell | Jun 2011 | A1 |
20110157370 | Livesey | Jun 2011 | A1 |
20110160569 | Cohen et al. | Jun 2011 | A1 |
20110172060 | Morales | Jul 2011 | A1 |
20110172521 | Zdeblick et al. | Jul 2011 | A1 |
20110175801 | Markovic | Jul 2011 | A1 |
20110175809 | Markovic | Jul 2011 | A1 |
20110175810 | Markovic | Jul 2011 | A1 |
20110176723 | Ali et al. | Jul 2011 | A1 |
20110180695 | Li | Jul 2011 | A1 |
20110181893 | MacFarlane | Jul 2011 | A1 |
20110182472 | Hansen | Jul 2011 | A1 |
20110187640 | Jacobsen | Aug 2011 | A1 |
20110193939 | Vassigh | Aug 2011 | A1 |
20110199461 | Horio | Aug 2011 | A1 |
20110201916 | Duyn et al. | Aug 2011 | A1 |
20110201939 | Hubschman et al. | Aug 2011 | A1 |
20110202306 | Eng | Aug 2011 | A1 |
20110205358 | Aota | Aug 2011 | A1 |
20110207089 | Lagettie | Aug 2011 | A1 |
20110208437 | Teicher | Aug 2011 | A1 |
20110216002 | Weising | Sep 2011 | A1 |
20110216180 | Pasini | Sep 2011 | A1 |
20110221770 | Kruglick | Sep 2011 | A1 |
20110229862 | Parikh | Sep 2011 | A1 |
20110230755 | MacFarlane et al. | Sep 2011 | A1 |
20110234807 | Jones | Sep 2011 | A1 |
20110234834 | Sugimoto | Sep 2011 | A1 |
20110235855 | Smith | Sep 2011 | A1 |
20110237933 | Cohen | Sep 2011 | A1 |
20110242134 | Miller | Oct 2011 | A1 |
20110244939 | Cammegh | Oct 2011 | A1 |
20110250929 | Lin | Oct 2011 | A1 |
20110251478 | Wieczorek | Oct 2011 | A1 |
20110255845 | Kikuchi | Oct 2011 | A1 |
20110257566 | Burdea | Oct 2011 | A1 |
20110260965 | Kim | Oct 2011 | A1 |
20110262002 | Lee | Oct 2011 | A1 |
20110267427 | Goh | Nov 2011 | A1 |
20110267456 | Adermann | Nov 2011 | A1 |
20110275957 | Bhandari | Nov 2011 | A1 |
20110276396 | Rathod | Nov 2011 | A1 |
20110279663 | Fan | Nov 2011 | A1 |
20110285622 | Marti | Nov 2011 | A1 |
20110286010 | Kusik et al. | Nov 2011 | A1 |
20110291925 | Isarel | Dec 2011 | A1 |
20110293143 | Narayanan et al. | Dec 2011 | A1 |
20110293146 | Grycewicz | Dec 2011 | A1 |
20110298708 | Hsu | Dec 2011 | A1 |
20110298824 | Lee | Dec 2011 | A1 |
20110300994 | Verkaaik | Dec 2011 | A1 |
20110301449 | Maurer, Jr. | Dec 2011 | A1 |
20110301934 | Tardis | Dec 2011 | A1 |
20110303214 | Welle | Dec 2011 | A1 |
20110304541 | Dalal | Dec 2011 | A1 |
20110304650 | Canpillo | Dec 2011 | A1 |
20110304706 | Border et al. | Dec 2011 | A1 |
20110306867 | Gopinadhan | Dec 2011 | A1 |
20110310220 | McEldowney | Dec 2011 | A1 |
20110310226 | McEldowney | Dec 2011 | A1 |
20110316994 | Lemchen | Dec 2011 | A1 |
20110317877 | Bell | Dec 2011 | A1 |
20120002112 | Huang | Jan 2012 | A1 |
20120004791 | Buelthoff | Jan 2012 | A1 |
20120007839 | Tsao et al. | Jan 2012 | A1 |
20120019645 | Maltz | Jan 2012 | A1 |
20120020524 | Ishikawa | Jan 2012 | A1 |
20120021806 | Maltz | Jan 2012 | A1 |
20120027226 | Desenberg | Feb 2012 | A1 |
20120029345 | Mahfouz et al. | Feb 2012 | A1 |
20120032882 | Schlachta | Feb 2012 | A1 |
20120033083 | Horvinger | Feb 2012 | A1 |
20120035462 | Maurer, Jr. et al. | Feb 2012 | A1 |
20120039505 | Bastide et al. | Feb 2012 | A1 |
20120044363 | Lu | Feb 2012 | A1 |
20120045091 | Kaganovich | Feb 2012 | A1 |
20120049453 | Morichau-Beauchant et al. | Mar 2012 | A1 |
20120051588 | McEldowney | Mar 2012 | A1 |
20120051664 | Gopalakrishnan et al. | Mar 2012 | A1 |
20120052949 | Weitzner | Mar 2012 | A1 |
20120056982 | Katz | Mar 2012 | A1 |
20120057640 | Shi | Mar 2012 | A1 |
20120065492 | Gertner et al. | Mar 2012 | A1 |
20120065494 | Gertner et al. | Mar 2012 | A1 |
20120072041 | Miller | Mar 2012 | A1 |
20120075166 | Marti | Mar 2012 | A1 |
20120075177 | Jacobsen | Mar 2012 | A1 |
20120076369 | Abramovich | Mar 2012 | A1 |
20120081504 | Ng | Apr 2012 | A1 |
20120083314 | Ng | Apr 2012 | A1 |
20120083960 | Zhu | Apr 2012 | A1 |
20120086778 | Lee | Apr 2012 | A1 |
20120086809 | Lee | Apr 2012 | A1 |
20120092445 | McDowell | Apr 2012 | A1 |
20120092502 | Knasel | Apr 2012 | A1 |
20120093481 | McDowell | Apr 2012 | A1 |
20120098938 | Jin | Apr 2012 | A1 |
20120101388 | Tripathi | Apr 2012 | A1 |
20120105573 | Apostolopoulos | May 2012 | A1 |
20120106814 | Gleason et al. | May 2012 | A1 |
20120108909 | Slobounov et al. | May 2012 | A1 |
20120113140 | Hilliges | May 2012 | A1 |
20120113223 | Hilliges | May 2012 | A1 |
20120116202 | Bangera | May 2012 | A1 |
20120119999 | Harris | May 2012 | A1 |
20120120072 | Se | May 2012 | A1 |
20120120237 | Trepess | May 2012 | A1 |
20120120243 | Chien | May 2012 | A1 |
20120120277 | Tsai | May 2012 | A1 |
20120121124 | Bammer | May 2012 | A1 |
20120124604 | Small | May 2012 | A1 |
20120127319 | Rao | May 2012 | A1 |
20120133616 | Nishihara | May 2012 | A1 |
20120133889 | Bergt | May 2012 | A1 |
20120143029 | Silverstein | Jun 2012 | A1 |
20120143212 | Madhani | Jun 2012 | A1 |
20120147167 | Mason | Jun 2012 | A1 |
20120154272 | Hildreth | Jun 2012 | A1 |
20120154511 | Hsu | Jun 2012 | A1 |
20120154536 | Stoker | Jun 2012 | A1 |
20120154579 | Hanpapur | Jun 2012 | A1 |
20120156661 | Smith | Jun 2012 | A1 |
20120158197 | Hinman | Jun 2012 | A1 |
20120162378 | El Dokor et al. | Jun 2012 | A1 |
20120165964 | Flaks | Jun 2012 | A1 |
20120167143 | Longet | Jun 2012 | A1 |
20120169841 | Chemali | Jul 2012 | A1 |
20120176314 | Jeon | Jul 2012 | A1 |
20120184371 | Shum | Jul 2012 | A1 |
20120188237 | Han | Jul 2012 | A1 |
20120188371 | Chen | Jul 2012 | A1 |
20120194422 | El Dokor | Aug 2012 | A1 |
20120194517 | Izadi et al. | Aug 2012 | A1 |
20120194561 | Grossinger | Aug 2012 | A1 |
20120195466 | Teng | Aug 2012 | A1 |
20120196660 | El Dokor et al. | Aug 2012 | A1 |
20120197135 | Slatkine | Aug 2012 | A1 |
20120200676 | Huitema | Aug 2012 | A1 |
20120201428 | Joshi et al. | Aug 2012 | A1 |
20120206604 | Jones | Aug 2012 | A1 |
20120212594 | Barns | Aug 2012 | A1 |
20120218407 | Chien | Aug 2012 | A1 |
20120218421 | Chien | Aug 2012 | A1 |
20120220233 | Teague | Aug 2012 | A1 |
20120224666 | Speller | Sep 2012 | A1 |
20120224743 | Rodriguez | Sep 2012 | A1 |
20120225718 | Zhang | Sep 2012 | A1 |
20120229643 | Chidanand | Sep 2012 | A1 |
20120229651 | Takizawa | Sep 2012 | A1 |
20120230561 | Qureshi | Sep 2012 | A1 |
20120235896 | Jacobsen | Sep 2012 | A1 |
20120238337 | French | Sep 2012 | A1 |
20120242816 | Cruz | Sep 2012 | A1 |
20120249741 | Maciocci | Oct 2012 | A1 |
20120253201 | Reinhold | Oct 2012 | A1 |
20120253241 | Levital et al. | Oct 2012 | A1 |
20120262540 | Rondinelli | Oct 2012 | A1 |
20120262558 | Boger | Oct 2012 | A1 |
20120262583 | Bernal | Oct 2012 | A1 |
20120268124 | Herbst et al. | Oct 2012 | A1 |
20120275649 | Cobb | Nov 2012 | A1 |
20120276995 | Lansdale | Nov 2012 | A1 |
20120277001 | Lansdale | Nov 2012 | A1 |
20120281093 | Fong | Nov 2012 | A1 |
20120281873 | Brown | Nov 2012 | A1 |
20120288142 | Gossweiler, III | Nov 2012 | A1 |
20120288852 | Willson | Nov 2012 | A1 |
20120289334 | Mikhailov | Nov 2012 | A9 |
20120289822 | Shachar et al. | Nov 2012 | A1 |
20120293412 | El Dokor | Nov 2012 | A1 |
20120293506 | Vertucci | Nov 2012 | A1 |
20120293663 | Liu | Nov 2012 | A1 |
20120294511 | Datta | Nov 2012 | A1 |
20120300961 | Moeller | Nov 2012 | A1 |
20120303839 | Jackson | Nov 2012 | A1 |
20120304126 | Lavigne | Nov 2012 | A1 |
20120307075 | Margalit | Dec 2012 | A1 |
20120307207 | Abraham | Dec 2012 | A1 |
20120314066 | Lee | Dec 2012 | A1 |
20120315016 | Fung | Dec 2012 | A1 |
20120319946 | El Dokor | Dec 2012 | A1 |
20120319989 | Argiro | Dec 2012 | A1 |
20120320219 | David | Dec 2012 | A1 |
20120326966 | Rauber | Dec 2012 | A1 |
20120326976 | Markovic | Dec 2012 | A1 |
20120326979 | Geisert | Dec 2012 | A1 |
20120327241 | Howe | Dec 2012 | A1 |
20120327246 | Senior et al. | Dec 2012 | A1 |
20130002866 | Hanpapur | Jan 2013 | A1 |
20130002879 | Weber | Jan 2013 | A1 |
20130002900 | Gossweiler, III | Jan 2013 | A1 |
20130009865 | Valik | Jan 2013 | A1 |
20130010071 | Valik | Jan 2013 | A1 |
20130013452 | Dennard | Jan 2013 | A1 |
20130016009 | Godfrey | Jan 2013 | A1 |
20130016876 | Wooley | Jan 2013 | A1 |
20130021434 | Ahiska | Jan 2013 | A1 |
20130021578 | Chen | Jan 2013 | A1 |
20130024819 | Rieffel | Jan 2013 | A1 |
20130030283 | Vortman et al. | Jan 2013 | A1 |
20130033640 | Lee | Feb 2013 | A1 |
20130033700 | Hallil | Feb 2013 | A1 |
20130035590 | Ma et al. | Feb 2013 | A1 |
20130035612 | Mason | Feb 2013 | A1 |
20130040720 | Cammegh | Feb 2013 | A1 |
20130041368 | Cunninghan | Feb 2013 | A1 |
20130053683 | Hwang et al. | Feb 2013 | A1 |
20130057702 | Chavan | Mar 2013 | A1 |
20130064426 | Watkins, Jr. | Mar 2013 | A1 |
20130064427 | Picard | Mar 2013 | A1 |
20130065517 | Svensson | Mar 2013 | A1 |
20130066448 | Alonso | Mar 2013 | A1 |
20130066526 | Mondragon | Mar 2013 | A1 |
20130069773 | Li | Mar 2013 | A1 |
20130070201 | Shahidi | Mar 2013 | A1 |
20130070257 | Wong | Mar 2013 | A1 |
20130072787 | Wallace et al. | Mar 2013 | A1 |
20130076863 | Rappel | Mar 2013 | A1 |
20130076944 | Kosaka | Mar 2013 | A1 |
20130077823 | Mestha | Mar 2013 | A1 |
20130079033 | Gupta | Mar 2013 | A1 |
20130084980 | Hammontree | Apr 2013 | A1 |
20130088584 | Malhas | Apr 2013 | A1 |
20130093866 | Ohlhues et al. | Apr 2013 | A1 |
20130096439 | Lee | Apr 2013 | A1 |
20130102879 | MacLaren et al. | Apr 2013 | A1 |
20130102893 | Vollmer | Apr 2013 | A1 |
20130108979 | Daon | May 2013 | A1 |
20130113791 | Isaacs et al. | May 2013 | A1 |
20130211421 | Abovitz et al. | Aug 2013 | A1 |
20130281818 | Vija et al. | Oct 2013 | A1 |
20140073908 | Biber | Mar 2014 | A1 |
20140088410 | Wu | Mar 2014 | A1 |
20140133720 | Lee | May 2014 | A1 |
20140148685 | Liu et al. | May 2014 | A1 |
20140159721 | Grodzki | Jun 2014 | A1 |
20140171784 | Ooi et al. | Jun 2014 | A1 |
20140378816 | Oh et al. | Dec 2014 | A1 |
20150085072 | Yan | Mar 2015 | A1 |
20150094597 | Mestha et al. | Apr 2015 | A1 |
20150094606 | Mestha et al. | Apr 2015 | A1 |
20150212182 | Nielsen et al. | Jul 2015 | A1 |
20150245787 | Kyal et al. | Sep 2015 | A1 |
20150257661 | Mestha et al. | Sep 2015 | A1 |
20150265187 | Bernal et al. | Sep 2015 | A1 |
20150265220 | Ernst et al. | Sep 2015 | A1 |
20150297120 | Son et al. | Oct 2015 | A1 |
20150297314 | Fowler | Oct 2015 | A1 |
20150316635 | Stehning et al. | Nov 2015 | A1 |
20150323637 | Beck et al. | Nov 2015 | A1 |
20150331078 | Speck et al. | Nov 2015 | A1 |
20150359464 | Oleson | Dec 2015 | A1 |
20160000383 | Lee et al. | Jan 2016 | A1 |
20160000411 | Raju et al. | Jan 2016 | A1 |
20160045112 | Weissler et al. | Feb 2016 | A1 |
20160091592 | Beall et al. | Mar 2016 | A1 |
20160166205 | Ernst et al. | Jun 2016 | A1 |
20160198965 | Mestha et al. | Jul 2016 | A1 |
20160228005 | Bammer et al. | Aug 2016 | A1 |
20160249984 | Janssen | Sep 2016 | A1 |
20160256713 | Saunders et al. | Sep 2016 | A1 |
20160262663 | MacLaren et al. | Sep 2016 | A1 |
20160287080 | Olesen et al. | Oct 2016 | A1 |
20160310229 | Bammer et al. | Oct 2016 | A1 |
20160313432 | Feiweier et al. | Oct 2016 | A1 |
20170032538 | Ernst | Feb 2017 | A1 |
20170038449 | Voigt et al. | Feb 2017 | A1 |
20170143271 | Gustafsson et al. | May 2017 | A1 |
20170303859 | Robertson et al. | Oct 2017 | A1 |
20170319143 | Yu et al. | Nov 2017 | A1 |
20170345145 | Nempont et al. | Nov 2017 | A1 |
20190004282 | Park | Jan 2019 | A1 |
20190059779 | Ernst | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
100563551 | Dec 2009 | CN |
105392423 | Mar 2016 | CN |
106572810 | Apr 2017 | CN |
106714681 | May 2017 | CN |
29519078 | Mar 1996 | DE |
102004024470 | Dec 2005 | DE |
0904733 | Mar 1991 | EP |
1319368 | Jun 2003 | EP |
1354564 | Oct 2003 | EP |
1524626 | Apr 2005 | EP |
2515139 | Oct 2012 | EP |
2948056 | Dec 2015 | EP |
2950714 | Dec 2015 | EP |
03023838 | May 1991 | JP |
WO 9617258 | Jun 1996 | WO |
WO 9938449 | Aug 1999 | WO |
WO 0072039 | Nov 2000 | WO |
WO 03003796 | Jan 2003 | WO |
WO 2004023783 | Mar 2004 | WO |
WO 2005077293 | Aug 2005 | WO |
WO 2007025301 | Mar 2007 | WO |
WO 2007085241 | Aug 2007 | WO |
WO 2007136745 | Nov 2007 | WO |
WO 2009101566 | Aug 2009 | WO |
WO 2009129457 | Oct 2009 | WO |
WO 2010066824 | Jun 2010 | WO |
WO 2011047467 | Apr 2011 | WO |
WO 2011113441 | Sep 2011 | WO |
WO 2012046202 | Apr 2012 | WO |
WO 2013032933 | Mar 2013 | WO |
WO 2014005178 | Jan 2014 | WO |
WO 2014116868 | Jul 2014 | WO |
WO 2014120734 | Aug 2014 | WO |
WO 2015022684 | Feb 2015 | WO |
WO 2015042138 | Mar 2015 | WO |
WO 2015092593 | Jun 2015 | WO |
WO 2015148391 | Oct 2015 | WO |
WO 2016014718 | Jan 2016 | WO |
WO2017091479 | Jun 2017 | WO |
WO2017189427 | Nov 2017 | WO |
Entry |
---|
Ashouri, H., L. et al., Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate, Sensors 2016, 16, 787; doi:10.3390/s16060787. |
Extended European Search Report for application No. 15824707.2 which is a EP application related to the present appliation, dated Apr. 16, 2018. |
Gordon, J. W. Certain molar movements of the human body produced by the circulation of the blood. J. Anat. Physiol. 11, 533-536 (1877). |
Kim, Chang-Sei et al. “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring”, Scientific Reports, Aug. 9, 2016. |
Tarvainen, M.P. et al., “An advanced de-trending method with application to HRV analysis,” IEEE Trans. Biomed. Eng., vol. 49, No. 2, pp. 172-175, Feb. 2002. |
Aksoy et al., “Real-Time Optical Motion Correction for Diffusion Tensor Imaging, Magnetic Resonance in Medicine” (Mar. 22, 2011) 66 366-378. |
Andrews et al., “Prospective Motion Correction for Magnetic Resonance Spectroscopy Using Single Camera Retro-Grate Reflector Optical Tracking, Journal of Magnetic Resonance Imaging” (Feb. 2011) 33(2): 498-504. |
Angeles et al., “The Online Solution of the Hand-Eye Problem”, IEEE Transactions on Robotics and Automation, 16(6): 720-731 (Dec. 2000). |
Anishenko et al., “A Motion Correction System for Brain Tomography Based on Biologically Motivated Models.” 7th IEEE International Conference on Cybernetic Intelligent Systems, dated Sep. 9, 2008, in 9 pages. |
Armstrong et al., RGR-6D: Low-cost, high-accuracy measurement of 6-DOF Pose from a Single Image. Publication date unknown. |
Armstrong et al., “RGR-3D: Simple, cheap detection of 6-DOF pose for tele-operation, and robot programming and calibration”, In Proc. 2002 Int. Conf. on Robotics and Automation, IEEE, Washington (May 2002). |
Bandettini, Peter A., et al., “Processing Strategies for Time-Course Data Sets in Functional MRI of the Human Breain”, Magnetic Resonance in Medicine 30: 161-173 (1993). |
Barmet et al, Spatiotemporal Magnetic Field Monitoring for MR, Magnetic Resonance in Medicine (Feb. 1, 2008) 60: 187-197. |
Bartels, LW, et al., “Endovascular interventional magnetic resonance imaging”, Physics in Medicine and Biology 48: R37-R64 (2003). |
Benchoff, Brian, “Extremely Precise Positional Tracking”, https://hackaday.com/2013/10/10/extremely-precise-positional-tracking/, printed on Sep. 16, 2017, in 7 pages. |
Carranza-Herrezuelo et al, “Motion estimation of tagged cardiac magnetric resonance images using variational techniques” Elsevier, Computerized Medical Imaging and Graphics 34 (2010), pp. 514-522. |
Chou, Jack C. K., et al., “Finding the Position and Orientation of a Sensor on a Robot Manipulator Using Quaternions”, The International Journal of Robotics Research, 10(3): 240-254 (Jun. 1991). |
Cofaru et al “Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation,” Department of Materials Science and Engineering, Ghent University St-Pietersnieuwstraat, Nov. 20, 2010. |
Communication pursuant to Article 94(3) EPC for application No. 14743670.3, which is an EP application related to the present application, dated Feb. 6, 2018. |
Ernst et al., “A Novel Phase and Frequency Navigator for Proton Magnetic Resonance Spectroscopy Using Water-Suppression Cycling, Magnetic Resonance in Medicine” (Jan. 2011) 65(1): 13-7. |
Eviatar et al., “Real time head motion correction for functional MRI”, In: Proceedings of the International Society for Magnetic Resonance in Medicine (1999) 269. |
Extended European Search Report for application No. 14743670.3 which is a EP application related to the present application, dated Aug. 17, 2017. |
Extended European Search Report for application No. 15769296.3 which is a EP application related to the present application, dated Dec. 22, 2017. |
Forbes, Kristen P. N., et al., “Propeller MRI: Clinical Testing of a Novel Technique for Quantification and Compensation of Head Motion”, Journal of Magnetic Resonance Imaging 14: 215-222 (2001). |
Fulton et al., “Correction for Head Movements in Positron Emission Tomography Using an Optical Motion-Tracking System”, IEEE Transactions on Nuclear Science, vol. 49(1):116-123 (Feb. 2002). |
Glover, Gary H., et al., “Self-Navigated Spiral fMRI: Interleaved versus Single-shot”, Magnetic Resonance in Medicine 39: 361-368 (1998). |
Gumus et al., “Elimination of DWI signal dropouts using blipped gradients for dynamic restoration of gradient moment”, ISMRM 20th Annual Meeting & Exhibition, May 7, 2012. |
Herbst et al., “Preventing Signal Dropouts in DWI Using Continous Prospective Motion Correction”, Proc. Intl. Soc. Mag. Reson. Med. 19 (May 2011) 170. |
Herbst et al., “Prospective Motion Correction With Continuous Gradient Updates in Diffusion Weighted Imaging, Magnetic Resonance in Medicine” (2012) 67:326-338. |
Herbst et al., “Reproduction of Motion Artifacts for Performance Analysis of Prospective Motion Correction in MRI”, Magnetic Resonance in Medicine., vol. 71, No. 1, p. 182-190 (Feb. 25, 2013). |
Hoff et al., “Analysis of Head Pose Accuracy in Augmented Reality”, IEEE Transactions on Visualization and Computer Graphics 6, No. 4 (Oct.-Dec. 2000): 319-334. |
Horn, Berthold K. P., “Closed-form solution of absolute orientation using unit quaternions”, Journal of the Optical Society of America, vol. 4, p. 629-642 (Apr. 1987). |
International Preliminary Report on Patentability for Application No. PCT/US2015/022041, dated Oct. 6, 2016, in 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2007/011899, dated Jun. 8, 2008, in 13 pages. |
International Search Report and Written Opinion for Application No. PCT/US2007/011899, dated Nov. 14, 2007. |
International Search Report and Written Opinion for Application No. PCT/US2014/012806, dated May 15, 2014, in 15 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/041615, dated Oct. 29, 2015, in 13 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2014/013546, dated Aug. 4, 2015, in 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/022041, dated Jun. 29, 2015, in 9 pages. |
Jochen Triesch, et al.“Democratic Integration: Self-Organized Integration of Adaptive Cues”, Neural Computation., vol. 13, No. 9, dated Sep. 1, 2001, pp. 2049-2074. |
Josefsson et al. “A flexible high-precision video system for digital recording of motor acts through lightweight reflect markers”, Computer Methods and Programs in Biomedicine, vol. 49:111-129 (1996). |
Katsuki, et al., “Design of an Artificial Mark to Determine 3D Pose by Monocular Vision”, 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Sep. 14-19, 2003, pp. 995-1000 vol. 1. |
Kiebel et al., “MRI and PET coregistration—a cross validation of statistical parametric mapping and automated image registration”, Neuroimage 5(4):271-279 (1997). |
Kiruluta et al., “Predictive Head Movement Tracking Using a Kalman Filter”, IEEE Trans. On Systems, Man, and Cybernetics—Part B: Cybernetics, 27(2):326-331 (Apr. 1997). |
Lerner, “Motion correction in fmri images”, Technion-Israel Institute of Technology, Faculty of Computer Science ( Feb. 2006). |
Maclaren et al., “Combined Prospective and Retrospective Motion Correction to Relax Navigator Requirements”, Magnetic Resonance in Medicine (Feb. 11, 2011) 65:1724-1732. |
MacLaren et al., “Navigator Accuracy Requirements for Prospective Motion Correction”, Magnetic Resonance in Medicine (Jan. 2010) 63(1): 162-70. |
MacLaren, “Prospective Motion Correction in MRI Using Optical Tracking Tape”, Book of Abstracts, ESMRMB (2009). |
Maclaren et al., “Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain”, PLOS ONE, vol. 7(11):1-9 (2012). |
Maclaren et al., “Prospective Motion Correction in Brain Imaging: A Review” Online Magnetic Resonance in Medicine, vol. 69, No. 3, pp. 621-636 (Mar. 1, 2013). |
McVeigh et al., “Real-time, Interactive MRI for Cardiovascular Interventions”, Academic Radiology, 12(9): 1121-1127 (2005). |
Nehrke et al., “Prospective Correction of Affine Motion for Arbitrary MR Sequences on a Clinical Scanner”, Magnetic Resonance in Medicine (Jun. 28, 2005) 54:1130-1138. |
Norris et al., “Online motion correction for diffusion-weighted imaging using navigator echoes: application to RARE imaging without sensitivity loss”, Magnetic Resonance in Medicine, vol. 45:729-733 (2001). |
Olesen et al., “Structured Light 3D Tracking System for Measuring Motions in PET Brain Imaging”, Proceedings of SPIE, the International Society for Optical Engineering (ISSN: 0277-786X), vol. 7625:76250X (2010). |
Olesen et al., “Motion Tracking in Narrow Spaces: A Structured Light Approach”, Lecture Notes in Computer Science (ISSN: 0302-9743)vol. 6363:253-260 (2010). |
Olesen et al., “Motion Tracking for Medical Imaging: A Nonvisible Structured Light Tracking Approach”, IEEE Transactions on Medical Imaging, vol. 31(1), Jan. 2012. |
Ooi et al., “Prospective Real-Time Correction for Arbitrary Head Motion Using Active Markers”, Magnetic Resonance in Medicine (Apr. 15, 2009) 62(4): 943-54. |
Orchard et al., “MRI Reconstruction using real-time motion tracking: A simulation study”, Signals, Systems and Computers, 42nd Annual Conference IEEE, Piscataway, NJ, USA (Oct. 26, 2008). |
Park, Frank C. and Martin, Bryan J., “Robot Sensor Calibration: Solving AX-XB on the Euclidean Group”, IEEE Transaction on Robotics and Automation, 10(5): 717-721 (Oct. 1994). |
PCT Search Report from the International Searching Authority, dated Feb. 28, 2013, in 16 pages, regarding International Application No. PCT/US2012/052349. |
Qin et al., “Prospective Head-Movement Correction for High-Resolution MRI Using an In-Bore Optical Tracking System”, Magnetic Resonance in Medicine (Apr. 13, 2009) 62: 924-934. |
Schulz et al., “First Embedded In-Bore System for Fast Optical Prospective Head Motion-Correction in MRI”, Proceedings of the 28th Annual Scientific Meeting of the ESMRMB (Oct. 8, 2011) 369. |
Shiu et al., “Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX=XB”, IEEE Transactions on Robotics and Automation, 5(1): 16-29 (Feb. 1989). |
Speck, et al., “Prospective real-time slice-by-slice Motion Correction for fMRI in Freely Moving Subjects”, Magnetic Resonance Materials in Physics, Biology and Medicine., 19(2), 55-61, published May 9, 2006. |
Tremblay et al., “Retrospective Coregistration of Functional Magnetic Resonance Imaging Data using External monitoring”, Magnetic Resonance in Medicine 53:141-149 (2005). |
Tsai et al., “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration”, IEEE Transaction on Robotics and Automation, 5(3): 345-358 (Jun. 1989). |
Wang, Ching-Cheng, “Extrinsic Calibration of a Vision Sensor Mounted on a Robot”, IEEE Transactions on Robotics and Automation, 8(2):161-175 (Apr. 1992). |
Ward et al., “Prospective Multiaxial Motion Correction for fMRI”, Magnetic Resonance in Medicine 43:459-469 (2000). |
Welch at al., “Spherical Navigator Echoes for Full 3D Rigid Body Motion Measurement in MRI”, Magnetic Resonance in Medicine 47:32-41 (2002). |
Wilm et al., “Accurate and Simple Calibration of DLP Projector Systems”, Proceedings of SPIE, the International Society for Optical Engineering (ISSN: 0277-786X), vol. 8979 (2014). |
Wilm et al., “Correction of Motion Artifacts for Real-Time Structured Light”, R.R. Paulsen and K.S. Pedersen (Eds.): SCIA 2015, LNCS 9127, pp. 142-151 (2015). |
Yeo, et al. Motion correction in fMRI by mapping slice-to-volume with concurrent field-inhomogeneity correction:, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 752-760 (2004). |
Zaitsev, M., et al., “Prospective Real-Time Slice-by-Slice 3D Motion Correction for EPI Using an External Optical Motion Tracking System”, Proc.Intl.Soc.Mag.Reson.Med.11:517(2004). |
Zeitsev et al., “Magnetic resonance imaging of freely moving objects: Prospective real-time motion correction using an external optical motion tracking system”, NeuroImage 31 (Jan. 29, 2006) 1038-1050. |
Number | Date | Country | |
---|---|---|---|
20190059779 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62198079 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15222811 | Jul 2016 | US |
Child | 15920020 | US |