Systems for isolation of a needle-based infusion set

Information

  • Patent Grant
  • 10143799
  • Patent Number
    10,143,799
  • Date Filed
    Monday, February 1, 2016
    8 years ago
  • Date Issued
    Tuesday, December 4, 2018
    5 years ago
Abstract
A safety needle assembly of an infusion set for infusing fluids into a subcutaneously implanted access port is disclosed. The needle assembly is configured to prevent fluid/vapor escape therefrom so as to reduce or prevent fluid exposure to a clinician using the needle assembly. In one embodiment, the needle assembly comprises a handle portion including a needle extending therefrom, the needle defining a lumen for passage of a fluid therethrough. The needle assembly also includes a safety assembly defining a needle hole through which the needle initially extends. The safety assembly is selectively and axially slidable along the needle in order to shield a distal tip of the needle and prevent user contact therewith. A fluid isolation component is included in the safety assembly for isolating fluid escape from the needle to prevent exposure to a clinician.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to a safety needle assembly of an infusion set for infusing fluids into a subcutaneously implanted access port. The needle assembly is configured to prevent fluid escape therefrom so as to reduce or prevent fluid exposure to a clinician using the needle assembly.


In one embodiment, the needle assembly comprises a handle portion including a needle extending therefrom, the needle defining a lumen for passage of a fluid therethrough. The needle assembly also includes a safety assembly defining a needle hole through which the needle initially extends. The safety assembly is axially slidable along the needle in order to shield a distal tip of the needle and prevent user contact therewith. A fluid isolation component is included in the safety assembly for isolating fluid escape from the needle to prevent exposure to a clinician.


These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a perspective view of an infusion set including a safety needle assembly according to one embodiment;



FIG. 2 is a side view of the needle assembly of FIG. 1;



FIGS. 3A-3C show actuation of needle assembly of FIG. 1;



FIG. 4 shows a perspective view of an infusion set including a safety needle assembly in a first configuration according to one embodiment;



FIG. 5 shows a perspective view of the infusion set of FIG. 4 with the safety needle assembly in a second configuration;



FIGS. 6A-6C show actuation of the safety needle assembly of FIGS. 4 and 5



FIGS. 7A-7C shows actuation of a safety needle assembly according to another embodiment;



FIGS. 8A and 8B show a bottom view of a safety needle assembly including a fluid isolation component according to one embodiment;



FIGS. 9A and 9B are cross sectional side views of a safety needle assembly including a fluid isolation component according to one embodiment;



FIG. 10 is a cross sectional side view of a safety needle assembly including a fluid isolation component according to one embodiment;



FIG. 11 is a perspective view of a safety needle assembly according to one embodiment;



FIGS. 12A and 12B are bottom views of the safety needle assembly of FIG. 11;



FIG. 13 is a top view of a shutter of the safety needle assembly of FIG. 10, including a fluid isolation component according to one embodiment;



FIG. 14 is a perspective view of the shutter of FIG. 13 including the fluid isolation component;



FIG. 15 is a cross sectional side view of a safety needle assembly according to one embodiment;



FIGS. 16A and 16B are various views of a safety needle assembly according to one embodiment;



FIG. 17 is a cross sectional side view of a luer connector including a fluid isolation component according to one embodiment;



FIGS. 18A-18B are cross sectional side views of the luer connector of FIG. 17 during use;



FIGS. 19A and 19B show various views of a fluid isolation component together with an infusion set, according to one embodiment; and



FIG. 20 is a bottom view of a safety needle assembly including a fluid isolation component according to one embodiment.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the present invention, and are neither limiting nor necessarily drawn to scale.


For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a needle placed within the body of a patient is considered a distal end of the needle, while the needle end remaining outside the body is a proximal end of the needle. Also, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”


Embodiments of the present invention are generally directed to a safety infusion set and accompanying needle assembly for infusing fluids, such as chemotherapy agents or other medicaments for example, into an access port or other medical device subcutaneously implanted into the body of a patient. The infusion set and/or needle assembly includes one or more components for isolation of the fluid, including vapors thereof, which may otherwise leak from a needle or other portion of the infusion set. This in turn reduces or prevents possible clinician exposure to the fluid/vapors, which in some cases may be hazardous. Potential harm to the clinician is therefore reduced.


Reference is first made to FIG. 1, which depicts an infusion set generally designated at 10, including a safety needle assembly (“needle assembly”) 20 and one or more extension legs 24. The infusion set 10 is employed to gain access to a subcutaneously implanted access port or other device disposed below the skin of a patient in order to infuse medicaments or other fluids into the patient, and to withdraw fluids therefrom. A luer connector 26 is included on a proximal end of the extension leg 24 so as to enable the infusion set 10 to be placed into fluid communication with a fluid delivery device or system. A cap 28 can be disposed in the luer connector 26 to cover the opening thereof.



FIG. 1 shows that the needle assembly 20 includes a needle 30 extending from a handle 44 and in fluid communication with the tubing of the extension leg 24. A needle safety component 40 is also included in the needle assembly 20, including dual extensible wings that are hinged so as to be selectively extended to substantially cover the length of the needle 30 and isolate a distal end 30A thereof after use of the needle assembly 20 in order to prevent an unintended needle stick of the clinician by the needle tip. Examples of such a hinged safety assembly can be found in U.S. Pat. No. 5,951,522, which is incorporated herein by reference in its entirety.


As best seen in FIG. 2, the needle assembly 20 further includes a fluid isolation component 50 for isolating any fluid or vapor that may unintentionally escape from the needle 30 during use of the needle assembly. Specifically, the fluid isolation component 50 in the present embodiment includes absorbent pads 52 disposed on an inner surface 42A of each wing 42 of the needle safety component 40. The pads 52 are disposed such that when the wings 42 of the needle safety component 40 are deployed to cover the distal tip 30A of the needle 30 (FIG. 2), the pads sandwich the body and distal tip of the needle therebetween. Any fluid present on an external surface of the needle or any fluid/vapor leaking from the distal end thereof is captured and absorbed by the pads 52, thus preventing escape of the fluid, which as mentioned above may contain hazardous substances. This in turn protects the clinician from fluid exposure.



FIGS. 3A-3C show the manner in which the wings 42 of the needle safety component 40 extend to cover the needle 30 and its distal tip 30A, and additionally the manner in which the pads 52 sandwich and partially encapsulate the needle 30, including its external surfaces and its distal tip 30A, to prevent fluid/vapor escape. In one embodiment, the pads 52 can include an absorbent foam and/or rubber material, though many other suitable materials can be employed, including activated charcoal, etc.



FIGS. 4 and 5 show the infusion set 10 including a needle assembly 120 according to another embodiment, wherein the needle assembly includes a handle portion 122 with handles 124 extending therefrom. A needle 130 extends from the handle portion 122 and initially through a safety assembly 134 that is slidably disposed with respect to the needle 130 so as to be axially slidable therewith. The safety assembly 134 includes a base 136 that houses a needle safety component 140 (FIGS. 8A, 8B) for shielding a distal tip 130A of the needle 130 when use of the needle assembly is complete.


The needle assembly 120 further includes a fluid isolation component 150 for isolating any fluid or vapor that may unintentionally escape from the needle 130 during use of the needle assembly. Specifically, the fluid isolation component 150 in the present embodiment includes a conically shaped, extensible shroud 152 disposed about the body of the needle 130 and extending between the handle portion 122 and the axially slidable safety assembly 134. Including plastic such as PET or other substantially impermeable, collapsible, and suitable durable material, the shroud 152 forms a hollow cone about the needle 130 and is corrugated with corrugations 154 in a bellows-like manner to enable it to fold up compactly when the safety assembly 134 is undeployed (FIG. 4) and to extend to cover and substantially encompass the needle 30 when the safety assembly 134 is deployed (FIG. 5), i.e., the safety assembly is axially slid down the needle 130 toward the distal tip 130A such that the needle safety component 140 shields the distal tip. FIGS. 6A-6C depict the manner of deployment of the safety assembly 134 and the extension of the corrugated shroud 152. In the extended state shown in FIGS. 5 and 6C, the shroud 152 assists in isolating fluids/vapors present on the needle 130 or emitted from the needle distal tip 130A from contact with the clinician.


Note that examples of safety needles that can utilize principles discussed here and in other embodiments herein can be found in the following United States patent and patent applications: U.S. Pat. No. 7,717,888; U.S. Pat. No. 8,066,678; U.S. Pat. No. 8,597,253; and U.S. Pat. No. 8,231,582. Each of the afore-mentioned patents/patent applications is incorporated herein by reference in its entirety.


The shroud 152 as the fluid isolation component 150 can include other configurations. One such configuration is shown in FIGS. 7A-7C, wherein the shroud includes a plurality of interlocked, telescoping segments that are extendible to cover and encompass the needle body when the safety assembly 134 is deployed (FIG. 7C). When the safety assembly 134 is undeployed, the telescoping segments 156 are stacked together, as shown in FIG. 7A. Again, these and other configurations for encompassing the needle body illustrate manners by which a fluid isolation component can isolate the needle body and tip in order to prevent fluid exposure to clinician.



FIGS. 8A and 8B depict details of the needle safety component 140 of the needle assembly 120 of FIGS. 4-7C. Particularly, FIGS. 8A and 8B depict bottom views of the needle assembly 120. The needle safety component 140 is shown, including a coiled wire torsion spring 160 included within the base 136 of the safety assembly 134. The spring includes at one end thereof an obstruction component, i.e., a looped portion 162 that is biased to lie against the needle 130 when the needle extends through a hole 136A defined in the base 136 of the safety assembly 134, as shown in FIG. 8A. As shown in FIG. 8B, once the distal tip of the needle 130 is withdrawn into the base 136 in connection with extension of the safety assembly 134 (e.g., FIGS. 5, 6C, 7C), the spring 160 expands such that the looped portion 162 slides over the needle hole 136A to prevent re-emergence of the needle distal tip.


In addition, a fluid isolation component 170 is included with the spring 160 for isolating any fluid or vapor that may unintentionally escape from the needle 130 during use of the needle assembly. Specifically, the fluid isolation component 170 includes a shield 172, shown in FIGS. 8A and 8B, which is attached proximate the looped portion 162 of the spring 160. Thus, when the looped portion 162 slides over to prevent re-emergence of the distal tip 130A of the needle 130 through the hole 136A (FIG. 8B), the shield fully covers and occludes the hole so as to prevent any fluid/vapor leaking from the distal tip of the needle from exiting through the hole and potentially contaminating the environment or clinician. The shield 172 thus serves to occlude the hole 136A and isolate any fluids/vapors from the clinician. Note that the particular size, shape, and configuration of the shield can vary from what is shown and described herein, as can the particular configuration of the needle assembly. In one embodiment, it is appreciated that the shield can include an absorbent material so as to absorb any leaked fluid.



FIGS. 9A and 9B depict details of the needle assembly 120 according to another embodiment, including a fluid isolation component 180 for isolating any fluid or vapor that may unintentionally escape from the needle 130 during use of the needle assembly. As shown, the fluid isolation component 180 in the present embodiment includes a cylindrical absorption plug 182 included with the axially slidable safety assembly 134 of the needle assembly 120 and including a central cavity so as to be positioned about a portion of the body of the needle 130 (FIG. 9A). The central cavity of the plug 182 is sized such that the plug is able to wipe the outer surface of the body of the needle 130 as the safety assembly 134 is axially slid down the needle toward the distal tip 130A thereof, thus removing fluid from the outer needle surface and capturing it in the plug itself. In addition, once the safety assembly 134 has fully shielded the needle distal tip 130A (FIG. 9B), the plug 182 is positioned about the distal opening of the lumen of the needle 130 so as to catch and absorb any fluids/vapors emanating therefrom.


It is appreciated that the absorption plug can include a variety of size, type, and material configurations, and can be employed on a variety of needle-based devices where residual fluid/vapor capture is desired. In one embodiment, for instance, the absorption member includes activated charcoal. In other embodiments, other materials and membranes can be employed, including silica gel, clays, activated alumina, zeolites, 0.2 micron or other filtration material, etc. The description included herein is therefore not intended to limit the present disclosure in any way.



FIG. 10 shows details of a fluid isolation component 200 according to another embodiment, including an absorption disk 202 included with the safety assembly 134. The absorption disk 202 is disposed above the needle safety component 140 in the safety assembly base 136 and is slit to enable the needle 130 to pass therethrough. Extension of the safety assembly 134 down the length of the needle 130 enables the absorption disk 202 to wipe the outer needle surface so as to remove any fluid present thereon. In addition, once the safety assembly 134 is fully extended to shield the needle 130 (FIG. 10), the absorption disk 202 is positioned so as to absorb any fluid/vapor leaking from the distal lumen opening at the needle distal tip 130A. As with the previous embodiment, the absorption disk 202 in one embodiment includes activated charcoal or other suitable, absorbent material as outlined above in connection with the absorption plug 182 shown in FIGS. 9A and 9B. The position, shape, thickness or other configuration of the absorption disk can vary from what is shown and described herein.



FIGS. 11-12B depict various details of a needle assembly 220 that can include a fluid isolation component, according to one embodiment. As shown, the needle assembly 220 includes a handle portion 222 from which extends a needle 230. The needle 230 initially extends through a safety assembly 234 that is slidably disposed with respect to the needle so as to be axially slidable therewith. The safety assembly 234 includes a base 236 that houses a needle safety component 240 (FIGS. 12A, 12B) for shielding a distal tip 230A of the needle 230 when use of the needle assembly is complete.


In greater detail, FIGS. 12A and 12B show that the needle safety component 234 includes two spring-based shutters 242 that each define a hole 244 through which the needle 230 passes when the needle extends through the safety assembly 234 and out a hole 236A defined in the base 236, such as in the configuration shown in FIG. 11. The shutters 242 each further include a spring arm 246. As seen in FIG. 12A, when the safety assembly 234 is undeployed (FIG. 11), the holes 244 of the shutters 242 are aligned so that the needle 230 passes therethrough. This constrains the shutters 242 and spring arms 246 into the configuration shown in FIG. 12A.


When the safety assembly 234 is actuated, however, it is slid down the length of the needle 230 so as to cause the needle distal tip 230A to recede from the hole 236A and the shutter holes 244 so as to be shielded within the safety assembly base 236. As shown in FIG. 12B, this causes the shutters 242 to no longer be constrained by the needle 230 and enables the shutter spring arms 246 to slide the shutters laterally within the base 236 so as to cover and occlude the hole 236A defined in the base, thus preventing reemergence of the needle distal tip 230A. Note that further information regarding this and other related needle safety assemblies can be found in U.S. Pat. No. 6,585,704 to Luther et al., entitled “Method of Retaining a Tip Protector on a Needle with a Curved Tip.”


In accordance with one embodiment the needle assembly 220 includes a fluid isolation component 250 for isolating any fluid or vapor that may unintentionally escape from the needle 130 during use of the needle assembly. Specifically, the fluid isolation component 250 in the present embodiment includes an absorption pad 252 disposed on a backside of one or both of the shutters 242 of the safety assembly 234. As shown in FIGS. 13 and 14, the pad 252 is disposed on the shutter 242 so that the distal tip 230A of the needle 230 rests against it after the distal tip has been withdrawn and shielded by the base 236 of the safety assembly 234. Should any fluid leak from the distal opening of the lumen of the needle 230, it can be readily captured by the pad 252, thus preventing its escape outside of the safety assembly 234. The pad can include one or more of suitable materials including those listed above in connection with the embodiment of FIGS. 9A and 9B, silicone, rubber, etc. As shown, the pad can also be recessed within the shutter 242 so as to provide a basin for capture of the fluid, in one embodiment. Note that the pad and shutters can vary in size, number, shape, design, etc.



FIG. 15 shows the needle assembly 220 including a fluid isolation component 260 according to one embodiment, wherein the fluid isolation component includes an O-ring 262 that is disposed within the safety assembly 234 about a portion of the needle 230. So positioned, the O-ring 262 wipes the length of the needle 230 when the safety assembly 234 is axially slid down the needle in order to shield the needle distal tip 230A. The O-ring 262 is sized such that its wiping action cleans the outer needle surface of any fluids that might otherwise be exposed to the clinician and prevents their escape from the safety assembly base 236. In one embodiment, the O-ring can be configured to be absorbent so as to soak up any fluid it comes into contact with during wiping of the needle. Note that the O-ring can be placed in other locations with respect to the needle safety assembly and that the needle housing and safety assembly can vary in configuration from what is shown.



FIGS. 16A and 16B depict various details of a needle assembly 320 including a fluid isolation component, according to one embodiment. The needle assembly 320 includes a handle portion 322 from which extends a needle 330. The needle 330 initially extends through a hole 344 defined in a safety assembly 334 that is pivotally movable with respect to the handle portion 322 and the needle 330 via a hinge point 338. The safety assembly 334 houses a needle safety component 340 including a laterally slidable shutter 342, disposed in a shutter cavity 346, for shielding a distal tip 330A of the needle 230 when use of the needle assembly is complete. A foam pad 354 is disposed on the bottom of the safety assembly 334.


As shown in FIG. 16B, the needle 330 is biased while residing in the hole 344 of the safety assembly 334 such that when the distal tip 330A is withdrawn from the hole, the needle 330 urges the shutter 342 to laterally slide within the shutter cavity 346, thus covering the hole and preventing re-emergence of the needle distal tip. In another embodiment, the shutter itself can be biased to urge the needle distal tip laterally.


The needle assembly 320 further includes a fluid isolation component, here configured as an extensible shroud 352 that extends about the needle 330 between the handle portion 322 and the safety assembly 334 to isolate the body of the needle and any vapors present therewith. Thus, the shroud 352 provides isolation of fluids present on the needle 330. In addition, the shutter 342 provides some fluid isolation as well.



FIGS. 17-18B disclose a luer connector 426 including a fluid isolation component, according to one embodiment. As shown, the connector 426 is a female-type luer connector, though the principles described here can be extended to other connective or fluid-carrying components of an infusion set or other suitable fluid delivery medical device. Connected to the extension leg tubing 24, the connector 426 includes a body that defines a cavity 428 suitable for receiving a male-type connector 456 (FIGS. 18A, 18B) therein. The connector 426 can include threads to enable the male connector 456 to threadably connect therewith. The cavity 428 defines a portion of a fluid pathway through the connector body.


A fluid isolation component 450 is included in the connector 426. In particular, the fluid isolation component 450 in the present embodiment includes a slit valve 452 that is disposed in the fluid pathway defined by the connector 426. Other suitable types of valves may also be employed.


As seen in FIGS. 18A and 18B, when the male connector 456 is received but not fully seated within the cavity 428 of the female connector 426, the valve 452 remains closed, thus isolating any fluid contained in the extension leg tubing 24 attached thereto. When the male connector 456 is fully inserted into the female connector 426, the distal end of the male connector engages and opens the valve 452, thus allowing fluid flow therethrough. This configuration of the connector 426 thus serves as one example a connector-based fluid isolation component; other configurations of this principle are contemplated.



FIGS. 19A and 19B depict another example of a fluid isolation component for preventing unintended contact with fluid or vapors resulting from use of an infusion set. In particular, an infusion set 10 is shown, including a needle assembly 220, extension leg tubing 24, and luer connector 26. Also shown is a fluid isolation component 470, which in the present embodiment includes a bag 472 of plastic or other substantially fluid-impermeable material. The bag includes a sealable open end 474 and a closed end 476. The bag 472 is attached to the tubing 24 of the infusion set 10 or other suitable component thereof via and adhesive strip 478 or other suitable connective apparatus.


The bag 472 is initially inside-out before use of the infusion set 10. Once use of the infusion set 10 has ended, the user reaches a hand through the open end 474 of the bag 472 and pulls the infusion set into the bag, turning the bag right side-out in the process. Once the infusion set 10 is fully within the bag 472, the open end 474 of the bag 472 is sealed, as seen in FIG. 19B, thus isolating the user from any fluids or vapors included on the needle assembly 220 or any other portion of the infusion set 10. Note that the bag can be configured in one or more sizes and shapes, can include one-time, resealable, or other suitable type of sealing mechanism, and can be included with the infusion set in a variety of ways, both attached and detached thereto. The bag in the present embodiment is transparent, though in other embodiments it need not be.



FIG. 20 depicts details of another possible fluid isolation component for use with the needle assembly 220 (shown in FIGS. 11-12B), or another suitable needle assembly. In particular, a fluid isolation component 480 is disclosed, including an amount of suitable viscous oil 482, such as silicone oil, interposed as a film between the shutters 242. When the needle 230 is retracted from the hole 236A in the needle assembly base 236, which retraction causes the shutters 242 to slide over and cover the hole, the oil 482 produces a fluid impermeable barrier layer between the shutters, thus preventing any fluid/vapor escaping the needle from escaping past the shutters. In other embodiments, other barriers can be employed between the shutters, including a gasket, O-ring, other compliant/elastomeric member, etc.


Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A needle assembly, comprising: a handle portion including a needle defining a lumen for passage of a fluid therethrough;a safety assembly selectively and axially slidable along the needle to shield a distal tip of the needle and prevent user contact therewith, the safety assembly including: a base including a needle hole; anda spring-based obstruction component biased to obstruct the needle hole after retraction of the needle distal tip into the base, the spring-based obstruction component including at least one shutter having a distal end designed to obstruct the needle hole, a proximal end coupled to the base, and a spring arm connecting the proximal end of the distal end; anda fluid isolation component designed to isolate fluid escape from the needle, the fluid isolation component including an absorbent pad disposed on the at least one shutter, the distal tip of the needle resting against the absorbent pad after retraction of the needle distal tip into the base, the absorbent pad isolating fluid leaked from the needle so as to prevent fluid escape from the safety assembly.
  • 2. The needle assembly according to claim 1, further comprising an extensible hollow shroud extending between the handle portion and the safety assembly so as to enclose a substantial portion of the needle after retraction of the needle distal tip into the base.
  • 3. The needle assembly according to claim 2, wherein the extensible hollow shroud is conically shaped and defines a plurality of interengaging elements.
  • 4. The needle assembly according to claim 3, wherein the plurality of interengaging elements include a plurality of predetermined, repeating surface features.
  • 5. The needle assembly according to claim 4, wherein the extensible hollow shroud includes plastic and wherein the repeating surface features include a plurality of corrugations defined by a surface of the extensible hollow shroud.
  • 6. The needle assembly according to claim 3, wherein the interengaging elements include a plurality of telescoping segments that are interlocked in series with one another.
  • 7. The needle assembly according to claim 3, wherein at least the extensible hollow shroud interconnects the handle portion and the safety assembly when the distal tip of the needle is shielded by the safety assembly.
  • 8. The needle assembly according to claim 1, wherein the at least one shutter comprises a first shutter defining a first shutter hole, and a second shutter defining a second shutter hole, the needle extending through the first shutter hole, the second shutter hole, and the needle hole prior to retraction of the needle distal tip into the base.
  • 9. The needle assembly according to claim 8, wherein the fluid isolation component includes an oil film interposed between the first shutter and the second shutter to prevent escape of fluid from between the shutters.
  • 10. The needle assembly according to claim 9, wherein the fluid isolation component further includes an absorbent pad disposed on each of the first shutter and the second shutter.
  • 11. The needle assembly according to claim 1, wherein the fluid isolation component includes a shield attached to the obstruction component to prevent fluid escape from the safety assembly via the needle hole.
  • 12. The needle assembly according to claim 11, wherein the shield includes an absorbent component for absorbing fluid leaked from the needle.
  • 13. The needle assembly according to claim 1, wherein the fluid isolation component includes an absorption disk positioned to prevent fluid leakage from the needle through the needle hole in the safety assembly.
  • 14. The needle assembly according to claim 13, wherein the absorption disk includes activated charcoal.
  • 15. The needle assembly according to claim 1, wherein the fluid isolation component includes an O-ring disposed in the base to wipe an outer surface of the needle as the safety assembly is axially slid along the needle.
  • 16. The needle assembly according to claim 15, wherein the O-ring includes an absorbent material.
  • 17. The needle assembly according to claim 1, wherein the handle portion is pivotally attached to the safety assembly at a pivot point.
  • 18. The needle assembly according to claim 17, further comprising an extensible hollow shroud extending between the handle portion and the safety assembly so as to enclose a substantial portion of the needle after retraction of the needle distal tip into the base.
  • 19. A needle assembly, comprising: a handle portion including a needle defining a lumen for passage of a fluid therethrough;a safety assembly selectively and axially slidable along the needle to shield a distal tip of the needle and prevent user contact therewith, the safety assembly including: a base including a needle hole; anda spring-based obstruction component biased to obstruct the needle hole after retraction of the needle distal tip into the base, the spring-based obstruction component including at least one shutter having a distal end designed to obstruct the needle hole, a proximal end coupled to the base, and a spring arm connecting the proximal end of the distal end, the at least one shutter comprising a first shutter defining a first shutter hole, and a second shutter defining a second shutter hole, the needle extending through the first shutter hole, the second shutter hole, and the needle hole prior to retraction of the needle distal tip into the base; anda fluid isolation component designed to isolate fluid escape from the needle, the fluid isolation component including an oil film interposed between the first shutter and the second shutter to prevent escape of fluid from between the shutters.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 13/229,573, filed Sep. 9, 2011, now U.S. Pat. No. 9,248,234, which claims the benefit of U.S. Provisional Patent Application No. 61/381,762, filed Sep. 10, 2010, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (259)
Number Name Date Kind
2847995 Adams Aug 1958 A
2876770 White Mar 1959 A
2925083 Craig Feb 1960 A
3134380 Armao May 1964 A
3306290 Weltman Feb 1967 A
4160450 Doherty Jul 1979 A
4235234 Whitney et al. Nov 1980 A
4352254 Peter et al. Oct 1982 A
4352354 Ujihara et al. Oct 1982 A
4380234 Kamen Apr 1983 A
4435175 Friden Mar 1984 A
4564054 Gustavsson Jan 1986 A
4592744 Jagger et al. Jun 1986 A
4611382 Clark Sep 1986 A
4615468 Gay Oct 1986 A
4627842 Katz Dec 1986 A
4627843 Raines Dec 1986 A
4631058 Raines Dec 1986 A
4632671 Dalton Dec 1986 A
4645494 Lee et al. Feb 1987 A
4645495 Vaillancourt Feb 1987 A
4655765 Swift Apr 1987 A
4676782 Yamamoto et al. Jun 1987 A
4676783 Jagger et al. Jun 1987 A
4676788 Vincent Jun 1987 A
4695274 Fox Sep 1987 A
4710176 Quick Dec 1987 A
4725267 Vaillancourt Feb 1988 A
4755173 Konopka et al. Jul 1988 A
4760847 Vaillancourt Aug 1988 A
4775369 Schwartz Oct 1988 A
4795432 Karczmer Jan 1989 A
4813939 Marcus Mar 1989 A
4820282 Hogan Apr 1989 A
D301742 Wyzgala et al. Jun 1989 S
4846809 Sims Jul 1989 A
4867172 Haber et al. Sep 1989 A
4897083 Martell Jan 1990 A
4935011 Hogan Jun 1990 A
4935013 Haber et al. Jun 1990 A
4941881 Masters et al. Jul 1990 A
4941882 Ward et al. Jul 1990 A
4944731 Cole Jul 1990 A
4950250 Haber et al. Aug 1990 A
4969876 Patterson Nov 1990 A
5002533 Jullien Mar 1991 A
5013305 Opie et al. May 1991 A
5053017 Chamuel Oct 1991 A
5061250 Shields Oct 1991 A
5070884 Columbus et al. Dec 1991 A
5085639 Ryan Feb 1992 A
5088982 Ryan Feb 1992 A
5092852 Poling Mar 1992 A
5120320 Fayngold Jun 1992 A
5176653 Metals Jan 1993 A
5176655 McCormick et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5192275 Burns Mar 1993 A
5197954 Cameron Mar 1993 A
5236421 Becher Aug 1993 A
5295972 Mischenko Mar 1994 A
5312366 Vailancourt May 1994 A
5312371 Dombrowski et al. May 1994 A
5322517 Sircom Jun 1994 A
5330438 Gollobin et al. Jul 1994 A
5334158 McLees Aug 1994 A
5336187 Terry et al. Aug 1994 A
5336199 Castillo Aug 1994 A
5342319 Watson et al. Aug 1994 A
5342320 Cameron Aug 1994 A
5350368 Shields Sep 1994 A
5354281 Chen et al. Oct 1994 A
5419766 Chang et al. May 1995 A
5433703 Utterberg et al. Jul 1995 A
5451522 Queener et al. Sep 1995 A
5487728 Vaillancourt Jan 1996 A
5487733 Caizza et al. Jan 1996 A
5490841 Landis Feb 1996 A
5505711 Arakawa et al. Apr 1996 A
5520654 Wahlberg May 1996 A
5531704 Knotek Jul 1996 A
5531713 Mastronardi et al. Jul 1996 A
5554106 Layman-Spillar et al. Sep 1996 A
5567495 Modak et al. Oct 1996 A
5569207 Gisselberg et al. Oct 1996 A
5575773 Song et al. Nov 1996 A
5584813 Livingston et al. Dec 1996 A
5584818 Morrison Dec 1996 A
5607398 Parmigiani Mar 1997 A
5620424 Abramson Apr 1997 A
5637096 Yoon Jun 1997 A
5662913 Capelli Sep 1997 A
5674201 Steinman Oct 1997 A
5685860 Chang et al. Nov 1997 A
5686096 Khan et al. Nov 1997 A
5693022 Haynes Dec 1997 A
5695474 Daugherty Dec 1997 A
5706520 Thornton et al. Jan 1998 A
5722959 Bierman Mar 1998 A
5755694 Camus et al. May 1998 A
5762632 Whisson Jun 1998 A
5779679 Shaw Jul 1998 A
5817070 Tamaro Oct 1998 A
5833665 Bootman et al. Nov 1998 A
5848990 Cirelli et al. Dec 1998 A
5853393 Bogert Dec 1998 A
5858004 Shields Jan 1999 A
5879330 Bell Mar 1999 A
5885254 Matyas Mar 1999 A
5885255 Jaeger, Jr. et al. Mar 1999 A
5951522 Rosato et al. Sep 1999 A
5951525 Thorne et al. Sep 1999 A
5993426 Hollister Nov 1999 A
6042570 Bell et al. Mar 2000 A
6165156 Cesarczyk et al. Dec 2000 A
6210373 Allmon Apr 2001 B1
6238375 Powell May 2001 B1
6261264 Tamaro Jul 2001 B1
6451003 Prosl et al. Sep 2002 B1
6497669 Kensey Dec 2002 B1
6497682 Quartararo Dec 2002 B1
6500155 Sasso Dec 2002 B2
6537255 Raines Mar 2003 B1
6579539 Lawson et al. Jun 2003 B2
6613015 Sandstrom et al. Sep 2003 B2
6623462 Guzzo et al. Sep 2003 B2
6629959 Kuracina et al. Oct 2003 B2
6659984 Maclean Crawford et al. Dec 2003 B2
6663604 Huet Dec 2003 B1
6676633 Smith et al. Jan 2004 B2
6689102 Greene Feb 2004 B2
6699217 Bennett et al. Mar 2004 B2
6719727 Brimhall et al. Apr 2004 B2
6749588 Howell et al. Jun 2004 B1
6755805 Reid Jun 2004 B1
6783002 Pavlo Aug 2004 B1
6808509 Davey Oct 2004 B1
6824530 Wagner et al. Nov 2004 B2
6911020 Raines Jun 2005 B2
6916310 Sommerich Jul 2005 B2
6918894 Fleury et al. Jul 2005 B2
6921388 Swenson Jul 2005 B2
6926693 Enns Aug 2005 B2
6932803 Newby Aug 2005 B2
6969372 Halseth Nov 2005 B1
6972002 Thorne Dec 2005 B2
6997902 Thorne et al. Feb 2006 B2
7083600 Meloul Aug 2006 B2
7147623 Mathiasen Dec 2006 B2
7150725 Wilkinson Dec 2006 B2
7214208 Vaillancourt et al. May 2007 B2
7361159 Fiser et al. Apr 2008 B2
7407493 Cane′ Aug 2008 B2
7438703 Barrus et al. Oct 2008 B2
7569044 Triplett et al. Aug 2009 B2
7601139 Woehr et al. Oct 2009 B2
7604616 Thoresen et al. Oct 2009 B2
7637893 Christensen et al. Dec 2009 B2
7662159 Brandigi Feb 2010 B2
7717888 Vaillancourt et al. May 2010 B2
7776016 Halseth et al. Aug 2010 B1
7947021 Bourne et al. May 2011 B2
7967797 Winsor et al. Jun 2011 B2
8066678 Vaillancourt Nov 2011 B2
8152768 Halseth et al. Apr 2012 B2
8263100 Areskoug et al. Sep 2012 B2
8293965 McMaken et al. Oct 2012 B2
8486004 Propp Jul 2013 B1
8569567 Ovington Oct 2013 B2
8574197 Halseth et al. Nov 2013 B2
8579863 Scherr Nov 2013 B2
8597253 Vaillancourt Dec 2013 B2
8708969 Carlyon Apr 2014 B2
8728029 Vaillancourt et al. May 2014 B2
8852154 Halseth et al. Oct 2014 B2
9248234 Barron Feb 2016 B2
9566417 Propp Feb 2017 B1
9579451 Stumpp Feb 2017 B2
9713673 Vaillancourt Jul 2017 B2
20010039401 Ferguson et al. Nov 2001 A1
20020055711 Lavi et al. May 2002 A1
20020072716 Barrus et al. Jun 2002 A1
20020099340 Crawford et al. Jul 2002 A1
20020151852 Crawford et al. Oct 2002 A1
20020165497 Greene Nov 2002 A1
20020173749 Wagner et al. Nov 2002 A1
20020177816 Brimhall et al. Nov 2002 A1
20020177818 Vaillancourt Nov 2002 A1
20020183652 Kensey Dec 2002 A1
20030060774 Woehr et al. Mar 2003 A1
20030069546 Sandstrom et al. Apr 2003 A1
20030093101 O'Heeron et al. May 2003 A1
20030105430 Lavi et al. Jun 2003 A1
20030114797 Vaillancourt et al. Jun 2003 A1
20030144627 Woehr et al. Jul 2003 A1
20030148994 Levinson Aug 2003 A1
20030181872 Newby Sep 2003 A1
20030199827 Thorne Oct 2003 A1
20040044318 Fiser et al. Mar 2004 A1
20040049159 Barrus et al. Mar 2004 A1
20040156908 Polaschegg Aug 2004 A1
20040236288 Howell et al. Nov 2004 A1
20050027263 Woehr et al. Feb 2005 A1
20050090784 Nielsen et al. Apr 2005 A1
20050107743 Fangrow May 2005 A1
20050107748 Thorne et al. May 2005 A1
20050107749 Smith May 2005 A1
20050124938 Yang Jun 2005 A1
20050137528 Wilkinson Jun 2005 A1
20050191355 Foss Sep 2005 A1
20060064061 Solomon et al. Mar 2006 A1
20060074387 Thorne et al. Apr 2006 A1
20060155245 Woehr Jul 2006 A1
20060161116 Willis et al. Jul 2006 A1
20060182787 Jaenichen et al. Aug 2006 A1
20060253076 Butts Nov 2006 A1
20060276836 Bergin et al. Dec 2006 A1
20070038182 Bialecki et al. Feb 2007 A1
20070038183 Bialecki et al. Feb 2007 A1
20070038184 Bialecki et al. Feb 2007 A1
20070038185 Albert et al. Feb 2007 A1
20070073221 Bialecki et al. Mar 2007 A1
20070073222 Lilley et al. Mar 2007 A1
20070078432 Halseth et al. Apr 2007 A1
20080063693 Cook et al. Mar 2008 A1
20080147003 Menzi et al. Jun 2008 A1
20080243082 Goodman Oct 2008 A1
20080262434 Vaillancourt Oct 2008 A1
20090005743 Vaillancourt et al. Jan 2009 A1
20090143737 Kobayashi et al. Jun 2009 A1
20090157000 Waller Jun 2009 A1
20090254050 Bottcher Oct 2009 A1
20090281499 Harding et al. Nov 2009 A1
20100076362 Utterberg et al. Mar 2010 A1
20100100049 Godfrey Apr 2010 A1
20100179473 Genosar Jul 2010 A1
20100312183 Halseth et al. Dec 2010 A1
20110009831 Burkholz et al. Jan 2011 A1
20110021997 Kyvik et al. Jan 2011 A1
20110106014 Helm, Jr. May 2011 A1
20110111012 Pepper et al. May 2011 A1
20110301619 Walters Dec 2011 A1
20120046612 Scheremet et al. Feb 2012 A1
20120046621 Vaillancourt et al. Feb 2012 A1
20120065587 Barron et al. Mar 2012 A1
20120089069 Patel Apr 2012 A1
20120130315 Weadock et al. May 2012 A1
20120184922 Halseth et al. Jul 2012 A1
20130110025 Donnellan et al. May 2013 A1
20130150791 Peterson et al. Jun 2013 A1
20130150796 Souza et al. Jun 2013 A1
20130172260 Polaschegg Jul 2013 A1
20130190724 Polaschegg Jul 2013 A1
20130274667 Conrad-Vlasak et al. Oct 2013 A1
20130310764 Burkholz et al. Nov 2013 A1
20140039416 Vaillancourt Feb 2014 A1
20140058354 Halseth et al. Feb 2014 A1
20140066894 Pearce et al. Mar 2014 A1
20150297867 Howell et al. Oct 2015 A1
Foreign Referenced Citations (36)
Number Date Country
3808688 Jan 1989 DE
3802353 Aug 1989 DE
20210394 Sep 2002 DE
0344606 Dec 1989 EP
451040 Oct 1991 EP
0747082 Dec 1996 EP
0763369 Mar 1997 EP
1350537 Oct 2003 EP
1430921 Jun 2004 EP
2436421 Apr 2012 EP
2613824 Jul 2013 EP
2684006 May 1993 FR
H03-000077 Jan 1991 JP
61-25558 May 1994 JP
6226919 Aug 1994 JP
H06-304254 Nov 1994 JP
7-148270 Jun 1995 JP
H07-299142 Nov 1995 JP
9099071 Apr 1997 JP
2001-218844 Aug 2001 JP
2002345955 Dec 2002 JP
2003-305128 Oct 2003 JP
2004-195227 Jul 2004 JP
2007-521918 Aug 2007 JP
4355567 Aug 2009 JP
2010-000300 Jan 2010 JP
1988007387 Oct 1988 WO
1994000172 Jan 1994 WO
1998006642 Feb 1998 WO
1999059660 Nov 1999 WO
2004020033 Mar 2004 WO
2005049116 Jun 2005 WO
2006134100 Dec 2006 WO
2007094898 Aug 2007 WO
2012034085 Mar 2012 WO
2012132774 Oct 2012 WO
Non-Patent Literature Citations (64)
Entry
JP 2016-185696 filed Sep. 23, 2016 Office Action dated Jul. 3, 2017.
JP2013-528355 filed Jan. 25, 2013, First Office Action dated Jun. 23, 2015.
JP2013-528355 filed Jan. 25, 2013, Second Office Action dated May 31, 2016.
U.S. Appl. No. 14/045,663, filed Oct. 3, 2013 Advisory Action dated May 12, 2016.
U.S. Appl. No. 14/045,663, filed Oct. 3, 2013 Final Office Action dated Dec. 12, 2016.
U.S. Appl. No. 14/045,663, filed Oct. 3, 2013 Final Office Action dated Feb. 25, 2016.
U.S. Appl. No. 14/045,663, filed Oct. 3, 2013 Non-Final Office Action dated Jun. 15, 2016.
U.S. Appl. No. 14/045,663, filed Oct. 3, 2013 Notice of Allowance dated Mar. 15, 2017.
U.S. Appl. No. 14/070,246, filed Nov. 1, 2013 Advisory Action dated Nov. 29, 2016.
U.S. Appl. No. 14/070,246, filed Nov. 1, 2013 Examiner's Answer dated Jun. 23, 2017.
U.S. Appl. No. 14/070,246, filed Nov. 1, 2013 Final Office Action dated Sep. 22, 2016.
U.S. Appl. No. 14/070,246, filed Nov. 1, 2013 Non-Final Office Action dated Mar. 14, 2016.
EP 03257490 filed Nov. 27, 2003 Office Action dated Aug. 9, 2007.
EP 03257490 filed Nov. 27, 2003 Search Report dated Jul. 23, 2004.
JP 2003-416415 filed Dec. 15, 2003 Office Action dated Feb. 23, 2007.
JP 2003-416415 filed Dec. 15, 2003 Office Action dated May 30, 2006.
PCT/US11/51102 International Preliminary Report on Patentabillity dated Mar. 21, 2013.
PCT/US11/51102 International Search Report and Written Opinion dated Dec. 23, 2011.
PCT/US2015/038853 filed Jul. 1, 2015 International Search Report and Written Opinion dated Oct. 6, 2015.
U.S. Appl. No. 10/320,168, filed Dec. 16, 2002 Advisory Action dated Aug. 22, 2005.
U.S. Appl. No. 10/320,168, filed Dec. 16, 2002 Advisory Action dated Nov. 16, 2005.
U.S. Appl. No. 10/320,168, filed Dec. 16, 2002 Final Office Action dated Jul. 13, 2005.
U.S. Appl. No. 10/320,168, filed Dec. 16, 2002 Non-Final Office Action dated Sep. 3, 2004.
U.S. Appl. No. 10/320,168, filed Dec. 16, 2002 Notice of Allowance dated Aug. 29, 2011.
U.S. Appl. No. 10/320,168, filed Dec. 16, 2002 Notice of Allowance dated May 13, 2011.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Advisory Action dated Jul. 16, 2007.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Final Office Action dated Apr. 4, 2008.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Final Office Action dated Jan. 20, 2010.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Final Office Action dated Jan. 25, 2007.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Non-Final Office Action dated Jul. 28, 2006.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Non-Final Office Action dated Oct. 2, 2008.
U.S. Appl. No. 10/787,605, filed Feb. 26, 2004 Non-Final Office Action dated Sep. 10, 2007.
U.S. Appl. No. 11/788,542, filed Apr. 20, 2007 Decision on Appeal dated Oct. 24, 2012.
U.S. Appl. No. 11/788,542, filed Apr. 20, 2007 Examiner's Answer dated Jun. 3, 2010.
U.S. Appl. No. 11/788,542, filed Apr. 20, 2007 Final Office Action dated Dec. 16, 2009.
U.S. Appl. No. 11/788,542, filed Apr. 20, 2007 Non-Final Office Action dated Aug. 27, 2008.
U.S. Appl. No. 11/788,542, filed Apr. 20, 2007 Non-Final Office Action dated Jan. 8, 2009.
U.S. Appl. No. 11/788,542, filed Apr. 20, 2007 Non-Final Office Action dated Jul. 10, 2009.
U.S. Appl. No. 12/221,034, filed Jul. 30, 2008 Final Office Action dated Dec. 8, 2009.
U.S. Appl. No. 12/221,034, filed Jul. 30, 2008 Non-Final Office Action dated Jan. 30, 2009.
U.S. Appl. No. 12/221,034, filed Jul. 30, 2008 Non-Final Office Action dated Jun. 26, 2009.
U.S. Appl. No. 12/221,034, filed Jul. 30, 2008 Notice of Allowance dated Feb. 25, 2010.
U.S. Appl. No. 12/855,605, filed Aug. 12, 2010 Final Office Action dated Oct. 4, 2011.
U.S. Appl. No. 12/855,605, filed Aug. 12, 2010 Non-Final Office Action dated Apr. 27, 2011.
U.S. Appl. No. 12/855,605, filed Aug. 12, 2010 Notice of Allowance dated Dec. 12, 2011.
U.S. Appl. No. 13/229,573, filed Sep. 9, 2011 Advisory Action dated Aug. 5, 2014.
U.S. Appl. No. 13/229,573, filed Sep. 9, 2011 Final Office Action dated Jun. 20, 2014.
U.S. Appl. No. 13/229,573, filed Sep. 9, 2011 Final Office Action dated May 6, 2015.
U.S. Appl. No. 13/229,573, filed Sep. 9, 2011 Non-Final Office Action dated Nov. 27, 2013.
U.S. Appl. No. 13/229,573, filed Sep. 9, 2011 Non-Final Office Action dated Oct. 24, 2014.
U.S. Appl. No. 13/229,573, filed Sep. 9, 2011, Notice of Allowance dated Jul. 15, 2015.
U.S. Appl. No. 13/285,774, filed Oct. 31, 2011 Final Office Action dated Oct. 28, 2013.
U.S. Appl. No. 13/285,774, filed Oct. 31, 2011 Non-Final Office Action dated Dec. 13, 2012.
U.S. Appl. No. 13/285,774, filed Oct. 31, 2011 Non-Final Office Action dated Jul. 3, 2012.
U.S. Appl. No. 13/285,774, filed Oct. 31, 2011 Non-Final Office Action dated Jun. 3, 2013.
U.S. Appl. No. 13/434,368, filed Mar. 29, 2012 Non-Final Office Action dated Mar. 20, 2013.
U.S. Appl. No. 14/045,663, filed Oct. 3, 2013 Non-Final Office Action dated Aug. 13, 2015.
U.S. Appl. No. 14/070,246, filed Nov. 1, 2013 Final Office Action dated Oct. 21, 2015.
U.S. Appl. No. 14/070,246, filed Nov. 1, 2013 Non-Final Office Action dated Apr. 8, 2015.
U.S. Appl. No. 14/070,319, filed Nov. 1, 2013 Notice of Allowance dated Jun. 23, 2014.
EP 15814436.0 filed Jan. 11, 2017 Extended European Search Report dated Feb. 1, 2018.
JP 2016-185696 filed Sep. 23, 2016 Office Action dated Mar. 27, 2018.
U.S. Appl. No. 14/789,341, filed Jul. 1, 2015 Non-Final Office Action dated Apr. 20, 2018.
U.S. Appl. No. 14/789,341, filed Jul. 1, 2015 Restriction Requirement dated Nov. 16, 2017.
Related Publications (1)
Number Date Country
20160144107 A1 May 2016 US
Provisional Applications (1)
Number Date Country
61381762 Sep 2010 US
Divisions (1)
Number Date Country
Parent 13229573 Sep 2011 US
Child 15012800 US