This disclosure relates to simulating joining operations and, more particularly, to systems for simulating joining operations using mobile devices.
While some welding processes may be automated in certain contexts, a large number of applications continue to exist for manual welding operations. Manual welding operations often depend heavily on individual manual welding operators. The quality of a manual weld may be dictated by the experience and/or skill of manual welding operators, such as with respect to proper welding techniques (for example, torch work angles, torch travel angles, contact tip-to-work distance, travel speed, aim, etc.) and/or welding parameters (e.g., wire feed speed, voltage, current, etc.).
However, the welding industry has a shortage of experienced and skilled operators. Additionally, it is difficult and expensive to train new operators using live welding equipment. Further, even experienced welders often have difficulty maintaining important welding techniques throughout welding processes. Thus, there is a demand for affordable training tools and equipment that help operators develop, maintain, and/or refine welding skills.
Simulated welding tools make it possible for both experienced and inexperienced weld operators to practice producing high quality welds prior to actually using the real welding equipment. Additionally, welding operators can test out different welding tools in a simulated environment prior to actually purchasing that particular welding tool. However, conventional systems and methods for simulating joining operations require substantial investments in equipment (e.g., processors, displays, practice workpieces, welding tool(s), sensor(s), etc).
Systems for simulating joining operations using mobile devices are disclosed, substantially as illustrated by and described in connection with at least one of the figures, as set forth more completely in the claims.
These and other advantages, aspects, and/or novel features of the present disclosure, as well as details of an illustrated example thereof, will be more fully understood from the following description and drawings.
Features, aspects, and/or advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The figures are not necessarily to scale. Where appropriate, similar or identical reference numbers are used to refer to similar or identical components.
Some examples of the present disclosure relate to simulating (e.g., via augmented, mixed, and/or virtual reality) joining operations (e.g., welding, brazing, adhesive bonding, and/or other joining operations) using mobile devices (e.g., smartphone, tablet, personal digital assistant, electronic book reader, ipod, etc.), such as for purposes of training. While the following disclosure sometimes refers to welding and/or weld training as a shorthand, the disclosure is equally applicable to other joining operations.
In some examples, a conventional welding helmet is adapted with a mobile device mount configured to connect a mobile device with the welding helmet. Mobile devices are widely available, relatively affordable, and technically powerful. Harnessing these available and affordable devices for training simulations may be advantageous.
In some examples, a mobile device is mounted to a welding helmet such that a wearer of the welding helmet can see a display of the mobile device in their field of view when wearing the welding helmet. In some examples, the mobile device is mounted such that a camera of the mobile device is unobscured and positioned at approximately eye level, facing the same way the wearer's eyes are facing. In some examples, the simulated training environment may be presented to the user via the display screen of the mobile device, using images captured by the camera of the mobile device, when the mobile device is so mounted to the welding helmet.
Some examples of the present disclosure relate to a weld training system, comprising a mobile device mount configured for connection to a welding helmet via connectors of the welding helmet, the connectors configured for connection of a lens or auto-darkening filter to the welding helmet, and a mobile device retained by the mobile device mount, the mobile device comprising a housing, a display configured to display images from a first side of the housing, a camera configured to capture images from a second side of the housing opposite the first side of the housing, processing circuitry in the housing and coupled to the display and the camera, and a computer readable storage device comprising computer readable instructions which, when executed, cause the processing circuitry to execute a welding simulation based on images captured via the camera, generate images of the welding simulation, and display the images of the welding simulation via the display.
In some examples, the mobile device mount comprises a mobile device retainer configured to retain the mobile device, the mobile device retainer having an opening configured to avoid obscuring a field of view of the camera when the camera captures images, and a mounting panel configured to attach to the connectors of the welding helmet such that the mounting panel replaces a lens or auto-darkening filter of the welding helmet, where the mobile device retainer and the mounting panel are configured to retain the mobile device in a field of view of a wearer of the welding helmet to display the images of the welding simulation to the wearer via the display. In some examples, the mounting panel comprises a lens configured to project the display to be at a focal length appropriate for the wearer.
In some examples, the mobile device retainer comprises a harness configured to hold the mobile device substantially steady with respect to the mobile device retainer. In some examples, the mobile device mount further comprises an intermediate retainer configured to couple the mobile device retainer to the mounting panel at a first distance. In some examples, the weld training system further comprises an energy storage device configured to be coupled to the mobile device to provide supplementary power to the mobile device, or an illuminator configured to illuminate a field of view of the camera during the welding simulation. In some examples, the connectors comprise first connectors, and the welding helmet comprises second connectors configured to retain a magnification lens.
Some examples of the present disclosure relate to a weld training system, comprising a welding tool comprising communication circuitry configured to send one or more signals to a mobile device, wherein the mobile device is configured to execute a welding simulation based on the one or more signals.
In some examples, the welding tool further comprises a trigger, and the one or more signals comprise one or more trigger signals sent in response to activation of the trigger. In some examples, the welding tool is configured to be communicatively paired with the mobile device via a wireless communication protocol, and the welding tool comprises a visual indicator or an audio indicator configured to indicate at least one of the welding tool being powered on or the welding tool being communicatively paired with the mobile device. In some examples, the welding tool further comprises an identifier imprinted on the welding tool that assists in communicatively pairing the welding tool with the mobile device, wherein the mobile device is configured to communicatively pair with the welding tool only if the identifier is associated with the mobile device.
In some examples, the welding tool further comprises a sensor, where the sensor comprises an accelerometer, a gyroscope, or an inertial measurement unit, and where the one or more signals are representative of a position, orientation, or motion of the welding tool. In some examples, the welding tool further comprises a weight positioned within the welding tool. In some examples, the welding tool further comprises a nozzle comprising a first identifier, and a marker label configured for attachment to the nozzle, the marker label comprising a second identifier that is complementary to the first identifier of the nozzle, the first identifier and second identifier together indicating a correct configuration for attaching the marker label to the nozzle.
Some examples of the present disclosure relate to a weld training system, comprising a welding tool, comprising a handle, a trigger movably connected to the handle, and a marker configured to transition from a first state to a second state in response to activation or deactivation of the trigger.
In some examples, the marker is configured to transition from a first state where the marker is visible to a second state where the marker is hidden in response to activation or deactivation of the trigger. In some examples, the welding tool further comprises a slide that hides the marker, the slide configured to retract to reveal the marker in response to activation or deactivation of the trigger. In some examples, the marker is disposed on the trigger. In some examples, the marker comprises a first marker, and the welding tool further comprises a second marker that moves with respect to the first marker when the trigger is activated or deactivated. In some examples, the weld training system further comprises a mobile device configured to observe the marker and conduct a weld training simulation based on the transition of the marker from the first state to the second state.
Examples of conventional systems, apparatuses, and methods for providing a simulated training environment are described in U.S. patent application Ser. No. 14/406,228, which has a § 371(c)(1)(2) date of Dec. 8, 2014, and which is a national stage application of International Patent Application No. PCT/ES2013/070315, filed on May 17, 2013, and entitled “Advanced Device for Welding Training, Based on Augmented Reality Simulation, Which can be Updated Remotely.” The entireties of U.S. patent application Ser. No. 14/406,228 and International Patent Application No. PCT/ES2013/070315 are incorporated herein by reference.
In the example of
In the example of
In the example of
In the example of
In some examples, the illuminator(s) 128 (e.g., light emitting diode(s)) may facilitate image capture by the primary camera(s) 702 and/or secondary camera(s) 102 by illuminating the nearby environment. In some examples, the speaker(s) 103 may emit audio associated with the welding simulation. In some examples, the mobile device 700 may control the illuminator(s) 128 to illuminate objects in the FOV 124, such as the workpiece 202 and/or the welding tool 200. In some examples, the illuminator(s) 128 may comprise active light sources, such as an LED array, for example. In some examples, the illuminator(s) 128 may be activated automatically when the camera(s) 102 and/or camera(s) 702 are taking images and determine that additional lighting would be beneficial (e.g., luminance received at the camera(s) 702 is less than a threshold), so as to conserve battery power of the mobile device 700. In some examples, the illuminator(s) 128 may be activated and/or deactivated through a user interface of the mobile device 700, such as by voice command.
In some examples, the secondary camera(s) 102, speaker(s) 103, and/or illuminator(s) 128 may be powered by the energy storage device 132, mobile device 700, and/or one or more external energy sources connected through coupling device 134. In some examples, the energy storage device 132 may be in electrical communication with and/or provide power to the mobile device 700, and/or vice versa. In some examples, the energy storage device 132 and/or mobile device 700 may be in electrical communication with and/or receive power from an external device through the coupling device 134. In some examples, the helmet shell 106 may include energy storage support features such as a slot to insert and/or retain the energy storage device 132, and/or an electrical connector in which to plug in the energy storage device 132. In some examples, the helmet training system 101 may include a counterbalance clip for support of the energy storage device 132.
In the example of
In the example of
In some examples, the communication module 210 may include communication circuitry configured to communicate with the mobile device 700. In some examples, one or more of the illuminators 206 may be configured to light up and/or blink when successful communication is established (e.g., successful pairing), and/or when communication is taking place, between the welding tool 200 (and/or communication module 210) and the mobile device 700. In some examples, one or more of the speakers 208 may be configured to output audio when successful communication is established (e.g., successful pairing), and/or when communication is taking place. In some examples, the welding tool 200 may have sensors that can provide location specific parameters of the welding tool 200 to the helmet training system 101, via the communication module 210. In some examples, the communication module 210 may be authorized for communication over a secure network, and/or may facilitate communication of the mobile device 700 over the secure network.
In some examples, one or more of the illuminators 206 may be configured to facilitate viewing, image capture, and/or recognition of the welding tool 200 by the primary camera(s) 702. In some examples, one or more illuminators 206 may be attached to the welding tool 200 directly, rather than through the communication module 210. In some examples, one or more illuminators 206 may be separate from the welding tool 200 and/or the communication module 210. In some examples, the illuminator(s) 206 may light up and/or blink when the welding tool 200 is activated (e.g., via activation of trigger 209), so as to indicate (e.g., to mobile device 700, camera(s) 702, and/or helmet training system 101) that the activation has taken place.
In the example of
In the example of
In some examples, the weld training management program 1700 may assist in managing and/or operating the weld training system 100. For example, the remote server(s) 110 may provide assigned weld training exercises to be performed in accordance with a weld training application 800 (further described below) as part of the weld training management program 1700. As another example, the remote server(s) 110 may manage and/or keep track (e.g., via the database(s) 146) of user accounts, as well as exercises, equipment, licenses, and/or other information related to a user account as part of the weld training management program 1700.
In some examples, the one or more databases 146 may store data pertinent to the weld training system 100 and/or weld training management program 1700. For example, the database(s) 146 may store data relating to training assignments, exercises, goals, users, welding tools 200, communication modules 210, licenses, helmet training systems 101, and/or other data. In some examples, the weld training management program 1700 may restrict what welding tools 200 may be used, based on user and/or license authorizations, as discussed further below with respect to
In the example of
In the example of
In the example of
In some examples, the weights 236 may comprise metal slugs. As shown, the weights 236 are generally cylindrical and sized to fit within the handle 214 and neck and nozzle assembly 216 of the welding tool 200. In some examples, the weights 236 may be configured to add heft to the welding tool 200, making the welding tool 200 feel heavier and/or more realistic, such as in examples where the welding tool 200 is a mock welding tool.
In the examples of
In the examples of
In the examples of
In the examples of
In the example of
In the examples of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the example of
In the examples of
In the examples of
In the examples of
In the example of
In some examples, the holes 528 may be configured to receive the webbing 650. In some examples, a cushioning material may be formed in and/or positioned on the shelf 524 to provide a buffer between the intermediate shell 500b and the mobile device 700. In some examples, the cushioning material may be a rubber or foam material. In some examples, the cushioning material and/or intermediate shell 500b may be thermally conductive, to operate as a heat sink 138.
In the examples of
In the examples of
In the example of
In some examples, the webbing 650 may be stretched through the holes 528 of the intermediate shell 500b such that corner portions 654 of the webbing engage a rear side of the shelf 524. In such a way, an elastic force of the webbing 650 may secure a mobile device 700 seated on the shelf 524 to the intermediate shell 500b, such as shown, for example, in
In the example of
Though not shown for the sake of simplicity, the power source 724 may be in electrical communication with all components of the mobile device 700, so as to provide power to the components. The power source 724 may comprise, for example, a battery (e.g., a lithium ion or sodium ion or lithium polymer or dual carbon battery), circuitry for charging the battery from an AC and/or DC power source, and circuitry for conditioning/delivering energy from the battery to the other circuitry of the mobile device 700. In some examples, the power source 724 may receive and/or provide power from/to external devices through the port 708.
In some examples, the user input devices 712 may include, for example, one or more touchscreen elements, microphones, physical buttons, gesture controls, biometric sensors, and/or other types of input devices that generate electric signals in response to user input. For example, user input devices 712 may include capacitive, acoustic, inductive, and/or resistive touchscreen sensors that enable a user of the mobile device 700 to interact with user graphics displayed on the front of the display 704.
In some examples, the speaker driver circuitry 716 conditions (e.g., converts to analog, amplifies, etc.) signals from the processor 714 for output to one or more speakers 703. Such signals may, for example, carry audio to alert a user of the mobile device 700 that a welding parameter is out of tolerance, that a weld is being performed out of sequence, to provide audio instructions to the user, to simulate welding sounds, and/or any other audio.
The sensor(s) 722 may include infrared and/or ultrasonic sensors, accelerometers, gyroscopes, inertial measurement units (IMUs), NFC sensors, RFID sensors, Bluetooth sensors, and/or the like. The sensors 722 may include one or more inertial measurement units (IMUs) such as multi-axis gyroscopes, multi-axis accelerometers, and/or multi-axis magnetometers to detect, encode, and/or measure movement of the mobile device 700 (e.g., turning, vibration, traveling and shaking of the helmet as the wearer's head moves to follow the arc). The sensor(s) 722 may, for example, be operable to track head movement of the weld operator and/or insertion/removal of the mobile device 700 from the helmet training system 101.
In some examples, the display driver circuitry 720 generates control signals (e.g., bias and timing signals) for the display 704 and/or conditions (e.g., level control synchronize, packetize, format, etc.) pixel data from the GPU 718 for conveyance to the display 704. In some examples, the display 704 may include, for example, a liquid crystal display (LCD), light emitting diode (LED) display, organic light emitting diode (OLED) display, and/or any other suitable type of display operable to convert electrical signals into optical signals viewable by a user of the mobile device 700.
In some examples, the GPU 718 determines pixel data to be outputted the display 704 based on direction, commands, control signals, and/or other data provided by the processor 714. In some examples, the GPU further receives and/or processes image/pixel data (e.g., of stereoscopic or two-dimensional images) from the camera(s) 102/702 to, for example, recognize markers on the workpiece 202 and/or the welding tool 200. The processing of pixel data by the GPU 718 may comprise, for example, analyzing the images and/or pixel data to determine, in real-time, one or more markers 204 on the simulated workpiece(s) 202 and/or the welding tool 200. In some examples, the GPU 718 may determine one or more physical relationships (e.g., relative position, orientation, movement, etc.) between the camera(s) 102/702, the mock workpiece(s) 202, and/or the welding tool 200, based on known and/or detected sizes, positions, and/or orientations of the markers 204. The GPU 718 and/or the processor(s) 714 may divide these tasks as appropriate (e.g., to take advantage of optimizations that can be provided by the GPU 718 and/or the processor 714).
In some examples, 3D positioning information may be obtained through processing of the captured images (e.g., via computer vision techniques) by the processor(s) 714 and/or GPU 718. In some examples, the camera(s) 102/702 capture images used to implement the welding simulation, and the camera captured images may be analyzed, at least in part, by extrapolating on known relationships between objects visible in the images (e.g., respective marker sizes and/or locations on a welding tool and/or workpiece). In some examples, a portion of the images captured by the camera(s) 102/702 are displayed to the user, and another portion of the images captured by the camera(s) 102/702 are augmented to provide the welding simulation.
In some examples, the camera(s) 102/702 may include one or more lenses, filters, and/or other optical components for capturing electromagnetic waves in one or more spectra, such as, for example, infrared, visible, and/or ultraviolet. In some examples, the one or more cameras 102/702 may have a high dynamic range (HDR), a medium dynamic range, or a wide dynamic range (WDR) imaging array that has logarithmic response at each pixel in a single frame time, with a dynamic range exceeding 120 decibels (dB) to >140 dB. In some examples, the helmet training system 101 and/or mobile device 700 may include different and/or adjustable camera lenses. In some examples, the helmet training system 101 may configure the camera(s) 102/702 (and/or determine a correct camera configuration) at startup based on captured images of the mock workpiece 202 and/or welding tool 200. The configuration may help to determine the correct camera positioning, zoom, and/or focus over the course of the simulated weld process.
In some examples, the one or more primary cameras 702 and/or one or more secondary cameras 102 may implement a stereoscopic tracking and/or display system. In a stereoscopic display system, images are displayed to a user from two slightly different viewpoints (e.g., with one viewpoint presented to one eye and the other viewpoint presented to the other eye), so as to simulate the way each eye on a human captures a slightly different viewpoint. In a stereoscopic tracking system, two or more cameras may be used to more accurately and/or precisely track objects captured in camera images. In some examples, stereoscopic tracking systems may enable calculations of the dimensions of the field of view based on the four corners of the image. For example, a stereoscopic tracking system may calculate the real-world coordinates of the image points based on a pre-determined (and/or pre-calibrated) spacing between the cameras or optical sensors, and calculate the real-world distance between the points.
In some examples, the one or more primary cameras 702 may comprise two or more cameras implementing a stereoscopic tracking and/or display system configured to capture stereoscopic images. In some examples, the one or more primary cameras 702 may comprise a single camera that provides a first perspective of a stereoscopic tracking and/or display system, while a second perspective of the stereoscopic tracking and/or display system is provided by the secondary camera(s) 102. In some examples, the one or more primary cameras 702 may comprise a first camera perspective, and the second camera perspective may be simulated (e.g., via appropriate simulation techniques stored in memory 726 and/or executed by processor(s) 714) to create a stereoscopic display system.
In the example of
In some examples, for transmit operations, the communication circuitry 710 may receive data from the processor 714, packetize the data, and convert the data to physical layer signals in accordance with protocols in use. For data receiving operations, the communication circuitry 710 may receive physical layer signals via the antenna 706 and/or port 708, recover data from the received physical layer signals (demodulate, decode, etc.), and provide the data to the processor 714. The received data may include, for example, sensor measurements by the welding tool 200, trigger signals from the welding tool 200, and/or training simulation operational configurations from the remote server 110. The transmitted data may include, for example, training simulation results, simulation graphics, control signals for controlling the illuminator(s) 128 and/or speaker 103, and/or such communications with other external devices.
In some examples, the communications circuitry 710 includes a wireless (e.g., Zigbee, Bluetooth®) coordinator that receives a notification of a trigger pull event (e.g., from the welding tool 200) and sends the signal to the processor 714 (e.g., a wireless node). In response, the processor 714 may enable a WiFi radio of the communications to enable transmission of media (e.g., video and/or audio) via higher-bandwidth protocols such as FTP, HTTP, and/or any other protocol.
In some examples, the mobile device 700 (e.g., via the processor 714 and the communications circuitry 710) provides media (e.g., video, audio, weld training data) to one or more cloud servers (e.g., the remote server 110) to store and/or process the media. The mobile device 700 may implement HTTP and/or FTP servers to enable data transfer. In some examples, the processor 714 stores the media in a local flash memory and/or other nonvolatile memory inside the helmet training system 101 (e.g., in the memory 726).
In the example of
In the example of
In some examples, a disable command may comprise user selection of a disable option via the user input devices 712 of the mobile device 700. In some examples, the disable command may comprise communication between the one or more sensors 122 (e.g., RFID, NFC, Bluetooth, etc.) of the helmet training system 101 and the one or more of the sensors 722 of the mobile device 700. In some examples, such communication may occur when the sensors 122/722 come into communication range, which may indicate, for example, that the mobile device 700 has been coupled to helmet training system 101. In some examples, the disable command may comprise a particular activation of the trigger 209 of the welding tool 200 (e.g., after pairing), such as, for example, a given combination of trigger 209 presses. For example, four successive trigger 209 presses, or two short trigger 209 press followed by one long trigger 209 press (e.g., press and hold), may signal a disable command. In some examples, the disable command may comprise one or more measurements of one or more sensors 722 (and/or sensors 122) indicating that the helmet training system 101 is at a given angle or orientation.
In some examples, an enable command may comprise user selection of an enable option via the user input devices 712 of the mobile device 700. In some examples, the enable command may comprise a cessation of communication between the one or more sensors 122 (e.g., RFID, NFC, Bluetooth, etc.) of the helmet training system 101 and the one or more of the sensors 722 of the mobile device 700. In some examples, such cessation of communication may occur when the sensors move out of communication range, which may indicate, for example, that the mobile device 700 has been decoupled from the helmet training system 101. In some examples, the enable command may comprise a particular activation of the trigger 209 of the welding tool 200 (e.g., after pairing), such as, for example, a given combination of trigger 209 presses. For example, four or five successive trigger 209 presses, or two short trigger 209 press followed by one long trigger 209 press (e.g., press and hold), may signal an enable command. In some examples, the enable command may comprise one or more measurements of one or more sensors 722 (and/or sensors 122) indicating that the helmet training system 101 is at a given angle or orientation.
In the example of
In some examples, selecting “Pair Torch” may provoke a process for establishing wireless communication (via an appropriate wireless communication protocol) between communication circuitry 710 of the mobile device 700 and communication circuitry of the welding tool 200 (e.g., in the communication module 210). In some examples, the process may comprise scanning a QR code 224 and/or entering an unique identification number associated with the communication module 210 and/or welding tool 200. In some examples, the mobile device 700 may send one or more signals to the remote server(s) 110 indicative of the welding tool 200 and/or communication module 210 to which the mobile device has paired and/or is attempting to pair. In some examples, the weld management program 1700 on the remote server(s) 110 may access the database(s) 146 to determine whether a logged in user account is authorized to use the welding tool 200 and/or communication module 210 which has been paired and/or is attempting to be paired, as discussed further below with respect to
In some examples, the remote server 110 may send one or more signals back to the mobile device 700 indicative of whether the user is authorized to pair with the particular welding tool 200 and/or communication module 210 based on the license(s) and/or other information. In some examples, the weld training application 800 may refuse to allow pairing of the mobile device 700 to a welding tool 200 and/or communication module 210 that is not associated with the logged in user account. In some examples, the weld training application 800 may cause an error to be outputted to the user via the mobile device 700 in response to one or more signals received from the remote server(s) 110 indicative of a refusal to pair.
In some examples, selecting “Access Student Center” at the home screen 906A of
In some examples, selecting “Refresh Assignments” from the student center screen 906B may induce the mobile device 700 to query the remote server 110 for training exercises, tasks, goals, activities, etc. that have been assigned (e.g., by a teacher/trainer) to the user and/or associated with the user's login credentials. Weld training exercises, tasks, goals, activities, etc. that have been newly assigned and/or updated since the last refresh may then be downloaded to the mobile device 700 and/or stored in memory 726 of the mobile device 700. In some examples, selecting “Upload Results” from the student center screen 906B may induce the mobile device 700 to send result data associated with completed weld training exercises, tasks, goals, activities, etc. from the mobile device 700 to the remote server 110. In some examples, selecting “Select Exercise” may cause the mobile device 700 to present to the user (e.g., via display 704) a listing of exercises, tasks, goals, activities, etc. that have been assigned and remain uncompleted. Selection of one or more of these assigned and uncompleted exercises, tasks, goals, activities, etc. may be recorded in memory 726 and accessed during the weld training simulation. In some examples, selection of one or more of the assigned and uncompleted exercises, tasks, goals, activities, etc. may immediately cause transition of the weld training application 800 to the weld training simulation at block 816.
In some examples, selecting “Configure Weld Simulation” at the home screen 906A of
In some examples, the preliminary configurations of block 900 may instead be performed by a series of automated steps and/or prompts, such as illustrated, for example, in
After block 920, the preliminary configuration proceeds to block 1000, where the weld training application 800 accesses the remote server 110 (e.g., via the mobile device 700) using user credentials. In some examples, block 1000 may comprise a prompt to the user to enter credentials for access to the remote server 110. Once the remote server 110 is accessed using the credentials, training exercises, tasks, goals, activities, etc. that have been assigned (e.g., by a teacher/trainer) to the user and/or associated with the user's login credentials may be downloaded and/or stored, and result data associated with completed weld training exercises, tasks, goals, activities, etc. may be uploaded.
In the example of
After block 924, the preliminary configuration proceeds to block 926, where welding parameters (e.g., voltage, current, wire feed speed, etc.) may be determined. In some examples, the determination at block 926 may comprise prompting the user to enter weld parameter information, using default weld parameter settings, using the last weld parameter settings, and/or using recommended weld parameter settings. After block 926, the preliminary configuration proceeds to block 928, where the helmet training system 101 may be calibrated, such as through camera capture of one or more images to detect (and/or recognize) the mock workpiece 202 (and/or associated markers 204) in the image(s).
In the example of
In some examples, a transition command may comprise user selection of transition via the user input devices 712 of the mobile device 700 (e.g., selection of “Begin” in
As shown, the spatial orientation command process 1100 begins at block 1102, where one or more measurements (e.g., orientation, movement, etc.) are received from one or more sensors 122/722 of the mobile device 700 and/or the helmet training system 101. After block 1102, the spatial orientation command process 1100 determines whether or not the sensor measurement(s) correspond to a transition command at block 1104. If not, then the spatial orientation command process 1100 returns to the block 1102. If, however, the spatial orientation command process 1100 determines at block 1104 that the sensor measurement(s) do correspond to a transition command, then the system starts a timer at block 1106.
In the example of
In the example of
In the example of
In the example of
In some examples, the predetermined maximum and minimum thresholds are stored in memory 726 and/or retrieved from the remote server 110. In some examples, the predetermined maximum and minimum thresholds may be set by a user (e.g., via the user input devices 712). In some examples, the necessary processing capabilities for a given size, resolution, and/or rendering may be stored in memory 726 and/or retrieved from the remote server 110.
In some examples, the actual processing capabilities, size and/or resolution of camera(s) 702, and/or size and/or resolution of display(s) 704 may be requested and/or retrieved from a user of the mobile device 700 (e.g., via user input devices 712). In some examples, the actual processing capabilities, size and/or resolution of camera(s) 702, and/or size and/or resolution of display(s) 704 may be requested and/or retrieved from an operating system of the mobile device 700. In some examples, a make and/or model (e.g., type, number, code, etc.) may be requested and/or retrieved from the operating system of the mobile device 700 or a user. In such an example, the processing capabilities, size and/or resolution of camera(s) 702, and/or size and/or resolution of display(s) 704 may be determined based on the make and/or model (e.g., via a lookup table or other data structure stored in memory 726 and/or remote server 110).
In the example of
In some examples, the mobile device 700 may receive communication signals from the welding tool 200 representative of a start and/or end of simulated welding. In response to such communication signals, the welding simulation may render appropriate virtual objects (e.g., virtual arc, virtual weld bead, etc.) based on set welding parameters and/or a target training activity (e.g., selected by trainee and/or assigned by a weld training instructor). In some examples, the mobile device 700 may determine its own position, orientation, and/or movement (e.g., using sensors 722) in order to properly render the virtual objects. In some examples, the mobile device 700 may record and/or display welding results and/or a summary of weld information (e.g., heat input, bead width, penetration, travel speed, torch angles, etc.) after the welding is complete. In some examples, the weld results and/or summary information may be uploaded to the remote server 110.
In the example of
In the example of
In the example of
In the example of
As shown, if the trigger 209 is determined to be activated at block 1306, then the weld simulation determines arc and/or new weld bead characteristics at block 1308. In some examples, such characteristics may be determined based on stored models, welding parameter settings, the captured images, the sensor information, etc. As shown, the weld simulation then renders the arc and new weld bead based on these characteristics at block 1309, and displays the arc and new weld bead renderings along with the rest of the renderings (e.g., determined at block 1310) at block 1312.
Thus, in operation, as the welder moves the actual real object welding tool 200 in the real space, the weld simulation adjusts the position, the perspective and other parameters of a simulated workpiece 1416 in a simulated rendering 1400 shown on the display 704 (see, e.g.,
In the examples of
In the example of
In some examples, the cursor 1600 may be anchored to a user's hand, glove, foot, boot, finger, and/or other body part, while the user selectable elements 1404 are anchored to the simulated workpiece 1416, display 704, and/or welding tool 200. For example, the example of
In the example of
In the example of
In some examples, the welding tool authorization process 1702 may make use of one or more licenses stored in the database(s) 146. In some examples, the one or more licenses may associate a user account with one or more welding tools 200 and/or communication modules 210 for which a user is authorized. In some examples, the license(s) may only allow a certain number of welding tools 200 and/or communication modules 210 to be associated with the user account. In some examples, different level license(s) (e.g., basic, normal, premium, etc.) may allow different numbers of welding tools 200 and/or communication modules 210 to be associated with the user account. In some examples, the license(s) may permit additional welding tools 200 and/or communication modules 210 to be associated with the user account for a fee, as part of the license(s), and/or as part of a license upgrade. In some examples, certain licenses (e.g., for teachers and/or educational institutions) may reset and/or erase the previously paired welding tools 200 and/or communication modules 210 on a periodic basis (e.g., at the end of a quarter, semester, school year, etc.), and/or allow new welding tools 200 and/or communication modules 210 to be associated for no extra fee.
In some examples, the welding tool authorization process 1702 and/or the weld training management program 1700 may be embodied in machine readable instructions stored in the memory circuitry 142 of one or more remote servers 110, and executed by processing circuitry 144. As shown, the process 1702 begins at block 1704, where the process 1702 receives information relating to the welding tool 200, communication module 210, and/or user. For example, the remote server(s) 110 may receive one or more signals from the mobile device 700 representative of a unique identifier of the welding tool 200, communication module 210, and/or user. In some examples, the one or more signals may be representative of data that may be used to determine the unique identifier (e.g., via a query of the database 146).
In some examples, the unique identifier of the welding tool 200 and/or communication module 210 may be a serial number 226. In some examples, the unique identifier may be encoded in a QR code 224. In some examples, the unique identifier of the welding tool 200 may be determined via a unique identifier of the communication module 210 (and/or vice versa). In some examples, the remote server(s) may receive user credentials which may comprise a unique identifier of the user, and/or which may be used to determine a unique identifier of the user (e.g., via a query of the database(s) 146).
In the example of
In the example of
At block 1710, the process 1702 determines whether the license(s) associated with the user allow for additional welding tools 200 to be associated with the user (e.g., as part of the license(s) and/or for an additional fee). If the license(s) associated with the user do allow for additional welding tools 200, the process 1702 proceeds to block 1712, where the process 1702 associates (e.g., via the database 146) the welding tool 200 with the user. In some examples, the process 1702 may send one or more signals (e.g., to the mobile device 700) representative of the fact that the welding tool 200 is unauthorized but may be added at block 1710 and/or 1712. In such an example, the process 1702 may wait to receive (e.g., from the mobile device 700) one or more signals representative of an agreement to add the welding tool 200 (and/or pay any required fee) at block 1710 and/or 1712 before proceeding. After block 1712, the process 1702 proceeds to block 1716 where one or more confirmation signals are sent (e.g., to the mobile device 700).
In the example of
The present methods and systems may be realized in hardware, software, and/or a combination of hardware and software. A typical combination of hardware and software may include a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein. Another typical implementation may comprise an application specific integrated circuit or chip. Some implementations may comprise a non-transitory machine-readable (e.g., computer readable) medium (e.g., FLASH drive, optical disk, magnetic storage disk, or the like) having stored thereon one or more lines of code executable by a machine, thereby causing the machine to perform processes as described herein. As used herein, the term “non-transitory machine-readable medium” is defined to include all types of machine readable storage media and to exclude propagating signals.
The present methods and/or systems may be realized in a centralized fashion in at least one computing system, or in a distributed fashion in which different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited.
As utilized herein the terms “circuits” and “circuitry” refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code. As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. In other words, “x and/or y” means “one or both of x and y”. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, “x, y and/or z” means “one or more of x, y and z”. As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations. As utilized herein, circuitry is “operable” to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled or not enabled (e.g., by a user-configurable setting, factory trim, etc.).
As used herein, the terms “about” and/or “approximately,” when used to modify or describe a value (or range of values), position, orientation, and/or action, mean reasonably close to that value, range of values, position, orientation, and/or action. Thus, the examples described herein are not limited to only the recited values, ranges of values, positions, orientations, and/or actions but rather should include reasonably workable deviations.
As used herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. In other words, “x and/or y” means “one or both of x and y”. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, “x, y and/or z” means “one or more of x, y and z”.
As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations.
As used herein, the terms “coupled,” “coupled to,” and “coupled with,” each mean a structural and/or electrical connection, whether attached, affixed, connected, joined, fastened, linked, and/or otherwise secured. As used herein, the term “attach” means to affix, couple, connect, join, fasten, link, and/or otherwise secure. As used herein, the term “connect” means to attach, affix, couple, join, fasten, link, and/or otherwise secure.
As used herein, a control circuit may include digital and/or analog circuitry, discrete and/or integrated circuitry, microprocessors, DSPs, etc., software, hardware and/or firmware, located on one or more boards, that form part or all of a controller, and/or are used to control a welding process, and/or a device such as a power source or wire feeder.
As used herein, the term “processor” means processing devices, apparatus, programs, circuits, components, systems, and subsystems, whether implemented in hardware, tangibly embodied software, or both, and whether or not it is programmable. The term “processor” as used herein includes, but is not limited to, one or more computing devices, hardwired circuits, signal-modifying devices and systems, devices and machines for controlling systems, central processing units, programmable devices and systems, field-programmable gate arrays, application-specific integrated circuits, systems on a chip, systems comprising discrete elements and/or circuits, state machines, virtual machines, data processors, processing facilities, and combinations of any of the foregoing. The processor may be, for example, any type of general purpose microprocessor or microcontroller, a digital signal processing (DSP) processor, an application-specific integrated circuit (ASIC). The processor may be coupled to, and/or integrated with a memory device.
As used, herein, the term “memory” and/or “memory device” means computer hardware or circuitry to store information for use by a processor and/or other digital device. The memory and/or memory device can be any suitable type of computer memory or any other type of electronic storage medium, such as, for example, read-only memory (ROM), random access memory (RAM), cache memory, compact disc read-only memory (CDROM), electro-optical memory, magneto-optical memory, programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically-erasable programmable read-only memory (EEPROM), a computer-readable medium, or the like.
The term “power” is used throughout this specification for convenience, but also includes related measures such as energy, current, voltage, and enthalpy. For example, controlling “power” may involve controlling voltage, current, energy, and/or enthalpy, and/or controlling based on “power” may involve controlling based on voltage, current, energy, and/or enthalpy.
While the present method and/or system has been described with reference to certain implementations, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present method and/or system. For example, block and/or components of disclosed examples may be combined, divided, re-arranged, and/or otherwise modified. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. Therefore, the present method and/or system are not limited to the particular implementations disclosed. Instead, the present method and/or system will include all implementations falling within the scope of the appended claims, both literally and under the doctrine of equivalents.
The present application is a continuation of, and claims priority to, co-pending U.S. patent application Ser. No. 16/694,937, entitled “SYSTEMS FOR SIMULATING JOINING OPERATIONS USING MOBILE DEVICES,” filed Nov. 25, 2019, which is a Non-Provisional U.S. Patent Application of U.S. Provisional Application No. 62/807,661, entitled “SYSTEMS FOR SIMULATING JOINING OPERATIONS USING MOBILE DEVICES,” filed Feb. 19, 2019, the entireties of which are all hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3555239 | Kerth | Jan 1971 | A |
3652824 | Okada | Mar 1972 | A |
3927290 | Denley | Dec 1975 | A |
4021840 | Ellsworth | May 1977 | A |
4280137 | Ashida | Jul 1981 | A |
4453085 | Pryor | Jun 1984 | A |
4477712 | Lillquist | Oct 1984 | A |
4482960 | Pryor | Nov 1984 | A |
4577796 | Powers | Mar 1986 | A |
4602163 | Pryor | Jul 1986 | A |
4641292 | Tunnell | Feb 1987 | A |
4654949 | Pryor | Apr 1987 | A |
4707647 | Coldren | Nov 1987 | A |
4733051 | Nadeau | Mar 1988 | A |
4753569 | Pryor | Jun 1988 | A |
4769700 | Pryor | Sep 1988 | A |
4788440 | Pryor | Nov 1988 | A |
4812614 | Wang | Mar 1989 | A |
5148591 | Pryor | Sep 1992 | A |
5275327 | Watkins | Jan 1994 | A |
5380978 | Pryor | Jan 1995 | A |
5506682 | Pryor | Apr 1996 | A |
5572102 | Goodfellow | Nov 1996 | A |
5580475 | Sakai | Dec 1996 | A |
5602967 | Pryor | Feb 1997 | A |
5608847 | Pryor | Mar 1997 | A |
5923555 | Bailey | Jul 1999 | A |
5932123 | Marhofer | Aug 1999 | A |
5956417 | Pryor | Sep 1999 | A |
5978090 | Burri | Nov 1999 | A |
6044183 | Pryor | Mar 2000 | A |
6051805 | Vaidya | Apr 2000 | A |
6107601 | Shimagama | Aug 2000 | A |
6122042 | Wunderman et al. | Sep 2000 | A |
6163946 | Pryor | Dec 2000 | A |
6167607 | Pryor | Jan 2001 | B1 |
6186855 | Bauer et al. | Feb 2001 | B1 |
6230327 | Briand | May 2001 | B1 |
6240253 | Yamaguchi | May 2001 | B1 |
6242711 | Cooper | Jun 2001 | B1 |
6271500 | Hirayama | Aug 2001 | B1 |
6301763 | Pryor | Oct 2001 | B1 |
6314631 | Pryor | Nov 2001 | B1 |
6315186 | Friedl | Nov 2001 | B1 |
6317953 | Pryor | Nov 2001 | B1 |
6441342 | Hsu | Aug 2002 | B1 |
6476354 | Jank | Nov 2002 | B1 |
6479793 | Wittmann | Nov 2002 | B1 |
6572379 | Sears | Jun 2003 | B1 |
6587186 | Bamji | Jul 2003 | B2 |
6734393 | Friedl | May 2004 | B1 |
6750428 | Okamoto | Jun 2004 | B2 |
6754518 | Lloyd | Jun 2004 | B1 |
7358458 | Daniel | Apr 2008 | B2 |
7523069 | Friedl et al. | Apr 2009 | B1 |
7534005 | Buckman | May 2009 | B1 |
7926118 | Becker | Apr 2011 | B2 |
7962967 | Becker | Jun 2011 | B2 |
7987492 | Liwerant | Jul 2011 | B2 |
8144193 | Melikian | Mar 2012 | B2 |
8224029 | Saptharishi | Jul 2012 | B2 |
8274013 | Wallace | Sep 2012 | B2 |
8275201 | Rangwala | Sep 2012 | B2 |
8316462 | Becker et al. | Nov 2012 | B2 |
8428926 | Choquet | Apr 2013 | B2 |
8502866 | Becker | Aug 2013 | B2 |
8512043 | Choquet | Aug 2013 | B2 |
8569646 | Daniel | Oct 2013 | B2 |
8569655 | Cole | Oct 2013 | B2 |
8605008 | Prest | Dec 2013 | B1 |
8648903 | Loipetsberger | Feb 2014 | B2 |
8657605 | Wallace | Feb 2014 | B2 |
8680432 | Uecker | Mar 2014 | B2 |
8680434 | Stoger et al. | Mar 2014 | B2 |
8747116 | Zboray et al. | Jun 2014 | B2 |
8749396 | Maggiore | Jun 2014 | B2 |
8777629 | Kreindl | Jul 2014 | B2 |
8808164 | Hoffman | Aug 2014 | B2 |
8826357 | Fink | Sep 2014 | B2 |
8834168 | Peters | Sep 2014 | B2 |
8851896 | Wallace | Oct 2014 | B2 |
8884177 | Daniel | Nov 2014 | B2 |
8911237 | Postlethwaite | Dec 2014 | B2 |
8915740 | Zboray | Dec 2014 | B2 |
8934029 | Nayar | Jan 2015 | B2 |
8957835 | Hoellwarth | Feb 2015 | B2 |
8964298 | Haddick | Feb 2015 | B2 |
RE45398 | Wallace | Mar 2015 | E |
8987628 | Daniel et al. | Mar 2015 | B2 |
8992226 | Leach | Mar 2015 | B1 |
9011154 | Kindig | Apr 2015 | B2 |
9012802 | Daniel | Apr 2015 | B2 |
9050678 | Daniel | Jun 2015 | B2 |
9050679 | Daniel | Jun 2015 | B2 |
9056365 | Hoertenhuber | Jun 2015 | B2 |
9073138 | Wills | Jul 2015 | B2 |
9089921 | Daniel | Jul 2015 | B2 |
9097891 | Border | Aug 2015 | B2 |
9101994 | Albrecht | Aug 2015 | B2 |
9104195 | Daniel | Aug 2015 | B2 |
9196169 | Wallace | Nov 2015 | B2 |
9218745 | Choquet | Dec 2015 | B2 |
9221117 | Conrardy | Dec 2015 | B2 |
9230449 | Conrardy | Jan 2016 | B2 |
9235051 | Salter | Jan 2016 | B2 |
9244539 | Venable | Jan 2016 | B2 |
9269279 | Penrod et al. | Feb 2016 | B2 |
9280913 | Peters | Mar 2016 | B2 |
9293056 | Zboray | Mar 2016 | B2 |
9293057 | Zboray | Mar 2016 | B2 |
9318026 | Peters | Apr 2016 | B2 |
9330575 | Peters | May 2016 | B2 |
9336686 | Peters | May 2016 | B2 |
9352411 | Batzler | May 2016 | B2 |
9368045 | Becker | Jun 2016 | B2 |
9468988 | Daniel | Oct 2016 | B2 |
9483959 | Wallace | Nov 2016 | B2 |
9583014 | Becker | Feb 2017 | B2 |
9583023 | Becker et al. | Feb 2017 | B2 |
9589481 | Becker et al. | Mar 2017 | B2 |
9610476 | Tran et al. | Apr 2017 | B1 |
9666160 | Patel | May 2017 | B2 |
9977242 | Patel | May 2018 | B2 |
10201868 | Dunahoo | Feb 2019 | B2 |
10909872 | Albrecht | Feb 2021 | B2 |
20010048519 | Bamji | Dec 2001 | A1 |
20020017752 | Levi | Feb 2002 | A1 |
20040034608 | De Miranda et al. | Feb 2004 | A1 |
20040189675 | Pretlove | Sep 2004 | A1 |
20050001155 | Fergason | Jan 2005 | A1 |
20050099102 | Villarreal | May 2005 | A1 |
20050103767 | Kainec | May 2005 | A1 |
20050161357 | Allan | Jul 2005 | A1 |
20050199605 | Furman | Sep 2005 | A1 |
20060087502 | Karidis | Apr 2006 | A1 |
20060090135 | Fukuda | Apr 2006 | A1 |
20060176467 | Rafii | Aug 2006 | A1 |
20060207980 | Jacovetty | Sep 2006 | A1 |
20060213892 | Ott | Sep 2006 | A1 |
20060281971 | Sauer | Dec 2006 | A1 |
20070187378 | Karakas | Aug 2007 | A1 |
20080083351 | Lippert | Apr 2008 | A1 |
20080158502 | Becker | Jul 2008 | A1 |
20080187235 | Wakazono | Aug 2008 | A1 |
20080314887 | Stoger | Dec 2008 | A1 |
20090014500 | Cho et al. | Jan 2009 | A1 |
20090134203 | Domec et al. | May 2009 | A1 |
20090231423 | Becker et al. | Sep 2009 | A1 |
20090276930 | Becker | Nov 2009 | A1 |
20090298024 | Batzler | Dec 2009 | A1 |
20100036624 | Martin | Feb 2010 | A1 |
20100048273 | Wallace | Feb 2010 | A1 |
20100062406 | Zboray | Mar 2010 | A1 |
20100079356 | Hoellwarth | Apr 2010 | A1 |
20100206851 | Nakatate | Aug 2010 | A1 |
20100223706 | Becker et al. | Sep 2010 | A1 |
20100262468 | Blankenship | Oct 2010 | A1 |
20110006047 | Penrod | Jan 2011 | A1 |
20110083241 | Cole | Apr 2011 | A1 |
20110091846 | Kreindl | Apr 2011 | A1 |
20110108536 | Inada | May 2011 | A1 |
20110117527 | Conrardy | May 2011 | A1 |
20110187859 | Edelson | Aug 2011 | A1 |
20110220616 | Mehn | Sep 2011 | A1 |
20110220619 | Mehn | Sep 2011 | A1 |
20110227934 | Sharp | Sep 2011 | A1 |
20110309236 | Tian | Dec 2011 | A1 |
20120006800 | Ryan | Jan 2012 | A1 |
20120012561 | Wiryadinata | Jan 2012 | A1 |
20120074114 | Kawamoto | Mar 2012 | A1 |
20120122062 | Yang et al. | May 2012 | A1 |
20120152923 | Sickels | Jun 2012 | A1 |
20120176659 | Hsieh | Jul 2012 | A1 |
20120180180 | Steve | Jul 2012 | A1 |
20120189993 | Kindig | Jul 2012 | A1 |
20120229632 | Hoertenhuber | Sep 2012 | A1 |
20120241429 | Knoener | Sep 2012 | A1 |
20120249400 | Demonchy | Oct 2012 | A1 |
20120262601 | Choi | Oct 2012 | A1 |
20120291172 | Wills | Nov 2012 | A1 |
20120298640 | Conrardy | Nov 2012 | A1 |
20120305532 | Harris | Dec 2012 | A1 |
20130050432 | Perez | Feb 2013 | A1 |
20130081293 | Delin | Apr 2013 | A1 |
20130112678 | Park | May 2013 | A1 |
20130163090 | Yu | Jun 2013 | A1 |
20130189657 | Wallace | Jul 2013 | A1 |
20130189658 | Peters | Jul 2013 | A1 |
20130200882 | Almalki | Aug 2013 | A1 |
20130206740 | Pfeifer | Aug 2013 | A1 |
20130206741 | Pfeifer et al. | Aug 2013 | A1 |
20130208569 | Pfeifer | Aug 2013 | A1 |
20130215281 | Hobby | Aug 2013 | A1 |
20130229485 | Rusanovskyy | Sep 2013 | A1 |
20130234935 | Griffith | Sep 2013 | A1 |
20130252214 | Choquet | Sep 2013 | A1 |
20130288211 | Patterson | Oct 2013 | A1 |
20130291271 | Becker | Nov 2013 | A1 |
20130321462 | Salter | Dec 2013 | A1 |
20130345868 | One | Dec 2013 | A1 |
20140014637 | Hunt | Jan 2014 | A1 |
20140014638 | Artelsmair | Jan 2014 | A1 |
20140017642 | Postlethwaite | Jan 2014 | A1 |
20140020147 | Anderson | Jan 2014 | A1 |
20140042135 | Daniel et al. | Feb 2014 | A1 |
20140042136 | Daniel et al. | Feb 2014 | A1 |
20140042137 | Daniel et al. | Feb 2014 | A1 |
20140059730 | Kim | Mar 2014 | A1 |
20140063055 | Osterhout | Mar 2014 | A1 |
20140065584 | Wallace | Mar 2014 | A1 |
20140092015 | Apr 2014 | A1 | |
20140097164 | Beistle | Apr 2014 | A1 |
20140134579 | Becker | May 2014 | A1 |
20140134580 | Becker | May 2014 | A1 |
20140144896 | Einav | May 2014 | A1 |
20140159995 | Adams | Jun 2014 | A1 |
20140183176 | Hutchison | Jul 2014 | A1 |
20140184496 | Gribetz | Jul 2014 | A1 |
20140185282 | Hsu | Jul 2014 | A1 |
20140205976 | Peters | Jul 2014 | A1 |
20140220522 | Peters | Aug 2014 | A1 |
20140232825 | Gotschlich | Aug 2014 | A1 |
20140234813 | Peters | Aug 2014 | A1 |
20140263224 | Becker | Sep 2014 | A1 |
20140263227 | Daniel et al. | Sep 2014 | A1 |
20140263249 | Miller | Sep 2014 | A1 |
20140272835 | Becker | Sep 2014 | A1 |
20140272836 | Becker | Sep 2014 | A1 |
20140272837 | Becker | Sep 2014 | A1 |
20140272838 | Becker | Sep 2014 | A1 |
20140315167 | Kreindl | Oct 2014 | A1 |
20140320529 | Roberts | Oct 2014 | A1 |
20140322684 | Wallace | Oct 2014 | A1 |
20140326705 | Kodama | Nov 2014 | A1 |
20140346158 | Matthews | Nov 2014 | A1 |
20140349256 | Connor | Nov 2014 | A1 |
20150009316 | Baldwin | Jan 2015 | A1 |
20150034618 | Langeder | Feb 2015 | A1 |
20150056584 | Boulware | Feb 2015 | A1 |
20150056585 | Boulware | Feb 2015 | A1 |
20150072323 | Postlethwaite | Mar 2015 | A1 |
20150116366 | Daveney et al. | Apr 2015 | A1 |
20150125836 | Daniel | May 2015 | A1 |
20150154884 | Salsich | Jun 2015 | A1 |
20150170539 | Barrera | Jun 2015 | A1 |
20150190875 | Becker | Jul 2015 | A1 |
20150190876 | Becker | Jul 2015 | A1 |
20150190887 | Becker | Jul 2015 | A1 |
20150190888 | Becker | Jul 2015 | A1 |
20150194072 | Becker | Jul 2015 | A1 |
20150194073 | Becker | Jul 2015 | A1 |
20150209887 | Delisio | Jul 2015 | A1 |
20150228203 | Kindig | Aug 2015 | A1 |
20150235565 | Postlethwaite | Aug 2015 | A1 |
20150248845 | Postlethwaite | Sep 2015 | A1 |
20150264992 | Happel | Sep 2015 | A1 |
20150268663 | Daniel et al. | Sep 2015 | A1 |
20150304538 | Huang | Oct 2015 | A1 |
20150320601 | Gregg | Nov 2015 | A1 |
20150325153 | Albrecht | Nov 2015 | A1 |
20150348439 | Zboray | Dec 2015 | A1 |
20150348441 | Zboray | Dec 2015 | A1 |
20150352653 | Albrecht | Dec 2015 | A1 |
20150356888 | Zboray | Dec 2015 | A1 |
20150375324 | Becker | Dec 2015 | A1 |
20150375327 | Becker | Dec 2015 | A1 |
20150379894 | Becker | Dec 2015 | A1 |
20160012750 | Wallace | Jan 2016 | A1 |
20160027215 | Burns | Jan 2016 | A1 |
20160039034 | Becker | Feb 2016 | A1 |
20160039053 | Becker | Feb 2016 | A1 |
20160045971 | Holverson | Feb 2016 | A1 |
20160049085 | Beeson | Feb 2016 | A1 |
20160093233 | Boulware | Mar 2016 | A1 |
20160107257 | Denis | Apr 2016 | A1 |
20160114418 | Jones | Apr 2016 | A1 |
20160125592 | Becker et al. | May 2016 | A1 |
20160125593 | Becker | May 2016 | A1 |
20160125594 | Becker | May 2016 | A1 |
20160125761 | Becker | May 2016 | A1 |
20160125762 | Becker | May 2016 | A1 |
20160125763 | Becker | May 2016 | A1 |
20160125764 | Becker | May 2016 | A1 |
20160142596 | Depaschoal | May 2016 | A1 |
20160155358 | Zboray | Jun 2016 | A1 |
20160155359 | Zboray | Jun 2016 | A1 |
20160155360 | Zboray et al. | Jun 2016 | A1 |
20160155361 | Peters | Jun 2016 | A1 |
20160158884 | Hagenlocher | Jun 2016 | A1 |
20160163221 | Sommers | Jun 2016 | A1 |
20160171906 | Matthews | Jun 2016 | A1 |
20160183677 | Achillopoulos | Jun 2016 | A1 |
20160189559 | Peters | Jun 2016 | A1 |
20160203732 | Wallace | Jul 2016 | A1 |
20160203733 | Wallace | Jul 2016 | A1 |
20160203734 | Boulware | Jul 2016 | A1 |
20160203735 | Boulware | Jul 2016 | A1 |
20160236303 | Matthews | Aug 2016 | A1 |
20160260261 | Hsu | Sep 2016 | A1 |
20160267806 | Hsu | Sep 2016 | A1 |
20160284311 | Patel | Sep 2016 | A1 |
20160288236 | Becker | Oct 2016 | A1 |
20160307460 | Peters | Oct 2016 | A1 |
20160321954 | Peters | Nov 2016 | A1 |
20160343268 | Postlethwaite | Nov 2016 | A1 |
20160353055 | Popescu | Dec 2016 | A1 |
20160354855 | Ulrich | Dec 2016 | A1 |
20160358503 | Batzler | Dec 2016 | A1 |
20160361774 | Daniel et al. | Dec 2016 | A9 |
20160365004 | Matthews | Dec 2016 | A1 |
20170036288 | Albrecht | Feb 2017 | A1 |
20170046974 | Becker | Feb 2017 | A1 |
20170046977 | Becker | Feb 2017 | A1 |
20170046982 | Wallace | Feb 2017 | A1 |
20170053557 | Daniel | Feb 2017 | A1 |
20170060398 | Rastogi | Mar 2017 | A1 |
20170200395 | Albrecht | Jul 2017 | A1 |
20170249858 | Boettcher | Aug 2017 | A1 |
20180130376 | Meess et al. | May 2018 | A1 |
20190304338 | Campbell et al. | Oct 2019 | A1 |
20190340954 | Schneider | Nov 2019 | A1 |
20200114450 | Kulakowski | Apr 2020 | A1 |
20210012679 | Torrecilla | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
2725719 | Jun 2012 | CA |
2778699 | Nov 2012 | CA |
1749940 | Mar 2006 | CN |
1957374 | May 2007 | CN |
101067905 | Nov 2007 | CN |
101248659 | Aug 2008 | CN |
101965576 | Feb 2011 | CN |
102165504 | Aug 2011 | CN |
102625739 | Aug 2012 | CN |
202741926 | Feb 2013 | CN |
103170767 | Jun 2013 | CN |
103687687 | Mar 2014 | CN |
103996322 | Aug 2014 | CN |
204013703 | Dec 2014 | CN |
104384765 | Mar 2015 | CN |
104471629 | Mar 2015 | CN |
104599314 | May 2015 | CN |
104603860 | May 2015 | CN |
104708174 | Jun 2015 | CN |
105160645 | Dec 2015 | CN |
105745696 | Jul 2016 | CN |
107000100 | Aug 2017 | CN |
107000101 | Aug 2017 | CN |
108057946 | May 2018 | CN |
108713223 | Oct 2018 | CN |
115191010 | Oct 2022 | CN |
4313508 | Oct 1994 | DE |
0165501 | Dec 1985 | EP |
1533683 | May 2005 | EP |
2082656 | Jul 2009 | EP |
2801966 | Nov 2014 | EP |
2863376 | Apr 2015 | EP |
3537410 | Sep 2019 | EP |
3537410 | Sep 2019 | EP |
3550432 | Oct 2019 | EP |
S52126656 | Oct 1977 | JP |
2002178148 | Jun 2002 | JP |
2016203205 | Dec 2016 | JP |
2005102230 | Nov 2005 | WO |
2008101379 | Aug 2008 | WO |
2009137379 | Nov 2009 | WO |
2009146359 | Dec 2009 | WO |
2010062481 | Jun 2010 | WO |
2013122805 | Aug 2013 | WO |
20140188244 | Nov 2014 | WO |
2015121742 | Aug 2015 | WO |
2015185973 | Dec 2015 | WO |
2016022452 | Feb 2016 | WO |
2016044680 | Mar 2016 | WO |
2016144744 | Sep 2016 | WO |
2017120488 | Jul 2017 | WO |
2017120491 | Jul 2017 | WO |
2018080994 | May 2018 | WO |
2018147868 | Aug 2018 | WO |
Entry |
---|
Ash VR1-DIY Homebrew PC Virtual Reality Head Mounted Display HMD, alrons1972, https://www.youtube.com/Watch?v=VOQboDZqguU, Mar. 3, 2013, YouTube screenshot submitted in lieu of the video itself. |
Soldamatic Augmented Training, Augmented Reality World, May 30, 2013, https://www.youtube.com/watch?V=Mn0O52Ow_qY, YouTube screenshot submitted in lieu of the video itself. |
Optical Head-Mounted Display, Wikipedia, Jun. 2, 2016, https://en.wikipedia.org/wiki/Optical_head-mounted_display 14 pages. |
About Us. Weldobot.com. <http://weldobot.com/?page_id=6> Accessed Jun. 2, 2016. 1 page. |
International Search Report and Written Opinion corresponding to International Patent Application No. PCT/US2016/020861, Mailed May 23, 2016. |
Hillers, Bernd, Iat Institut fur Automatisierungstechnik, doctoral thesis Selective Darkening Filer and Welding Arc Observation for the Manual Welding Process, Mar. 15, 2012, 152 pgs. |
“High Dynamic Range (HDR) Video Image Processing For Digital Glass, Wearable Cybernetic Eye Tap Helmet Prototype,” Raymond Lo, https://www.youtube.com/watch?v=gtTdiqDqHc8, Sep. 12, 2012, YouTube screenshot Submitted in lieu of the video itself. |
Int'l Search Report and Written Opinion for PCT/US2016/035473 dated Aug. 17, 2016 (15 pages). |
G. Melton et al: “Laser diode based vision system for viewing arc welding (May 2009)”, EUROJOIN 7, May 21, 2009 (May 21, 2009), XP055293872, Venice Lido, Italy, May 21-22, 2009. |
Sergi Foix et al: “Exploitation of Time-of-Flight (ToF) Cameras IRI Technical Report”, Oct. 1, 2007 (Oct. 1, 2007), pp. 1-22, XP055294087, Retrieved from the Internet: URL:http://digital.csic.es/bitstream/10261/30066/1 ltime-of-light.pdf [retrieved on Aug. 8, 2016]. |
Int'l Search Report and Written Opinion Application No. PCT/US2017/012558 dated Mar. 23, 2017 (12 pages). |
Klinker, Gudrun, Augmented Reality im prktischen Einsatz, Oct. 10, 2012 (40 pages). |
Sandor, C., Klinker, G., A rapid prototyping software infrastructure for user interfaces in ubiquitous augmented reality, Pers Ubiquit Compu (2005) 9 169-185. |
Rehm Welding Technology, Invertig.Pro Digital, Sep. 16, 2013. |
Rehm Welding Technology, Product Range, Aug. 2013. |
Tig Welder How to Play, www.tradesgamer.com, Nov. 17, 2011. |
Hillers, Bernd & Aiteanu, D & Tschirner, P & Park, M & Graeser, Axel & Balazs, B & Schmidt, L. (2004). TEREBES: Welding helmet with AR capabilities. |
Aiteanu, Dorin, “Virtual and Augmented Reality Supervisor for a New Welding Helmet” Nov. 15, 2005, pp. 1-150. |
Mnich, Chris, et al., “In situ weld pool measurement using sterovision,” Japan-UA Symposium on Flexible Automation, Denver, CO 2004. |
Communication from European Patent Office AppIn No. 18 150 120.6 dated Jul. 4, 2018 (9 pgs). |
Int'l Search Report and Written Opinion for PCT/US2018/028261 mailed Aug. 6, 2018 (17 pgs). |
Larkin et al., “3D Mapping using a ToF Camera for Self Programming an Industrial Robot”, Jul. 2013, IEEE, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 494,499. |
Bombardier et al: “Dual Digimig/Pulse Feeder and SVI-450i Power Supply”, Feb. 1999 (Feb. 1999), XP055480578, Retrieved from the Internet: URL:http://www.esabna.com/eu/literature/arc%20equipment/accessories/dual%20digimig_pulse_fdr%20&%20svi-450i_15-565.pdf [retrieved on Jun. 1, 2018]. |
European Office Action Appln No. 16713176.2 dated Oct. 17, 2018 (7 pgs). |
Wang et al. “Stereo vision-based depth of field rendering on a mobile device”. Journal of Electronic Imaging 23(2), 023009 (Mar.-Apr. 2014) (Year: 2014). |
Mrovlje, etal. “Distance measuring based on stereoscopic pictures”. 9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1.-3. Oct. 2008, Izola, Slovenia (Year. 2008). |
Petrovai etal, “A stereovision based approach for detecting and tracking lane and forward obstacles on mobile devices”. 2015 IEEE Intelligent Vehicles Symposium (IV) Jun. 28-Jul. 1, 2015. COEX, Seoul, Korea (Year: 2015). |
International Search Report and Written Opinion, International Patent Application No. PCT/US2020/018869, mailed May 4, 2020, 16 pages. |
Wikipedia, “Google Cardboard, ”Jan. 30, 2019, retrieved on Apr. 17, 2020, 8 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2020/018866, mailed Apr. 24, 2020, 15 pages. |
Anonymous: “Showcasing latest international developments in welding training systems”, Australasian Welding Journal, vol. 59, Third Quarter, 2014, Jan. 1, 2014 (Jan. 1, 2014), pageaugms 1-5, XP055742728, Retrieved from the internet: URL:https://www.slv-halle.de/fileadmin/user_upload/Halle/Pressemitteilungen/Welding-training-IIW-C-XIV.pdf [retrieved on Oct. 22, 2020]. |
www.boxford.co.us: “Augmented Reality Welding Training”, Commercial video from Boxford, Aug. 7, 2014 (Aug. 7, 2014); Retrieved from the Internet: URL:https://www.youtube.com/watch?v=mjJcebhlo_g [retrieved Dec. 23, 2020], 1 page. |
European Patent Office, Brief Communication with Oral Proceedings in Application No. 16713176.2, dated Nov. 3, 2020, 18 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2020/062277, mailed Feb. 16, 2021, 12 pages. |
Anonymous: “AugmentedArc(TM) Augmented Reality Welding System”, May 30, 2017 (May 30, 2017), pp. 1-4, XP055501429, Retrieved from the Internet: URL:https://patongroup.com/wp-content/uploads/2017/05/AugmentedArc-Brochure.pdf. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2020/062301, mailed Feb. 16, 2021, 15 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2020/062267, mailed Feb. 15, 2021, 15 pages. |
NAMeS Users Guide, N A Tech Neural Applications, Copyright 1997, 1998, 1999, 2000 Golden, CO (123 pages). |
Klinker, Gudrun, Intelligent Welding Gun, 2002. |
Native American Technologies, “ArcSentry Weld Quality Monitoring System” web page, http://web.archive.org/web/20020608124903/http://www.natech-inc.com/arcsentry1/index.html, published Jun. 8, 2002. |
Native American Technologies, “P/NA.3 Process Modelling and Optimization” web pages, http://web.archive.org/web/20020608125619/http://www.natech-inc.com/pna3/index.html, published Jun. 8, 2002. |
Fite-Georgel, Pierre; “Is there a Reality in Industrial Augmented Reality?” 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2011. |
Arvika Forum Vorstellung Projeckt PAARA, BMW Group Virtual Reality Center, Nuernberg, 2003. |
Li, Larry, Time-of-Flight Camera—An Introduction, Technical White Paper, SLOA190B—Jan. 2014, revised May 2014 (10 pages). |
Heston, Tim, Lights, camera, lean-recording manufacturing efficiency, The Fabricator, Aug. 2010 (4 pages). |
Wavelength Selective Switching, http://en.wikipedia.org/wiki/wavelength_selective_switching, Mar. 4, 2015 (5 pages). |
Windows 10 to Get ‘Holographic’ Headset and Cortana, BBC News, www.bbc.com/news/technology-30924022, Feb. 26, 2015 (4 pages). |
Intelligent Robotic Arc Sensing, Lincoln Electric, Oct. 20, 2014, http://www.lincolnelectric.com/en-us/support/process-and-theory/pages/intelligent-robotic-detail.aspx (3 pages). |
LiveArc Welding Performance Management System, A reality-based recruiting, screening and training solution, MillerWelds.com 2014 (4 pages). |
Frank Shaopeng Cheng (2008). Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy, Robot Manipulators, Marco Ceccarelli (Ed.), ISBN: 978-953-7619-06-0, InTech, Available from: http://www.intechopen.com/books/robot_manipulators/calibration_of_robot_reference_frames_for_enhanced_robot_positioning_accuracy (19 pages). |
Lutwak, Dr. Robert, Micro-Technology for Positioning, Navigation, and Timing Towards PNT Everywhere and Always Stanford PNT Symposium, Stanford, CA Oct. 29, 2014 (26 pages). |
Lutwak, Dr. Robert, DARPA, Microsystems Tech. Office, Micro-Technology for Positioning, Navigation, and Timing Towards PNT Everywhere and Always, Feb. 2014 (4 pages). |
Parnian, Neda et al., Integration of a Multi-Camera Vision System and Strapdown Inertial Naviation System (SDINS) with a Modified Kalman Filter, Sensors 2010, 10, 5378-5394; doi: 10.3390/s100605378 (17 pages). |
Electronic speckle pattern interferometry Wikipedia, the free encyclopedia (4 pages), [retrieved Feb. 10, 2015]. |
Int Search Report and the Written Opinion AppIn No. PCT/US2016/016107, dated May 17, 2016 (11 pages). |
Handheld Welding Torch with Position Detection technology description, Sep. 21, 2011 (11 pages). |
Telops, Innovative Infrared Imaging, HDR-IR High Dynamic Range IR Camera, http://www.telops.com/en/infrared-Cameras/hdr-ir-high-dynamic-range-ir-camera, 2015 (2 pages). |
Altasens—Wide Dynamic Range (WDR), http://www.altasens.com/index.php/technology/wdr (1 page), [retrieved Jan. 5, 2016). |
HDR Camera for Industrial and Commercial Use, Invisual E Inc., http://www.invisuale.com/hardware/hdr-camera.html (2 pages), [retrieved Jan. 5, 2016). |
Nit, NSC1005, Datasheet, Revised Nov. 2012, NSC1005 HD ready Logarithmic CMOS Sensor (28 pages). |
Nit Image Processing Pipeline, R&D Report N RD1220-Rev B, May 14, 2012 (10 pages). |
Nit Color Management, R&D Report N RD1113-Rev B, Apr. 11, 2011 (31 pages). |
Int'l Search Report and Written Opinion for PCT/US2015/067931 dated Jul. 26, 2016 (19 pages). |
Cameron Series: “Why Weld Cameras Need Why High Dynamic Range Imaging”, Apr. 10, 2013 (Apr. 10, 2013), XP055269605, Retrieved from the Internet: URL:http://blog.xiris.com/blog/bid/258666/Why-Weld-Cameras-Need-High-Dynamic-Range-Imaging [retrieved on Apr. 29, 2016] the whole document (5 pages). |
AD-081CL Digital 2CCD Progressive Scan HDR/High Frame Rate Camera User's Manual, Jul. 1, 2012 (Jul. 1, 2012) p. 27, XP055269758, Retrieved from the Internet: URL:http://www.stemmer-imaging.de/media/up loads/docmanager/53730_JAI_AD-081_CL_Manual.pdf [retrieved on Apr. 29, 2016] the whole document (55 pages). |
Anonymous: “JAI introduces unique high-dynamic-range camera”, Nov. 5, 2009 (Nov. 5, 2009), XP055269759, Retrieved from the Internet: URL:http://www.jai.com/en/newsevents/news/ad-081c1 [retrieved on Apr. 29, 2016] Typical HDR applications for the AD-081CL include inspection tasks where incident light or bright reflections are Oresent, such as . . . welding (2 pages). |
Int'l Search Report and Written Opinion Appln No. PCT/ US2016/012164, mailed May 12, 2016. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2016/020865, dated May 11, 2016, 12 pages. |
Choi et al., Simulation of Dynamic Behavior in a GMAW System, Welding Research Supplement, Oct. 2001, 239-s thru 245-s (7 pages). |
Aiteanu et al., Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Envionment, Proceedings of the Sixth IASTED International Conference Visualization, Imaging, and Image Proceeding, Aug. 28-30, 2006, Palma de Mallorca, Spain ISBN Hardcapy: 0-88986-598-1 /CD: 0-88986-600-7 (8 pages). |
High Dynamic Range (HDR) Video Image Processing For Digital Glass, Augmented Reality in Quantigraphic Lightspace and Mediated Reality with Remote Expert, Raymond Lo, Sep. 12, 2012, https://www.youtube.com/Watch?v=ygcm0AQXX9k, YouTube screenshot submitted in lieu of the video itself. |
Number | Date | Country | |
---|---|---|---|
20220375365 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62807661 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16694937 | Nov 2019 | US |
Child | 17879229 | US |