SYSTEMS, METHODS, AND COMPOSITIONS FOR CORRECTION OF FRAMESHIFT MUTATIONS

Abstract
The disclosure provides systems, methods, and compositions for a target specific nuclease and a blunting enzyme to correct frameshift mutations for genome editing and treatment of diseases. In some embodiments, the target specific nuclease and the blunting enzyme are combined with a guide RNA and/or a microhomology-mediated end joining (MMEJ) inhibitor.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 9, 2020, is named 709874_083474-011WO_ST25.txt and is 497 kilobytes in size.


FIELD

The subject matter disclosed herein is generally related to systems, methods, and compositions for correction frameshift mutations, accurate genome editing and treatment of diseases.


BACKGROUND

Frameshift mutations are genetic mutations that are caused by insertion or deletion (indels) of nucleotides in a coding region of a nucleic acid sequence that is not divisible by three. The indel results in mutated sequences that, due to the triplet nature of gene expression by codons, changes the reading frame of the codon and therefore change the translation of the nucleic acid sequence.


Frameshift mutations are present in number of diseases, but genetic treatments for these diseases are limited. They often involve removing large section from a genome sequence and lead to undesired side effects.


Therefore, there is need for more efficient tools to correct frameshift mutations.


SUMMARY

The present disclosure provides systems, methods, and compositions for correction frameshift mutations, accurate genome editing and treatment of diseases.


The present disclosure provides a composition, which comprises a target specific nuclease, wherein the target comprises a double stranded DNA (dsDNA), and a double strand break (DSB)-end blunting enzyme. The target specificity of the nuclease can be provided by a guide RNA (gRNA). The gRNA can be a single guide RNA (sgRNA). The sgRNA can comprise a nucleic acid sequence at least 75% identical to the nucleic acid sequence of SEQ ID NOs: 54-64. If desired, the composition can further comprise a MS2-binding protein, wherein the sgRNA can comprise one or more MS2 stem loops, and wherein the MS2-binding protein can be linked to the sgRNA by the one or more MS2 stem loops and can bind to the DSB-end blunting enzyme. If desired, the nuclease predominantly can induce staggered ends on the cleaved dsDNA. If desired, the nuclease can be an altered scissile variant. If desired, the altered scissile variant can be ΔF916, LZ3Cas9 (N690C, T769I, G915M, N980K), G915F, F916P, R918A, R919P or Q920P. If desired, the nuclease can be selected from the group consisting of SpCas9, LbCas12a, AsCas12a and FnCas12a.


In some embodiments, the nuclease can comprise an amino acid sequence at least 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease can comprise an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease can comprise an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease can comprise an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease can comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the amino acid sequence can specifically bind to a protospacer-adjacent motif (PAM). The PAM can be selected from the group consisting of NNNNGATT, NNNNGNNN, NNG, NG, NGAN, NGNG, NGAG, NGCG, NAAG, NGN, NRN, NNGRRN, NNNRRT, TTTN, TTTV, TYCV, TATV, TYCV, TATV, TTN, KYTV, TYCV, TATV, and TBN.


In some embodiments, the DSB-end blunting enzyme can be a polymerase. The polymerase can be selected from the group consisting of DNA polymerase λ (POLL), DNA polymerase μ (POLM), DNA polymerase β (POLB), DNA polymerase γ (POLG), DNA polymerase ι (POLI), DNA polymerase η (POLH), TENT4A, DNA polymerase ν (POLN), DNA Ligase 4, DNTT, XRCC4, DNA Polymerase IV, fungi pol IV-like DNA polymerase, DNA polymerase/3′-5′ exonuclease Pol X, and T4 DNA polymerase (T4pol).


In some embodiments, the DSB-end blunting enzyme can be a single-strand DNA specific nuclease. The single-strand DNA specific nuclease can be selected from the group consisting of MGME1, FEN1, DNA2, XRN2, EXOG, EXO5, AP endonuclease, RecJ exonuclease (RecJ), XseA, XseB, S1 nuclease (nucS), P1 nuclease, Artemis, T4 DNA polymerase (T4pol), and Csm1.


In some embodiments, the DSB-end blunting enzyme can be covalently bound to the nuclease by a linker. The linker can be a peptide.


In some embodiments, the dsDNA can be in a cell. The cell can be a eukaryotic cell. The eukaryotic cell can be a mammalian cell. The mammalian cell can be a human cell.


In some embodiments, the composition can further comprise an inhibitor of the microhomology-mediated end joining (MMEJ) pathway. The MMEJ pathway inhibitor can be a CtIP or MRN inhibitor. The CtIP inhibitor can be selected from KLHL15 and PIN1. The MRN inhibitor can be selected from E1b55K and E40rf6.


In some embodiments, a first nucleic acid molecule encoding the nuclease is disclosed.


In some embodiments, a second nucleic acid molecule encoding the DSB-end blunting enzyme is disclosed.


In some embodiments, a third nucleic acid molecule encoding the sgRNA is disclosed.


In some embodiments, one or more vectors comprising the nucleic acid molecule are disclosed.


In some embodiments, a cell comprising the composition, the nucleic acid molecule or the one or more vectors is disclosed. If desirable, the cell can be a prokaryotic cell. If desirable, the cell can be a eukaryotic cell. If desired, the eukaryotic cell can be a mammalian cell. If desired, the mammalian cell can be a human cell.


In some embodiments, a method of inserting or deleting one or more single base pairs in a double-stranded DNA (dsDNA) is disclosed, the method comprises cleaving the dsDNA at a target site with a target specific nuclease, wherein the cleavage results in overhangs on both dsDNA ends, inserting a nucleotide complementary to the overhanging nucleotide on both of the dsDNA ends using a double strand break (DSB)-end blunting enzyme, or removing the overhanging nucleotide on both of the dsDNA ends using the DSB-end blunting enzyme, and ligating the dsDNA ends together, thereby inserting or deleting a single base pair in the dsDNA. The target specificity of the nuclease can be provided by a guide RNA (gRNA). The gRNA can be a single guide RNA (sgRNA). The sgRNA can comprise a nucleic acid sequence at least 75% identical to the nucleic acid sequence of SEQ ID NOs: 54-64. The sgRNA can comprise one or more MS2 stem loops that link a MS2-binding protein to the sgRNA, and wherein the MS2-binding protein can bind to the DSB-blunting enzyme. The DSB-end blunting enzyme can be overexpressed. The nuclease can induce staggered ends on the cleaved dsDNA. The nuclease can be an altered scissile variant. The altered scissile variant can be ΔF916, G915F, F916P, R918A, R919P or Q920P. The nuclease can be selected from the group consisting of SpCas9, LZ3Cas9 (N690C, T769I, G915M, N980K), LbCas12a, AsCas12a and FnCas12a.


In some embodiments, the nuclease of the method can comprise an amino acid sequence at least 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease of the method can comprise an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease of the method can comprise an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease of the method can comprise an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the nuclease of the method can comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the amino acid sequence of the method can specifically bind to a protospacer-adjacent motif (PAM). The PAM can be selected from the group consisting of NNNNGATT, NNNNGNNN, NNG, NG, NGAN, NGNG, NGAG, NGCG, NAAG, NGN, NRN, NNGRRN, NNNRRT, TTTN, TTTV, TYCV, TATV, TYCV, TATV, TTN, KYTV, TYCV, TATV, and TBN.


In some embodiments, the DSB-end blunting enzyme of the method can be a polymerase. The polymerase can be selected from the group consisting of DNA polymerase λ (POLL), DNA polymerase μ (POLM), DNA polymerase β, DNA polymerase γ (POLG), DNA polymerase ι (POLI), DNA polymerase η (POLH), TENT4A, DNA polymerase ν (POLN), DNA Ligase 4, DNTT, XRCC4, DNA Polymerase IV, fungi pol IV-like DNA polymerase, DNA polymerase/3′-5′ exonuclease Pol X, and T4 DNA polymerase (T4pol).


In some embodiments, the DSB-end blunting enzyme of the method can be a single-strand DNA specific nuclease. The single-strand DNA specific nuclease can be selected from the group consisting of MGME1, FEN1, DNA2, XRN2, EXOG, EXO5, AP endonuclease, RecJ exonuclease, XseA, XseB, S1 nuclease (nucS), P1 nuclease, Artemis, T4 DNA polymerase (T4pol), and Csm1. The DSB-end blunting enzyme can be covalently bound to the nuclease by a linker. The linker can be a peptide.


In some embodiments, the dsDNA of the method can be a cell. The cell can be a eukaryotic cell. The eukaryotic cell can be a mammalian cell. The mammalian cell can be a human cell.


In some embodiments, the method can further comprise an inhibitor of the microhomology-mediated end joining (MMEJ) pathway. The MMEJ pathway inhibitor can be a CtIP or MRN inhibitor. The CtIP inhibitor can be selected from KLHL15 and PIN1. The MRN inhibitor can be selected from E1b55K and E40rf6.


In some embodiments, a method of treating a disease caused by a frameshift mutation in the dsDNA in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the composition, the nucleic acid molecule, the vector or the cell is disclosed.


In some embodiments, a method of treating a disease caused by a frameshift mutation in the dsDNA in a subject in need thereof comprising inserting or deleting a single base pair in the dsDNA with the frameshift mutation according is disclosed.


In some embodiments, a method of enhancing out-frame mutation in the dsDNA in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the composition, the nucleic acid molecule, the vector, or the cell is disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects, features, benefits, and advantages of the embodiments described herein will be apparent with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1 is a schematic illustration of a variety of different frameshift mutations according to embodiments of the present teachings;



FIG. 2 is a schematic illustration of how frameshift mutations can be corrected according to embodiments of the present teachings;



FIG. 3A is a schematic representation of a CRISPR-Cas9 and a blunting enzyme connected to the CRISPR-Cas9 by a linker, without the use of a donor template according to embodiments of the present teachings;



FIG. 3B is a schematic representation of a CRISPR-Cas9, a blunting enzyme and a microhomology-mediated end joining (MMEJ) inhibitor without the use of a donor template according to embodiments of the present teachings;



FIG. 3C is a schematic representation of a CRISPR-Cas9, a MS2-loop, MS2-binding protein, and a blunting enzyme according to embodiments of the present teachings;



FIG. 3D is a schematic representation of a CRISPR-Cas9 and a blunting enzyme, without the use of a donor template according to embodiments of the present teachings;



FIG. 4 is a schematic illustration of the process of using SpCas9 to generate both blunted and staggered DNA ends according to embodiments of the present teachings;



FIG. 5 is a schematic illustration of a Cas9 gene editing system resulting in an induction of a precise and predictable mutations without the use of a donor template according to embodiments of the present teachings;



FIG. 6 is a schematic illustration of a variety of different frameshift mutations and how the composition in the instant disclosure corrects them according to embodiments of the present teachings;



FIG. 7 is a schematic representation of two double-strand break repair pathways according to embodiments of the present teachings;



FIG. 8 is a schematic representation of the primary structures of family X polymerases according to embodiments of the present teachings;



FIG. 9 is a schematic illustration of a frameshift mutation which is present in Parkinson's disease according to embodiments of the present teachings;



FIG. 10 is a schematic illustration of the use of the Cas9 gene editing system to correct a 1 bp BRCA2 frameshift mutation (c.8015_8016insA) and a 2 bp NF1 frameshift mutation (c.2027delC) according to embodiments of the present teachings;



FIG. 11A is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 only according to embodiments of the present teachings;



FIG. 11B is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and DNA polymerase μ (POLM) according to embodiments of the present teachings;



FIG. 11C is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and EXOG according to embodiments of the present teachings;



FIG. 11D is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and T4 DNA polymerase (T4pol) according to embodiments of the present teachings;



FIG. 1E is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and DNA polymerase λ (POLL) according to embodiments of the present teachings;



FIG. 11F is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and MGME1 according to embodiments of the present teachings;



FIG. 11G is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and RecJ exonuclease (RecJ) according to embodiments of the present teachings;



FIG. 11H is a diagram showing the probability distribution of indel mutations in PCSK9 exon 12 when induced by Cas9 and S1 Nuclease (nucS) according to embodiments of the present teachings;



FIG. 12A is a diagram showing probability distribution of +1 T insertion and indel mutations in PCSK9 exon 12 when induced by Cas9 and POLL, Cas9 and POLM according to embodiments of the present teachings;



FIG. 12B is a diagram showing probability distribution of −1 deletion, +1T insertion and indel mutations in PCSK9 exon 12 when induced by Cas9 and T4 polymerase according to embodiments of the present teachings;



FIG. 13A is a diagram showing probability distribution of indel mutations in GYPB gene when induced by Cas9 only according to embodiments of the present teachings;



FIG. 13B is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and POLM according to embodiments of the present teachings;



FIG. 13C is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and EXOG according to embodiments of the present teachings;



FIG. 13D is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and T4pol according to embodiments of the present teachings;



FIG. 13E is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and POLL according to embodiments of the present teachings;



FIG. 13F is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and MGME according to embodiments of the present teachings;



FIG. 13G is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and RecJ according to embodiments of the present teachings;



FIG. 13H is a diagram showing the probability distribution of indel mutations in GYPB when induced by Cas9 and nucS according to embodiments of the present teachings;



FIG. 14A is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 alone according to embodiments of the present teachings;



FIG. 14B is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and POLM according to embodiments of the present teachings;



FIG. 14C is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and EXOG according to embodiments of the present teachings;



FIG. 14D is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and T4pol according to embodiments of the present teachings;



FIG. 14E is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and POLL according to embodiments of the present teachings;



FIG. 14F is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and MGME according to embodiments of the present teachings;



FIG. 14G is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and RecJ according to embodiments of the present teachings; and



FIG. 14H is a diagram showing the probability distribution of indel mutations in TPH2 exon 9 when induced by Cas9 and nucS according to embodiments of the present teachings.





DETAILED DESCRIPTION

It will be appreciated that for clarity, the following disclosure will describe various aspects of embodiments. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.


Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboratory Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).


As used herein, the singular forms “a”, “an,” and “the” include both singular and plural referents unless the context clearly dictates otherwise.


The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.


The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.


The terms “about” or “approximately” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, are meant to encompass variations of and from the specified value, such as variations of +/−10% or less, +/−5% or less, +/−1% or less, +/−0.5% or less, and +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” or “approximately” refers is itself also specifically, and preferably, disclosed.


The term “staggered end” when it refers to a double stranded DNA (dsDNA) molecule refers to the 5′ and or 3′ ends of that molecule having at least one nucleotide that is not hybridized to the opposite strand of the dsDNA.


The term “blunt end” when it refers to a dsDNA molecule refers to the 5′ and or 3′ ends of that molecule having nucleotides that hybridize to the opposite strand of the dsDNA.


The term “variant” as used herein means a polypeptide or nucleotide sequence that differs from a given polypeptide or nucleotide sequence in amino acid or nucleic acid sequence by the addition (e.g., insertion), deletion, or conservative substitution of amino acids or nucleotides, but that retains the biological activity of the given polypeptide (e.g., a variant nucleic acid could still encode the same or a similar amino acid sequence). A conservative substitution of an amino acid, i.e., replacing an amino acid with a different amino acid of similar properties (e.g., hydrophilicity and degree and distribution of charged regions) is recognized in the art as typically involving a minor change. These minor changes can be identified, in part, by considering the hydropathic index of amino acids, as understood in the art (see, e.g., Kyte et al., J. Mol. Biol., 157: 105-132 (1982)). The hydropathic index of an amino acid is based on a consideration of its hydrophobicity and charge. It is known in the art that amino acids of similar hydropathic indexes can be substituted and still retain protein function. The present disclosure provides amino acids having hydropathic indexes of 2 are substituted. The hydrophilicity of amino acids also can be used to reveal substitutions that would result in proteins retaining biological function. A consideration of the hydrophilicity of amino acids in the context of a peptide permits calculation of the greatest local average hydrophilicity of that peptide, a useful measure that has been reported to correlate well with antigenicity and immunogenicity (see, e.g., U.S. Pat. No. 4,554,101). Substitution of amino acids having similar hydrophilicity values can result in peptides retaining biological activity, for example immunogenicity, as is understood in the art. The present disclosure provides substitutions are performed with amino acids having hydrophilicity values within ±2 of each other. Both the hydrophobicity index and the hydrophilicity value of amino acids are influenced by the particular side chain of that amino acid. Consistent with that observation, amino acid substitutions that are compatible with biological function are understood to depend on the relative similarity of the amino acids, and particularly the side chains of those amino acids, as revealed by the hydrophobicity, hydrophilicity, charge, size, and other properties. “Variant” also can be used to describe a polypeptide or fragment thereof that has been differentially processed, such as by proteolysis, phosphorylation, or other post-translational modification, yet retains its biological activity or antigen reactivity. Use of “variant” herein is intended to encompass fragments of a variant unless otherwise contradicted by context. The term “protospacer-adjacent motif” as used herein refers to a DNA sequence immediately following a DNA sequence targeted by a nuclease. Examples of protospacer-adjacent motif include, without limitation, NNNNGATT, NNNNGNNN, NNG, NG, NGAN, NGNG, NGAG, NGCG, NAAG, NGN, NRN, NNGRRN, NNNRRT, TTTN, TTTV, TYCV, TATV, TYCV, TATV, TTN, KYTV, TYCV, TATV, and TBN.


The term “MS2 stem loop” as used herein refers to a pattern in a single stranded nucleotide strand originated from a bacterial virus when two regions of the same strand base-pair to form a double helix that ends in an unpaired loop.


Alternatively or additionally, a “variant” is to be understood as a polynucleotide or protein which differs in comparison to the polynucleotide or protein from which it is derived by one or more changes in its length or sequence. The polypeptide or polynucleotide from which a protein or nucleic acid variant is derived is also known as the parent polypeptide or polynucleotide. The term “variant” comprises “fragments” or “derivatives” of the parent molecule. Typically, “fragments” are smaller in length or size than the parent molecule, whilst “derivatives” exhibit one or more differences in their sequence in comparison to the parent molecule. Also encompassed modified molecules such as but not limited to post-translationally modified proteins (e.g. glycosylated, biotinylated, phosphorylated, ubiquitinated, palmitoylated, or proteolytically cleaved proteins) and modified nucleic acids such as methylated DNA. Also, mixtures of different molecules such as but not limited to RNA-DNA hybrids, are encompassed by the term “variant”. Typically, a variant is constructed artificially, preferably by gene-technological means whilst the parent polypeptide or polynucleotide is a wild-type protein or polynucleotide. However, also naturally occurring variants are to be understood to be encompassed by the term “variant” as used herein. Further, the variants usable in the present disclosure may also be derived from homologs, orthologs, or paralogs of the parent molecule or from artificially constructed variant, provided that the variant exhibits at least one biological activity of the parent molecule, i.e. is functionally active.


Alternatively, or additionally, a “variant” as used herein, can be characterized by a certain degree of sequence identity to the parent polypeptide or parent polynucleotide from which it is derived. More precisely, a protein variant in the context of the present disclosure exhibits at least 80% sequence identity to its parent polypeptide. A polynucleotide variant in the context of the present disclosure exhibits at least 70% sequence identity to its parent polynucleotide. The term “at least 70% sequence identity” is used throughout the specification with regard to polypeptide and polynucleotide sequence comparisons. This expression preferably refers to a sequence identity of at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% to the respective reference polypeptide or to the respective reference polynucleotide.


The similarity of nucleotide and amino acid sequences, i.e. the percentage of sequence identity, can be determined via sequence alignments. Such alignments can be carried out with several art-known algorithms, preferably with the mathematical algorithm of Karlin and Altschul (Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877), with hmmalign (HMMER package, http://hmmer.wustl.edu/) or with the CLUSTAL algorithm (Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673-80) available e.g. on http://www.ebi.ac.uk/Tools/clustalw/ or on http://www.ebi.ac.uk/Tools/clustalw2/index.html or on http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html. Preferred parameters used are the default parameters as they are set on http://www.ebi.ac.uk/Tools/clustalw/ or http://www.ebi.ac.uk/Tools/clustalw2/index.html. The grade of sequence identity (sequence matching) may be calculated using e.g. BLAST, BLAT or BlastZ (or BlastX). A similar algorithm is incorporated into the BLASTN and BLASTP programs of Altschul et al. (1990) J. Mol. Biol. 215: 403-410. To obtain gapped alignments for comparative purposes, Gapped BLAST is utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25: 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs are used. Sequence matching analysis may be supplemented by established homology mapping techniques like Shuffle-LAGAN (Brudno M., Bioinformatics 2003b, 19 Suppl 1:I54-I62) or Markov random fields. When percentages of sequence identity are referred to in the present application, these percentages are calculated in relation to the full length of the longer sequence, if not specifically indicated otherwise.


Overview

Some embodiments disclosed herein provide non-naturally occurring or engineered systems, methods, and compositions for target specific nucleases combined with blunting enzymes to correct frameshift mutations for genome editing and treatment of diseases. Frameshift mutations are genetic mutations that are caused by insertion and deletion (indels) of nucleotides in a DNA nucleic acid sequence that is not divisible by three. Due to the triplet nature of gene expression by codons, the indel can change the reading frame of the codon and therefore change the translation of the gene. Different types of frameshift mutations and examples of in-frame corrections of them are shown in FIGS. 1 and 2.


In some embodiments, the systems disclosed herein comprise a target specific nuclease, wherein the target comprises a double-stranded DNA (dsDNA) as well as a blunting enzyme. The systems disclosed herein can also comprise targeting moiety and/or a microhomology-mediated end joining (MMEJ) inhibitor.


In some embodiments, the target specific nuclease can be a CRISPR associated protein (Cas). In some embodiments, the targeted nuclease is a Cas9 protein as illustrated in FIGS. 3A-3D. In some embodiments, the blunting enzyme is joined to the targeted nuclease by a linker. In some embodiments, the blunting enzyme is separate from the targeted nuclease. In some embodiments, the composition further comprises a MMEJ inhibitor. In some embodiments, the composition further comprises a single guide RNA (sgRNA). In some embodiments, the composition further comprises a sgRNA and a MS2-binding protein, wherein the sgRNA comprises one or more MS2 stem loops. The MS2-binding protein is linked to the sgRNA by the one or more MS2 stem loops and binds to the blunting enzyme to form a blunting enzyme fused-MS2 binding protein.


The target specific nuclease combined with a blunting enzyme can correct frameshift mutations in genes in cells and tissues. In some embodiments, cells include eukaryotic cells, mammalian cells, and human cells. The target specific nuclease combined with a blunting enzyme can induce one or more single-base insertions and deletions (indels). In some embodiments, the targeted nuclease creates staggered ends when it cleaves the target dsDNA. When the staggered ends are created by the target specific nuclease, a blunting enzyme can be used to ether “fill in” the staggered end with a polymerase or “chew back” the staggered end with a nuclease. Filling in followed by ligation creates a one or more bp insertion and chewing back followed by ligation creates one or more bp deletion. (See FIGS. 4-5). In some embodiments, the target specific nuclease and a blunting enzyme induce a precise and predictable mutation in a dsDNA without the use of a donor template.


Microhomology-mediated end joining (MMEJ) is one of the pathways for repairing double-strand breaks in DNA. In MMEJ, microhomologous sequences are used to align broken ends often resulting in deletions flanking the original break. In some embodiments, if a target specific nuclease were used to cleave dsDNA, MMEJ could create an unintended deletion.


Non-homologous end joining (NHEJ) is another pathway for repairing double-strand breaks in DNA. In NHEJ, the broken ends are directly ligated together without use of a homologous template. In some embodiments, if a target specific nuclease were used to cleave dsDNA, NHEJ would directly ligate the cleaved dsDNA without deletions and therefore accurately edit the target sequence. (See FIGS. 6 and 7).


In some embodiments, an inhibitor of MMEJ is used to keep cleaved DNA from undergoing MMEJ and being subject to unintended deletion of the sequence of the dsDNA flanking the cleavage.


Target Specific Nucleases

In some embodiments, a target specific nuclease is a nuclease that cleaves a dsDNA and, at least in some cases, leaves a staggered end at the cleavage site. The target specific nuclease disclosed herein can be for example, without limitation, Cas12a, LbCas12a, FnCas12a, AsCas12a, Cas9, SpCas9, SaCas9, LZ3Cas9, Casφ, and the double combinations of Cas9 nickase, zinc finger nuclease (ZFN), and TAL Effector Nuclease (TALEN). The LZ3Cas9 disclosed here can be N690C, T769I, G915M, or N980K. In some embodiments, the target specific nuclease cleaves dsDNA in the genome of a cell providing staggered ends. In some embodiments, the target specific nuclease provides a dsDNA cleavage resulting in staggered ends more than 10% of the time. In some embodiments, the target specific nuclease provides a dsDNA cleavage resulting in staggered ends more than 20% of the time. In other embodiments, the target specific nuclease provides a dsDNA cleavage resulting in staggered ends more than 3, 40, 50, 60, 70, 80, 90, 95, or 99% of the time.


In some embodiments, the target specific nuclease is a CRISPR associated protein (Cas). In these embodiments, the Cas uses a guide RNA (gRNA) to provide specificity. In some embodiments, the gRNA is a single guide RNA (sgRNA) i.e., a fusion of two noncoding RNAs: a synthetic CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA).


In general, a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a Cas protein to the target sequence. In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, ClustalX, BLAT, Novoalign (Novocraft Technologies, ELAND (Illunina, San Diego, Calif.), SOAP (available at soap.genoincs.org.cn), and Maq (available at maq.sourceforge.net). In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.


In some embodiments, the sgRNA comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 54-64. For example, the sgRNA can comprise a nucleic acid sequence at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 54-64.


In some embodiments, the target specific nuclease is Cas9. In some embodiments, the target nuclease is a scissile variant. In some embodiments, the Cas9 is a scissile variant of Cas9. In some embodiments, the scissile is for example, without limitation, ΔF916, LZ3Cas9, G915F, F916P, R918A, R919P, Q920P, N690C, T769I, G915M and N980K. In some embodiments, the LZ3Cas9 is N690C, T769I, G915M, or N980K.


The target specific nuclease can comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106. For example, the target specific nuclease comprises an amino acid sequence at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.


In some embodiments, the target specific nuclease is a zinc finger nuclease (ZFN). A single zinc finger contains approximately 30 amino acids and the domain functions by binding 3 consecutive base pairs of DNA via interactions of a single amino acid side chain per base pair. The modular structure of the zinc finger motif permits the conjunction of several domains in series, allowing for the recognition and targeting of extended sequences in multiples of 3 nucleotides. These targeted DNA-binding domains can be combined with a nuclease domain, such as FokI, to generate a site-specific nuclease, called a “zinc finger nuclease” (ZFNs) that can be used to introduce site-specific double strand breaks at targeted genomic loci. This DNA cleavage stimulates the natural DNA-repair machinery, leading to one of two possible repair pathways, NHEJ and HDR. For example, the ZFN can target the Rosa26 locus (Perez-Pinera et al. Nucleic Acids Research (2012) 40:3741-3752) or a dystrophin gene.


In some embodiments, the target specific nuclease is a TAL effector nuclease (TALEN). The TALEN can be used to introduce site-specific double strand breaks at targeted genomic loci. Site-specific double-strand breaks are created when two independent TALENs bind to nearby DNA sequences, thereby permitting dimerization of FokI and cleavage of the target DNA. TALENs have advanced genome editing due to their high rate of successful and efficient genetic modification. This DNA cleavage can stimulate the natural DNA-repair machinery, leading to one of two possible repair pathways: homology-directed repair (HDR) or the non-homologous end joining (NHEJ) pathway. The TALENs can be designed to target any gene involved in a genetic disease.


The TALENs can include a nuclease and a TALE DNA-binding domain that binds to the target gene in a TALEN target region. The target gene can have a mutation such as a frameshift mutation or a nonsense mutation. If the target gene has a mutation that causes a premature stop codon, the TALEN can be designed to recognize and bind a nucleotide sequence upstream or downstream from the premature stop codon. A “TALEN target region” includes the binding regions for two TALENs and the spacer region, which occurs between the binding regions. The two TALENs bind to different binding regions within the TALEN target region, after which the TALEN target region is cleaved. Examples of TALENs are described in International Patent Application No. PCT/US2013/038536, which is incorporated by reference in its entirety.


In some embodiments, the target specific nucleases include tags including for example, without limitation, 3×Flag, nuclear localization sequence (NLS), and the combination of 3×Flag and NLS.


Blunting Enzymes

In some embodiments, the blunting enzyme or double strand break-end blunting enzyme (both terms are used interchangeably herein), is an enzyme that is able either to remove or add nucleotides to a staggered end of a double stranded DNA molecule to produce a blunt end. In some embodiments, the blunting enzyme disclosed herein is a polymerase or a nuclease. In some embodiments, the DSB-blunting enzyme is a single-strand DNA specific nuclease.


In some embodiments, the blunting enzyme is a polymerase selected from polymerase λ (POLL), polymerase μ (POLM), polymerase ν (POLN), polymerase η (POLH), polymerase β (POLB), DNA polymerase θ (POLQ), DNA polymerase κ (POLK), DNA polymerase IV (Saccharomyces cerevisiae), DNA polymerase γ (POLG), DNA polymerase ι (POLI), DNA polymerase ξ, DNA polymerase ν (POLN), DNA nucleotidylexotransferase (DNTT), TENT4A, DNA ligase 4, fungi pol IV-like DNA polymerase (Neurospora crassa), DNA polymerase/3′-5′ exonuclease PolX (Bacillus subtilis), Family X DNA Polymerase (Deinococcus radiodurans), and T4 DNA polymerase (Scherichia virus T4). In some embodiments, the blunting enzyme is a nuclease. In some embodiments, the nuclease is a single-strand DNA specific nuclease. In some embodiments, the nuclease is selected from MGME1, EXOG, APEX1, APEX2, FEN1, DNA2, APE1, XRN1, XRN2, EXOG, EXO5, AP endonuclease, RecJ Exonuclease (RecJ), XseA, XseB, S1 nuclease (nucS), P1 nuclease, XRCC4, Ligase IV, Artemis, and Csm1.


Except as specified above, the blunting enzymes can be from any organism. In some embodiments, the organism is a mammal. In other embodiments, the mammal is a human.


Optimal enzymes can be selected that will enable the precision indel alleles to be stably increased in various cells and target sequences. In some embodiments, the blunting enzymes can be selected from variants such as mutants, truncations or chimeric variants of DNA polymerases and single-base specific DNA nucleases. Representative variants of DNA polymerases and single-base specific DNA nucleases, including but not limited to human POLM (H329G), human POLM (H329G, R389K), human BRCT(POLM)_POLL1, human BRCT(POLM)_POLL2, T4 DNA polymerase(Y320A), T4 DNA polymerase(A737V). Other variants include the family X polymerases ScPolλ, HsPolλ, HsPolμ, HsTdt and HsPolβ, shown schematically in FIG. 8. In some embodiments, the blunting enzymes or the variants thereof can be modified with protein tags such as Myc, Flag, VStag, nuclease localization sequence. For example, the blunting enzymes or the variants thereof can include but not limited to 3×Flag-NLS-EXOG, 3×Flag-NLS-T4 DNA polymerase, 3×Flag-NLS-T4 DNA polymerase(Y320A), VStag-APEX2-NLS-NLS, 3×Flag-NLS-XseA.


In some embodiments, the blunting enzyme is covalently bound to the target specific nuclease by a linker. In some embodiments, the linker is an amino acid, a peptide, or a polypeptide.


Microhomology-Mediated End Joining (MMEJ) Inhibitor

The target specific nuclease and blunting enzyme disclosed herein can be combined with a microhomology-mediated end joining (MMEJ) inhibitor. In some embodiments, the MMEJ inhibitor is a CtIP inhibitor (e.g., KLHL15, PIN1). In some embodiments, the MMEJ inhibitor is an MRN inhibitor (e.g., E1b55K+E40rf6).


Pathogenic Frameshift Mutations

The non-naturally occurring or engineered systems, methods, and compositions disclosed herein can be used to repair pathogenic genes in human cells and tissues, and can be used to correct the underlying genetic basis of many diseases, especially those conditions caused by a frameshift mutation. Pathogenic frameshifts can cause a wide variety of illnesses. One particular condition caused by a frameshift mutation is Parkinson's disease, caused by the frameshift mutation depicted in FIG. 9.



FIG. 10 illustrates the editing of a gene using CRISPR-Cas9 and a blunting enzyme without the use of a donor template. The Cas9 gene editing system corrects a 1 bp BRCA2 frameshift mutation (c.8015_8016insA) and a 2 bp NF1 frameshift mutation (c.2027delC). As the schematic in FIG. 10 demonstrates, a stop codon is prematurely generated due to the frameshift mutation. By using this technique, combining Cas9 and a blunting enzyme without the use of a donor template results in repair of the frameshift mutations.


Other conditions caused by frameshift mutations include, inter alia, the following: various cancers, Parkinson's disease, muscular dystrophy, cardiomyopathy, anemia, Crohn's disease, cystic fibrosis, tuberous sclerosis, Xia-Gibbs syndrome, dermatitis, atopic, ichthyosis vulgaris, Usher syndrome, hypothyroidism, ventricular tachycardia, hemochromatosis, retinitis pigmentosa, arthrogryposis, Robinow syndrome, peroxisome biogenesis disorders, Zellweger syndrome spectrum, cortisone reductase deficiency, deficiency of pyrroline-5-carboxylate reductase, Van der Woude syndrome, Neonatal hypotonia, MYH-associated polyposis, neutropenia, methylmalonic acidemia with homocystinuria, hypobetalipoproteinemia, medium-chain acyl-coenzyme A dehydrogenase deficiency, Sezary syndrome, Stargardt disease, glycogen storage disease, maple syrup urine disease, fibrochondrogenesis, Chudley-McCullough syndrome, spastic paraplegia, frontonasal dysplasia, monocarboxylate transporter 1 deficiency, urofacial syndrome, Hajdu-Cheney syndrome, radial aplasia-thrombocytopenia syndrome, Nager syndrome, White-Sutton syndrome, ichthyosis vulgaris, FLG-Related Disorders, Grange syndrome, Charcot-Marie-Tooth disease, achromatopsia, amelogenesis imperfecta, adult junctional epidermolysis bullosa, fumarase deficiency, and Senior-Loken syndrome.


The systems, methods, and compositions described herein can also be used to enhance out-frame mutations by avoiding indel in multiples of three by a predictable mutation. Out-frame mutation occurs when the reading frame of the target dsDNA is completely disrupted. Therefore, the systems, methods, and compositions described herein can produce knockout cell lines and organisms.


Delivery

In some embodiments, the target specific nuclease and blunting enzyme are introduced into a cell as a nucleic acid encoding each protein. The nucleic acid introduced into the eukaryotic cell is a plasmid DNA or viral vector. In some embodiments, the target specific nuclease and blunting enzyme are introduced into a cell via a ribonucleoprotein (RNP).


Preferably, delivery is in the form of a vector which may be a viral vector, such as a lenti- or baculo- or adeno-viral/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided. The viral vector may be selected from a variety of families/genera of viruses, including, but not limited to Myoviridae, Siphoviridae, Podoviridae, Corticoviridae, Lipothrixviridae, Poxviridae, Iridoviridae, Adenoviridae, Polyomaviridae, Papillomaviridae, Mimiviridae, Pandoravirusa, Salterprovirusa, Inoviridae, Microviridae, Parvoviridae, Circoviridae, Hepadnaviridae, Caulimoviridae, Retroviridae, Cystoviridae, Reoviridae, Bimaviridae, Totiviridae, Partitiviridae, Filoviridae, Orthomyxoviridae, Deltavirusa, Leviviridae, Picomaviridae, Mamaviridae, Secoviridae, Potyviridae, Caliciviridae, Hepeviridae, Astroviridae, Nodaviridae, Tetraviridae, Luteoviridae, Tombusviridae, Coronaviridae, Arteriviridae, Flaviviridae, Togaviridae, Virgaviridae, Bromoviridae, Tymoviridae, Alphaflexiviridae, Sobemovirusa, or Idaeovirusa.


A vector may mean not only a viral or yeast system (for instance, where the nucleic acids of interest may be operably linked to and under the control of (in terms of expression, such as to ultimately provide a processed RNA) a promoter), but also direct delivery of nucleic acids into a host cell. For example, baculoviruses may be used for expression in insect cells. These insect cells may, in turn be useful for producing large quantities of further vectors, such as AAV or lentivirus adapted for delivery of the present invention. Also envisaged is a method of delivering the target specific nuclease and blunting enzyme comprising delivering to a cell mRNAs encoding each.


In some embodiments, expression of a nucleic acid sequence encoding the target specific nuclease and/or the blunting enzyme may be driven by a promoter. In some embodiments, the target specific nuclease is a Cas. In some embodiments, a single promoter drives expression of a nucleic acid sequence encoding a Cas and one or more of the guide sequences. In some embodiments, the Cas and guide sequence(s) are operably linked to and expressed from the same promoter. In some embodiments, the CRISPR enzyme and guide sequence(s) are expressed from different promoters. For example, the promoter(s) can be, but are not limited to, a UBC promoter, a PGK promoter, an EF1A promoter, a CMV promoter, an EFS promoter, a SV40 promoter, and a TRE promoter. The promoter may be a weak or a strong promoter. The promoter may be a constitutive promoter or an inducible promoter. In some embodiments, the promoter can also be an AAV ITR, and can be advantageous for eliminating the need for an additional promoter element, which can take up space in the vector. The additional space freed up by use of an AAV ITR can be used to drive the expression of additional elements, such as guide sequences. In some embodiments, the promoter may be a tissue specific promoter.


In some embodiments, an enzyme coding sequence encoding a target specific nuclease and/or a blunting enzyme is codon-optimized for expression in particular cells, such as eukaryotic cells. The eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, mouse, rat, rabbit, dog, or non-human primate. In general, codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g., about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Various species exhibit particular bias for certain codons of a particular amino acid. Codon bias (differences in codon usage between organisms) often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, among other things, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the “Codon Usage Database”, and these tables can be adapted in a number of ways. See Nakamura, Y., et al. “codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000). Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, Pa.), are also available. In some embodiments, one or more codons (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons) in a sequence encoding a Cas protein correspond to the most frequently used codon for a particular amino acid.


In some embodiments, a vector encodes a target specific nuclease and/or a blunting enzyme comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. In some embodiments, the Cas protein comprises about or more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g., one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. Typically, an NLS consists of one or more short sequences of positively charged lysines or arginines exposed on the protein surface, bur other types of NLS are known. In some embodiments, the NLS is between two domains, for example between the Cas13 protein and the viral protein. The NLS may also be between two functional domains separated or flanked by a glycine-serine linker.


In general, the one or more NLSs are of sufficient strength to drive accumulation of the target specific nuclease and/or the blunting enzyme in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs in the target specific nuclease and/or blunting enzyme, the particular NLS used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the target specific nuclease and/or the blunting enzyme, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g., a stain specific for the nucleus such as DAPI). Examples of detectable markers include fluorescent proteins (such as green fluorescent proteins, or GFP; RFP; CFP), and epitope tags (HA tag, FLAG tag, SNAP tag). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly.


In some aspects, the invention provides methods comprising delivering one or more polynucleotides, such as one or more vectors as described herein, one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell. In some aspects, the invention further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells. In some embodiments, a Cas protein in combination with (and optionally complexed) with a guide sequence is delivered to a cell. Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding a target specific nuclease and/or a blunting enzyme to cells in culture, or in a host organism. Non-viral vector delivery systems include DNA plasmids, RNA (e.g., a transcript of a vector described herein), naked nucleic acid, nucleic acid complexed with a delivery vehicle, such as a liposome, and ribonucleoprotein. Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell. For a review of gene therapy procedures, see Anderson, Science 256:808-8313 (1992); Navel and Felgner, TIBTECH 11:211-217 (1993); Mitani and Caskey, TIBTECH 11:162-166 (1993): Dillon, TIBTECH 11:167-175 (1993); Miller, Nature 357:455-460 (1992); Van Brunt, Biotechnology 6(10):1149-1154 (1988); Vigne, Restorative Neurology and Neuroscience 8:35-36 (1995); Kremer and Perricaudet, British Medical Bulletin 51(1):31-44 (1995); Haddada et al., in Current Topics in Microbiology and Immunology, Doerfler and Bohm (eds) (1995); and Yu et al., Gene Therapy 1:13-26 (1994).


The target specific nuclease and/or the blunting enzyme can be delivered using adeno-associated virus (AAV), lentivirus, adenovirus, or other viral vector types, or combinations thereof. In some embodiments, Cas protein(s) and one or more guide RNAs can be packaged into one or more viral vectors. In some embodiments, the targeted trans-splicing system is delivered via AAV as a split intein system, similar to Levy et al. (Nature Biomedical Engineering, 2020, DOI: https://doi.org/10.1038/s41551-019-0501-5). In other embodiments, the target specific nuclease and/or the blunting enzyme can be delivered via AAV as a trans-splicing system, similar to Lai et al. (Nature Biotechnology, 2005, DOI: 10.1038/nbt1153). In some embodiments, the viral vector is delivered to the tissue of interest by, for example, an intramuscular injection, while other times the viral delivery is via intravenous, transdermal, intranasal, oral, mucosal, intrathecal, intracranial or other delivery methods. Such delivery may be either via a single dose, or multiple doses. One skilled in the art understands that the actual dosage to be delivered herein may vary greatly depending upon a variety of factors, such as the vector chosen, the target cell, organism, or tissue, the general condition of the subject to be treated, the degree of transformation/modification sought, the administration route, the administration mode, the type of transformation/modification sought, etc.


The use of RNA or DNA viral based systems for the delivery of nucleic acids takes advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus. Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro, and the modified cells may optionally be administered to patients (ex vivo). Conventional viral based systems could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues. Viral-mediated in vivo delivery of Cas13 and guide RNA provides a rapid and powerful technology for achieving precise mRNA perturbations within cells, especially in post-mitotic cells and tissues.


In certain embodiments, delivery of the target specific nuclease and/or the blunting enzyme to a cell is non-viral. In certain embodiments, the non-viral delivery system is selected from a ribonucleoprotein, cationic lipid vehicle, electroporation, nucleofection, calcium phosphate transfection, transfection through membrane disruption using mechanical shear forces, mechanical transfection, and nanoparticle delivery.


In some embodiments, a host cell is transiently or non-transiently transfected with one or more vectors described herein. In some embodiments, a cell is transfected as it naturally occurs in a subject. In some embodiments, a cell that is transfected is taken from a subject. In some embodiments, the cell is derived from cells taken from a subject, such as a cell line. Cell lines are available from a variety of sources known to those with skill in the art (see, e.g., the American Type Culture Collection (ATCC) (Manassas, Va.)). In some embodiments, a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences.


Kits

The present disclosure provides kits for carrying out a method. The present disclosure provides the invention provides kits containing any one or more of the elements disclosed in the above methods and compositions. In some embodiments, the kit comprises a vector system and instructions for using the kit. In some embodiments, the kit comprises a vector system comprising regulatory elements and polynucleotides encoding the target specific nuclease and/or the blunting enzyme. In some embodiments, the kit comprises a viral delivery system of the target specific nuclease and/or the blunting enzyme. In some embodiments, the kit comprises a non-viral delivery system of the target specific nuclease and/or the blunting enzyme. Elements may be provided individually or in combinations, and may be provided in any suitable container, such as a vial, a bottle, or a tube. In some embodiments, the kit includes instruction in one or more languages, for examples, in more than one language.


In some embodiments, a kit comprises one or more reagents for use in a process utilizing one or more of the elements described herein. Reagents may be provided in any suitable container. For example, a kit may provide one or more reaction or storage buffers. Reagents may be provided in a form that is usable in a particular assay, or in a form that requires addition of one or more other components before use (e.g. in concentrate or lyophilized form). A buffer can be any buffer, including but not limited to a sodium carbonate buffer, a sodium bicarbonate buffer, a borate buffer, a Tris buffer, a MOPS buffer, a HEPES buffer, and combinations thereof. In some embodiments, the buffer is alkaline. In some embodiments, the buffer has a pH from about 7 to about 10. In some embodiments, the kit comprises one or more oligonucleotides corresponding to a guide sequence for insertion into a vector so as to operably link the guide sequence and a regulatory element.


Sequences

Sequences of nucleases, enzymes, guides, and linkers can be found in Table 1 below.










TABLE 1





SEQ ID NO
SEQUENCE







SEQ ID NO 1
atggatcccaggggtatcttgaaggcatttcccaagcggcagaaaattcatgctgatgcatcatcaaaagtacttgcaaagattcctaggagg


POLL
gaagagggagaagaagcagaagagtggctgagctcccttcgggcccatgttgtgcgcactggcattggacgagcccgggcagaactctt



Homo sapiens

tgagaagcagattgttcagcatggcggccagctatgccctgcccagggcccaggtgtcactcacattgtggtggatgaaggcatggactat



gagcgagccctccgccttctcagactaccccagctgcccccgggtgctcagctggtgaagtcagcctggctgagcttgtgccttcaggaga



ggaggctggtggatgtagctggattcagcatcttcatccccagtaggtacttggaccatccacagcccagcaaggcagagcaggatgcttc



tattcctcctggcacccatgaggccctgcttcagacagccctttctcctcctcctcctcccaccaggcctgtgtctcctccccaaaaggcaaaa



gaggcaccaaacacccaagcccagcccatctctgatgatgaagccagtgatggggaagaaacccaggttagtgcagctgatctggaagc



cctcatcagtggccactaccccacctcccttgagggagattgtgagcctagcccagcccctgctgtcctggataagtgggtctgtgcacagc



cctcaagccagaaggcgaccaatcacaacctccatatcacagagaagctggaagttctggccaaagcctacagtgttcagggagacaagt



ggagggccctgggctatgccaaggccatcaatgccctcaagagcttccataagcctgtcacctcgtaccaggaggcctgcagtatccctg



ggattgggaagcggatggctgagaaaatcatagagatcctggagagcgggcatttgcggaagctggaccatatcagtgagagcgtgcct



gtcttggagctcttctccaacatctggggagctgggaccaagactgcccagatgtggtaccaacagggcttccgaagtctggaagacatcc



gcagccaggcctccctgacaacccagcaggccatcggcctgaagcattacagtgacttcctggaacgtatgcccagggaggaggctaca



gagattgagcagacagtccagaaagcagcccaggcctttaactctgggctgctgtgtgtggcatgtggttcataccgacggggaaaggcg



acctgtggtgatgtcgacgtgctcatcactcacccagatggccggtcccaccggggtatcttcagccgcctccttgacagtcttcggcagga



agggttcctcacagatgacttggtgagccaagaggagaatggtcagcaacagaagtacttgggggtgtgccggctcccagggccagggc



ggcggcaccggcgcctggacatcatcgtggtgccctatagcgagtttgcctgtgccctgctctacttcaccggctctgcacacttcaaccgc



tccatgcgagccctggccaaaaccaagggcatgagtctgtcagaacatgccctcagcactgctgtggtccggaacacccatggctgcaag



gtggggcctggccgagtgctgcccactcccactgagaaggatgtcttcaggctcttaggcctcccctaccgagaacctgctgagcgggac



tggtga





SEQ ID NO 2
atggctctgccaaagagaagacgcgcacgggttgggtccccttcaggggacgcagcctcctctacacctccatctacgagatttccgggtgtt


POLM
gcaatatacctcgtcgagccccggatgggacgcagtagacgggctttccttacgggtctcgcccgaagtaaaggctttcgggtgttggacgca



Homo sapiens

tgttctagtgaagcgacccatgtcgttatggaggagacgagtgctgaggaggctgtaagctggcaagagcgccgaatggctgctgcaccacc



cggctgcactccgcctgctttgttggatatatcttggctgaccgaaagtcttggggctggacaaccagtaccggttgagtgccgacatcgattgg



aagtagctggtccgaggaaaggccccctctcaccggcctggatgcctgcatatgcctgccaacggcccacccctctgacgcaccacaacact



gggctttccgaggcattggagatattggcggaagctgcgggctttgaagggtccgaagggagattgctcacgttctgtagagcagcatccgttc



ttaaagcgctgccgagtcccgtaactacactgtctcaactgcagggcctgccacacttcggcgaacactcaagccgggtcgtacaagaactcc



tggagcacggggtctgcgaggaagttgagagggtgaggcgaagcgaacgataccaaacgatgaagctgtttacacaaatctttggagttgga



gtcaagacggcggacagatggtatcgagaggggcttcgaacgctcgacgatctgcgcgagcaaccgcaaaagctgacccaacagcaaaa



ggccggactgcagcatcaccaggacctttcaacacctgttcttcggtctgacgttgatgctctccaacaagtcgtcgaggaggcagtaggccag



gcccttccgggcgctactgttacgctcacgggaggatttagacgcggcaaacttcaaggtcacgatgtcgatttcttgataactcacccaaaaga



ggggcaggaggctggtttgctgccgcgggtaatgtgccgattgcaagaccaaggcttgatactgtaccaccaacaccaacattcatgttgcga



gtcacccacgcgcctcgcacagcagagccatatggacgctttcgagagatcattttgcatattcagacttcctcagcccccaggtgcggcggtc



ggtgggtccactaggccgtgtccatcttggaaggctgtgcgggtggatttggtcgtagcgcccgtcagccagtttccctttgcactcctggggtg



gaccggcagtaaactgttccaaagagagctgcgaaggttctcacgaaaagagaagggcctctggcttaactcccacggcctgttcgaccccg



agcaaaaaactttctttcaggctgcgagcgaagaagatatcttccgccacctgggacttgagtaccttccccccgagcagcgcaacgcctga





SEQ ID NO 3
atggctctgccaaagagaagacgcgcacgggttgggtccccttcaggggacgcagcctcctctacacctccatctacgagatttccgggtgtt


POLM
gcaatatacctcgtcgagccccggatgggacgcagtagacgggctttccttacgggtctcgcccgaagtaaaggctttcgggtgttggacgca


(H329G)
tgttctagtgaagcgacccatgtcgttatggaggagacgagtgctgaggaggctgtaagctggcaagagcgccgaatggctgctgcaccacc



Homo sapiens

cggctgcactccgcctgctttgttggatatatcttggctgaccgaaagtcttggggctggacaaccagtaccggttgagtgccgacatcgattgg



aagtagctggtccgaggaaaggccccctctcaccggcctggatgcctgcatatgcctgccaacggcccacccctctgacgcaccacaacact



gggctttccgaggcattggagatattggcggaagctgcgggctttgaagggtccgaagggagattgctcacgttctgtagagcagcatccgttc



ttaaagcgctgccgagtcccgtaactacactgtctcaactgcagggcctgccacacttcggcgaacactcaagccgggtcgtacaagaactcc



tggagcacggggtctgcgaggaagttgagagggtgaggcgaagcgaacgataccaaacgatgaagctgtttacacaaatctttggagttgga



gtcaagacggcggacagatggtatcgagaggggcttcgaacgctcgacgatctgcgcgagcaaccgcaaaagctgacccaacagcaaaa



ggccggactgcagcatcaccaggacctttcaacacctgttcttcggtctgacgttgatgctctccaacaagtcgtcgaggaggcagtaggccag



gcccttccgggcgctactgttacgctcacgggaggatttagacgcggcaaacttcaaggtggcgatgtcgatttcttgataactcacccaaaag



aggggcaggaggctggtttgctgccgcgggtaatgtgccgattgcaagaccaaggcttgatactgtaccaccaacaccaacattcatgttgcg



agtcacccacgcgcctcgcacagcagagccatatggacgctttcgagagatcaaaatgcatattcagacttcctcagcccccaggtgcggcg



gtcggtgggtccactaggccgtgtccatcttggaaggctgtgcgggtggatttggtcgtagcgcccgtcagccagtttccctttgcactcctggg



gtggaccggcagtaaactgttccaaagagagctgcgaaggttctcacgaaaagagaagggcctctggcttaactcccacggcctgttcgacc



ccgagcaaaaaactttctttcaggctgcgagcgaagaagatatcttccgccacctgggacttgagtaccttccccccgagcagcgcaacgcct



ga





SEQ ID NO 4
atggctctgccaaagagaagacgcgcacgggttgggtccccttcaggggacgcagcctcctctacacctccatctacgagatttccgggtgtt


POLM
gcaatatacctcgtcgagccccggatgggacgcagtagacgggctttccttacgggtctcgcccgaagtaaaggctttcgggtgttggacgca


(H329G, R389K)
tgttctagtgaagcgacccatgtcgttatggaggagacgagtgctgaggaggctgtaagctggcaagagcgccgaatggctgctgcaccacc



Homo sapiens

cggctgcactccgcctgctttgttggatatatcttggctgaccgaaagtcttggggctggacaaccagtaccggttgagtgccgacatcgattgg



aagtagctggtccgaggaaaggccccctctcaccggcctggatgcctgcatatgcctgccaacggcccacccctctgacgcaccacaacact



gggctttccgaggcattggagatattggcggaagctgcgggctttgaagggtccgaagggagattgctcacgttctgtagagcagcatccgttc



ttaaagcgctgccgagtcccgtaactacactgtctcaactgcagggcctgccacacttcggcgaacactcaagccgggtcgtacaagaactcc



tggagcacggggtctgcgaggaagttgagagggtgaggcgaagcgaacgataccaaacgatgaagctgtttacacaaatctttggagttgga



gtcaagacggcggacagatggtatcgagaggggcttcgaacgctcgacgatctgcgcgagcaaccgcaaaagctgacccaacagcaaaa



ggccggactgcagcatcaccaggacctttcaacacctgttcttcggtctgacgttgatgctctccaacaagtcgtcgaggaggcagtaggccag



gcccttccgggcgctactgttacgctcacgggaggatttagacgcggcaaacttcaaggtggcgatgtcgatttcttgataactcacccaaaag



aggggcaggaggctggtttgctgccgcgggtaatgtgccgattgcaagaccaaggcttgatactgtaccaccaacaccaacattcatgttgcg



agtcacccacgcgcctcgcacagcagagccatatggacgctttcgagagatcattttgcatattcagacttcctcagcccccaggtgcggcggt



cggtgggtccactaggccgtgtccatcttggaaggctgtgcgggtggatttggtcgtagcgcccgtcagccagtttccctttgcactcctggggt



ggaccggcagtaaactgttccaaagagagctgcgaaggttctcacgaaaagagaagggcctctggcttaactcccacggcctgttcgacccc



gagcaaaaaactttctttcaggctgcgagcgaagaagatatcttccgccacctgggacttgagtaccttccccccgagcagcgcaacgcctga





SEQ ID NO 5
atggctctgccaaagagaagacgcgcacgggttgggtccccttcaggggacgcagcctcctctacacctccatctacgagatttccgggtgtt


BRCT
gcaatatacctcgtcgagccccggatgggacgcagtagacgggctttccttacgggtctcgcccgaagtaaaggctttcgggtgttggacgca


(POLM)
tgttctagtgaagcgacccatgtcgttatggaggagacgagtgctgaggaggctgtaagctggcaagagcgccgaatggctgctgcaccacc


POLL 1
cggctgcactccgcctgctttgttggatatatcttggctgaccgaaagtcttggggctggacaaccaatccccagtaggtacttggaccatccac



Homo sapiens

agcccagcaaggcagagcaggatgcttctattcctcctggcacccatgaggccctgcttcagacagccctttctcctcctcctcctcccaccag



gcctgtgtctcctccccaaaaggcaaaagaggcaccaaacacccaagcccagcccatctctgatgatgaagccagtgatggggaagaaacc



caggttagtgcagctgatctggaagccctcatcagtggccactaccccacctcccttgagggagattgtgagcctagcccagcccctgctgtcc



tggataagtgggtctgtgcacagccctcaagccagaaggcgaccaatcacaacctccatatcacagagaagctggaagttctggccaaagcc



tacagtgttcagggagacaagtggagggccctgggctatgccaaggccatcaatgccctcaagagcttccataagcctgtcacctcgtaccag



gaggcctgcagtatccctgggattgggaagcggatggctgagaaaatcatagagatcctggagagcgggcatttgcggaagctggaccatat



cagtgagagcgtgcctgtcttggagctcttctccaacatctggggagctgggaccaagactgcccagatgtggtaccaacagggcttccgaag



tctggaagacatccgcagccaggcctccctgacaacccagcaggccatcggcctgaagcattacagtgacttcctggaacgtatgcccaggg



aggaggctacagagattgagcagacagtccagaaagcagcccaggcctttaactctgggctgctgtgtgtggcatgtggttcataccgacggg



gaaaggcgacctgtggtgatgtcgacgtgctcatcactcacccagatggccggtcccaccggggtatcttcagccgcctccttgacagtcttcg



gcaggaagggttcctcacagatgacttggtgagccaagaggagaatggtcagcaacagaagtacttgggggtgtgccggctcccagggcca



gggcggcggcaccggcgcctggacatcatcgtggtgccctatagcgagtttgcctgtgccctgctctacttcaccggctctgcacacttcaacc



gctccatgcgagccctggccaaaaccaagggcatgagtctgtcagaacatgccctcagcactgctgtggtccggaacacccatggctgcaag



gtggggcctggccgagtgctgcccactcccactgagaaggatgtcttcaggctcttaggcctcccctaccgagaacctgctgagcgggactg



gtga





SEQ ID NO 6
atggctctgccaaagagaagacgcgcacgggttgggtccccttcaggggacgcagcctcctctacacctccatctacgagatttccgggtgtt


BRCT
gcaatatacctcgtcgagccccggatgggacgcagtagacgggctttccttacgggtctcgcccgaagtaaaggctttcgggtgttggacgca


(POLM)
tgttctagtgaagcgacccatgtcgttatggaggagacgagtgctgaggaggctgtaagctggcaagagcgccgaatggctgctgcaccacc


POLL2
cggctgcactccgcctgctttgttggatatatcttggctgaccgaaagtcttggggctggacaaccagtaccggttgagtgccgacatcgattgg



Homo sapiens

aagtagctggtccgaggaaaggccccctctcatcaagccagaaggcgaccaatcacaacctccatatcacagagaagctggaagttctggcc



aaagcctacagtgttcagggagacaagtggagggccctgggctatgccaaggccatcaatgccctcaagagcttccataagcctgtcacctcg



taccaggaggcctgcagtatccctgggattgggaagcggatggctgagaaaatcatagagatcctggagagcgggcatttgcggaagctgg



accatatcagtgagagcgtgcctgtcttggagctcttctccaacatctggggagctgggaccaagactgcccagatgtggtaccaacagggctt



ccgaagtctggaagacatccgcagccaggcctccctgacaacccagcaggccatcggcctgaagcattacagtgacttcctggaacgtatgc



ccagggaggaggctacagagattgagcagacagtccagaaagcagcccaggcctttaactctgggctgctgtgtgtggcatgtggttcatacc



gacggggaaaggcgacctgtggtgatgtcgacgtgctcatcactcacccagatggccggtcccaccggggtatcttcagccgcctccttgaca



gtcttcggcaggaagggttcctcacagatgacttggtgagccaagaggagaatggtcagcaacagaagtacttgggggtgtgccggctccca



gggccagggcggcggcaccggcgcctggacatcatcgtggtgccctatagcgagtttgcctgtgccctgctctacttcaccggctctgcacac



ttcaaccgctccatgcgagccctggccaaaaccaagggcatgagtctgtcagaacatgccctcagcactgctgtggtccggaacacccatgg



ctgcaaggtggggcctggccgagtgctgcccactcccactgagaaggatgtcttcaggctcttaggcctcccctaccgagaacctgctgagcg



ggactggtga





SEQ ID NO 7
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


3xFlag-NLS-
ggtcggtatccacggagtcccagcagccgctatcaagagtatcgcttcccgcctccggggttcccgtcgttttctgagcggcttcgtggctggg


EXOG
gctgtagtgggcgctgcgggagctgggctcgcggccctgcagttcttccggagtcagggcgctgagggagcgttgacagggaagcagccg



Homo sapiens

gatggatctgcagaaaaggctgtcttggaacaatttggattccctttaactggaacagaggcaaggtgttacactaatcacgctttgtcttatgatc



aggcaaagcgggtgcctagatgggttcttgaacatatttccaaaagcaagataatgggtgatgcagacagaaagcattgtaaatttaagcctgat



cccaatatccctccaaccttcagtgccttcaatgaagattatgttggaagtgggtggtcacgaggacacatggctccagcaggaaataacaaatt



ttcaagtaaagccatggctgaaaccttttacctttctaacattgtgcctcaggattttgataataattctggatattggaacagaatagaaatgtactgt



cgagagctgacagaaaggtttgaagatgtttgggtggtatctgggcctttgaccttacctcagactagaggcgatggaaagaaaatagttagtta



ccaggtgattggcgaggacaacgtggcagtcccctcacacctttataaggtaatcctggcccgcagaagctcagtatctaccgaaccactggc



gctaggggcctttgtggtacccaatgaagccatcggcttccagccccagttaactgaattccaagtgagcctccaggacctagagaagttgtca



ggactggtgttttttcctcatttggatagaactagtgatatccggaatatctgctctgtggacacctgtaagctcctggatttccaggagttcaccttgt



acttgagtacaagaaagattgaaggagcccgatcagtgctcagactggaaaagatcatggaaaacttgaagaatgcagagattgaaccagatg



attactttatgagtcgctatgagaagaagctagaagaactcaaagctaaggagcagtcaggaacccagataagaaagccatcctag





SEQ ID NO 8
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


3xFlag-NLS-
ggtcggtatccacggagtcccagcagcccccaggctcctgcctatatccgccgcaaccctcgctctggcccaacttacttatggctggggcaat


nucS
ctgggccatgaaactgtcgcttacattgctcaatctttcgtcgcgtcaagtaccgagagcttctgccaaaacatattgggggacgactctacttcat


Aspergillus
atttggccaacgtggcaacatgggcggatacttacaaatatacggatgcgggcgaatttagcaaaccctatcactttatagacgcacaggataa



oryzae

cccaccccaatcatgcggggttgactatgacagggattgtgggtccgccgggtgctctatctcagcaattcaaaactacacgaacatactgctg



gaaagtcctaatgggagcgaggctctgaacgcactgaaatttgttgtccatattataggagatattcatcagccgttgcatgacgaaaatttggag



gcaggaggaaatggcatcgatgtgacatatgacggggagactacgaaccttcatcacatttgggatactaacatgccggaagaagccgcggg



agggtatagcttgtccgtggcaaagacttatgcagatttgctcaccgagaggataaaaacaggtacttactcctcaaaaaaggatagctggacc



gatggaattgatataaaagatccagtaagcacgtctatgatttgggcggcggatgcaaacacctacgtctgtagtacggtacttgatgacggtctt



gcttatattaattccactgacctctccggcgaatactacgacaagtcacaaccagtcttcgaagaacttatagccaaagcgggttatagacttgcg



gcttggctggaccttattgcgtcccagcccagctga





SEQ ID NO 9
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


3xFlag-NLS-
ggtcggtatccacggagtcccagcagcctggggtgccctcggccatgcgacagtagcctatgtagctcaacattatgtaagtcccgaagccgc


NucP1
gtcttgggcgcaaggcattttgggttcctcaagttcatcatatttggcttcaatagcttcttgggccgatgaataccggctgacctccgccggcaag



Penicillium

tggagtgctagtttgcactttattgatgccgaagataatccacccacgaactgcaacgtcgactatgaacgggattgtggatcttccgggtgctcc



citrinum

atatcagctatagctaattatacacagcgagtaagtgactcaagtctttcttccgaaaatcatgcggaagcactgcgattcttggtacacttcatcgg



ggacatgacacagcctttgcacgatgaagcctacgcggtgggcggtaataaaataaacgttacatttgatggttatcatgacaacctgcacagc



gattgggacacgtatatgccacagaaattgatcggcggtcatgcgctttcagacgcagagtcctgggcaaagacgctggttcaaaatatcgaat



ctggaaattacaccgcgcaggccattggttggatcaaaggcgacaacatctcagaaccaatcacaaccgcaacgcgatgggcgtcagacgc



caatgctcttgtatgtacggtggttatgcctcacggagctgcggcacttcagacaggtgacctttatccgacttactacgactctgtgatagatact



attgaacttcaaatagctaaaggaggctaccggctcgcgaactggataaacgagatatag





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


10
ggtcggtatccacggagtcccagcagccaagatgaagttatttcagaccatttgcaggcagctcaggagttcaaagttttctgtggaatcagctg


3xFlag-NLS-
cccttgtggctttctctacttcctcttactcatgtggccggaagaaaaaagtgaacccatatgaagaagtggaccaagaaaaatactctaatttagtt


MGME1
cagtctgtcttgtcatccagaggcgtcgcccagaccccgggatcggtggaggaagatgctttgctctgtggacccgtgagcaagcataagctg



Homo sapiens

ccaaaccaaggtgaggacagacgagtgccacaaaactggtttcctatcttcaatccagagagaagtgataaaccaaatgcaagtgatccttcag



ttcctttgaaaatccccttgcaaaggaatgtgataccaagtgtgacccgagtccttcagcagaccatgacaaaacaacaggttttcttgttggaga



ggtggaaacagcggatgattctggaactgggagaagatggctttaaagaatacacttcaagttttcatgtttgtgatcatgtgtatatgaagaacct



agccagggacgtctttttacaagggaaacggttccacgaagccttggaaagcatactttcaccccaggaaaccttaaaagagagagatgaaaa



tctcctcaagtctggttacattgaaagtgtccagcatattctgaaagatgtcagtggagtgcgagctcttgaaagtgctgttcaacatgaaaccttaa



actatataggtctgctggactgtgtggctgagtatcagggcaagctctgtgtgattgattggaagacatcagagaaaccaaagccttttattcaaa



gtacatttgacaacccactgcaagttgtggcatacatgggtgccatgaaccatgataccaactacagctttcaggttcaatgtggcttaattgtggt



ggcctacaaagatggatcacctgcccacccacatttcatggatgcagagctctgttcccagtactggaccaagtggcttcttcgactagaagaat



atacggaaaagaaaaagaaccagaatattcagaaaccagaatattcagaatag





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


11
ggtcggtatccacggagtcccagcagccgtgaagcagcagatccaacttagacgaagggaagtcgacgaaacagcggaccttccggctga


3xFlag-NLS-
gttgcctccccttcttagacgattgtatgcaagtcgcggggttcgctctgcacaggaacttgagcgctctgtcaagggaatgctgccctggcaac


RecJ
agttgagtggtgttgaaaaggccgttgagattctctataatgcattcagggaaggaactcggatcatagtggtaggtgatttcgacgctgatgga



Escherichia

gcaacttcaaccgcgttgagcgtactcgccatgcgctctctcgggtgctcaaacattgactatttggtccccaatcgatttgaagatggttatggac



coli

tcagcccggaggtggttgaccaagcgcatgcccggggcgcccagctcatcgtcactgtcgataacgggataagctctcacgccggtgtcgaa



cacgctcgcagcctcgggattcccgtgattgtgactgaccaccaccttccgggagatacactccccgctgctgaggcaataatcaatcctaacc



ttcgggattgtaactttccgagcaaatcactcgcaggggtaggggtcgcattctatctcatgctggcgctcagaacgttccttcgagatcaggggt



ggttcgacgagcggaacatagctatacctaatttggccgaacttttggatctcgtggcgcttggcacggttgcagacgttgtccctctggacgcg



aacaatcgaattttgacatggcagggaatgtctaggattagagccgggaaatgtaggcctggtattaaagctctcttggaggtggcaaaccgag



atgcccagaagctcgcagctagtgacttgggttttgctttgggaccccgcctgaacgctgcagggcgcctggatgacatgagcgtaggcgtag



cacttctcttgtgcgacaatataggtgaagcgagagtacttgcaaacgaactggatgcgcttaaccagacaagaaaggaaattgagcagggca



tgcagatagaggcgcttaccctgtgtgaaaagctcgaacgatctcgagacacccttccaggcggactcgcgatgtatcaccctgaatggcacc



agggtgtcgtaggcatcctcgcgtcccgcataaaagaaaggttccaccggccagttatagcttttgctcccgcaggtgatggaacccttaaagg



atctgggagatctatccaggggcttcatatgcgggatgctttggagcggcttgacactctttacccaggtatgatgctcaagttcggcggtcatgc



tatggctgccggcctctcactggaggaggataaatttaaactctttcaacagaggttcggggagcttgtgacggaatggctggatccgtccttgc



ttcaaggcgaagtagttagcgacggacctctcagtcctgcggagatgacgatggaggtagcgcaactgctcagggacgctgggccgtgggg



ccagatgttcccggagccgttgttcgacggccatttcaggttgcttcaacagcgcctcgtcggagaacggcatctcaaagtaatggttgagcca



gtcggtggcggccccctgcttgatggcatcgctttcaatgtagacactgcactgtggcccgataatggcgttcgagaggttcagcttgcctataa



gctggatattaacgagtttcgagggaaccgatctctgcaaattataatagacaatatctggcccatatag





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


12
ggtcggtatccacggagtcccagcagccaaggaattctatattagtatcgagacagtgggaaacaacattgtagagcggtatatcgatgaaaac


3xFlag-NLS-
ggcaaagaaaggactcgagaggtcgaataccttccgaccatgtttcgccactgtaaagaagaatctaagtacaaagatatttacgggaagaatt


T4 DNA
gcgctccccaaaaatttccctccatgaaggatgctcgagactggatgaagcgcatggaggacataggtctcgaagcattggggatgaacgatt


polymerase
ttaagttggcttacatctccgacacttacgggtcagaaatagtgtacgataggaagttcgttcgcgtggcaaattgcgatatagaggtcactggag


Bacteriophage
ataagttcccggacccgatgaaggcggagtacgaaattgacgctataacacactatgactcaatcgacgaccggttctatgtatttgacctgctc


t4
aattccatgtacgggtctgtaagcaagtgggacgctaaactcgcggctaaacttgactgtgaaggaggggatgaagtacctcaggaaatcttgg



acagggtaatctacatgccctttgacaatgaacgagatatgcttatggagtacattaatttgtgggagcaaaagcgccccgcaatatttacaggct



ggaacatagaagggttcgatgtaccgtatattatgaatcgggtaaagatgatcctcggagagagaagcatgaaaagattttcacctattggcaga



gtgaaatctaagttgatacaaaacatgtatggctcaaaagagatctattcaatagatggagttagcatactcgactacctggatctgtataaaaagtt



tgcttttaccaacttgcctagcttctcccttgaaagtgtcgcccaacacgagaccaagaaaggtaagctgccgtacgatggcccgattaataaact



gcgcgagaccaaccatcaaagatatattagctacaacataattgatgtcgaatctgtgcaagccattgataagataaggggctttatcgaccttgt



cctgtcaatgtcctattacgccaaaatgccgttctcaggtgtaatgtcacccataaagacgtgggatgcgatcatcttcaattctctcaagggaga



gcacaaggtgatcccccaacaggggtcccacgtaaagcagtccttcccgggagcttttgtctttgagccaaagccgatcgcccgaaggtatat



catgtattcgaccttacgtcactttacccttcaattattcgacaagtgaatatatcacccgagactatccggggccagtttaaggtacacccaatcc



atgagtacatagccggtacagccccaaaacccagtgacgaatactcttgcagccctaatgggtggatgtacgacaaacaccaggagggcata



atcccaaaggaaatcgcgaaagtatttttccaacggaaagactggaagaaaaagatgttcgcggaggaaatgaacgccgaggctattaaaaa



aatcattatgaagggagcgggtagctgttctaccaagccagaggtagagcgctacgtcaaattcagtgatgacttccttaatgagctgagtaact



acacagagtctgtactgaactcactgattgaggaatgtgaaaaagccgcaacacttgctaataccaatcaactgaatcggaagatcctgattaatt



cactgtatggcgccttgggcaacattcatttcagatactacgacctcaggaatgccacggccattacaattttcggtcaggtcgggatccagtgg



atcgcccgaaaaatcaacgagtacctcaataaagtgtgtggtaccaatgacgaggattttatcgcagcaggcgataccgatagcgtgtatgtttg



cgtcgacaaggtcattgaaaaggtagggctggatcggtttaaggagcagaatgatcttgtcgagtttatgaaccagtttggtaaaaaaaagatgg



aaccgatgatagatgtagcgtaccgagaactttgtgactacatgaataatcgcgagcacttgatgcacatggacagggaagcgatttcatgccc



cccactcggttcaaagggcgtagggggtttctggaaagctaagaaacggtacgccctcaacgtctatgacatggaagacaagaggttcgcgg



aacctcatttgaagataatggggatggagacgcaacagtcctcaactccaaaggctgtgcaagaggctctggaagaaagcatacgacgcata



ctccaggagggggaagagagtgttcaggagtattataaaaactttgaaaaggagtaccgccagcttgactacaaggtaatcgcggaggttaag



actgcgaatgatatcgccaaatatgatgataaaggatggcccggtttcaaatgccattccatatacgaggggtcctcacctaccgccgcgccgt



gtctggtctgggggtcgcaccaattctcgacggaaataaggttatggtactcccactccgcgaggggaatccgtttggtgacaaatgcatcgcc



tggccgtctggtacggagctccccaaggaaatacgcagcgacgtcctcagttggatcgaccactccacactgtttcagaagtcattcgttaaac



ctctggccgggatgtgtgaatccgcgggtatggactacgaggagaaagcttcattggactttcttttcggttga





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


13
ggtcggtatccacggagtcccagcagccaaggaattctatattagtatcgagacagtgggaaacaacattgtagagcggtatatcgatgaaaac


3xFlag-NLS-
ggcaaagaaaggactcgagaggtcgaataccttccgaccatgtttcgccactgtaaagaagaatctaagtacaaagatatttacgggaagaatt


T4 DNA
gcgctccccaaaaatttccctccatgaaggatgctcgagactggatgaagcgcatggaggacataggtctcgaagcattggggatgaacgatt


polymerase
ttaagttggcttacatctccgacacttacgggtcagaaatagtgtacgataggaagttcgttcgcgtggcaaattgcgatatagaggtcactggag


(Y320A)
ataagttcccggacccgatgaaggcggagtacgaaattgacgctataacacactatgactcaatcgacgaccggttctatgtatttgacctgctc


Bacteriophage
aattccatgtacgggtctgtaagcaagtgggacgctaaactcgcggctaaacttgactgtgaaggaggggatgaagtacctcaggaaatcttgg


t4
acagggtaatctacatgccctttgacaatgaacgagatatgcttatggagtacattaatttgtgggagcaaaagcgccccgcaatatttacaggct



ggaacatagaagggttcgatgtaccgtatattatgaatcgggtaaagatgatcctcggagagagaagcatgaaaagattttcacctattggcaga



gtgaaatctaagttgatacaaaacatgtatggctcaaaagagatctattcaatagatggagttagcatactcgactacctggatctgtataaaaagtt



tgcttttaccaacttgcctagcttctcccttgaaagtgtcgcccaacacgagaccaagaaaggtaagctgccgtacgatggcccgattaataaact



gcgcgagaccaaccatcaaagatatattagcgccaacataattgatgtcgaatctgtgcaagccattgataagataaggggctttatcgaccttgt



cctgtcaatgtcctattacgccaaaatgccgttctcaggtgtaatgtcacccataaagacgtgggatgcgatcatcttcaattctctcaagggaga



gcacaaggtgatcccccaacaggggtcccacgtaaagcagtccttcccgggagcttttgtctttgagccaaagccgatcgcccgaaggtatat



catgtattcgaccttacgtcactttacccttcaattattcgacaagtgaatatatcacccgagactatccggggccagtttaaggtacacccaatcc



atgagtacatagccggtacagccccaaaacccagtgacgaatactcttgcagccctaatgggtggatgtacgacaaacaccaggagggcata



atcccaaaggaaatcgcgaaagtatttttccaacggaaagactggaagaaaaagatgttcgcggaggaaatgaacgccgaggctattaaaaa



aatcattatgaagggagcgggtagctgttctaccaagccagaggtagagcgctacgtcaaattcagtgatgacttccttaatgagctgagtaact



acacagagtctgtactgaactcactgattgaggaatgtgaaaaagccgcaacacttgctaataccaatcaactgaatcggaagatcctgattaatt



cactgtatggcgccttgggcaacattcatttcagatactacgacctcaggaatgccacggccattacaattttcggtcaggtcgggatccagtgg



atcgcccgaaaaatcaacgagtacctcaataaagtgtgtggtaccaatgacgaggattttatcgcagcaggcgataccgatagcgtgtatgtttg



cgtcgacaaggtcattgaaaaggtagggctggatcggtttaaggagcagaatgatcttgtcgagtttatgaaccagtttggtaaaaaaaagatgg



aaccgatgatagatgtagcgtaccgagaactttgtgactacatgaataatcgcgagcacttgatgcacatggacagggaagcgatttcatgccc



cccactcggttcaaagggcgtagggggtttctggaaagctaagaaacggtacgccctcaacgtctatgacatggaagacaagaggttcgcgg



aacctcatttgaagataatggggatggagacgcaacagtcctcaactccaaaggctgtgcaagaggctctggaagaaagcatacgacgcata



ctccaggagggggaagagagtgttcaggagtattataaaaactttgaaaaggagtaccgccagcttgactacaaggtaatcgcggaggttaag



actgcgaatgatatcgccaaatatgatgataaaggatggcccggtttcaaatgccattccatatacgaggggtcctcacctaccgccgcgccgt



gtctggtctgggggtcgcaccaattctcgacggaaataaggttatggtactcccactccgcgaggggaatccgtttggtgacaaatgcatcgcc



tggccgtctggtacggagctccccaaggaaatacgcagcgacgtcctcagttggatcgaccactccacactgtttcagaagtcattcgttaaac



ctctggccgggatgtgtgaatccgcgggtatggactacgaggagaaagcttcattggactttcttttcggttga





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


14
ggtcggtatccacggagtcccagcagccaaggaattctatattagtatcgagacagtgggaaacaacattgtagagcggtatatcgatgaaaac


3xFlag-NLS-
ggcaaagaaaggactcgagaggtcgaataccttccgaccatgtttcgccactgtaaagaagaatctaagtacaaagatatttacgggaagaatt


T4 DNA
gcgctccccaaaaatttccctccatgaaggatgctcgagactggatgaagcgcatggaggacataggtctcgaagcattggggatgaacgatt


polymerase
ttaagttggcttacatctccgacacttacgggtcagaaatagtgtacgataggaagttcgttcgcgtggcaaattgcgatatagaggtcactggag


(A737V)
ataagttcccggacccgatgaaggcggagtacgaaattgacgctataacacactatgactcaatcgacgaccggttctatgtatttgacctgctc


Bacteriophage
aattccatgtacgggtctgtaagcaagtgggacgctaaactcgcggctaaacttgactgtgaaggaggggatgaagtacctcaggaaatcttgg


t4
acagggtaatctacatgccctttgacaatgaacgagatatgcttatggagtacattaatttgtgggagcaaaagcgccccgcaatatttacaggct



ggaacatagaagggttcgatgtaccgtatattatgaatcgggtaaagatgatcctcggagagagaagcatgaaaagattttcacctattggcaga



gtgaaatctaagttgatacaaaacatgtatggctcaaaagagatctattcaatagatggagttagcatactcgactacctggatctgtataaaaagtt



tgcttttaccaacttgcctagcttctcccttgaaagtgtcgcccaacacgagaccaagaaaggtaagctgccgtacgatggcccgattaataaact



gcgcgagaccaaccatcaaagatatattagctacaacataattgatgtcgaatctgtgcaagccattgataagataaggggctttatcgaccttgt



cctgtcaatgtcctattacgccaaaatgccgttctcaggtgtaatgtcacccataaagacgtgggatgcgatcatcttcaattctctcaagggaga



gcacaaggtgatcccccaacaggggtcccacgtaaagcagtccttcccgggagcttttgtctttgagccaaagccgatcgcccgaaggtatat



catgtctttcgaccttacgtcactttacccttcaattattcgacaagtgaatatatcacccgagactatccggggccagtttaaggtacacccaatcc



atgagtacatagccggtacagccccaaaacccagtgacgaatactcttgcagccctaatgggtggatgtacgacaaacaccaggagggcata



atcccaaaggaaatcgcgaaagtatttttccaacggaaagactggaagaaaaagatgttcgcggaggaaatgaacgccgaggctattaaaaa



aatcattatgaagggagcgggtagctgttctaccaagccagaggtagagcgctacgtcaaattcagtgatgacttccttaatgagctgagtaact



acacagagtctgtactgaactcactgattgaggaatgtgaaaaagccgcaacacttgctaataccaatcaactgaatcggaagatcctgattaatt



cactgtatggcgccttgggcaacattcatttcagatactacgacctcaggaatgccacggccattacaattttcggtcaggtcgggatccagtgg



atcgcccgaaaaatcaacgagtacctcaataaagtgtgtggtaccaatgacgaggattttatcgcagcaggcgataccgatagcgtgtatgtttg



cgtcgacaaggtcattgaaaaggtagggctggatcggtttaaggagcagaatgatcttgtcgagtttatgaaccagtttggtaaaaaaaagatgg



aaccgatgatagatgtagcgtaccgagaactttgtgactacatgaataatcgcgagcacttgatgcacatggacagggaagcgatttcatgccc



cccactcggttcaaagggcgtagggggtttctggaaagctaagaaacggtacgccctcaacgtctatgacatggaagacaagaggttcgcgg



aacctcatttgaagataatggggatggagacgcaacagtcctcaactccaaaggtggtgcaagaggctctggaagaaagcatacgacgcata



ctccaggagggggaagagagtgttcaggagtattataaaaactttgaaaaggagtaccgccagcttgactacaaggtaatcgcggaggttaag



actgcgaatgatatcgccaaatatgatgataaaggatggcccggtttcaaatgccctttccatatacgaggggtcctcacctaccgccgcgccgt



gtctggtctgggggtcgcaccaattctcgacggaaataaggttatggtactcccactccgcgaggggaatccgtttggtgacaaatgcatcgcc



tggccgtctggtacggagctccccaaggaaatacgcagcgacgtcctcagttggatcgaccactccacactgtttcagaagtcattcgttaaac



ctctggccgggatgtgtgaatccgcgggtatggactacgaggagaaagcttcattggactttcttttcggttga





SEQ ID NO
atggctccgaagcgtgggaaaaagggagcggtggcggaagacggggatgagctcaggacagagccagaggccaagaagagtaagacg


15
gccgcaaagaaaaatgacaaagaggcagcaggagagggcccagccctgtatgaggaccccccagatcagaaaacctcacccagtggcaa


APEX1
acctgccacactcaagatctgctcttggaatgtggatgggcttcgagcctggattaagaagaaaggattagattgggtaaaggaagaagcccc



Homo sapiens

agatatactgtgccttcaagagaccaaatgttcagagaacaaactaccagctgaacttcaggagctgcctggactctctcatcaatactggtcag



ctccttcggacaaggaagggtacagtggcgtgggcctgctttcccgccagtgcccactcaaagtttcttacggcataggcgatgaggagcatg



atcaggaaggccgggtgattgtggctgaatttgactcgtttgtgctggtaacagcatatgtacctaatgcaggccgaggtctggtacgactggag



taccggcagcgctgggatgaagcctttcgcaagttcctgaagggcctggcttcccgaaagccccttgtgctgtgtggagacctcaatgtggcac



atgaagaaattgaccttcgcaaccccaaggggaacaaaaagaatgctggcttcacgccacaagagcgccaaggcttcggggaattactgcag



gctgtgccactggctgacagctttaggcacctctaccccaacacaccctatgcctacaccttttggacttatatgatgaatgctcgatccaagaatg



ttggttggcgccttgattactttttgttgtcccactctctgttacctgcattgtgtgacagcaagatccgttccaaggccctcggcagtgatcactgtc



ctatcaccctatacctagcactgtga





SEQ ID NO
atggtgcggggttctggcaagcccatccccaaccccctgctgggcctggacagcaccggaaagtcttacccaactgtgagtgctgattaccag


16
gacgccgttgagaaggcgaagaagaagctcagaggcttcatcgctgagaagagatgcgctcctctaatgctccgtttggcattccactctgctg


VStag-
gaacctttgacaagggcacgaagaccggtggacccttcggaaccatcaagcaccctgccgaactggctcacagcgctaacaacggtcttgac


APEX2-NLS-
atcgctgttaggcttttggagccactcaaggcggagttccctattttgagctacgccgatttctaccagttggctggcgttgttgccgttgaggtcac


NLS
gggtggacctaaggttccattccaccctggaagagaggacaagcctgagccaccaccagagggtcgcttgcctgatcccactaagggttctg



Homo sapiens

accatttgagagatgtgtttggcaaagctatggggcttactgaccaagatatcgttgctctatctgggggtcacactattggagctgcacacaagg



agcgttctggatttgagggtccctggacctctaatcctcttattttcgacaactcatacttcacggagttgttgagtggtgagaaggaaggtctcctt



cagctaccttctgacaaggctcttttgtctgaccctgtattccgccctctcgttgataaatatgcagcggacgaagatgccttctttgctgattacgct



gaggctcaccaaaagctttccgagcttgggtttgctgatgccgaattcagcagggccgaccccaagaagaagaggaaggtggaccccaaga



agaagaggaaggtggaccccaagaagaagaggaaggtgtga





SEQ ID NO
atggagagaaaaataagcagaatccaccttgtttctgaacccagtataactcattttctacaagtatcttgggagaaaacactggaatctggttttgt


17
tattacacttactgatggtcattcagcatggactgggacagtttctgaatcagagatttcccaagaagctgatgacatggcaatggaaaaaggga


XRCC4
aatatgttggtgaactgagaaaagcattgttgtcaggagcaggaccagctgatgtatacacgtttaatttttctaaagagtcttgttatttcttctttga



Homo sapiens

gaaaaacctgaaagatgtctcattcagacttggttccttcaacctagagaaagttgaaaacccagctgaagtcattagagaacttatttgttattgct



tggacaccattgcagaaaatcaagccaaaaatgagcacctgcagaaagaaaatgaaaggcttctgagagattggaatgatgttcaaggacgat



ttgaaaaatgtgtgagtgctaaggaagctttggagactgatctttataagcggtttattctggtgttgaatgagaagaaaacaaaaatcagaagttt



gcataataaattattaaatgcagctcaagaacgagaaaaggacatcaaacaagaaggggaaactgcaatctgttctgaaatgactgctgaccga



gatccagtctatgatgagagtactgatgaggaaagtgaaaaccaaactgatctctctgggttggcttcagctgctgtaagtaaagatgattccatt



atttcaagtcttgatgtcactgatattgcaccaagtagaaaaaggagacagcgaatgcaaagaaatcttgggacagaacctaaaatggctcctca



ggagaatcagcttcaagaaaaggaaaagcctgattcttcactacctgagacgtctaaaaaggagcacatctcagctgaaaacatgtctttagaa



actctgagaaacagcagcccagaagacctctttgatgagatttaa





SEQ ID NO
atggacgcacaaacacgacgacgtgagcgtcgcgctgagaaacaagctcaatggaaagctgcaaacggtggatctcctccacatatggctta


18
cccatacgatgttccagattacgctcctccatctcgagctcaagcttcgaattctgcagtcgacggtaccgcgggcatgggagtccccaagtttta


V5tag-XRN1
cagatggatctcagagcggtatccctgtctcagcgaagtggtgaaagagcatcagattcctgaatttgacaacttgtacctggatatgaatggaat



Homo sapiens

tatacatcagtgctcccatcctaatgatgatgatgttcactttagaatttcagatgataaaatctttactgatatttttcactacctggaggtgttgtttcg



cattattaaacccaggaaagtgttctttatggctgtagatggtgtggctcctcgagcaaaaatgaaccagcagcgtgggaggcgttttaggtcag



caaaggaggcagaagacaaaattaaaaaggcaatagagaagggagaaactcttcctacagaggccagatttgattccaactgtatcacacca



ggaactgaatttatggccaggttacatgaacatctgaagtattttgtaaatatgaaaatttccacagacaagtcatggcaaggagttaccatctactt



ctcaggccatgagactcctggagaaggagagcataaaatcatggaatttatcagatccgagaaagcaaagccagatcatgatccaaacacca



gacactgtctttatggtttagatgctgacttgattatgcttggattaacaagtcatgaggcacatttttctctcttaagagaagaagttcgatttggtgg



caaaaaaacacaacgggtatgtgctccagaagaaactacatttcaccttctacacttgtctttaatgagagagtatattgactatgagttttcagtatt



aaaagaaaagatcacatttaaatatgatattgaaaggataatagatgattggattttgatggggtttcttgttggtaatgattttatccctcatctacctc



atttacatattaatcatgatgcactgcctcttctttatggaacatatgttaccatcctgccagaacttgggggttatattaatgaaagtgggcacctcaa



cttacctcgatttgagaaataccttgtgaaactatcagattttgatcgggagcacttcagtgaagtttttgtggacctaaaatggtttgaaagcaaagt



tggtaacaagtacctcaatgaagcagcaggtgtcgcagcagaagaagccaggaactacaaggaaaagaaaaagttaaagggccaggaaaa



ttctctgtgttggactgctttagacaaaaatgaaggcgaaatgataacttctaaggataatttagaagatgagactgaagatgatgacctatttgaaa



ctgagtttagacaatataaaagaacatattacatgacgaagatgggggttgacgtagtatctgatgactttctggctgatcaagctgcatgttatgtt



caggcaatacagtggattttgcactattactatcatggagttcagtcctggagctggtattatccttatcattatgcgcctttcctgtctgatatacaca



acatcagtacactcaaaatccattttgaactaggaaaaccttttaagccatttgaacagcttcttgctgtacttccagcagccagcaaaaatttacttc



ctgcatgctaccagcatttgatgaccaatgaagactcaccaattatagaatattacccacctgattttaaaactgacctaaatgggaaacaacagg



aatgggaagctgtggtgttaatcccattattgatgagaagcgattattggaagccatggagacatgtaaccactccctcaaaaaggaagagagg



aaaagaaaccaacatagtgagtgcctaatgtgctggtatgatagagacacagagtttatctatccttctccatggccagaaaagttccctgccata



gaacgatgttgtacaaggtataaaataatatccttagatgcttggcgtgtagacataaacaaaaacaaaataaccagaattgaccagaaagcatt



atatttctgtggatttcctactctgaaacacatcagacacaaattttttttgaagaaaagtggtgttcaagtattccagcaaagcagtcgtggagaaa



acatgatgttggaaatcttagtggatgcagaatcagatgaacttaccgtagaaaatgtagcttcatcagtgcttggaaaatctgtctttgttaattggc



ctcaccttgaggaagctagagtcgtggctgtatcagatggagaaactaagttttacttggaagaacctccaggaacacagaagctttattcagga



agaactgccccaccatctaaagtggttcatcttggagataaagaacaatctaactgggcaaaagaagtacaaggaatttcagaacactacctga



gaagaaaaggaataataataaatgaaacatctgcagttgtgtatgctcagttactcacaggtcgtaaatatcaaataaatcaaaatggtgaagttc



gtctagagaaacagtggtcaaaacaagttgttccttttgtttatcaaactattgtcaaggacatccgagctttcgactcccgtttctccaatatcaaaa



cattggatgatttgtttcctctgagaagtatggtctttatgctgggaactccctattatggctgcactggagaagttcaggattcaggtgatgtgatta



cagaaggtaggattcgtgtgattttcagcattccatgtgaacccaatcttgatgctttaatacagaaccagcataaatattctataaagtacaaccca



ggatatgtgttggccagtcgccttggagtgagtggataccttgtttcaaggtttacaggaagtatttttattggaagaggatctaggagaaaccctc



atggagaccataaagcaaatgtgggtttaaatctcaaattcaacaagaaaaatgaggaggtacctggatatactaagaaagttggaagtgaatg



gatgtattcatctgcagcagaacaacttctggcagagtacttagagagagctccagaactatttagttatatagccaaaaatagccaagaggatgt



gttctatgaagatgacatttggcctggagaaaatgagaatggtgctgaaaaagttcaagaaattattacttggctaaaaggacatcctgtcagtact



ttatctcgttcttcttgtgatttacaaattctggatgcagctattgttgagaaaattgaggaagaagtcgaaaagtgcaagcaaagaaagaataataa



gaaggtgcgagtaacagtgaaaccccatttgctatacagacctttagaacagcaacatggagtcattcctgatcgggatgcagaattttgtcttttt



gaccgtgttgtaaatgtgagagaaaacttctcagttccagttggccttcgaggcaccatcataggaataaaaggagctaatagagaagccgatg



tactatttgaagtattatttgatgaagaatttcctggagggttaacaataagatgctcacctggtagaggttatcgactgccaacaagtgccttggtg



aacctttctcatgggagtcgctctgaaactggaaatcagaagttgacagccatcgtaaaaccacaaccagctgtacatcaacatagctcaagttc



atcagtttcctctgggcatttgggagccetcaaccattcccctcaatcactttttgttcctactcaagtacctactaaagatgatgatgaattctgcaac



atttggcagtccttacagggatctggaaagatgcaatactttcagccaactatacaagagaagggtgcagttctacctcaagaaataagccaagt



aaatcaacatcataaatctggctttaatgacaacagtgttaaatatcagcaaagaaaacatgaccctcacagaaaatttaaagaagagtgtaaga



gtcctaaagctgagtgttggtcccaaaaaatgtccaataagcagcctaactctggaattgagaactttttagcatctttgaatatctccaaagaaaat



gaagtacagtcatctcatcatggggagcctccaagtgaagagcatttgtcaccacagtcatttgccatgggaacacggatgcttaaagaaattct



aaaaattgatggctctaacactgtggaccataagaatgaaatcaaacagattgctaatgaaatccctgtttcctctaacagaagagatgaatatgg



attaccctctcagcctaaacaaaataagaaattagcatcttatatgaacaagcctcacagtgctaatgagtaccataatgttcagtctatggacaata



tgtgttggcctgcccccagccagatccctcctgtatccacaccagtaactgaactttctcgaatttgttcccttgttggaatgccacaacctgatttct



cctttcttaggatgccacagacaatgaccgtttgccaagtaaaattatctaatggcttactggtacatgggccacagtgccactctgaaaatgaag



ccaaagagaaagctgcactttttgctttacaacagttgggctccttaggcatgaatttccctttgccttcacaagtatttgcaaattatccttcagctgt



accacctggaaccattcctccagcctttcccccacctactggctgggatcactatggaagcaactatgcattgggggcagctaatataatgccttc



gtcgtctcatctctttggctcaatgccatggggaccatcggtgccagttcctgggaagcccttccatcatactttatattctgggaccatgcccatg



gctgggggaataccagggggtgtgcacaatcagtttatacctctgcaggttactaaaaaaagggttgcaaacaaaaagaactttgagaataagg



aagcccagagttctcaagccactccagttcagactagccagccagattcttccaacattgtcaaagtaagtccacgggagagctcatcagcttct



ttgaagtcctctccgattgctcaacctgcatcttcattcaagttgaaactgcctctcaaggccatagtatatctcaccataagtcaacaccaatctctt



cttcaagaagaaaatcaagaaaactggctgttaattttggtgtttctaaaccttctgagtaa





SEQ ID NO
atggagcagctgaacgaactggagctgctgatggagaagagtttttgggaggaggcggagctgccggcggagctatttcagaagaaagtgg


19
tagcttcctttccaagaacagttctgagcacaggaatggataaccggtacctggtgttggcagtcaatactgtacagaacaaagagggaaactgt


DNA2
gaaaagcgcctggtcatcactgcttcacagtcactagaaaataaagaactatgcatccttaggaatgactggtgttctgttccagtagagccagg



Homo sapiens

agatatcattcatttggagggagactgcacatctgacacttggataatagataaagattttggatatttgattctgtatccagacatgctgatttctgg



caccagcatagccagtagtattcgatgtatgagaagagctgtcctgagtgaaacttttaggagctctgatccagccacacgccaaatgctaattg



gtacggttctccatgaggtgtttcaaaaagccataaataatagctttgccccagaaaagctacaagaacttgcttttcaaacaattcaagaaataag



acatttgaaggaaatgtaccgcttaaatctaagtcaagatgaaataaaacaagaagtagaggactatcttccttcgttttgtaaatgggcaggaga



tttcatgcataaaaacacttcgactgacttccctcagatgcagctctctctgccaagtgataatagtaaggataattcaacatgtaacattgaagtcg



tgaaaccaatggatattgaagaaagcatttggtcccctaggtttggattgaaaggcaaaatagatgttacagttggtgtgaaaatacatcgagggt



ataaaacaaaatacaagataatgccgctggaacttaaaactggcaaagaatcaaattctattgaacaccgtagtcaggttgttctgtacactctact



aagccaagagagaagagctgatccagaggctggcttgcttctctacctcaagactggtcagatgtaccctgtgcctgccaaccatctagataaa



agagaattattaaagctaagaaaccagatggcattctcattgtttcaccgtattagcaaatctgctactagacagaagacacagcttgcttctttgcc



acaaataattgaggaagagaaaacttgtaaatattgttcacaaattggcaattgtgctctttatagcagagcagttgaacaacagatggattgtagtt



cagtcccaattgtgatgctgcccaaaatagaagaagaaacccagcatctgaagcaaacacacttagaatatttcagcctttggtgtctaatgttaa



ccctggagtcacaatcgaaggataataaaaagaatcaccaaaatatctggctaatgcctgcttcggaaatggagaagagtggcagttgcattgg



aaacctgattagaatggaacatgtaaagatagtttgtgatgggcaatatttacataatttccaatgtaaacatggtgccatacctgtcacaaatctaat



ggcaggtgacagagttattgtaagtggagaagaaaggtcactgtttgctttgctagaggatatgtgaaggagattaacatgacaacagtaactt



gtttattagacagaaacttgtcggtccttccagaatcaactttgttcagattagaccaagaagaaaaaaattgtgatatagataccccattaggaaat



ctttccaaattgatggaaaacacgtttgtcagcaaaaaacttcgagatttaattattgactttcgtgaacctcagtttatatcctaccttagttctgttctt



ccacatgatgcaaaggatacagttgcctgcattctaaagggtttgaataagcctcagaggcaagcgatgaaaaaggtacttctttcaaaagacta



cacactcatcgtgggtatgcctgggacaggaaaaacaactacgatatgtactctcgtaagaattctctacgcctgtggttttagcgttttgttgacca



gctatacacactctgctgttgacaatattcttttgaagttagccaagtttaaaataggatttttgcgtttgggtcagattcagaaggttcatccagctat



ccagcaatttacagagcaagaaatttgcagatcaaagtccattaaatccttagctcttctagaagaactctacaatagtcaacttatagttgcaacaa



catgtatgggaataaaccatccaatattttcccgtaaaatttttgatttttgtattgtggatgaagcctctcaaattagccaaccaatttgtctgggccc



cctttttttttcacggagatttgtgttagtgggggaccatcagcagcttcctcccctggtgctaaaccgtgaagcaagagctcttggcatgagtgaa



agcttattcaagaggctggagcagaataagagtgctgttgtacagttaaccgtgcagtacagaatgaacagtaaaattatgtccttaagtaataag



ctgacctatgagggcaagctggagtgtggatcagacaaagtggccaatgcagtgataaacctacgtcactttaaagatgtgaagctggaactg



gaattttatgctgactattctgataatccttggttgatgggagtatttgaacccaacaatcctgtttgtttccttaatacagacaaggttccagcgccag



aacaagttgaaaaaggtggtgtgagcaatgtaacagaagccaaactcatagttttcctaacctccatttttgttaaggctggatgcagtccctctga



tattggtattattgcaccgtacaggcagcaattaaagatcatcaatgatttattggcacgttctattgggatggtcgaagttaatacagtagacaaat



accaaggaagggacaaaagtattgtcctagtatcttttgttagaagtaataaggatggaactgttggtgaactcttgaaagattggcgacgtcttaa



tgttgctataaccagagccaaacataaactgattettctggggtgtgtgccctcactaaattgctatcctcctttggagaagctgcttaatcatttaaa



ctcagaaaaattaatcattgatcttccatcaagagaacatgaaagtctttgccacatattgggtgactttcaaagagaataa





SEQ ID NO
atggaacaaaagttgatttctgaagaagatttgtaagaaagagagggatcctgaatcttctgcgtcggagtgggaaacggcggcgttcagaat


20
caggctcagattcgttctcgggaagcggcggtgacagcagtgccagcccccagttcctctccgggtccgtgctgagcccgccgcccggcctt


Myc-POLQ-
ggtcgctgcctgaaggccgcagctgcaggagaatgcaagcctacagttcctgactacgaaatagacaagctactattggcaaactggggactt


Flag
cctaaagcagttctggaaaaataccacagttttggtgtaaaaaagatgtttgaatggcaggcagagtgccttttgcttggacaagtcctggaagg



Homo sapiens

aaagaatttagtttattcagctcctacaagtgctgggaagactcttgtggcagaattacttattttgaagcgggttttggaaatgcggaagaaagctt



tgtttattcttccctttgtttctgtggctaaagagaagaaatactacctccagagtctgtttcaggaagtaggaataaaagtagacggttatatgggca



gcacctctccatcaaggcatttctcttcattggatattgcagtctgcacaattgagagagccaatggtctgatcaatcgcctcatagaggaaaataa



gatggatctgttaggaatggtggttgtggatgaattacatatgctgggagactctcaccgagggtatctgctggaacttttgctgaccaagatttgc



tatattactcggaaatcagcatcttgtcaggcagatctagccagttctctgtctaatgctgtgcaaatcgttggcatgagtgctacccttcctaatttg



gagcttgtggcttcctggttgaatgctgaactctaccataccgactttcgccctgtaccgcttttggagtcagtaaaagttggaaattccatatatga



ctcttcaatgaaacttgtgagggaatttgagcccatgcttcaagtgaagggagatgaggaccatgttgttagcttatgttatgagacgatttgtgata



accattcagtattacttttttgtccatcaaagaaatggtgtgagaagctggcagatatcattgctcgagagttttataatctacatcatcaagctgagg



gattggtgaaaccctctgaatgcccaccagtaattctggaacaaaaagaactcctggaagtgatggatcagttaagacggttgccttcaggactg



gactctgtattacagaaaactgtaccatggggagtagcatttcatcatgcaggtcttacttttgaggagagggatatcattgaaggagcctttcgtc



aaggtctcattcgagtcttggcggcaacttctactctttcttctggggtgaatttacctgcacgtcgtgtgattattcgaacccctatttttggtggtcg



acctctagatattcttacttataagcagatggttggtcgtgctggcaggaaaggagtggacacagtaggcgagagtatcttaatttgtaagaactct



gagaaatcaaaaggcatagctctccttcagggttctctaaagcctgttcgcagctgtctgcaaagacgagaaggagaagaagtaactggcagc



atgatacgagctattctggagataatagttggtggagtggcaagtacatcacaagatatgcatacttatgctgcctgcacatttttggctgcaagtat



gaaagaagggaagcaaggaattcagagaaatcaagagtctgttcagcttggagcgattgaggcctgtgtgatgtggctactagaaaatgaattc



atccagagtacagaagccagtgatggaacagaaggaaaggtgtatcatccaacacatcttggttcggccactctttcttcttcactttctccagctg



atactttagatatttttgctgacctgcaaagagcaatgaagggctttgtttagagaatgatcttcatattctctatctggttacacctatgtttgaggatt



ggactactattgattggtatcgatttttctgtttatgggagaagttgccaacttcaatgaaaagggtggcagagctagtgggagttgaagaggggtt



cttggcccgttgtgtgaaaggaaaagtagtagccagaactgagagacagcatcgacaaatggccatccataaaaggtttttcaccagtcttgtgc



tattagatttaatcagtgaagttcccttaagggaaataaatcagaaatatggatgcaatcgtgggcagattcaatctttgcaacagtcagctgctgtt



tatgcagggatgattacagtattttccaaccgtctgggctggcacaacatggaactactactttcccaatttcagaagcgtcttacgtttggcatcca



gagggagctgtgtgacctggttcgggtatccttactaaatgctcagagagccagggttctctatgcttctggctttcatactgtggcagaccttgct



agagcaaatattgtggaggtggaggtgattctgaaaaatgctgtgcctttcaaaagtgcccggaaggcagtggatgaggaagaggaagcagtt



gaagaacgtcgcaatatgcgaactatctgggtgactggcagaaaaggtttaactgaaagggaagcagcagcccttatagtggaagaagccag



aatgattctgcagcaggacttagttgaaatgggagtgcaatggaatccatgtgccctgttacattctagtacatgctcattgactcatagtgagtcc



gaagtaaaggaacacacatttatatcccaaactaagagttcttataaaaaattaacatcaaagaacaaaagtaacacaatatttagtgattcttatatt



aagcattcaccaaatatagtgcaagacttaaataaaagtagagagcatacaagttcctttaattgtaatttccagaatgggaatcaagaacatcag



agatgttccattttcagagcaagaaaacgggcctctttagatataaataaagagaagccaggagcctctcagaatgaggggaaaacaagtgata



agaaagttgttcagactttttcacagaaaacaaaaaaggcacctttgaatttcaattcagaaaagatgagcagaagttttcgatcttggaaacgtag



aaagcatctaaagcgatctagggacagcagccccctgaaagactctggagcgtgtagaatccatttacaaggacagactctgtctaatcctagt



ctttgtgaagacccgtttaccttagatgagaagaaaacggaatttagaaattcagggccatttgctaaaaatgtatctttgagtggtaaggaaaaag



ataataaaacatcattcccattacaaataaagcaaaattgttcatggaacataacactaactaatgataattttgtggagcatattgtcacaggatctc



agagtaaaaatgtgacttgtcaggccactagtgtggttagtgaaaagggcagaggagtagctgttgaggcagaaaaaataaatgaagtgctga



tacaaaatggttcaaaaaaccagaatgtttatatgaaacaccatgacatccatccaattaaccagtacctgcgaaagcaatctcatgaacagaca



agcactattaccaaacagaaaaatataatagagagacaaatgccctgtgaagcagtcagtagttacataaatagagactcaaatgtactatcaat



tgtgaaaggataaagcttaatacagaggaaaataaaccaagtcattttcaggcattaggagatgatataagcagaactgtgatacccagtgaagt



acttccatcagctggagcatttagcaaatcagaaggccagcatgagaattttctaaatatttctagactacaagaaaaaacaggtacttatacaaca



aacaaaactaaaaataatcatgtttctgacttaggtttagtcctctgtgattttgaagatagtttctatctggatactcagtcagagaaaataatacaac



agatggcaactgaaaatgccaaactaggagcaaaggacaccaacctggcagcagggataatgcagaagagcttagtccaacagaactcaat



gaactcttttcagaaggagtgtcacattccattcctgctgaacagcaccctctaggagcgactaagatagatcatttggaccttaagactgtaggt



actatgaaacaaagcagtgattcacatggggttgatatcctgactccagaaagcccgattttccattctccaatactattggaggaaaatggtcatt



tttaaaaaagaatgaagtttctgttactgattcacaattaaatagttttcttcaaggttatcaaacacaagaaactgtgaaaccagttatacttctgattc



ctcaaaagagaactcccactggtgtagaaggagaatgtcttccagttcctgaaacaagtttgaatatgagtgatagtttactatttgatagcttcagt



gatgactatctagtaaaagaacaattacctgatatgcaaatgaaagaaccccttccttcagaagtaacatcaaaccattttagtgattctctgtgtcta



caagaagacctaattaaaaaatcaaatgtaaatgagaatcaagatacccaccagcagttgacttgttccaatgatgaatctattatattttcagaaat



ggattctgttcagatggttgaagctttggacaatgtggatatatttcctgtccaagagaagaatcatactgtagtatctcctagagcattagaactaa



gtgatccagtacttgatgagcaccaccaaggtgatcaagatggaggagatcaagatgaaagggctgaaaaatcaaaattaactgggaccagg



caaaatcattcattcatttggtcaggggcatcatttgatctaagtccaggactgcaaaggattttagataaagtatccagtcctctagaaaatgaaaa



gctaaaatcaatgactataaacttttccagtttgaatagaaaaaatacagagttaaatgaagaacaagaagttatttcaaacttggagacaaaacaa



gtgcagggaatttcattttcttctaataatgaagtaaaaagcaagattgagatgctagaaaacaatgccaatcatgatgaaacctcatccctcttacc



tcgtaaagaaagtaatatagttgatgataatggtctcattcctcctacacccattccaacatctgcttctaagctgacatttccagggattcttgaaac



acctgtaaacccttggaaaactaataatgttttacaacctggtgaaagttatttatttggctcaccttcagatattaaaaaccacgatttaagtccagg



gagtagaaatgggttcaaagacaacagccctattagtgacacaagcttttcacttcagttatcacaggatggattacagttaactccagcctcaag



cagttcagaaagtttgtccataattgatgtagcaagtgaccaaaatcattccaaacattcattaaggagtggcggtgcaaaaagcgattttccatct



cactggcttgtgaaaagattagaagtttgacatcttctaaaactgctactattggcagtaggtttaagcaagctagctcacctcaggaaattcctatt



agagatgatggatttcccattaaaggttgtgatgacaccttggtggttggactggcagtatgctggggtggaagggatgcctattatttttcactgc



agaaggaacaaaagcattctgaaattagtgccagtttggttccaccttctttagatccaagcctgactttgaaagacaggatgtggtaccttcaatc



ttgcttgcgaaaggaatctgataaagaatgttctgttgtcatctatgacttcatccagagctataaaattcttcttctttcttgtggcatctccttggagc



aaagttatgaagatcctaaggtggcatgctggttactagatccagattctcaggagccgactcttcatagcatagttaccagttttcttcctcatgag



cttccactcctagaagggatggagaccagccaagggattcaaagcctggggctaaatgctggcagtgagcattctgggcgatacagagcatct



gtggagtccattctcatcttcaactctatgaatcagctcaactctttgttgcagaaggaaaaccttcaagatgttttccgtaaggtggaaatgccctct



cagtactgcttggccttgctagaactaaatggaattggctttagtactgcagaatgtgaaagtcagaaacatataatgcaagccaagctggatgc



aattgagacccaggcctatcaactagctggccacagtttttctttcaccagttcagatgacatcgctgaggttttatttttggaattgaagttgccccc



aaatagagagatgaaaaaccaaggcagcaagaaaactctgggttctaccagaagagggattgacaatggacgcaagctaaggctgggaag



acagttcagcactagtaaggacgttttaaataaattaaaggcattacatcctttaccaggcttgatattagaatggagaagaatcactaatgctatta



ccaaagtggtctttccccttcagcgggaaaagtgtcttaatccttttcttggaatggaaagaatctatcctgtatcacagtcgcacactgctacagg



acgaataacctttacagaaccaaatattcagaatgtgccaagagattttgaaatcaaaatgccaacactagtaggagaaagcccaccttctcaag



ctgtaggcaaaggcctacttcccatgggcagaggaaaatataagaagggtttcagcgtgaatcctagatgccaggcacagatggaggagaga



gctgcagacagaggaatgccattttcaattagcatgcgacatgcctttgtgcctttcccaggtggttcaatactggctgctgactactctcagcttg



aactgaggatcttggctcatttatcccatgatcgtcgtctcattcaagtgttaaacactggagctgatgttttcaggagcattgcagcagagtggaa



gatgattgagccagagtctgttggggatgatctgaggcagcaggcaaaacagatttgctatgggatcatttatggaatgggagctaaatctttgg



gagagcagatgggcattaaagaaaatgatgctgcatgctatattgactccttcaaatccagatacacagggattaatcaattcatgacagagaca



gtgaagaattgtaaaagagacggatttgttcagaccattttgggaaggcgtagatatttgccaggaatcaaagacaacaacccttatcgtaaagc



tcacgctgagcgtcaagctatcaacacaatagtccaaggatcagcagctgatattgtcaaaatagccacagttaacattcagaagcaattagaga



ccttccactcaaccttcaaatcccatggtcatcgagagggtatgctccaaagtgaccgaacaggattgtcacgaaagagaaaactgcaaggga



tgttctgcccaatcagaggaggcttcttcatccttcaactccatgatgaactcctatatgaagtggcagaagaagatgttgttcaggtagctcagatt



gtcaagaatgaaatggaaagtgctgtaaaactgtctgtgaaattgaaagtgaaagtgaaaataggcgccagctggggagagctaaaggacttt



gatgtgcccgggatggactacaaagacgatgacgacaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


21
ggtcggtatccacggagtcccagcagccgctagcaaacggaaggcgccgcaggagactctcaacgggggaatcaccgacatgctcacag


POLB
aactcgcaaactttgagaagaacgtgagccaagctatccacaagtacaatgcttacagaaaagcagcatctgttatagcaaaatacccacacaa



Homo sapiens

aataaagagtggagctgaagctaagaaattgcctggagtaggaacaaaaattgctgaaaagattgatgagtttttagcaactggaaaattacgta



aactggaaaagattcggcaggatgatacgagttcatccatcaatttcctgactcgagttagtggcattggtccatctgctgcaaggaagtttgtag



atgaaggaattaaaacactagaagatctcagaaaaaatgaagataaattgaaccatcatcagcgaattgggctgaaatattttggggactttgaa



aaaagaattcctcgtgaagagatgtacaaatgcaagatattgtactaaatgaagttaaaaaagtggattctgaatacattgctacagtctgtggca



gtttcagaagaggtgcagagtccagtggtgacatggatgttctcctgacccatcccagcttcacttcagaatcaaccaaacagccaaaactgtta



catcaggttgtggagcagttacaaaaggttcattttatcacagataccctgtcaaagggtgagacaaagttcatgggtgtttgccagcttcccagt



aaaaatgatgaaaaagaatatccacacagaagaattgatatcaggttgatacccaaagatcagtattactgtggtgttctctatttcactgggagtg



atattttcaataagaatatgagggctcatgccctagaaaagggtttcacaatcaatgagtacaccatccgtcccttgggagtcactggagttgcag



gagaacccctgccagtggatagtgaaaaagacatctttgattacatccagtggaaataccgggaacccaaggaccggagcgaatga





SEQ ID NO
atggctactggacaggatcgagtggttgctctcgtggacatggactgtttattgttcaagtggagcagcggcaaaatcctcatttgaggaataaa


22
ccttgtgcagttgtacagtacaaatcatggaagggtggtggaataattgcagtgagttatgaagctcgtgcatttggagtcactagaagtatgtgg


POLH
gcagatgatgctaagaagttatgtccagatcttctactggcacaagttcgtgagtcccgtgggaaagctaacctcaccaagtaccgggaagcca



Homo sapiens

gtgttgaagtgatggagataatgtctcgttttgctgtgattgaacgtgccagcattgatgaggcttacgtagatctgaccagtgctgtacaagaga



gactacaaaagctacaaggtcagcctatctcggcagacttgttgccaagcacttacattgaagggttgccccaaggccctacaacggcagaag



agactgttcagaaagaggggatgcgaaaacaaggcttatttcaatggctcgattctcttcagattgataacctcacctctccagacctgcagctca



ccgtgggagcagtgattgtggaggaaatgagagcagccatagagagggagactggttttcagtgttcagctggaatttcacacaataaggcct



ggcaaaactggcctgtggactaaacaagcccaaccgccaaaccctggtttcacatgggtcagtcccacagctcttcagccaaatgcccattcg



caaaatccgtagtcttggaggaaagctaggggcctctgtcattgagatcctagggatagaatacatgggtgaactgacccagttcactgaatcc



cagctccagagtcattttggggagaagaatgggtcttggctatatgccatgtgccgagggattgaacatgatccagttaaacccaggcaactac



ccaaaaccattggctgtagtaagaacttcccaggaaaaacagctcttgctactcgggaacaggtacaatggtggctgttgcaattagcccagga



actagaggagagactgactaaagaccgaaatgataatgacagggtagccacccagctggttgtgagcattcgtgtacaaggagacaaacgcc



tcagcagcctgcgccgctgctgtgccdtacccgctatgatgctcacaagatgagccatgatgcatttactgtcatcaagaactgtaatacttctg



gaatccagacagaatggtctcctcctctcacaatgcttttcctctgtgctacaaaattttctgcctctgccccttcatcttctacagacatcaccagctt



cttgagcagtgacccaagttctctgccaaaggtgccagttaccagctcagaagctaagacccagggaagtggcccagcggtgacagccacta



agaaagcaaccacgtctctggaatcattcttccaaaaagctgcagaaaggcagaaagttaaagaagcttcgctttcatctcttactgctcccactc



aggctcccatgagcaattcaccatccaagccctcattaccattcaaaccagtcaaagtacaggaactgagcccttetttaagcagaaaagtctgc



ttctaaagcagaaacagcttaataattcttcagtttcttccccccaacaaaacccatggtccaactgtaaagcattaccaaactctttaccaacagag



tatccagggtgtgtccctgtttgtgaaggggtgtcgaagctagaagaatcctctaaagcaactcctgcagagatggatttggcccacaacagcc



aaagcatgcacgcctcttcagcttccaaatctgtgctggaggtgactcagaaagcaaccccaaatccaagtcttctagctgctgaggaccaagt



gccctgtgagaagtgtggctccctggtaccggtatgggatatgccagaacacatggactatcattttgcattggagttgcagaaatcdttttgca



gccccactcttcaaacccccaggttgtttctgccgtatctcatcaaggcaaaagaaatcccaagagccctttggcctgcactaataaacgcccca



ggcctgagggcatgcaaacattggaatcattttttaagccattaacacattag





SEQ ID NO
atggctagccgcctgctctggaggaaggtggccggcgccaccgtcgggccagggccggttccagctccggggcgctgggtctccagctcc


23
gtccccgcgtccgaccccagcgacgggcagcggcggcggcagcagcagcagcagcagcagcagcagcagcaacagcagcctcagcag


POLG
ccgcaagtgctatcctcggagggcgggcagctgcggcacaacccattggacatccagatgctctcgagagggctgcacgagcaaatcttcg



Homo sapiens

ggcaaggaggggagatgcctggcgaggccgcggtgcgccgcagcgtcgagcacctgcagaagcacgggctctgggggcagccagccg



tgcccttgcccgacgtggagctgcgcctgccgcccctctacggggacaacctggaccagcacttccgcctcctggcccagaagcagagcct



gccctacctggaggcggccaacttgctgttgcaggcccagctgcccccgaagcccccggcttgggcctgggcggagggctggacccggta



cggccccgagggggaggccgtacccgtggccatccccgaggagcgggccctggtgttcgacgtggaggtctgcttggcagagggaacttg



ccccacattggcggtggccatatccccctcggcctggtattcctggtgcagccagcggctggtggaagagcgttactcttggaccagccagct



gtcgccggctgacctcatccccctggaggtccctactggtgccagcagccccacccagagagactggcaggagcagttagtggtggggcac



aatgtttcctttgaccgagctcatatcagggagcagtacctgatccagggttcccgcatgcgtttcctggacaccatgagcatgcacatggccat



ctcagggctaagcagcttccagcgcagtctgtggatagcagccaagcagggcaaacacaaggtccagccccccacaaagcaaggccagaa



gtcccagaggaaagccagaagaggcccagcgatctcatcctgggactggctggacatcagcagtgtcaacagtctggcagaggtgcacag



actttatgtaggggggcctcccttagagaaggagcctcgagaactgtttgtgaagggcaccatgaaggacattcgtgagaacttccaggacctg



atgcagtactgtgcccaggacgtgtgggccacccatgaggttttccagcagcagctaccgctettcttggagaggtgtccccacccagtgactc



tggccggcatgctggagatgggtgtctcctacctgcctgtcaaccagaactgggagcgttacctggcagaggcacagggcacttatgaggag



ctccagcgggagatgaagaagtcgttgatggatctggccaatgatgcctgccagctgctctcaggagagaggtacaaagaagacccctggct



ctgggacctggagtgggacctgcaagaatttaagcagaagaaagctaagaaggtgaagaaggaaccagccacagccagcaagttgcccat



cgagggggctggggcccctggtgatcccatggatcaggaagacctcggcccctgcagtgaggaggaggagtttcaacaagatgtcatggcc



cgcgcctgcttgcagaagctgaaggggaccacagagctcctgcccaagcggccccagcaccttcctggacaccctggatggtaccggaag



ctctgcccccggctagacgaccctgcatggaccccgggccccagcctcctcagcctgcagatgcgggtcacacctaaactcatggcacttac



ctgggatggcttccctctgcactactcagagcgtcatggctggggctacttggtgcctgggcggcgggacaacctggccaagctgccgacag



gtaccaccctggagtcagctggggtggctgcccctacagagccatcgagtccctgtacaggaagcactgtctcgaacaggggaagcagca



gctgatgccccaggaggccggcctggcggaggagttcctgctcactgacaatagtgccatatggcaaacggtagaagaactggattacttag



aagtggaggctgaggccaagatggagaacttgcgagctgcagtgccaggtcaacccctagctctgactgcccgtggtggccccaaggacac



ccagcccagctatcaccatggcaatggaccttacaacgacgtggacatccctggctgctggtttttcaagctgcctcacaaggatggtaatagct



gtaatgtgggaagcccctttgccaaggacttcctgcccaagatggaggatggcaccctgcaggctggcccaggaggtgccagtgggccccg



tgctctggaaatcaacaaaatgatttctttctggaggaacgcccataaacgtatcagctcccagatggtggtgtggctgcccaggtcagctctgc



cccgtgctgtgatcaggcaccccgactatgatgaggaaggcctctatggggccatcctgccccaagtggtgactgccggcaccatcactcgc



cgggctgtggagcccacatggctcaccgccagcaatgcccggcctgaccgagtaggcagtgagttgaaagccatggtgcaggccccacct



ggctacacccttgtgggtgctgatgtggactcccaagagctgtggattgcagctgtgcttggagacgcccactttgccggcatgcatggctgca



cagcctttgggtggatgacactgcagggcaggaagagcaggggcactgatctacacagtaagacagccactactgtgggcatcagccgtga



gcatgccaaaatcttcaactacggccgcatctatggtgctgggcagccdttgctgagcgcttactaatgcagtttaaccaccggctcacacagc



aggaggcagctgagaaggcccagcagatgtacgctgccaccaagggcctccgctggtatcggctgtcggatgagggcgagtggctggtga



gggagttgaacctcccagtggacaggactgagggtggctggatttccctgcaggatctgcgcaaggccagagagaaactgcaaggaagtc



acagtggaagaagtgggaggtggttgctgaacgggcatggaaggggggcacagagtcagaaatgttcaataagcttgagagcattgctacgt



ctgacataccacgtaccccggtgctgggctgctgcatcagccgagccctggagccctcggctgtccaggaagagtttatgaccagccgtgtga



attgggtggtacagagctctgctgttgactacttacacctcatgcttgtggccatgaagtggctgtttgaagagtttgccatagatgggcgcttctg



catcagcatccatgacgaggttcgctacctggtgcgggaggaggaccgctaccgcgctgccctggccttgcagatcaccaacctcttgacca



ggtgcatgtttgcctacaagctgggtctgaatgacttgccccagtcagtcgcctttttcagtgcagtcgatattgaccggtgcctcaggaaggaag



tgaccatggattgtaaaaccccttccaacccaactgggatggaaaggagatacgggattccccagggtgaagcgctggatatttaccagataat



tgaactcaccaaaggctccttggaaaaacgaagccagcctggaccatag





SEQ ID NO
atggaaaattatgaggcattggtaggctttgatctctgtaatacaccgctctccagtgttgctcagaagattatgtctgctatgcattcaggtgattta


24
gtggattctaagacttggggaaagagtacagagactatggaagtgataaacaagtccagtgttaagtattcagtacaacttgaagacaggaaga


POLN
ctcaatcaccagaaaaaaaggatcttaaatctttaagaagtcagacatcaagaggttctgccaagctgtctcctcagtccttcagtgtcaggctca



Homo sapiens

cagatcagctgctgctgaccaaaaacagaagagcatcagctcattgactctttcaagttgtttaattccacagtataatcaagaggcttcagttcta



cagaaaaaggggcataaaagaaagcatttcctaatggagaatataaataatgaaaataaaggaagcattaatcttaaaagaaaacatattacata



taataatttgtcagagaaaacaagtaaacaaatggcattggaagaagatactgatgacgccgaaggctacctaaattctgggaactcaggagca



ttgaaaaaacatttttgtgatattaggcatttggatgattgggcaaaaagccagctgattgaaatgctcaaacaggcagcagccctggtgataact



gtgatgtatactgatggttccacccagctaggagctgaccagacccccgtttcttctgttagaggaattgtggtgttagtaaaacgccaagcaga



gggtggccatggctgtccagatgccccggcctgtggtcctgttctggagggctttgtgtcagatgatccatgcatctacattcaaatagagcactc



tgctatctgggaccaagaacaggaggcacatcaacaatttgcccggaacgtgctatttcaaacaatgaaatgtaaatgtcctgttatttgttttaatg



ctaaggattttgtgagaatagtgctgcagttttttggcaatgatggcagttggaagcatgttgctgattttatagggctagatcccagaattgctgcat



ggcttatagatcctagtgatgccacaccctcttttgaagatttagtagaaaaatactgtgaaaaatccattacagttaaagtgaacagcacatatgg



aaattcctcaagaaatattgtgaatcagaatgtacgtgagaacctgaagacactctacagacttacaatggacctttgctctaaactgaaggattat



ggtttatggcaactatttcgtactttggagcttcctctgataccaattttggcagtgatggaaagccatgccattcaggtgaacaaagaggagatgg



agaagacgtcagcacttcttggggctcgtctcaaggaattggagcaagaagctcattttgttgcaggagaacggtttcttataacgagcaataac



cagcttcgagagatcctctttggcaagttaaagctgcacctgctgagtcaaaggaacagtctccccagaacggggttgcagaaatacccgtcta



catcagaagcagtgttaaatgctctgcgagaccttcatccattacccaagataattttggaatacaggcaggttcacaagatcaagtcaacctttgt



agatggattactagcttgcatgaaaaagggctccatttcctctacatggaatcagactggaactgtgactggaagactttcagccaagcatcctaa



tatccaaggtatctccaagcacccaattcagattactacacctaagaattttaaaggtaaagaagacaagattctcacgatctccccgagggccat



gtttgtttcatccaaaggccacacctttctagcagcagacttttcacagattgaattgcgcattcttacacatttatctggagatccggaacttctgaa



gttattccaggaatctgaaagagatgatgtattttctactctgacttcacagtggaaggatgtgcccgtggaacaggtgacacacgcagacagag



agcaaaccaagaaggtggtgtacgcggtggctatggagcagggaaggagcggctggctgcttgccttggagttcctattcaggaagctgcc



cagtttttggagagttttttgcagaagtacaagaaaatcaaggacttcgcccgagcagctattgcccagtgtcaccagacaggctgtgtggtgtc



catcatgggcagaaggagacccctgccaaggattcacgctcatgaccagcaactccgggcacaagcagagcgacaggcagtgaacttcgt



ggtgcaaggctccgctgctgacctctgcaagctggccatgatccatgtcttcactgcagtggctgcttcccacaccttgacggccaggctggtg



gcccagatccatgatgagctgctgtttgaagtggaagatccgcagatcccggagtgtgcagctctcgtcaggaggaccatggagtccttggaa



caggtgcaggcattggagctgcagcttcaggtacccctcaaggtgagcctgagtgccggccgctcatggggacacctggtgccactgcagg



aggcctggggccctccgccaggcccatgtcgcactgagtctcccagcaacagcctggctgcccctgggtcccctgccagcacccagccccc



acccctgcatttttcgccttcattttgtctgtag





SEQ ID NO
atggcttccccttgtcctgaagaagcagctatgagaagagaggtggtgaaacggatcgaaactgtggtgaaagacctttggccgacggctgat


25
gtacagatatttggcagctttagtacaggtctttatcttccaactagcgacatagacctggtggtcttcgggaaatgggagcgtcctcctttacagct


TENT4A
gctggagcaagccctgcggaagcacaacgtggctgagccgtgttccatcaaagtccttgacaaggctacggtaccaataataaagctcacag



Homo sapiens

atcaggagactgaagtgaaagttgacatcagctttaacatggagacgggcgtccgggcagcggagttcatcaagaattacatgaagaaatattc



attgctgccttacttgattttagtattgaaacagttccttctgcagagggacctgaatgaagtttttacaggtggaattagctcatacagcctaatttta



atggccattagctttctacagttgcatccaagaattgatgcccggagagctgatgaaaaccttggaatgcttcttgtagaattttttgaactctatggg



agaaattttaattacttgaaaaccggtattagaatcaaagaaggaggtgcctatatcgccaaagaggagatcatgaaagccatgaccagcgggt



acagaccgtcgatgctgtgcattgaggaccccctgctgccagggaatgacgttggccggagctcctatggcgccatgcaggtgaagcaggtc



ttcgattatgcctacatagtgctcagccatgctgtgtcaccgctggccaggcctatccaaacagagacgccgaaagtactttaggaagaatcat



caaagtaactcaggaggtgattgactaccggaggtggatcaaagagaagtggggcagcaaagcccacccgtcgccaggcatggacagcag



gatcaagatcaaagagcgaatagccacatgcaatggggagcagacgcagaaccgagagcccgagtctccctatggccagcgcttgactttgt



cgctgtccagcccccagctcctgtcttcaggctcctcggcctcttctgtgtcttcactttctgggagtgacgttgattcagacacaccgccctgcac



aacgcccagtgtttaccagttcagtctgcaagcgccagctcctctcatggccggcttacccaccgccttgccaatgcccagtggcaaacctcag



cccaccacttccagaacactgatcatgacaaccaacaatcagaccaggtttactatacctccaccgaccctaggggttgctcctgttccttgcag



acaagctggtgtagaaggaactgcgtctttgaaagccgtccaccacatgtcttccccggccattccctcagcgtcccccaacccgctctcgagc



cctcatctgtatcataagcacaacggcatgaaactgtccatgaagggctctcacggccacacccaaggcggcggctacagctctgtgggtagc



ggaggtgtgcggccccctgtgggcaacaggggacaccaccagtataaccgcaccggctggaggaggaaaaaacacacacacacacggg



acagtctgcccgtgagcctcagcagataa





SEQ ID NO
atggctgcctcacaaacttcacaaactgttgcatctcacgttccttttgcagatttgtgttcaactttagaacgaatacagaaaagtaaaggacgtgc


26
agaaaaaatcagacacttcagggaatttttagattcttggagaaaatttcatgatgctcttcataagaaccacaaagatgtcacagactctttttatcc


DNA Ligase
agcaatgagactaattcttcctcagctagaaagagagagaatggcctatggaattaaagaaactatgcttgctaagctttatattgagttgcttaattt


4
acctagagatggaaaagatgccctcaaacttttaaactacagaacacccactggaactcatggagatgctggagactttgcaatgattgcatattt



Homo sapiens

tgtgttgaagccaagatgtttacagaaaggaagtttaaccatacagcaagtaaacgaccttttagactcaattgccagcaataattctgctaaaaga



aaagacctaataaaaaagagccttcttcaacttataactcagagttcagcacttgagcaaaagtggcttatacggatgatcataaaggatttaaag



cttggtgttagtcagcaaactatcttttctgtttttcataatgatgctgctgagttgcataatgtcactacagatctggaaaaagtctgtaggcaactgc



atgatccttctgtaggactcagtgatatttctatcactttattttctgcatttaaaccaatgctagctgctattgcagatattgagcacattgagaaggat



atgaaacatcagagtttctacatagaaaccaagctagatggtgaacgtatgcaaatgcacaaagatggagatgtatataaatacttctctcgaaat



ggatataactacactgatcagtttggtgcttctcctactgaaggttctcttaccccattcattcataatgcattcaaagcagatatacaaatctgtattct



tgatggtgagatgatggcctataatcctaatacacaaactttcatgcaaaagggaactaagtttgatattaaaagaatggtagaggattctgatctg



caaacttgttattgtgtttttgatgtattgatggttaataataaaaagctagggcatgagactctgagaaagaggtatgagattcttagtagtatttttac



accaattccaggtagaatagaaatagtgcagaaaacacaagctcatactaagaatgaagtaattgatgcattgaatgaagcaatagataaaaga



gaagagggaattatggtaaaacaacctctatccatctacaagccagacaaaagaggtgaagggtggttaaaaattaaaccagagtatgtcagtg



gactaatggatgaattggacattttaattgttggaggatattggggtaaaggatcacggggtggaatgatgtctcattttctgtgtgcagtagcaga



gaagccccctcctggtgagaagccatctgtgtttcatactctctctcgtgttgggtctggctgcaccatgaaagaactgtatgatctgggtttgaaat



tggccaagtattggaagccttttcatagaaaagctccaccaagcagcattttatgtggaacagagaagccagaagtatacattgaaccttgtaatt



ctgtcattgttcagattaaagcagcagagatcgtacccagtgatatgtataaaactggctgcaccttgcgttttccacgaattgaaaagataagag



atgacaaggagtggcatgagtgcatgaccctggacgacctagaacaacttagggggaaggcatctggtaagctcgcatctaaacacctttatat



aggtggtgatgatgaaccacaagaaaaaaagcggaaagctgccccaaagatgaagaaagttattggaattattgagcacttaaaagcacctaa



ccttactaacgttaacaaaatttctaatatatttgaagatgtagagttttgtgttatgagtggaacagatagccagccaaagcctgacctggagaac



agaattgcagaatttggtggttatatagtacaaaatccaggcccagacacgtactgtgtaattgcagggtctgagaacatcagagtgaaaaacat



aattttgtcaaataaacatgatgttgtcaagcctgcatggcttttagaatgttttaagaccaaaagctttgtaccatggcagcctcgctttatgattcat



atgtgcccatcaaccaaagaacattttgcccgtgaatatgattgctatggtgatagttatttcattgatacagacttgaaccaactgaaggaagtatt



ctcaggaattaaaaattctaacgagcagactcctgaagaaatggcttctctgattgctgatttagaatatcggtattcctgggattgctctcctdcag



tatgtttcgacgccacaccgtttatttggactcgtatgctgttattaatgacctgagtaccaaaaatgaggggacaaggttagctattaaagccttgg



agcttcggtttcatggagcaaaagtagtttcttgtttagctgagggagtgtdcatgtaataattggggaagatcatagtcgtgttgcagattttaaag



cttttagaagaacttttaagagaaagtttaaaatcctaaaagaaagttgggtaactgattcaatagacaagtgtgaattacaagaagaaaaccagta



tttgatttaa





SEQ ID NO
atgggctccgccgcctgcccccggggagccttgccggagctcgcgccctgctgccagcctcgcgagcagtcgcagccccacacgcgatgg


27
gacgcgggctgtgggattcagcaccccgggggcgaggaattcaggaccctcggcggggcaagggcctatagggttccgaactcgcagga


XRN
gggtcgctcctcccctactcgctttttcccggcaccggaaggccccgcccactgctttgtttcctctccagaccgcgcattttgggtctcggaaga



Homo sapiens

ggttcagaggctgttgttgagcaatgcatgccagccaaaagaatgcaatggtgtaaagattccagttgatgccagtaaacctaatccaaatgatg



tggagtttgataatctgtatttggatatgaatggaatcatccatccctgtactcatcctgaagacaaaccagcaccaaaaaatgaagatgaaatgat



ggttgcaatttttgagtacattgacagacttttcagtattgtaagaccaagaagacttctctacatggcaatagatggagtggcaccacgtgctaaa



atgaaccagcagcgttcaaggaggttcagggcatcaaaagaaggaatggaagcagcagtcgagaagcagcgagtcagggaagaaatattg



gcaaaaggtggctttcttcctccagaagaaataaaagaaagatttgacagcaactgtattacaccaggaactgaattcatggacaatcttgctaaa



tgccttcgctattacatagctgatcgtttaaataatgaccctgggtggaaaaatttgacagttattttatctgatgctagtgctcctggtgaaggagaa



cataaaatcatggattacattagaaggcaaagagcccagcctaaccatgacccaaatactcatcattgtttatgtggagcagatgctgatctcatta



tgcttggccttgccacacatgaaccgaactttaccattattagagaagaattcaaaccaaacaagcccaaaccatgtggtctttgtaatcagtttgg



acatgaggtcaaagattgtgaaggtttgccaagagaaaagaagggaaagcatgatgaacttgccgatagtcttccttgtgcagaaggagagttt



atcttccttcggcttaatgttcttcgtgagtatttggaaagagaactcacaatggccagcctaccattcacatttgatgttgagaggagcattgatga



ctgggttttcatgtgcttctttgtgggaaatgacttcctccctcatttgccatcgttagagattagggaaaatgcaattgaccgtttggttaacatatac



aaaaatgtggtacacaaaactgggggttaccttacagaaagtggttatgtcaatctgcaaagagtacagatgatcatgttagcagttggtgaagtt



gaggatagcatttttaaaaagagaaaggatgatgaggacagttttagaagacgacagaaagaaaaaagaaagagaatgaagagagatcaac



cagctttcactcctagtggaatattaactcctcatgccttgggttcaagaaattcaccaggttctcaagtagccagtaatccgagacaagcagccta



tgaaatgaggatgcagaataactctagtccttcgatatctcctaatacgagtttcacatctgatggctccccgtctccattaggaggaattaagcga



aaagcagaagacagtgacagtgaacctgagccagaggataatgtcaggttatgggaagctggctggaagcagcggtactacaagaacaaat



ttgatgtggatgcagctgatgagaaattccgtcggaaagttgtgcagtcgtacgttgaaggactttgctgggttcttagatattattaccagggctgt



gcttcctggaagtggtattatccatttcattatgcaccatttgcttcagactttgaaggcattgcagacatgccatctgattttgagaagggtacgaaa



ccgtttaaaccactagaacaacttatgggggtatttccagctgcaagtggtaattttctacctccatcatggcggaagctcatgagtgatcctgattc



tagtataattgacttctatcctgaagattttgctattgatttgaatgggaagaaatatgcatggcaaggtgttgctctcttgccattcgtggatgagcg



aaggctacgagctgccctagaagaggtatacccagacctcactccagaagagaccagaagaaacagccttggaggtgatgtcttatttgtggg



gaaacatcacccactccatgacttcattttagagctgtaccagacaggttccacagagccagtggaggtaccccctgaactatgtcatgggattc



aaggaaagttttctttggatgaagaagccattcttccagatcaaatagtatgttctcctgttcctatgttaagggatctgacacagaacactgtagtca



gtattaattttaaagacccacagtttgctgaagattacatttttaaagctgtaatgcttccaggagcaagaaagccagcagcagtactgaaacctag



tgactgggaaaaatccagcaatggacggcagtggaagcctcagcttggctttaaccgtgaccggaggcctgtgcacctggatcaggcagcct



tcaggactttgggccatgtgatgccaagaggctcaggaactggcatttacagcaatgctgcaccaccacctgtgacttaccagggaaacttata



caggccgcttttgagaggacaagcccagattccaaaacttatgtcaaatatgaggccccaggattcctggcgaggtcctcctccccttttccagc



agcaaaggtttgacagaggcgttggggctgaacctctgctcccatggaaccggatgctgcaaacccagaatgcagccttccagccaaaccag



taccagatgctagctgggcctggtgggtatccacccagacgagatgatcgtggagggagacagggatatcccagagaaggaaggaaatacc



ctttgccaccaccctcaggaagatacaattggaattaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


28
ggtcggtatccacggagtcccagcagcctcattgaagggaaaattttttgcatttctcccgaaccctaacacctcatccaataagttttttaagtcaa


3xFlag_NLS_
ttcttgagaagaaaggagctacaattgtatcatctattcaaaattgcctccagagttctaggaaagaggtcattatccttatagaggacagtttcgtc


PolIV
gacagtgacatgcacctgacacagaaggacatttttcaacgcgaggctggcttgaacgacgtagacgagtttttgggtaaaattgaacaatccg



Escherichia

gcatccagtgcgttaagactagctgcattaccaagtgggttcaaaacgacaaattcgcttttcaaaaggacgatttgattaagttccaaccgagtat



coli

catagtcattagtgacaatgccgatgatggacagagtagcactgacaaagaaagcgaaatctcaactgacgtagaatcagagcgaaacgatg



actcaaacaacaaagacatgattcaggcctccaaaccgctcaaacggttgcttcaggaggataaaggtcgcgcttcccttgttaccgataaaac



caagtataaaaataatgaacttataataggcgcgcttaaacgacttaccaagaagtacgagattgagggtgaaaaattccgagctcggtcctacc



ggctcgctaaacaatctatggaaaattgtgatttcaatgttagaagcggagaggaagcacatacaaagttgagaaacatcggtcctagtattgct



aaaaaaattcaggtcattcttgatacgggagttctcccgggtctcaacgattccgttggccttgaagacaagctgaaatattttaagaactgctatg



gaatcgggtcagagatagcaaaacggtggaatctccttaactttgagtcattttgcgtggctgctaagaaagaccccgaggaatttgtgtccgatt



ggacgatattgttcgggtggagttattatgatgattggctttgcaaaatgtccaggaatgaatgcttcgcccatcttaagaaggtccaaaaggcttt



gcgcggaatcgaccccgaatgtcaggtcgagcttcaagggtcatacaatcggggttactcaaaatgcggggatatagatctcctcttttttaagc



cattctgcaacgataccactgaactcgctaagatcatggagacactctgcataaagctttataaagatgggtatatacattgcttcttgcaattgacg



cccaacttggagaagctttttcttaaaagaattgttgaacggttccggacagccaagattgttggctatggagaacgaaaacgctggtattcatca



gaaattatcaagaaattctttatgggagtgaagttgtccccccgcgagctcgaagaattgaaggagatgaaaaacgacgagggaaccctgttga



tcgaggaagaagaagaggaaacgaagctgaagcccattgaccagtacatgagcctgaacgctaaagacggaaactactgccgaaggttgg



attttttctgttgtaagtgggacgagctgggggcggggaggatacactatacgggtagcaaagagtataataggtggataaggatactcgccgc



gcaaaaagggttcaaactgacccagcatggacttttccggaacaacatactcctggagtctttcaacgaaaggcgaatcttcgaactcctgaac



cttaagtatgccgagccggagcaccgcaatatagagtgggaaaaaaagacgggatga





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


29
ggtcggtatccacggagtcccagcagccctgcctagtcagagccccgcaatatttacagtgagtcgccttaaccaaaccgttcgactgttgctc


3xFlag_NLS_
gagcacgaaatggggcaagtctggatctccggggaaatatcaaattttacgcagccagcctccggtcactggtacttcactcttaaagatgaca


XseA
cggcgcaagtacgctgcgccatgtttcggaacagcaatagacgagtgacgttccggccacaacatggacagcaagtactcgtcagggccaat



Escherichia

atcactctttatgagccgcgcggtgactatcaaataattgtcgaatctatgcaacccgcgggggagggtttgctccagcaaaagtatgagcaact



coli

caaagcgaagctccaggcagaaggcctgttcgaccagcagtataaaaaaccgctcccgtcacccgctcattgtgttggcgtcataacctctaa



gacgggtgctgcgttgcacgacattcttcatgtgcttaagcgccgagacccatctctgcctgttatcatctacccagcggccgttcaaggcgatg



acgctcctgggcagatagtaagagcaatagaactggcgaatcagcggaacgaatgtgatgtgctgatcgttgggcgcggcggagggagctt



ggaagatctttggtccttcaacgatgagcgcgtcgcacgggcaatcttcaccagccggataccggtagtttcagcggtggggcatgagacgga



cgtcacaatcgccgattttgtagccgacctgagagcaccgacgccatcagcggcagcagaagtcgtcagccgcaatcagcaggagctgctc



aggcaggtccagagcacccggcaacgcctcgagatggcgatggattactatcttgccaatcgaacacgacgattcacccagattcaccaccg



gttgcagcagcaacatccccaacttcggctggcccgacagcaaacaatgctggaacgcctccagaaacggatgagttttgctctggaaaatca



gttgaagcgaactggtcaacagcagcaaagactgactcagcgcctcaatcagcaaaatccccaacctaagatccatcgggcacaaacccgca



ttcaacaactggagtatagactggctgagaccttgcgcgcccagctctccgcaactcgcgagaggttcggaaatgccgtaacgcatttggagg



ccgtgagcccactgtcaaccctcgctcggggctactccgtgacgactgccacggacggcaatgtgctcaaaaaggtaaaacaagtcaaagct



ggagaaatgcttactactcggctcgaagacggatggatcgaaagtgaagtcaaaaatatacaacctgtcaagaagagtcggaaaaaggtgcat



tga





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


30
ggtcggtatccacggagtcccagcagccccgaaaaaaaacgaagcccccgcctcctttgagaaagcacttagcgagctggagcagatcgtg


3xFlag_NLS_
acgcgcttggaatcaggggatctccctttggaagaggcattgaatgagtttgagcgaggagttcagctcgctagacaaggccaggccaaactt


XseB
caacaggcggaacagcgagtccagattctccttagtgataatgaggatgcctctctgacaccgttcacgccagacaacgagtga



Escherichia





coli







SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


31
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9-NLS
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


(Addgene
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc


#1000000055)
acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



Streptococcus

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



pyogenes

tgaaccccgacaacagcgacgttgacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccggcttcatcaagagacagctggtggaaacccggcagatcacaaagcacgtggcacagatc



ctggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccga



tttccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgc



cctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgag



caggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatcc



ggaagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctga



gcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataa



gctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaag



tggaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccat



cgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccg



gaagagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagcc



actatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgag



cagatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccat



cagagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccgg



aagaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctc



agctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


32
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9(ΔF916)-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc



Streptococcus

acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



pyogenes

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



tgaaccccgacaacagcgacgttgacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccggcatcaagagacagctggtggaaacccggcagatcacaaagcacgtggcacagatcct



ggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccgattt



ccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgccc



tgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgagca



ggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatccgg



aagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctgagc



atgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataagc



tgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaagtg



gaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccatcg



actttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccgga



agagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagccact



atgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgagca



gatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccatca



gagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccggaa



gaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctcag



ctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


33
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9(G915F)-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc



Streptococcus

acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



pyogenes

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



tgaaccccgacaacagcgacgttgacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggcctttttcatcaagagacagctggtggaaacccggcagatcacaaagcacgtggcacagatcct



ggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccgattt



ccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgccc



tgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgagca



ggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatccgg



aagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctgagc



atgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataagc



tgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaagtg



gaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccatcg



actttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccgga



agagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagccact



atgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgagca



gatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccatca



gagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccggaa



gaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctcag



ctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


34
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9(Q920P)-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc



Streptococcus

acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



pyogenes

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



tgaaccccgacaacagcgacgttgacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccggcttcatcaagagacccctggtggaaacccggcagatcacaaagcacgtggcacagatc



ctggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccga



tttccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgc



cctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgag



caggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatcc



ggaagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctga



gcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataa



gctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaag



tggaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccat



cgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccg



gaagagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagcc



actatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgag



cagatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccat



cagagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccgg



aagaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctc



agctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


35
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9(F916P)-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS:
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc



Streptococcus

acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



pyogenes

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



tgaaccccgacaacagcgacgtggacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccggccccatcaagagacagctggtggaaacccggcagatcacaaagcacgtggcacagat



cctggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccg



atttccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccg



ccctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcga



gcaggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatc



cggaagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctg



agcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgata



agctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaa



gtggaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatccca



tcgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggcc



ggaagagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagc



cactatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcga



gcagatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagccca



tcagagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccg



gaagaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtct



cagctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


36
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9(R918A)-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc



Streptococcus

acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



pyogenes

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



tgaaccccgacaacagcgacgttgacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccggcttcatcgccagacagctggtggaaacccggcagatcacaaagcacgtggcacagatc



ctggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccga



tttccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgc



cctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgag



caggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatcc



ggaagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctga



gcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataa



gctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaag



tggaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccat



cgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccg



gaagagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagcc



actatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgag



cagatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccat



cagagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccgg



aagaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctc



agctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


37
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9(R919P)-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc



Streptococcus

acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt



pyogenes

ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc



tgaaccccgacaacagcgacgttgacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc



ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccggcttcatcaagccccagctggtggaaacccggcagatcacaaagcacgtggcacagatc



ctggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccga



tttccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgc



cctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgag



caggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatcc



ggaagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctga



gcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataa



gctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaag



tggaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccat



cgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccg



gaagagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagcc



actatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgag



cagatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccat



cagagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccgg



aagaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctc



agctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcggaa


38
ggtcggtatccacggagtcccagcagccgacaagaagtacagcatcggcctggacatcggcaccaactctgtgggctgggccgtgatcacc


3xFlag-NLS-
gacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggcacagcatcaagaagaacctgatcggagccctgctg


SpCas9-
ttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatct


NLS(N690C/
gcaagagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaagagtccttcctggtggaagaggataagaagc


T769I/G915M/
acgagcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggt


N980K):
ggacagcaccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccggggccacttcctgatcgagggcgacc


LZ3Cas9Addgene
tgaaccccgacaacagcgacgtggacaagctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagc


#140561
ggcgtggacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctgcccggcgagaagaag



Streptococcus

aatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcag



pyogenes

ctgagcaaggacacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacc



tgtccgacgccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgatcaagagatacgac



gagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagattttcttcgaccagagcaagaa



cggctacgccggctacattgacggcggagccagccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgag



gaactgctcgtgaagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccagatccacctggga



gagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgggaaaagatcgagaagatcctgaccttccgcatc



ccctactacgtgggccctctggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcg



aggaagtggtggacaagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaaggtgctgcc



caagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcccgccttcct



gagcggcgagcagaaaaaggccatcgtggacctgctgttcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaa



gaaaatcgagtgcttcgactccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattatc



aaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgacactgtttgaggacagagagatgatc



gaggaacggctgaaaacctatgcccacctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcaggctg



agccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgcctgcagaaactt



catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagcac



attgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggc



acaagcccgagaacatcgtgatcgaaatggccagagagaaccagatcacccagaagggacagaagaacagccgcgagagaatgaagcg



gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagctgcagaacgagaagctgtacct



gtactacctgcagaatgggcgggatatgtacgtggaccaggaactggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctca



gagctttctgaaggacgactccatcgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga



ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcgacaatctgaccaaggccgag



agaggcggcctgagcgaactggataaggccatgttcatcaagagacagctggtggaaacccggcagatcacaaagcacgtggcacagatc



ctggactcccggatgaacactaagtacgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccga



tttccggaaggatttccagttttacaaagtgcgcgagatcaacaaataccaccacgcccacgacgcctacctgaacgccgtcgtgggaaccgc



cctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgactacaaggtgtacgacgtgcggaagatgatcgccaagagcgag



caggaaatcggcaaggctaccgccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatcc



ggaagcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccaccgtgcggaaagtgctga



gcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaacagcgataa



gctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagccccaccgtggcctattctgtgctggtggtggccaaag



tggaaaagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatcccat



cgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctgcctaagtactccctgttcgagctggaaaacggccg



gaagagaatgctggcctctgccggcgaactgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggccagcc



actatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactacctggacgagatcatcgag



cagatcagcgagttctccaagagagtgatcctggccgacgctaatctggacaaagtgctgtccgcctacaacaagcaccgggataagcccat



cagagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccgg



aagaggtacaccagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctc



agctgggaggcgacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagtaa





SEQ ID NO
atggactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccgaagaaaaagcgcaa


39
ggtcgaagcgtccatgaaaaggaactacattctggggctggacatcgggattacaagcgtggggtatgggattattgactatgaaacaaggga


3xFlag-NLS-
cgtgatcgacgcaggcgtcagactgttcaaggaggccaacgtggaaaacaatgagggacggagaagcaagaggggagccaggcgcctg


SaCas9-P2A-
aaacgacggagaaggcacagaatccagagggtgaagaaactgctgttcgattacaacctgctgaccgaccattctgagctgagtggaattaat


EGFP
ccttatgaagccagggtgaaaggcctgagtcagaagctgtcagaggaagagttttccgcagctctgctgcacctggctaagcgccgaggagt



Staphylococcus

gcataacgtcaatgaggtggaagaggacaccggcaacgagctgtctacaaaggaacagatctcacgcaatagcaaagctctggaagagaa



aureus

gtatgtcgcagagctacagctggaacggctgaagaaagatggcgaggtgagagggtcaattaataggttcaagacaagcgactacgtcaaag



aagccaagcagctgctgaaagtgcagaaggcttaccaccagctggatcagagcttcatcgatacttatatcgacctgctggagactcggagaa



cctactatgagggaccaggagaagggagccccttcggatggaaagacatcaaggaatggtacgagatgctgatgggacattgcacctattttc



cagaagagctgagaagcgtcaagtacgcttataacgcagatctgtacaacgccctgaatgacctgaacaacctggtcatcaccagggatgaaa



acgagaaactggaatactatgagaagttccagatcatcgaaaacgtgtttaagcagaagaaaaagcctacactgaaacagattgctaaggaga



tcctggtcaacgaagaggacatcaagggctaccgggtgacaagcactggaaaaccagagttcaccaatctgaaagtgtatcacgatattaagg



acatcacagcacggaaagaaatcattgagaacgccgaactgctggatcagattgctaagatcctgactatctaccagagttccgaggacatcca



ggaagagctgactaacctgaacagcgagctgacccaggaagagatcgaacagattagtaatctgaaggggtacaccggaacacacaacctg



tccctgaaagctatcaatctgattctggatgagctgtggcatacaaacgacaatcagattgcaatctttaaccggctgaagctggtaccaaaaaa



ggtggacctgagtcagcagaaagagatcccaaccacactggtggacgatttcattctgtcacccgtggtcaagcggagcttcatccagagcat



caaagtgatcaacgccatcatcaagaagtacggcctgcccaatgatatcattatcgagctggctagggagaagaacagcaaggacgcacaga



agatgatcaatgagatgcagaaacgaaaccggcagaccaatgaacgcattgaagagattatccgaactaccgggaaagagaacgcaaagta



cctgattgaaaaaatcaagctgcacgatatgcaggagggaaagtgtctgtattctctggaggccatccccctggaggacctgctgaacaatcca



ttcaactacgaggtcgatcatattatccccagaagcgtgtccttcgacaattcctttaacaacaaggtgctggtcaagcaggaagagaactctaaa



aagggcaataggactcctttccagtacctgtctagttcagattccaagatctcttacgaaacctttaaaaagcacattctgaatctggccaaaggaa



agggccgcatcagcaagaccaaaaaggagtacctgctggaagagcgggacatcaacagattctccgtccagaaggattttattaaccggaat



ctggtggacacaagatacgctactcgcggcctgatgaatctgctgcgatcctatttccgggtgaacaatctggatgtgaaagtcaagtccatcaa



cggcgggttcacatcttttctgaggcgcaaatggaagtttaaaaaggagcgcaacaaagggtacaagcaccatgccgaagatgctctgattatc



gcaaatgccgacttcatctttaaggagtggaaaaagctggacaaagccaagaaagtgatggagaaccagatgttcgaagagaagcaggccg



aatctatgcccgaaatcgagacagaacaggagtacaaggagattttcatcactcctcaccagatcaagcatatcaaggatttcaaggactacaa



gtactctcaccgggtggataaaaagcccaacagagagctgatcaatgacaccctgtatagtacaagaaaagacgataaggggaataccctgat



tgtgaacaatctgaacggactgtacgacaaagataatgacaagctgaaaaagctgatcaacaaaagtcccgagaagctgctgatgtaccacca



tgatcctcagacatatcagaaactgaagctgattatggagcagtacggcgacgagaagaacccactgtataagtactatgaagagactgggaa



ctacctgaccaagtatagcaaaaaggataatggccccgtgatcaagaagatcaagtactatgggaacaagctgaatgcccatctggacatcac



agacgattaccctaacagtcgcaacaaggtggtcaagctgtcactgaagccatacagattcgatgtctatctggacaacggcgtgtataaatttgt



gactgtcaagaatctggatgtcatcaaaaaggagaactactatgaagtgaatagcaagtgctacgaagaggctaaaaagctgaaaaagattag



caaccaggcagagttcatcgcctccttttacaacaacgacctgattaagatcaatggcgaactgtatagggtcatcggggtgaacaatgatctgc



tgaaccgcattgaagtgaatatgattgacatcacttaccgagagtatctggaaaacatgaatgataagcgcccccctcgaattatcaaaacaatc



gcctctaagactcagagtatcaaaaagtactcaaccgacattctgggaaacctgtatgaggtgaagagcaaaaagcaccctcagattatcaaaa



agggcaggtccggcggcggagagggcagaggaagtcttctaacatgcggtgacgtggaggagaatcccggcccaatggtgagcaagggc



gaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgag



ggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgac



ctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagc



gcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaa



gggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaag



cagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacc



cccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgat



cacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaa





SEQ ID NO
atgagcatctaccaggagttcgtcaacaagtattcactgagtaagacactgcggttcgagctgatcccacagggcaagacactggagaacatc


40
aaggcccgaggcctgattctggacgatgagaagcgggcaaaagactataagaaagccaagcagatcattgataaataccaccagttctttatc


FnCas12a-
gaggaaattctgagctccgtgtgcatcagtgaggatctgctgcagaattactcagacgtgtacttcaagctgaagaagagcgacgatgacaacc


NLS-
tgcagaaggacttcaagtccgccaaggacaccatcaagaaacagattagcgagtacatcaaggactccgaaaagtttaaaaatctgttcaacc


3xHA(addgene
agaatctgatcgatgctaagaaaggccaggagtccgacctgatcctgtggctgaaacagtctaaggacaatgggattgaactgttcaaggctaa


#64709)
ctccgatatcactgatattgacgaggcactggaaatcatcaagagcttcaagggatggaccacatactttaaaggcttccacgagaaccgcaag



Francisella

aacgtgtactccagcaacgacattcctacctccatcatctaccgaatcgtcgatgacaatctgccaaagttcctggagaacaaggccaaatatga



novicida

atctctgaaggacaaagctcccgaggcaattaattacgaacagatcaagaaagatctggctgaggaactgacattcgatatcgactataagact



agcgaggtgaaccagagggtcttttccctggacgaggtgtttgaaatcgccaatttcaacaattacctgaaccagtccggcattactaaattcaat



accatcattggcgggaagtttgtgaacggggagaataccaagcgcaagggaattaacgaatacatcaatctgtatagccagcagatcaacgac



aaaactctgaagaaatacaagatgtctgtgctgttcaaacagatcctgagtgataccgagtccaagtcttttgtcattgataaactggaagatgact



cagacgtggtcactaccatgcagagcttttatgagcagatcgccgctttcaagacagtggaggaaaaatctattaaggaaactctgagtctgctg



ttcgatgacctgaaagcccagaagctggacctgagtaagatctacttcaaaaacgataagagtctgacagacctgtcacagcaggtgtttgatg



actattccgtgattgggaccgccgtcctggagtacattacacagcagatcgctccaaagaacctggataatccctctaagaaagagcaggaact



gatcgctaagaaaaccgagaaggcaaaatatctgagtctggaaacaattaagctggcactggaggagttcaacaagcacagggatattgaca



aacagtgccgctttgaggaaatcctggccaacttcgcagccatccccatgatttttgatgagatcgcccagaacaaagacaatctggctcagatc



agtattaagtaccagaaccagggcaagaaagacctgctgcaggcttcagcagaagatgacgtgaaagccatcaaggatctgctggaccaga



ccaacaatctgctgcacaagctgaaaatcttccatattagtcagtcagaggataaggctaatatcctggataaagacgaacacttctacctggtgtt



cgaggaatgttacttcgagctggcaaacattgtccccctgtataacaagattaggaactacatcacacagaagccttactctgacgagaagtttaa



actgaacttcgaaaatagtaccctggccaacgggtgggataagaacaaggagcctgacaacacagctatcctgttcatcaaggatgacaagta



ctatctgggagtgatgaataagaaaaacaataagatcttcgatgacaaagccattaaggagaacaaaggggaaggatacaagaaaatcgtgta



taagctgctgcccggcgcaaataagatgctgcctaaggtgttcttcagcgccaagagtatcaaattctacaacccatccgaggacatcctgcgg



attagaaatcactcaacacatactaagaacgggagcccccagaagggatatgagaaatttgagttcaacatcgaggattgcaggaagtttattg



acttctacaagcagagcatctccaaacaccctgaatggaaggattttggcttccggttttccgacacacagagatataactctatcgacgagttcta



ccgcgaggtggaaaatcaggggtataagctgacttttgagaacatttctgaaagttacatcgacagcgtggtcaatcagggaaagctgtacctgt



tccagatctataacaaagatttttcagcatacagcaagggcagaccaaacctgcatacactgtactggaaggccctgttcgatgagaggaatctg



caggacgtggtctataaactgaacggagaggccgaactgttttaccggaagcagtctattcctaagaaaatcactcacccagctaaggaggcc



atcgctaacaagaacaaggacaatcctaagaaagagagcgtgttcgaatacgatctgattaaggacaagcggttcaccgaagataagttcttttt



ccattgtccaatcaccattaacttcaagtcaagcggcgctaacaagttcaacgacgagatcaatctgctgctgaaggaaaaagcaaacgatgtg



cacatcctgagcattgaccgaggagagcggcatctggcctactataccctggtggatggcaaagggaatatcattaagcaggatacattcaac



atcattggcaatgaccggatgaaaaccaactaccacgataaactggctgcaatcgagaaggatagagactcagctaggaaggactggaagaa



aatcaacaacattaaggagatgaaggaaggctatctgagccaggtggtccatgagattgcaaagctggtcatcgaatacaatgccattgtggtg



ttcgaggatctgaacttcggctttaagagggggcgctttaaggtggaaaaacaggtctatcagaagctggagaaaatgctgatcgaaaagctga



attacctggtgtttaaagataacgagttcgacaagaccggaggcgtcctgagagcctaccagctgacagctccctttgaaactttcaagaaaatg



ggaaaacagacaggcatcatctactatgtgccagccggattcacttccaagatctgccccgtgaccggctttgtcaaccagctgtaccctaaata



tgagtcagtgagcaagtcccaggaatttttcagcaagttcgataagatctgttataatctggacaaggggtacttcgagttttccttcgattacaaga



acttcggcgacaaggccgctaaggggaaatggaccattgcctccttcggatctcgcctgatcaactttcgaaattccgataaaaaccacaattgg



gacactagggaggtgtacccaaccaaggagctggaaaagctgctgaaagactactctatcgagtatggacatggcgaatgcatcaaggcagc



catctgtggcgagagtgataagaaatttttcgccaagctgacctcagtgctgaatacaatcctgcagatgcggaactcaaagaccgggacaga



actggactatctgattagccccgtggctgatgtcaacggaaacttcttcgacagcagacaggcacccaaaaatatgcctcaggatgcagacgc



caacggggcctaccacatcgggctgaagggactgatgctgctgggccggatcaagaacaatcaggaggggaagaagctgaacctggtcatt



aagaacgaggaatacttcgagtttgtccagaatagaaataacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaag



ggatcctacccatacgatgttccagattacgcttatccctacgacgtgcctgattatgcatacccatatgatgtccccgactatgcctaa





SEQ ID NO
atgacacagttcgagggctttaccaacctgtatcaggtgagcaagacactgcggtttgagctgatcccacagggcaagaccctgaagcacatc


41
caggagcagggcttcatcgaggaggacaaggcccgcaatgatcactacaaggagctgaagcccatcatcgatcggatctacaagacctatg


AsCas12a-
ccgaccagtgcctgcagctggtgcagctggattgggagaacctgagcgccgccatcgactcctatagaaaggagaaaaccgaggagacaa


NLS-
ggaacgccctgatcgaggagcaggccacatatcgcaatgccatccacgactacttcatcggccggacagacaacctgaccgatgccatcaat


3xHA(addgene
aagagacacgccgagatctacaagggcctgttcaaggccgagctgtttaatggcaaggtgctgaagcagctgggcaccgtgaccacaaccg


#69982)
agcacgagaacgccctgctgcggagcttcgacaagtttacaacctacttctccggcttttatgagaacaggaagaacgtgttcagcgccgagg



Acidaminococcus

atatcagcacagccatcccacaccgcatcgtgcaggacaacttccccaagtttaaggagaattgtcacatcttcacacgcctgatcaccgccgt


spec
gcccagcctgcgggagcactttgagaacgtgaagaaggccatcggcatcttcgtgagcacctccatcgaggaggtgttttccttccctttttataa



ccagctgctgacacagacccagatcgacctgtataaccagctgctgggaggaatctctcgggaggcaggcaccgagaagatcaagggcctg



aacgaggtgctgaatctggccatccagaagaatgatgagacagcccacatcatcgcctccctgccacacagattcatccccctgtttaagcaga



tcctgtccgataggaacaccctgtctttcatcctggaggagtttaagagcgacgaggaagtgatccagtccttctgcaagtacaagacactgctg



agaaacgagaacgtgctggagacagccgaggccctgtttaacgagctgaacagcatcgacctgacacacatcttcatcagccacaagaagct



ggagacaatcagcagcgccctgtgcgaccactgggatacactgaggaatgccctgtatgagcggagaatctccgagctgacaggcaagatc



accaagtctgccaaggagaaggtgcagcgcagcctgaagcacgaggatatcaacctgcaggagatcatctctgccgcaggcaaggagctg



agcgaggccttcaagcagaaaaccagcgagatcctgtcccacgcacacgccgccctggatcagccactgcctacaaccctgaagaagcag



gaggagaaggagatcctgaagtctcagctggacagcctgctgggcctgtaccacctgctggactggtttgccgtggatgagtccaacgaggt



ggaccccgagttctctgcccggctgaccggcatcaagctggagatggagccttctctgagcttctacaacaaggccagaaattatgccaccaa



gaagccctactccgtggagaagttcaagctgaactttcagatgcctacactggcctctggctgggacgtgaataaggagaagaacaatggcgc



catcctgtttgtgaagaacggcctgtactatctgggcatcatgccaaagcagaagggcaggtataaggccctgagcttcgagcccacagagaa



aaccagcgagggctttgataagatgtactatgactacttccctgatgccgccaagatgatcccaaagtgcagcacccagctgaaggccgtgac



agcccactttcagacccacacaacccccatcctgctgtccaacaatttcatcgagcctctggagatcacaaaggagatctacgacctgaacaat



cctgagaaggagccaaagaagtttcagacagcctacgccaagaaaaccggcgaccagaagggctacagagaggccctgtgcaagtggatc



gacttcacaagggattttctgtccaagtataccaagacaacctctatcgatctgtctagcctgcggccatcctctcagtataaggacctgggcgag



tactatgccgagctgaatcccctgctgtaccacatcagcttccagagaatcgccgagaaggagatcatggatgccgtggagacaggcaagct



gtacctgttccagatctataacaaggactttgccaagggccaccacggcaagcctaatctgcacacactgtattggaccggcctgttttctccag



agaacctggccaagacaagcatcaagctgaatggccaggccgagctgttctaccgccctaagtccaggatgaagaggatggcacaccggct



gggagagaagatgctgaacaagaagctgaaggatcagaaaaccccaatccccgacaccctgtaccaggagctgtacgactatgtgaatcac



agactgtcccacgacctgtctgatgaggccagggccctgctgcccaacgtgatcaccaaggaggtgtctcacgagatcatcaaggataggcg



ctttaccagcgacaagttctttttccacgtgcctatcacactgaactatcaggccgccaattccccatctaagttcaaccagagggtgaatgcctac



ctgaaggagcaccccgagacacctatcatcggcatcgatcggggcgagagaaacctgatctatatcacagtgatcgactccaccggcaagat



cctggagcagcggagcctgaacaccatccagcagtttgattaccagaagaagctggacaacagggagaaggagagggtggcagcaaggc



aggcctggtctgtggtgggcacaatcaaggatctgaagcagggctatctgagccaggtcatccacgagatcgtggacctgatgatccactacc



aggccgtggtggtgctggagaacctgaatttcggctttaagagcaagaggaccggcatcgccgagaaggccgtgtaccagcagttcgagaa



gatgctgatcgataagctgaattgcctggtgctgaaggactatccagcagagaaagtgggaggcgtgctgaacccataccagctgacagacc



agttcacctcctttgccaagatgggcacccagtctggcttcctgttttacgtgcctgccccatatacatctaagatcgatcccctgaccggcttcgt



ggaccccttcgtgtggaaaaccatcaagaatcacgagagccgcaagcacttcctggagggcttcgactttctgcactacgacgtgaaaaccgg



cgacttcatcctgcactttaagatgaacagaaatctgtccttccagaggggcctgcccggctttatgcctgcatgggatatcgtgttcgagaagaa



cgagacacagtttgacgccaagggcacccctttcatcgccggcaagagaatcgtgccagtgatcgagaatcacagattcaccggcagatacc



gggacctgtatcctgccaacgagctgatcgccctgctggaggagaagggcatcgtgttcagggatggctccaacatcctgccaaagctgctg



gagaatgacgattctcacgccatcgacaccatggtggccctgatccgcagcgtgctgcagatgcggaactccaatgccgccacaggcgagg



actatatcaacagccccgtgcgcgatctgaatggcgtgtgcttcgactcccggtttcagaacccagagtggcccatggacgccgatgccaatg



gcgcctaccacatcgccctgaagggccagctgctgctgaatcacctgaaggagagcaaggatctgaagctgcagaacggcatctccaatca



ggactggctggcctacatccaggagctgcgcaacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagggatcc



tacccatacgatgttccagattacgcttatccctacgacgtgcctgattatgcatacccatatgatgtccccgactatgcctaa





SEQ ID NO
atgagcaagctggagaagtttacaaactgctactccctgtctaagaccctgaggttcaaggccatccctgtgggcaagacccaggagaacatc


42
gacaataagcggctgctggtggaggacgagaagagagccgaggattataagggcgtgaagaagctgctggatcgctactatctgtcttttatc


HLbCas12a-
aacgacgtgctgcacagcatcaagctgaagaatctgaacaattacatcagcctgttccggaagaaaaccagaaccgagaaggagaataagg


NLS-
agctggagaacctggagatcaatctgcggaaggagatcgccaaggccttcaagggcaacgagggctacaagtccctgtttaagaaggatatc


3xHA(addgene
atcgagacaatcctgccagagttcctggacgataaggacgagatcgccctggtgaacagcttcaatggctttaccacagccttcaccggcttctt


#69988)
tgataacagagagaatatgttttccgaggaggccaagagcacatccatcgccttcaggtgtatcaacgagaatctgacccgctacatctctaata



Lachnospiraceae

tggacatcttcgagaaggtggacgccatctttgataagcacgaggtgcaggagatcaaggagaagatcctgaacagcgactatgatgtggag



bacterium

gatttctttgagggcgagttctttaactttgtgctgacacaggagggcatcgacgtgtataacgccatcatcggcggcttcgtgaccgagagcgg



cgagaagatcaagggcctgaacgagtacatcaacctgtataatcagaaaaccaagcagaagctgcctaagtttaagccactgtataagcaggt



gctgagcgatcgggagtctctgagcttctacggcgagggctatacatccgatgaggaggtgctggaggtgtttagaaacaccctgaacaagaa



cagcgagatcttcagctccatcaagaagctggagaagctgttcaagaattttgacgagtactctagcgccggcatctttgtgaagaacggcccc



gccatcagcacaatctccaaggatatcttcggcgagtggaacgtgatccgggacaagtggaatgccgagtatgacgatatccacctgaagaa



gaaggccgtggtgaccgagaagtacgaggacgatcggagaaagtccttcaagaagatcggctccttttctctggagcagctgcaggagtacg



ccgacgccgatctgtctgtggtggagaagctgaaggagatcatcatccagaaggtggatgagatctacaaggtgtatggctcctctgagaagc



tgttcgacgccgattttgtgctggagaagagcctgaagaagaacgacgccgtggtggccatcatgaaggacctgctggattctgtgaagagctt



cgagaattacatcaaggccttctttggcgagggcaaggagacaaacagggacgagtccttctatggcgattttgtgctggcctacgacatcctg



ctgaaggtggaccacatctacgatgccatccgcaattatgtgacccagaagccctactctaaggataagttcaagctgtattttcagaaccctcag



ttcatgggcggctgggacaaggataaggagacagactatcgggccaccatcctgagatacggctccaagtactatctggccatcatggataag



aagtacgccaagtgcctgcagaagatcgacaaggacgatgtgaacggcaattacgagaagatcaactataagctgctgcccggccctaataa



gatgctgccaaaggtgttcttttctaagaagtggatggcctactataaccccagcgaggacatccagaagatctacaagaatggcacattcaag



aagggcgatatgtttaacctgaatgactgtcacaagctgatcgacttctttaaggatagcatctcccggtatccaaagtggtccaatgcctacgatt



tcaacttttctgagacagagaagtataaggacatcgccggcttttacagagaggtggaggagcagggctataaggtgagcttcgagtctgcca



gcaagaaggaggtggataagctggtggaggagggcaagctgtatatgttccagatctataacaaggacttttccgataagtctcacggcacac



ccaatctgcacaccatgtacttcaagctgctgtttgacgagaacaatcacggacagatcaggctgagcggaggagcagagctgttcatgaggc



gcgcctccctgaagaaggaggagctggtggtgcacccagccaactcccctatcgccaacaagaatccagataatcccaagaaaaccacaac



cctgtcctacgacgtgtataaggataagaggttttctgaggaccagtacgagctgcacatcccaatcgccatcaataagtgccccaagaacatct



tcaagatcaatacagaggtgcgcgtgctgctgaagcacgacgataacccctatgtgatcggcatcgataggggcgagcgcaatctgctgtata



tcgtggtggtggacggcaagggcaacatcgtggagcagtattccctgaacgagatcatcaacaacttcaacggcatcaggatcaagacagatt



accactctctgctggacaagaaggagaaggagaggttcgaggcccgccagaactggacctccatcgagaatatcaaggagctgaaggccg



gctatatctctcaggtggtgcacaagatctgcgagctggtggagaagtacgatgccgtgatcgccctggaggacctgaactctggctttaagaa



tagccgcgtgaaggtggagaagcaggtgtatcagaagttcgagaagatgctgatcgataagctgaactacatggtggacaagaagtctaatcc



ttgtgcaacaggcggcgccctgaagggctatcagatcaccaataagttcgagagctttaagtccatgtctacccagaacggcttcatcttttacat



ccctgcctggctgacatccaagatcgatccatctaccggctttgtgaacctgctgaaaaccaagtataccagcatcgccgattccaagaagttca



tcagctcctttgacaggatcatgtacgtgcccgaggaggatctgttcgagtttgccctggactataagaacttctctcgcacagacgccgattaca



tcaagaagtggaagctgtactcctacggcaaccggatcagaatcttccggaatcctaagaagaacaacgtgttcgactgggaggaggtgtgcc



tgaccagcgcctataaggagctgttcaacaagtacggcatcaattatcagcagggcgatatcagagccctgctgtgcgagcagtccgacaag



gccttctactctagctttatggccctgatgagcctgatgctgcagatgcggaacagcatcacaggccgcaccgacgtggattttctgatcagccc



tgtgaagaactccgacggcatcttctacgatagccggaactatgaggcccaggagaatgccatcctgccaaagaacgccgacgccaatggc



gcctataacatcgccagaaaggtgctgtgggccatcggccagttcaagaaggccgaggacgagaagctggataaggtgaagatcgccatct



ctaacaaggagtggctggagtacgcccagaccagcgtgaagcacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaa



aaagggatcctacccatacgatgttccagattacgcttatccctacgacgtgcctgattatgcatacccatatgatgtccccgactatgcctaa





SEQ ID NO
ggcggcgggagcgggggtggcagcggcggcgggtcg


43



3xGS






SEQ ID NO
tctggaggatctagcggaggatcctctggcagcgagacaccaggaacaagcgagtcagcaacaccagagagcagtggcggcagcagcgg


44
cggctcg


(SGGS)2-



XTEN-



(SGGS)2






SEQ ID NO
gctgaggcggcggcaaaagaagcagcggcaaaagaagctgccgcaaaggaagcagcagcaaaagcccttgaagccgaagctgctgcta


45
aggaggctgccgcaaaagaggctgccgccaaagaagcagccgctaaagcg


A(EAAAK)4



A






SEQ ID NO
ggatccgactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagatggccccaaagaagaagcg


46
gaaggtcggtatccacggagtcccagcagcg


3xFlag-NLS






SEQ ID NO
ggatccgactataaggaccacgacggagactacaaggatcatgatattgattacaaagacgatgacgataagggtatccacggagtcccagc


47
agcg


3xFlag






SEQ ID NO
GGTTCTGGAAGTGAGGCAGCTGCGAAGGAGGCTGCGGCGAAAGAAGCTGCAGCAAA


48
GGAAGCAGCAGCAAAGGCACTGGAGGCCGCTGCTGCTAAAGAGGCTGCCGCCAAAG


(H4)3:
AAGCTGCGGCAAAGGAAGCTGCGGCTAAGGGAAGTGGGAGCGCAGCGGCCAAAGAG



GCAGCGGCCAAGGAAGCTGCTGCAAAAGAAGCAGCAGCTAAAGGGAGCGGATCG





SEQ ID NO
GCCGGAAGCGGTGGTTCAGGGGGATCCGGAGGAAGTCCTGTTCCCTCTACCCCACCA


49
ACTAATAGCAGCTCAACCCCTCCGACCCCCTCTCCGTCACCGGTGCCGAGTACCCCGC


GPcPcPc
CAACCAATAGCTCATCAACTCCGCCTACGCCGTCCCCTAGTCCAGTACCTAGCACCCC



TCCAACAAATTCTAGCAGTACACCACCCACACCAAGCCCTAGCGCGTCG





SEQ ID NO
GCTGGTTCTGGTGGCTCAGGGGGTTCCGGTGGTTCCCCAGTACCAAGTACTCCTCCCA


50
CTCCCTCTCCAAGTACGCCGCCTACACCCTCACCCAGCGGCGGCTCTGGCAATTCCAG


GPGcP
TGGTTCAGGCGGTAGTCCCGTGCCAAGTACGCCACCAACTCCAAGTCCATCAACACC



ACCGACCCCTTCTCCGTCTGCATCG





SEQ ID NO
GCGGGTTCTGGAGGTTCAGGCGGGAGCGGTGGCAGTCCAGTGCCGAGCACACCGCCA


51
ACACCGAGCCCAAGTACGCCACCGACTCCAAGTCCCAGCATACAGCGAACACCGAAG


GPbGbP
ATTCAGGTCTACTCACGACACCCAGCGGAAAACGGCAAATCTAATTTTCTGAATTGCT



ATGTTTCCGGTTTTCACCCCTCAGACATCGAGGTCGACCTGCTGAAGAACGGTGAAAG



GATTGAAAAGGTTGAACACTCCGACTTGAGCTTTAGTAAGGACTGGTCATTCTATTTG



CTGTATTACACCGAGTTCACTCCGACCGAAAAGGATGAATACGCATGTCGAGTGAAT



CATGTCACGCTGAGCCAACCCAAGATCGTGAAATGGGACAGGGACGGGGGGTCTGG



GGGTAGCGGAGGAAGCGGCGGGTCTATCCAACGCACTCCAAAAATTCAAGTCTACTC



AAGACACCCTGCCGAGAATGGAAAATCAAACTTTTTGAATTGCTACGTCTCTGGATTC



CATCCGTCAGACATCGAAGTTGATCTGTTGAAAAACGGTGAGCGAATTGAGAAAGTG



GAGCATTCAGATCTTAGCTTCAGTAAAGACTGGTCCTTTTATCTCTTGTATTACACGG



AGTTCACTCCCACAGAAAAAGATGAATACGCCTGTCGAGTTAACCACGTCACGCTGT



CACAGCCAAAGATAGTGAAATGGGATCGCGACCCAGTGCCCTCAACACCCCCTACTC



CTAGTCCGAGCACTCCTCCAACGCCTTCACCATCTGCCTCG





SEQ ID NO
GCTGGTTCCGGCGGATCTGGTGGATCTGGTGGCAGCCCCGTCCCTTCTACTCCACCCA


52
CACCGTCCCCGTCAACTCCTCCCACCCCGTCTCCGTCCGATGGAAGGTACTCTCTCAC


GPZP
GTACATCTACACTGGGTTGTCAAAGCATGTGGAAGACGTGCCAGCCTTCCAGGCGCTT



GGAAGCCTCAATGACCTTCAGTTTTTTCGCTACAATAGCAAGGATCGAAAGTCACAA



CCTATGGGTCTCTGGAGACAGGTCGAAGGGATGGAGGACTGGAAACAGGATAGCCA



ATTGCAAAAAGCGAGAGAGGATATCTTTATGGAGACGCTTAAAGACATTGTTGAGTA



TTACAACGACTCTAACGGTAGTCACGTATTGCAGGGCCGATTTGGGTGTGAGATAGA



GAATAACCGGAGTTCCGGCGCTTTTTGGAAATATTATTACGATGGCAAGGACTACATC



GAGTTTAACAAAGAAATTCCAGCCTGGGTGCCTTTTGACCCAGCTGCACAAATTACA



AAACAGAAGTGGGAGGCGGAGCCAGTGTACGTTCAAAGGGCAAAAGCATACTTGGA



GGAAGAGTGTCCCGCAACTCTCCGAAAGTACTTGAAGTATTCTAAAAACATACTGGA



TCGACAGGATCCCCCTTCAGTAGTCGTAACCTCCCACCAGGCCCCAGGTGAGAAGAA



GAAGTTGAAATGCCTTGCTTACGACTTCTACCCAGGCAAGATTGATGTTCACTGGACA



AGGGCTGGTGAGGTCCAAGAGCCCGAACTTAGAGGGGATGTGTTGCATAACGGTAAT



GGGACGTATCAGTCATGGGTCGTGGTGGCAGTCCCTCCTCAAGATACGGCACCATAC



TCTTGCCATGTGCAACACAGCTCACTGGCGCAGCCACTCGTAGTGCCTTGGGAGGCCA



GCCCCGTGCCATCAACTCCCCCAACTCCATCACCTAGTACCCCCCCTACTCCGTCAGC



CTCG





SEQ ID NO
GCTGGTTCTGGGGGGTCAGGAGGGAGTGGAGGGTCTGGAGGTTCTGGAGGCTCAGGA


53
GGTAGCGGTGGTAGTGACGGCAGGTACAGTCTCACCTATATCTATACAGGATTGTCTA


GGZGZP
AGCATGTTGAAGACGTGCCCGCCTTTCAGGCACTGGGTTCTTTGAACGACCTCCAGTT



TTTCCGCTACAACAGTAAAGACCGAAAATCTCAGCCCATGGGGCTCTGGAGACAAGT



TGAAGGTATGGAGGACTGGAAACAGGACAGTCAATTGCAAAAGGCCAGAGAAGATA



TTTTTATGGAAACCTTGAAGGATATTGTCGAGTACTACAACGATTCAAACGGGTCCCA



CGTGCTGCAGGGCCGATTCGGTTGCGAGATAGAAAATAATCGATCTAGTGGTGCCTTT



TGGAAGTATTACTACGACGGAAAAGATTATATCGAATTTAATAAAGAGATTCCTGCG



TGGGTGCCGTTTGACCCGGCGGCACAAATTACTAAACAAAAGTGGGAAGCGGAACCG



GTGTATGTTCAGAGGGCTAAGGCGTACCTTGAAGAAGAGTGCCCCGCTACGTTGAGG



AAATACCTCAAATATTCCAAAAATATCTTGGATCGACAAGATCCACCTAGCGTGGTTG



TTACTTCACACCAAGCACCAGGTGAAAAAAAAAAATTGAAGTGTCTTGCATATGACT



TCTATCCTGGGAAGATCGACGTACACTGGACACGAGCCGGAGAGGTACAAGAACCTG



AACTGCGAGGGGACGTCCTCCATAACGGGAACGGTACCTATCAAAGTTGGGTGGTGG



TTGCGGTTCCACCTCAGGACACTGCGCCTTACTCCTGTCACGTGCAGCATTCCTCTCTC



GCTCAACCCCTTGTCGTGCCGTGGGAGGCCTCCGGAGGGTCTGGCGGAAGCGGAGGA



TCTGGTGGGTCCGATGGTAGGTACTCACTTACTTACATATACACGGGTCTTAGTAAAC



ACGTCGAGGATGTCCCGGCGTTCCAAGCTCTGGGTAGTTTGAATGATCTCCAATTTTT



TAGATACAATAGCAAAGATCGAAAAAGCCAACCAATGGGACTCTGGAGACAGGTGG



AGGGAATGGAAGATTGGAAACAAGATTCTCAACTCCAGAAGGCTAGGGAAGACATTT



TCATGGAAACGCTCAAAGATATTGTAGAGTATTATAATGATTCTAACGGCAGCCACG



TCCTTCAGGGGCGATTTGGGTGTGAGATTGAAAACAATCGATCTAGCGGTGCATTTTG



GAAATATTACTATGATGGCAAAGACTATATCGAATTCAACAAGGAAATTCCAGCATG



GGTCCCATTCGACCCCGCGGCTCAAATTACCAAGCAAAAATGGGAAGCCGAACCTGT



CTACGTACAACGGGCGAAGGCATATCTTGAGGAGGAATGCCCCGCGACCCTCCGAAA



GTACCTTAAGTACTCCAAGAACATTCTCGATCGGCAGGACCCCCCTTCTGTGGTAGTC



ACCAGCCATCAGGCACCTGGGGAGAAGAAGAAACTCAAGTGCCTGGCCTACGATTTC



TACCCTGGGAAAATCGATGTCCACTGGACGAGAGCGGGTGAGGTGCAAGAGCCAGA



ATTGAGAGGTGATGTCCTTCATAACGGCAATGGCACCTATCAGTCATGGGTGGTCGTG



GCTGTTCCCCCTCAAGACACGGCACCGTATAGCTGTCATGTCCAACACTCCTCCCTCG



CTCAACCACTCGTGGTCCCATGGGAGGCTAGCCCAGTGCCCAGCACACCCCCTACTCC



CTCTCCTTCTACTCCACCGACCCCTTCACCGTCCGCTTCG





SEQ ID NO
GGGCTGAGAGAGGGACAAGTgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtgg


54
caccgagtcggtgc


GGGCTGAG



AGAGGGAC



AAGT






SEQ ID NO
AGTGTGCATTGCCACCTCAGgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggc


55
accgagtcggtgc


AGTGTGCA



TTGCCACC



TCAG






SEQ ID NO
GCAGGACTCCITTCCTCCATgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggca


56
ccgagtcggtgc


GCAGGACT



CCTTTCCT



CCAT






SEQ ID NO
ATAGGAGAAGATGATGTATAgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtgg


57
caccgagtcggtgc


ATAGGAGA



AGATGATG



TATA






SEQ ID NO
AAAACGTITCCAAGACATGAgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggc


58
accgagtcggtgc


AAAACGTT



TCCAAGAC



ATGA






SEQ ID NO
CCGCCGTCCAAGACCTACCGgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggc


59
accgagtcggtgc


CCGCCGTC



CAAGACCT



ACCG






SEQ ID NO
CCAAGAAGCGCACCACCTCCgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggc


60
accgagtcggtgc


CCAAGAAG



CGCACCAC



CTCC






SEQ ID NO
AGCCTGGAAGCACGAATGGTgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtg


61
gcaccgagtcggtgc


AGCCTGGA



AGCACGA



ATGGT






SEQ ID NO
ACATACCAAGAGAATCACCCgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtg


62
gcaccgagtcggtgc


ACATACCA



AGAGAATC



ACCC:






SEQ ID NO
GAAGGAGGAGGCCTAAGGAgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtg


63
gcaccgagtcggtgc


GAAGGAG



GAGGCCTA



AGGA:






SEQ ID NO
AAGAAGACTAGCTGAGCTCTgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtg


64
gcaccgagtcggtgc


AAGAAGA



CTAGCTGA



GCTCT:






SEQ ID NO
MDPRGILKAFPKRQKIHADASSKVLAKIPRREEGEEAEEWLSSLRAHVVRTGIGRARAE


65
LFEKQIVQHGGQLCPAQGPGVTHIVVDEGMDYERALRLLRLPQLPPGAQLVKSAWLSL


POLL:
CLQERRLVDVAGFSIFIPSRYLDHPQPSKAEQDASIPPGTHEALLQTALSPPPPPTRPVSPP



QKAKEAPNTQAQPISDDEASDGEETQVSAADLEALISGHYPTSLEGDCEPSPAPAVLDK



WVCAQPSSQKATNHNLHITEKLEVLAKAYSVQGDKWRALGYAKAINALKSFHKPVTS



YQEACSIPGIGKRMAEKIIEILESGHLRKLDHISESVPVLELFSNIWGAGTKTAQMWYQQ



GFRSLEDIRSQASLTTQQAIGLKHYSDFLERMPREEATEIEQTVQKAAQAFNSGLLCVAC



GSYRRGKATCGDVDVLITHPDGRSHRGIFSRLLDSLRQEGFLTDDLVSQEENGQQQKYL



GVCRLPGPGRRHRRLDIIVVPYSEFACALLYFTGSAHFNRSMRALAKTKGMSLSEHALS



TAVVRNTHGCKVGPGRVLPTPTEKDVFRLLGLPYREPAERDW





SEQ ID NO
MALPKRRRARVGSPSGDAASSTPPSTRFPGVAIYLVEPRMGRSRRAFLTGLARSKGFRV


66
LDACSSEATHVVMEETSAEEAVSWQERRMAAAPPGCTPPALLDISWLTESLGAGQPVP


POLM:
VECRHRLEVAGPRKGPLSPAWMPAYACQRPTPLTHHNTGLSEALEILAEAAGFEGSEGR



LLTFCRAASVLKALPSPVTTLSQLQGLPHFGEHSSRVVQELLEHGVCEEVERVRRSERY



QTMKLFTQIFGVGVKTADRWYREGLRTLDDLREQPQKLTQQQKAGLQHHQDLSTPVL



RSDVDALQQVVEEAVGQALPGATVTLTGGFRRGKLQGHDVDFLITHPKEGQEAGLLPR



VMCRLQDQGLILYHQHQHSCCESPTRLAQQSHMDAFERSFCIFRLPQPPGAAVGGSTRP



CPSWKAVRVDLVVAPVSQFPFALLGWTGSKLFQRELRRFSRKEKGLWLNSHGLFDPEQ



KTFFQAASEEDIFRHLGLEYLPPEQRNA





SEQ ID NO
MALPKRRRARVGSPSGDAASSTPPSTRFPGVAIYLVEPRMGRSRRAFLTGLARSKGFRV


67
LDACSSEATHVVMEETSAEEAVSWQERRMAAAPPGCTPPALLDISWLTESLGAGQPVP


POLM(H329G):
VECRHRLEVAGPRKGPLSPAWMPAYACQRPTPLTHHNTGLSEALEILAEAAGFEGSEGR



LLTFCRAASVLKALPSPVTTLSQLQGLPHFGEHSSRVVQELLEHGVCEEVERVRRSERY



QTMKLFTQIFGVGVKTADRWYREGLRTLDDLREQPQKLTQQQKAGLQHHQDLSTPVL



RSDVDALQQVVEEAVGQALPGATVTLTGGFRRGKLQGGDVDFLITHPKEGQEAGLLPR



VMCRLQDQGLILYHQHQHSCCESPTRLAQQSHMDAFERSKCIFRLPQPPGAAVGGSTRP



CPSWKAVRVDLVVAPVSQFPFALLGWTGSKLFQRELRRFSRKEKGLWLNSHGLFDPEQ



KTFFQAASEEDIFRHLGLEYLPPEQRNA





SEQ ID NO
MALPKRRRARVGSPSGDAASSTPPSTRFPGVAIYLVEPRMGRSRRAFLTGLARSKGFRV


68
LDACSSEATHVVMEETSAEEAVSWQERRMAAAPPGCTPPALLDISWLTESLGAGQPVP


POLM(H329G,
VECRHRLEVAGPRKGPLSPAWMPAYACQRPTPLTHHNTGLSEALEILAEAAGFEGSEGR


R389K):
LLTFCRAASVLKALPSPVTTLSQLQGLPHFGEHSSRVVQELLEHGVCEEVERVRRSERY



QTMKLFTQIFGVGVKTADRWYREGLRTLDDLREQPQKLTQQQKAGLQHHQDLSTPVL



RSDVDALQQVVEEAVGQALPGATVTLTGGFRRGKLQGGDVDFLITHPKEGQEAGLLPR



VMCRLQDQGLILYHQHQHSCCESPTRLAQQSHMDAFERSFCIFRLPQPPGAAVGGSTRP



CPSWKAVRVDLVVAPVSQFPFALLGWTGSKLFQRELRRFSRKEKGLWLNSHGLFDPEQ



KTFFQAASEEDIFRHLGLEYLPPEQRNA





SEQ ID NO
MALPKRRRARVGSPSGDAASSTPPSTRFPGVAIYLVEPRMGRSRRAFLTGLARSKGFRV


69
LDACSSEATHVVMEETSAEEAVSWQERRMAAAPPGCTPPALLDISWLTESLGAGQPIPS


BRCT(POLM)
RYLDHPQPSKAEQDASIPPGTHEALLQTALSPPPPPTRPVSPPQKAKEAPNTQAQPISDDE


POLL1:
ASDGEETQVSAADLEALISGHYPTSLEGDCEPSPAPAVLDKWVCAQPSSQKATNHNLHI



TEKLEVLAKAYSVQGDKWRALGYAKAINALKSFHKPVTSYQEACSIPGIGKRMAEKIIEI



LESGHLRKLDHISESVPVLELFSNIWGAGTKTAQMWYQQGFRSLEDIRSQASLTTQQAIG



LKHYSDFLERMPREEATEIEQTVQKAAQAFNSGLLCVACGSYRRGKATCGDVDVLITHP



DGRSHRGIFSRLLDSLRQEGFLTDDLVSQEENGQQQKYLGVCRLPGPGRRHRRLDIIVVP



YSEFACALLYFTGSAHFNRSMRALAKTKGMSLSEHALSTAVVRNTHGCKVGPGRVLPT



PTEKDVFRLLGLPYREPAERDW





SEQ ID NO
MALPKRRRARVGSPSGDAASSTPPSTRFPGVAIYLVEPRMGRSRRAFLTGLARSKGFRV


70
LDACSSEATHVVMEETSAEEAVSWQERRMAAAPPGCTPPALLDISWLTESLGAGQPVP


BRCT(POLM)
VECRHRLEVAGPRKGPLSSSQKATNHNLHITEKLEVLAKAYSVQGDKWRALGYAKAIN


POLL2:
ALKSFHKPVTSYQEACSIPGIGKRMAEKIIEILESGHLRKLDHISESVPVLELFSNIWGAGT



KTAQMWYQQGFRSLEDIRSQASLTTQQAIGLKHYSDFLERMPREEATEIEQTVQKAAQA



FNSGLLCVACGSYRRGKATCGDVDVLITHPDGRSHRGIFSRLLDSLRQEGFLTDDLVSQ



EENGQQQKYLGVCRLPGPGRRHRRLDIIVVPYSEFACALLYFTGSAHFNRSMRALAKTK



GMSLSEHALSTAVVRNTHGCKVGPGRVLPTPTEKDVFRLLGLPYREPAERDW





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAAIKSIASRLRGSRRFLS


71
GFVAGAVVGAAGAGLAALQFFRSQGAEGALTGKQPDGSAEKAVLEQFGFPLTGTEARC


3xFlag-NLS-
YTNHALSYDQAKRVPRWVLEHISKSKIMGDADRKHCKFKPDPNIPPTFSAFNEDYVGSG


EXOG:
WSRGHMAPAGNNKFSSKAMAETFYLSNIVPQDFDNNSGYWNRIEMYCRELTERFEDV



WVVSGPLTLPQTRGDGKKIVSYQVIGEDNVAVPSHLYKVILARRSSVSTEPLALGAFVV



PNEAIGFQPQLTEFQVSLQDLEKLSGLVFFPHLDRTSDIRNICSVDTCKLLDFQEFTLYLS



TRKIEGARSVLRLEKIMENLKNAEIEPDDYFMSRYEKKLEELKAKEQSGTQIRKPS





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAPRLLPISAATLALAQLT


72
YGWGNLGHETVAYIAQSFVASSTESFCQNILGDDSTSYLANVATWADTYKYTDAGEFS


3xFlag-NLS-
KPYHFIDAQDNPPQSCGVDYDRDCGSAGCSISAIQNYTNILLESPNGSEALNALKFVVHII


nucS:
GDIHQPLHDENLEAGGNGIDVTYDGETTNLHHIWDTNMPEEAAGGYSLSVAKTYADLL



TERIKTGTYSSKKDSWTDGIDIKDPVSTSMIWAADANTYVCSTVLDDGLAYINSTDLSGE



YYDKSQPVFEELIAKAGYRLAAWLDLIASQPS





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAWGALGHATVAYVAQH


73
YVSPEAASWAQGILGSSSSSYLASIASWADEYRLTSAGKWSASLHFIDAEDNPPTNCNV


3xFlag-NLS-
DYERDCGSSGCSISAIANYTQRVSDSSLSSENHAEALRFLVHFIGDMTQPLHDEAYAVG


NucP1:
GNKINVTFDGYHDNLHSDWDTYMPQKLIGGHALSDAESWAKTLVQNIESGNYTAQAIG



WIKGDNISEPITTATRWASDANALVCTVVMPHGAAALQTGDLYPTYYDSVIDTIELQIA



KGGYRLANWINEI





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAKMKLFQTICRQLRSSK


74
FSVESAALVAFSTSSYSCGRKKKVNPYEEVDQEKYSNLVQSVLSSRGVAQTPGSVEEDA


3xFlag-NLS-
LLCGPVSKHKLPNQGEDRRVPQNWFPIFNPERSDKPNASDPSVPLKIPLQRNVIPSVTRV


MGME1:
LQQTMTKQQVFLLERWKQRMILELGEDGFKEYTSSFHVCDHVYMKNLARDVFLQGKR



FHEALESILSPQETLKERDENLLKSGYIESVQHILKDVSGVRALESAVQHETLNYIGLLDC



VAEYQGKLCVIDWKTSEKPKPFIQSTFDNPLQVVAYMGAMNHDTNYSFQVQCGLIVVA



YKDGSPAHPHFMDAELCSQYWIKWLLRLEEYTEKKKNQNIQKPEYSE





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAVKQQIQLRRREVDETA


75
DLPAELPPLLRRLYASRGVRSAQELERSVKGMLPWQQLSGVEKAVEILYNAFREGTRIIV


3xFlag-NLS-
VGDFDADGATSTALSVLAMRSLGCSNIDYLVPNRFEDGYGLSPEVVDQAHARGAQLIV


recj:
TVDNGISSHAGVEHARSLGIPVIVTDHHLPGDTLPAAEAIINPNLRDCNFPSKSLAGVGV



AFYLMLALRTFLRDQGWFDERNIAIPNLAELLDLVALGTVADVVPLDANNRILTWQGM



SRIRAGKCRPGIKALLEVANRDAQKLAASDLGFALGPRLNAAGRLDDMSVGVALLLCD



NIGEARVLANELDALNQTRKEIEQGMQIEALTLCEKLERSRDTLPGGLAMYHPEWHQG



VVGILASRIKERFHRPVIAFAPAGDGTLKGSGRSIQGLHMRDALERLDTLYPGMMLKFG



GHAMAAGLSLEEDKFKLFQQRFGELVTEWLDPSLLQGEVVSDGPLSPAEMTMEVAQLL



RDAGPWGQMFPEPLFDGHFRLLQQRLVGERHLKVMVEPVGGGPLLDGIAFNVDTALW



PDNGVREVQLAYKLDINEFRGNRSLQIIIDNIWPI





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAKEFYISIETVGNNIVER


76
YIDENGKERTREVEYLPTMFRHCKEESKYKDIYGKNCAPQKFPSMKDARDWMKRMED


3xFlag-NLS-
IGLEALGMNDFKLAYISDTYGSEIVYDRKFVRVANCDIEVTGDKFPDPMKAEYEIDAITH


T4 DNA
YDSIDDRFYVFDLLNSMYGSVSKWDAKLAAKLDCEGGDEVPQEILDRVIYMPFDNERD


polymerase:
MLMEYINLWEQKRPAIFTGWNIEGFDVPYIMNRVKMILGERSMKRFSPIGRVKSKLIQN



MYGSKEIYSIDGVSILDYLDLYKKFAFTNLPSFSLESVAQHETKKGKLPYDGPINKLRET



NHQRYISYNIIDVESVQAIDKIRGFIDLVLSMSYYAKMPFSGVMSPIKTWDAIIFNSLKGE



HKVIPQQGSHVKQSFPGAFVFEPKPIARRYIMSFDLTSLYPSIIRQVNISPETIRGQFKVHPI



HEYIAGTAPKPSDEYSCSPNGWMYDKHQEGIIPKEIAKVFFQRKDWKKKMFAEEMNAE



AIKKIIMKGAGSCSTKPEVERYVKFSDDFLNELSNYTESVLNSLIEECEKAATLANTNQL



NRKILINSLYGALGNIHFRYYDLRNATAITIFGQVGIQWIARKINEYLNKVCGTNDEDFIA



AGDTDSVYVCVDKVIEKVGLDRFKEQNDLVEFMNQFGKKKMEPMIDVAYRELCDYM



NNREHLMHMDREAISCPPLGSKGVGGFWKAKKRYALNVYDMEDKRFAEPHLKIMGM



ETQQSSTPKAVQEALEESIRRILQEGEESVQEYYKNFEKEYRQLDYKVIAEVKTANDIAK



YDDKGWPGFKCPFHIRGVLTYRRAVSGLGVAPILDGNKVMVLPLREGNPFGDKCIAWP



SGTELPKEIRSDVLSWIDHSTLFQKSFVKPLAGMCESAGMDYEEKASLDFLFG





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAKEFYISIETVGNNIVER


77
YIDENGKERTREVEYLPTMFRHCKEESKYKDIYGKNCAPQKFPSMKDARDWMKRMED


3xFlag-NLS-
IGLEALGMNDFKLAYISDTYGSEIVYDRKFVRVANCDIEVTGDKFPDPMKAEYEIDAITH


T4 DNA
YDSIDDRFYVFDLLNSMYGSVSKWDAKLAAKLDCEGGDEVPQEILDRVIYMPFDNERD


polymerase
MLMEYINLWEQKRPAIFTGWNIEGFDVPYIMNRVKMILGERSMKRFSPIGRVKSKLIQN


(Y320A):
MYGSKEIYSIDGVSILDYLDLYKKFAFTNLPSFSLESVAQHETKKGKLPYDGPINKLRET



NHQRYISANIIDVESVQAIDKIRGFIDLVLSMSYYAKMPFSGVMSPIKTWDAIIFNSLKGE



HKVIPQQGSHVKQSFPGAFVFEPKPIARRYIMSFDLTSLYPSIIRQVNISPETIRGQFKVHPI



HEYIAGTAPKPSDEYSCSPNGWMYDKHQEGIIPKEIAKVFFQRKDWKKKMFAEEMNAE



AIKKIIMKGAGSCSTKPEVERYVKFSDDFLNELSNYTESVLNSLIEECEKAATLANTNQL



NRKILINSLYGALGNIHFRYYDLRNATAITIFGQVGIQWIARKINEYLNKVCGTNDEDFIA



AGDTDSVYVCVDKVIEKVGLDRFKEQNDLVEFMNQFGKKKMEPMIDVAYRELCDYM



NNREHLMHMDREAISCPPLGSKGVGGFWKAKKRYALNVYDMEDKRFAEPHLKIMGM



ETQQSSTPKAVQEALEESIRRILQEGEESVQEYYKNFEKEYRQLDYKVIAEVKTANDIAK



YDDKGWPGFKCPFHIRGVLTYRRAVSGLGVAPILDGNKVMVLPLREGNPFGDKCIAWP



SGTELPKEIRSDVLSWIDHSTLFQKSFVKPLAGMCESAGMDYEEKASLDFLFG





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAKEFYISIETVGNNIVER


78
YIDENGKERTREVEYLPTMFRHCKEESKYKDIYGKNCAPQKFPSMKDARDWMKRMED


3xFlag-NLS-
IGLEALGMNDFKLAYISDTYGSEIVYDRKFVRVANCDIEVTGDKFPDPMKAEYEIDAITH


T4 DNA
YDSIDDRFYVFDLLNSMYGSVSKWDAKLAAKLDCEGGDEVPQEILDRVIYMPFDNERD


polymerase
MLMEYINLWEQKRPAIFTGWNIEGFDVPYIMNRVKMILGERSMKRFSPIGRVKSKLIQN


(A737V):
MYGSKEIYSIDGVSILDYLDLYKKFAFTNLPSFSLESVAQHETKKGKLPYDGPINKLRET



NHQRYISYNIIDVESVQAIDKIRGFIDLVLSMSYYAKMPFSGVMSPIKTWDAIIFNSLKGE



HKVIPQQGSHVKQSFPGAFVFEPKPIARRYIMSFDLTSLYPSIIRQVNISPETIRGQFKVHPI



HEYIAGTAPKPSDEYSCSPNGWMYDKHQEGIIPKEIAKVFFQRKDWKKKMFAEEMNAE



AIKKIIMKGAGSCSTKPEVERYVKFSDDFLNELSNYTESVLNSLIEECEKAATLANTNQL



NRKILINSLYGALGNIHFRYYDLRNATAITIFGQVGIQWIARKINEYLNKVCGTNDEDFIA



AGDTDSVYVCVDKVIEKVGLDRFKEQNDLVEFMNQFGKKKMEPMIDVAYRELCDYM



NNREHLMHMDREAISCPPLGSKGVGGFWKAKKRYALNVYDMEDKRFAEPHLKIMGM



ETQQSSTPKVVQEALEESIRRILQEGEESVQEYYKNFEKEYRQLDYKVIAEVKTANDIAK



YDDKGWPGFKCPFHIRGVLTYRRAVSGLGVAPILDGNKVMVLPLREGNPFGDKCIAWP



SGTELPKEIRSDVLSWIDHSTLFQKSFVKPLAGMCESAGMDYEEKASLDFLFG





SEQ ID NO
MAPKRGKKGAVAEDGDELRTEPEAKKSKTAAKKNDKEAAGEGPALYEDPPDQKTSPS


79
GKPATLKICSWNVDGLRAWIKKKGLDWVKEEAPDILCLQETKCSENKLPAELQELPGLS


APEX1:
HQYWSAPSDKEGYSGVGLLSRQCPLKVSYGIGDEEHDQEGRVIVAEFDSFVLVTAYVP



NAGRGLVRLEYRQRWDEAFRKFLKGLASRKPLVLCGDLNVAHEEIDLRNPKGNKKNA



GFTPQERQGFGELLQAVPLADSFRHLYPNTPYAYTFWTYMIVINARSKNVGWRLDYFLL



SHSLLPALCDSKIRSKALGSDHCPITLYLAL





SEQ ID NO
MVRGSGKPIPNPLLGLDSTGKSYPTVSADYQDAVEKAKKKLRGFIAEKRCAPLMLRLAF


80
HSAGTFDKGTKTGGPFGTIKHPAELAHSANNGLDIAVRLLEPLKAEFPILSYADFYQLAG


VStag-
VVAVEVTGGPKVPFHPGREDKPEPPPEGRLPDPIKGSDHLRDVFGKAMGLTDQDIVALS


APEX2-
GGHTIGAAHKERSGFEGPWTSNPLIFDNSYFTELLSGEKEGLLQLPSDKALLSDPVFRPL


NLS-NLS
VDKYAADEDAFFADYAEAHQKLSELGFADAEFSRADPKKKRKVDPKKKRKVDPKKKR


(Addgene
KV


#124617):






SEQ ID NO
MERKISRIHLVSEPSITHFLQVSWEKTLESGFVITLTDGHSAWTGTVSESEISQEADDMA


81
MEKGKYVGELRKALLSGAGPADVYTFNFSKESCYFFEEKNLKDVSFRLGSFNLEKVENP


XRCC4:
AEVIRELICYCLDTIAENQAKNEHLQKENERLLRDWNDVQGRFEKCVSAKEALETDLYK



RFILVLNEKKTKIRSLHNKLLNAAQEREKDIKQEGETAICSEMTADRDPVYDESTDEESE



NQTDLSGLASAAVSKDDSIISSLDVTDIAPSRKRRQRMQRNLGTEPKMAPQENQLQEKE



KPDSSLPETSKKEHISAENMSLETLRNSSPEDLFDEI





SEQ ID NO
MDAQTRRRERRAEKQAQWKAANGGSPPHMAYPYDVPDYAPPSRAQASNSAVDGTAG


82
MGVPKFYRWISERYPCLSEVVKEHQIPEFDNLYLDMNGIIHQCSHPNDDDVHFRISDDKI


V5tag-
FTDIFHYLEVLFRIIKPRKVFFMAVDGVAPRAKMNQQRGRRFRSAKEAEDKIKKAIEKG


XRN1(Addgene
ETLPTEARFDSNCITPGTEFMARLHEHLKYFVNMKISTDKSWQGVTIYFSGHETPGEGEH


#66596):
KIMEFIRSEKAKPDHDPNTRHCLYGLDADLIMLGLTSHEAHFSLLREEVRFGGKKTQRV



CAPEETTFHLLHLSLMREYIDYEFSVLKEKITFKYDIERIIDDWILMGFLVGNDFIPHLPHL



HINHDALPLLYGTYVTILPELGGYINESGHLNLPRFEKYLVKLSDFDREHFSEVFVDLKW



FESKVGNKYLNEAAGVAAEEARNYKEKKKLKGQENSLCWTALDKNEGEMITSKDNLE



DETEDDDLFETEFRQYKRTYYMTKMGVDVVSDDFLADQAACYVQAIQWILHYYYHGV



QSWSWYYPYHYAPFLSDIHNISTLKIHEELGKPFKPFEQLLAVLPAASKNLLPACYQHLM



TNEDSPIIEYYPPDFKTDLNGKQQEWEAVVLIPFIDEKRLLEAMETCNHSLKKEERKRNQ



HSECLMCWYDRDTEFIYPSPWPEKFPAIERCCTRYKIISLDAWRVDINKNKITRIDQKAL



YFCGFPTLKHIRHKFFLKKSGVQVFQQSSRGENMMLEILVDAESDELTVENVASSVLGK



SVFVNWPHLEEARVVAVSDGETKFYLEEPPGTQKLYSGRTAPPSKVVHLGDKEQSNWA



KEVQGISEHYLRRKGIIINETSAVVYAQLLTGRKYQINQNGEVRLEKQWSKQVVPFVYQ



TIVKDIRAFDSRFSNIKTLDDLFPLRSMVFMLGTPYYGCTGEVQDSGDVITEGRIRVIFSIP



CEPNLDALIQNQHKYSIKYNPGYVLASRLGVSGYLVSRFTGSIFIGRGSRRNPHGDHKAN



VGLNLKFNKKNEEVPGYTKKVGSEWMYSSAAEQLLAEYLERAPELFSYIAKNSQEDVF



YEDDIWPGENENGAEKVQEIITWLKGHPVSTLSRSSCDLQILDAAIVEKIEEEVEKCKQR



KNNKKVRVTVKPHLLYRPLEQQHGVIPDRDAEFCLFDRVVNVRENFSVPVGLRGTIIGI



KGANREADVLEEVLFDEEFPGGLTIRCSPGRGYRLPTSALVNLSHGSRSETGNQKLTAIV



KPQPAVHQHSSSSSVSSGHLGALNHSPQSLFVPTQVPTKDDDEFCNIWQSLQGSGKMQY



FQPTIQEKGAVLPQEISQVNQHHKSGFNDNSVKYQQRKHDPHRKFKEECKSPKAECWS



QKMSNKQPNSGIENFLASLNISKENEVQSSHHGEPPSEEHLSPQSFAMGTRMLKEILKID



GSNTVDHKNEIKQIANEIPVSSNRRDEYGLPSQPKQNKKLASYMNKPHSANEYHNVQS



MDNMCWPAPSQIPPVSTPVTELSRICSLVGMPQPDFSFLRMPQTMTVCQVKLSNGLLVH



GPQCHSENEAKEKAALFALQQLGSLGMNFPLPSQVFANYPSAVPPGTIPPAFPPPTGWD



HYGSNYALGAANIMPSSSHLFGSMPWGPSVPVPGKPFHHTLYSGTMPMAGGIPGGVHN



QFIPLQVIKKRVANKKNEENKEAQSSQATPVQTSQPDSSNIVKVSPRESSSASLKSSPIAQ



PASSFQVETASQGHSISHHKSTPISSSRRKSRKLAVNFGVSKPSE





SEQ ID NO
MEQLNELELLMEKSFWEEAELPAELFQKKVVASFPRTVLSTGMDNRYLVLAVNTVQNK


83
EGNCEKRLVITASQSLENKELCILRNDWCSVPVEPGDIIHLEGDCTSDTWIIDKDFGYLIL


DNA2:
YPDMLISGTSIASSIRCMRRAVLSETFRSSDPATRQMLIGTVLHEVFQKAINNSFAPEKLQ



ELAFQTIQEIRHLKEMYRLNLSQDEIKQEVEDYLPSFCKWAGDFMHKNTSTDFPQMQLS



LPSDNSKDNSTCNIEVVKPMDIEESIWSPRFGLKGKIDVTVGVKIHRGYKTKYKIMPLEL



KTGKESNSIEHRSQVVLYTLLSQERRADPEAGLLLYLKTGQMYPVPANHLDKRELLKLR



NQMAFSLFHRISKSATRQKTQLASLPQIIEEEKTCKYCSQIGNCALYSRAVEQQMDCSSV



PIVMLPKIEEETQHLKQTHLEYFSLWCLMLTLESQSKDNKKNHQNIWLMPASEMEKSGS



CIGNLIRMEHVKIVCDGQYLHNFQCKHGAIPVTNLMAGDRVIVSGEERSLFALSRGYVK



EINMTTVTCLLDRNLSVLPESTLFRLDQEEKNCDIDTPLGNLSKLMENTFVSKKLRDLIID



FREPQFISYLSSVLPHDAKDTVACILKGLNKPQRQAMKKVLLSKDYTLIVGMPGTGKTT



TICTLVRILYACGFSVLLTSYTHSAVDNILLKLAKFKIGFLRLGQIQKVHPAIQQFTEQEIC



RSKSIKSLALLEELYNSQLIVATTCMGINHPIFSRKIFDFCIVDEASQISQPICLGPLFFSRRF



VLVGDHQQLPPLVLNREARALGMSESLFKRLEQNKSAVVQLTVQYRMNSKIMSLSNKL



TYEGKLECGSDKVANAVINLRHFKDVKLELEFYADYSDNPWLMGVFEPNNPVCFLNTD



KVPAPEQVEKGGVSNVTEAKLIVFLTSIFVKAGCSPSDIGIIAPYRQQLKIINDLLARSIGM



VEVNTVDKYQGRDKSIVLVSFVRSNKDGTVGELLKDWRRLNVAITRAKHKLILLGCVP



SLNCYPPLEKLLNHLNSEKLIIDLPSREHESLCHILGDFQRE





SEQ ID NO
MEQKLISEEDLLRKRGILNLLRRSGKRRRSESGSDSFSGSGGDSSASPQFLSGSVLSPPPG


84
LGRCLKAAAAGECKPTVPDYEIDKLLLANWGLPKAVLEKYHSFGVKKMFEWQAECLL


Myc-POLQ-
LGQVLEGKNLVYSAPTSAGKTLVAELLILKRVLEMRKKALFILPFVSVAKEKKYYLQSL


Flag(Addgene
FQEVGIKVDGYMGSTSPSRHFSSLDIAVCTIERANGLINRLIEENKMDLLGMVVVDELH


#73132):
MLGDSHRGYLLELLLTKICYITRKSASCQADLASSLSNAVQIVGMSATLPNLELVASWL



NAELYHTDFRPVPLLESVKVGNSIYDSSMKLVREFEPMLQVKGDEDHVVSLCYETICDN



HSVLLFCPSKKWCEKLADIIAREFYNLHHQAEGLVKPSECPPVILEQKELLEVMDQLRRL



PSGLDSVLQKTVPWGVAFHHAGLTFEERDIIEGAFRQGLIRVLAATSTLSSGVNLPARRV



IIRTPIFGGRPLDILTYKQMVGRAGRKGVDTVGESILICKNSEKSKGIALLQGSLKPVRSC



LQRREGEEVTGSMIRAILEIIVGGVASTSQDMHTYAACTFLAASMKEGKQGIQRNQESV



QLGAIEACVMWLLENEFIQSTEASDGTEGKVYHPTHLGSATLSSSLSPADTLDIFADLQR



AMKGFVLENDLHILYLVTPMFEDWTTIDWYRFFCLWEKLPTSMKRVAELVGVEEGFLA



RCVKGKVVARTERQHRQMAIHKRFFTSLVLLDLISEVPLREINQKYGCNRGQIQSLQQS



AAVYAGMITVFSNRLGWHNMELLLSQFQKRLTFGIQRELCDLVRVSLLNAQRARVLYA



SGFHTVADLARANIVEVEVILKNAVPFKSARKAVDEEEEAVEERRNMRTIWVTGRKGL



TEREAAALIVEEARMILQQDLVEMGVQWNPCALLHSSTCSLTHSESEVKEHTFISQTKSS



YKKLTSKNKSNTIFSDSYIKHSPNIVQDLNKSREHTSSFNCNFQNGNQEHQRCSIFRARK



RASLDINKEKPGASQNEGKTSDKKVVQTFSQKTKKAPLNFNSEKMSRSFRSWKRRKHL



KRSRDSSPLKDSGACRIHLQGQTLSNPSLCEDPFTLDEKKTEFRNSGPFAKNVSLSGKEK



DNKTSFPLQIKQNCSWNITLTNDNFVEHIVTGSQSKNVTCQATSVVSEKGRGVAVEAEK



INEVLIQNGSKNQNVYMKHHDIHPINQYLRKQSHEQTSTITKQKNIIERQMPCEAVSSYIN



RDSNVTINCERIKLNTEENKPSHFQALGDDISRTVIPSEVLPSAGAFSKSEGQHENFLNISR



LQEKTGTYTTNKTKNNHVSDLGLVLCDFEDSFYLDTQSEKIIQQMATENAKLGAKDTN



LAAGIMQKSLVQQNSMNSFQKECHIPFPAEQHPLGATKIDHLDLKTVGTMKQSSDSHG



VDILTPESPIFHSPILLEENGLFLKKNEVSVTDSQLNSFLQGYQTQETVKPVILLIPQKRTPT



GVEGECLPVPETSLNMSDSLLFDSFSDDYLVKEQLPDMQMKEPLPSEVTSNHFSDSLCL



QEDLIKKSNVNENQDTHQQLTCSNDESIIFSEMDSVQMVEALDNVDIFPVQEKNHTVVS



PRALELSDPVLDEHHQGDQDGGDQDERAEKSKLTGTRQNHSFIWSGASFDLSPGLQRIL



DKVSSPLENEKLKSMTINFSSLNRKNTELNEEQEVISNLETKQVQGISFSSNNEVKSKIEM



LENNANHDETSSLLPRKESNIVDDNGLIPPTPIPTSASKLTFPGILETPVNPWKTNNVLQP



GESYLFGSPSDIKNHDLSPGSRNGFKDNSPISDTSFSLQLSQDGLQLTPASSSSESLSIIDVA



SDQNLFQTFIKEWRCKKRFSISLACEKIRSLTSSKTATIGSRFKQASSPQEIPIRDDGFPIKG



CDDTLVVGLAVCWGGRDAYYFSLQKEQKHSEISASLVPPSLDPSLTLKDRMWYLQSCL



RKESDKECSVVIYDFIQSYKILLLSCGISLEQSYEDPKVACWLLDPDSQEPTLHSIVTSFLP



HELPLLEGMETSQGIQSLGLNAGSEHSGRYRASVESILIFNSMNQLNSLLQKENLQDVFR



KVEMPSQYCLALLELNGIGFSTAECESQKHIMQAKLDAIETQAYQLAGHSFSFTSSDDIA



EVLFLELKLPPNREMKNQGSKKTLGSTRRGIDNGRKLRLGRQFSTSKDVLNKLKALHPL



PGLILEWRRITNAITKVVFPLQREKCLNPFLGMERIYPVSQSHTATGRITFTEPNIQNVPR



DFEIKMPTLVGESPPSQAVGKGLLPMGRGKYKKGFSVNPRCQAQMEERAADRGMPFSI



SMRHAFVPFPGGSILAADYSQLELRILAHLSHDRRLIQVLNTGADVFRSIAAEWKMIEPE



SVGDDLRQQAKQICYGIIYGMGAKSLGEQMGIKENDAACYIDSFKSRYTGINQFMTETV



KNCKRDGFVQTILGRRRYLPGIKDNNPYRKAHAERQAINTIVQGSAADIVKIATVNIQKQ



LETFHSTFKSHGHREGMLQSDRTGLSRKRKLQGMFCPIRGGFFILQLHDELLYEVAEED



VVQVAQIVKNEMESAVKLSVKLKVKVKIGASWGELKDFDVPGMDYKDDDDK





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAASKRKAPQETLNGGIT


85
DMLTELANFEKNVSQAIHKYNAYRKAASVIAKYPHKIKSGAEAKKLPGVGTKIAEKIDE


POLB:
FLATGKLRKLEKIRQDDTSSSINFLTRVSGIGPSAARKFVDEGIKTLEDLRKNEDKLNHH



QRIGLKYFGDFEKRIPREEMLQMQDIVLNEVKKVDSEYIATVCGSFRRGAESSGDMDVL



LTHPSFTSESTKQPKLLHQVVEQLQKVHFITDTLSKGETKFMGVCQLPSKNDEKEYPHR



RIDIRLIPKDQYYCGVLYFTGSDIFNKNMRAHALEKGFTINEYTIRPLGVTGVAGEPLPVD



SEKDIFDYIQWKYREPKDRSE





SEQ ID NO
MATGQDRVVALVDMDCFFVQVEQRQNPHLRNKPCAVVQYKSWKGGGIIAVSYEARAF


86
GVTRSMWADDAKKLCPDLLLAQVRESRGKANLTKYREASVEVMEIMSRFAVIERASID


POLH:
EAYVDLTSAVQERLQKLQGQPISADLLPSTYIEGLPQGPTTAEETVQKEGMRKQGLFQW



LDSLQIDNLTSPDLQLTVGAVIVEEMRAAIERETGFQCSAGISHNKVLAKLACGLNKPNR



QTLVSHGSVPQLFSQMPIRKIRSLGGKLGASVIEILGIEYMGELTQFTESQLQSHFGEKNG



SWLYAMCRGIEHDPVKPRQLPKTIGCSKNFPGKTALATREQVQWWLLQLAQELEERLT



KDRNDNDRVATQLVVSIRVQGDKRLSSLRRCCALTRYDAHKMSHDAFTVIKNCNTSGI



QTEWSPPLTMLFLCATKFSASAPSSSTDITSFLSSDPSSLPKVPVTSSEAKTQGSGPAVTA



TKKATTSLESFFQKAAERQKVKEASLSSLTAPTQAPMSNSPSKPSLPFQTSQSTGTEPFFK



QKSLLLKQKQLNNSSVSSPQQNPWSNCKALPNSLPTEYPGCVPVCEGVSKLEESSKATP



AEMDLAHNSQSMHASSASKSVLEVTQKATPNPSLLAAEDQVPCEKCGSLVPVWDMPE



HMDYHFALELQKSFLQPHSSNPQVVSAVSHQGKRNPKSPLACTNKRPRPEGMQTLESFF



KPLTH





SEQ ID NO
MASRLLWRKVAGATVGPGPVPAPGRWVSSSVPASDPSDGQRRRQQQQQQQQQQQQQ


87
PQQPQVLSSEGGQLRHNPLDIQMLSRGLHEQIFGQGGEMPGEAAVRRSVEHLQKHGLW


POLG:
GQPAVPLPDVELRLPPLYGDNLDQHFRLLAQKQSLPYLEAANLLLQAQLPPKPPAWAW



AEGWTRYGPEGEAVPVAIPEERALVFDVEVCLAEGTCPTLAVAISPSAWYSWCSQRLVE



ERYSWTSQLSPADLIPLEVPTGASSPTQRDWQEQLVVGHNVSFDRAHIREQYLIQGSRM



RFLDTMSMHMAISGLSSFQRSLWIAAKQGKHKVQPPTKQGQKSQRKARRGPAISSWDW



LDISSVNSLAEVHRLYVGGPPLEKEPRELFVKGTMKDIRENFQDLMQYCAQDVWATHE



VFQQQLPLFLERCPHPVTLAGMLEMGVSYLPVNQNWERYLAEAQGTYEELQREMKKS



LMDLANDACQLLSGERYKEDPWLWDLEWDLQEFKQKKAKKVKKEPATASKLPIEGAG



APGDPMDQEDLGPCSEEEEFQQDVMARACLQKLKGTTELLPKRPQHLPGHPGWYRKL



CPRLDDPAWTPGPSLLSLQMRVTPKLMALTWDGFPLHYSERHGWGYLVPGRRDNLAK



LPTGTTLESAGVVCPYRAIESLYRKHCLEQGKQQLMPQEAGLAEEFLLTDNSAIWQTVE



ELDYLEVEAEAKMENLRAAVPGQPLALTARGGPKDTQPSYHHGNGPYNDVDIPGCWFF



KLPHKDGNSCNVGSPFAKDFLPKMEDGTLQAGPGGASGPRALEINKMISFWRNAHKRIS



SQMVVWLPRSALPRAVIRHPDYDEEGLYGAILPQVVTAGTITRRAVEPTWLTASNARPD



RVGSELKAMVQAPPGYTLVGADVDSQELWIAAVLGDAHFAGMHGCTAFGWMTLQGR



KSRGTDLHSKTATTVGISREHAKIFNYGRIYGAGQPFAERLLMQFNHRLTQQEAAEKAQ



QMYAATKGLRWYRLSDEGEWLVRELNLPVDRTEGGWISLQDLRKVQRETARKSQWK



KWEVVAERAWKGGTESEMFNKLESIATSDIPRTPVLGCCISRALEPSAVQEEFMTSRVN



WVVQSSAVDYLHLMLVAMKWLFEEFAIDGRFCISIHDEVRYLVREEDRYRAALALQIT



NLLTRCMFAYKLGLNDLPQSVAFFSAVDIDRCLRKEVTMDCKTPSNPTGMERRYGIPQG



EALDIYQIIELTKGSLEKRSQPGP





SEQ ID NO
MENYEALVGFDLCNTPLSSVAQKIMSAMHSGDLVDSKTWGKSTETMEVINKSSVKYSV


88
QLEDRKTQSPEKKDLKSLRSQTSRGSAKLSPQSFSVRLTDQLSADQKQKSISSLTLSSCLI


POLN:
PQYNQEASVLQKKGHKRKHFLMENINNENKGSINLKRKHITYNNLSEKTSKQMALEED



TDDAEGYLNSGNSGALKKHFCDIRHLDDWAKSQLIEMLKQAAALVITVMYTDGSTQLG



ADQTPVSSVRGIVVLVKRQAEGGHGCPDAPACGPVLEGFVSDDPCIYIQIEHSAIWDQEQ



EAHQQFARNVLFQTMKCKCPVICFNAKDFVRIVLQFFGNDGSWKHVADFIGLDPRIAA



WLIDPSDATPSFEDLVEKYCEKSITVKVNSTYGNSSRNIVNQNVRENLKTLYRLTMDLC



SKLKDYGLWQLFRTLELPLIPILAVMESHAIQVNKEEMEKTSALLGARLKELEQEAHFV



AGERFLITSNNQLREILFGKLKLHLLSQRNSLPRTGLQKYPSTSEAVLNALRDLHPLPKIIL



EYRQVHKIKSTFVDGLLACMKKGSISSTWNQTGTVTGRLSAKHPNIQGISKHPIQITTPK



NFKGKEDKILTISPRAMFVSSKGHTFLAADFSQIELRILTHLSGDPELLKLFQESERDDVF



STLTSQWKDVPVEQVTHADREQTKKVVYAVVYGAGKERLAACLGVPIQEAAQFLESFL



QKYKKIKDFARAAIAQCHQTGCVVSIMGRRRPLPRIHAHDQQLRAQAERQAVNFVVQG



SAADLCKLAMIHVFTAVAASHTLTARLVAQIHDELLFEVEDPQIPECAALVRRTMESLE



QVQALELQLQVPLKVSLSAGRSWGHLVPLQEAWGPPPGPCRTESPSNSLAAPGSPASTQ



PPPLHFSPSFCL





SEQ ID NO
MASPCPEEAAMRREVVKRIETVVKDLWPTADVQIFGSFSTGLYLPTSDIDLVVFGKWER


89
PPLQLLEQALRKHNVAEPCSIKVLDKATVPIIKLTDQETEVKVDISFNMETGVRAAEFIK


TENT4A:
NYMKKYSLLPYLILVLKQFLLQRDLNEVFTGGISSYSLILMAISFLQLHPRIDARRADENL



GMLLVEFFELYGRNFNYLKTGIRIKEGGAYIAKEEIMKAMTSGYRPSMLCIEDPLLPGND



VGRSSYGAMQVKQVFDYAYIVLSHAVSPLARSYPNRDAESTLGRIIKVTQEVIDYRRWI



KEKWGSKAHPSPGMDSRIKIKERIATCNGEQTQNREPESPYGQRLTLSLSSPQLLSSGSSA



SSVSSLSGSDVDSDTPPCTTPSVYQFSLQAPAPLMAGLPTALPMPSGKPQPTTSRTLIMTT



NNQTRFTIPPPTLGVAPVPCRQAGVEGTASLKAVHHMSSPAIPSASPNPLSSPHLYHKHN



GMKLSMKGSHGHTQGGGYSSVGSGGVRPPVGNRGHHQYNRTGWRRKKHTHTRDSLP



VSLSR





SEQ ID NO
MAASQTSQTVASHVPFADLCSTLERIQKSKGRAEKIRHFREFLDSWRKFHDALHKNHK


90
DVTDSFYPAMRLILPQLERERMAYGIKETMLAKLYIELLNLPRDGKDALKLLNYRTPTG


DNA Ligase
THGDAGDFAMIAYFVLKPRCLQKGSLTIQQVNDLLDSIASNNSAKRKDLIKKSLLQLITQ


4:
SSALEQKWLIRMIIKDLKLGVSQQTIFSVFHNDAAELHNVTTDLEKVCRQLHDPSVGLSD



ISITLFSAFKPMLAAIADIEHIEKDMKHQSFYIETKLDGERMQMHKDGDVYKYFSRNGY



NYTDQFGASPTEGSLTPFIHNAFKADIQICILDGEMMAYNPNTQTFMQKGTKFDIKRMV



EDSDLQTCYCVFDVLMVNNKKLGHETLRKRYEILSSIFTPIPGRIEIVQKTQAHTKNEVID



ALNEAIDKREEGIMVKQPLSIYKPDKRGEGWLKIKPEYVSGLMDELDILIVGGYWGKGS



RGGMMSHFLCAVAEKPPPGEKPSVFHTLSRVGSGCTMKELYDLGLKLAKYWKPFHRK



APPSSILCGTEKPEVYIEPCNSVIVQIKAAEIVPSDMYKTGCTLRFPRIEKIRDDKEWHEC



MTLDDLEQLRGKASGKLASKHLYIGGDDEPQEKKRKAAPKMKKVIGIIEHLKAPNLTN



VNKISNIFEDVEFCVMSGTDSQPKPDLENRIAEFGGYIVQNPGPDTYCVIAGSENIRVKNII



LSNKHDVVKPAWLLECFKTKSFVPWQPRFMIHMCPSTKEHFAREYDCYGDSYFIDTDL



NQLKEVFSGIKNSNEQTPEEMASLIADLEYRYSWDCSPLSMFRRHTVYLDSYAVINDLS



TKNEGTRLAIKALELRFHGAKVVSCLAEGVSHVIIGEDHSRVADFKAFRRTFKRKFKILK



ESWVTDSIDKCELQEENQYLI





SEQ ID NO
MGSAACPRGALPELAPCCQPREQSQPHTRWDAGCGIQHPGGEEFRTLGGARAYRVPNS


91
QEGRSSPTRFFPAPEGPAHCFVSSPDRAFWVSEEVQRLLLSNACQPKECNGVKIPVDASK


XRN:
PNPNDVEFDNLYLDMNGIIHPCTHPEDKPAPKNEDEMMVAIFEYIDRLFSIVRPRRLLYM



AIDGVAPRAKMNQQRSRRFRASKEGMEAAVEKQRVREEILAKGGFLPPEEIKERFDSNC



ITPGTEFMDNLAKCLRYYIADRLNNDPGWKNLTVILSDASAPGEGEHKIMDYIRRQRAQ



PNHDPNTHHCLCGADADLIMLGLATHEPNFTIIREEFKPNKPKPCGLCNQFGHEVKDCE



GLPREKKGKHDELADSLPCAEGEFIFLRLNVLREYLERELTMASLPFTFDVERSIDDWVF



MCFFVGNDFLPHLPSLEIRENAIDRLVNIYKNVVHKTGGYLTESGYVNLQRVQMIMLAV



GEVEDSIFKKRKDDEDSFRRRQKEKRKRMKRDQPAFTPSGILTPHALGSRNSPGSQVAS



NPRQAAYEMRMQNNSSPSISPNTSFTSDGSPSPLGGIKRKAEDSDSEPEPEDNVRLWEAG



WKQRYYKNKFDVDAADEKFRRKVVQSYVEGLCWVLRYYYQGCASWKWYYPFHYAP



FASDFEGIADMPSDFEKGTKPFKPLEQLMGVFPAASGNFLPPSWRKLMSDPDSSIIDFYPE



DFAIDLNGKKYAWQGVALLPFVDERRLRAALEEVYPDLTPEETRRNSLGGDVLFVGKH



HPLHDFILELYQTGSTEPVEVPPELCHGIQGKFSLDEEAILPDQIVCSPVPMLRDLTQNTV



VSINFKDPQFAEDYIFKAVMLPGARKPAAVLKPSDWEKSSNGRQWKPQLGFNRDRRPV



HLDQAAFRTLGHVMPRGSGTGIYSNAAPPPVTYQGNLYRPLLRGQAQIPKLMSNMRPQ



DSWRGPPPLFQQQRFDRGVGAEPLLPWNRMLQTQNAAFQPNQYQMLAGPGGYPPRRD



DRGGRQGYPREGRKYPLPPPSGRYNWN





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAASLKGKFFAFLPNPNTSS


92
NKFFKSILEKKGATIVSSIQNCLQSSRKEVIILIEDSFVDSDMHLTQKDIFQREAGLNDVDE


3xFlag_NLS_
FLGKIEQSGIQCVKTSCITKWVQNDKFAFQKDDLIKFQPSIIVISDNADDGQSSTDKESEIS


PolIV:
TDVESERNDDSNNKDMIQASKPLKRLLQEDKGRASLVTDKTKYKNNELIIGALKRLTKK



YEIEGEKFRARSYRLAKQSMENCDFNVRSGEEAHTKLRNIGPSIAKKIQVILDTGVLPGL



NDSVGLEDKLKYFKNCYGIGSEIAKRWNLLNFESFCVAAKKDPEEFVSDWTILFGWSYY



DDWLCKMSRNECFAHLKKVQKALRGIDPECQVELQGSYNRGYSKCGDIDLLFFKPFCN



DTTELAKIMETLCIKLYKDGYIHCFLQLTPNLEKLFLKRIVERFRTAKIVGYGERKRWYS



SEIIKKFFMGVKLSPRELEELKEMKNDEGTLLIEEEEEETKLKPIDQYMSLNAKDGNYCR



RLDFFCCKWDELGAGRIHYTGSKEYNRWIRILAAQKGFKLTQHGLFRNNILLESFNERRI



FELLNLKYAEPEHRNIEWEKKTG





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAALPSQSPAIFTVSRLNQT


93
VRLLLEHEMGQVWISGEISNFTQPASGHWYFTLKDDTAQVRCAMFRNSNRRVTFRPQH


3xFlag_NLS_
GQQVLVRANITLYEPRGDYQIIVESMQPAGEGLLQQKYEQLKAKLQAEGLFDQQYKKP


XseA:
LPSPAHCVGVITSKTGAALHDILHVLKRRDPSLPVIIYPAAVQGDDAPGQIVRAIELANQ



RNECDVLIVGRGGGSLEDLWSFNDERVARAIFTSRIPVVSAVGHETDVTIADFVADLRAP



TPSAAAEVVSRNQQELLRQVQSTRQRLEMAMDYYLANRTRRFTQIHHRLQQQHPQLRL



ARQQTMLERLQKRMSFALENQLKRTGQQQQRLTQRLNQQNPQPKIHRAQTRIQQLEYR



LAETLRAQLSATRERFGNAVTHLEAVSPLSTLARGYSVTTATDGNVLKKVKQVKAGEM



LTTRLEDGWIESEVKNIQPVKKSRKKVH





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAAPKKNEAPASFEKALSE


94
LEQIVTRLESGDLPLEEALNEFERGVQLARQGQAKLQQAEQRVQILLSDNEDASLTPFTP


3xFlag_NLS_
DNE


XseB:






SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


95
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9-NLS
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


(Addgene
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF


#1000000055)
DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF



RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA



KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR



KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV



LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLF



ELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH



KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA



FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


96
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9(delta
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


F916)-NLS:
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF



DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAGIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFR



KDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAK



SEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK



VLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVL



VVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE



LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK



HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF



KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


97
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9(G915F)-
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


NLS:
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF



DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAFFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF



RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA



KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR



KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV



LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLF



ELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH



KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA



FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


98
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9(Q920P)-
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


NLS:
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF



DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAGFIKRPLVETRQVIKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF



RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA



KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR



KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV



LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLF



ELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH



KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA



FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


99
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9(F916P)-
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


NLS
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF



DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAGPIKRQLVETRQVIKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF



RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA



KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR



KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV



LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLF



ELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH



KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA



FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


100
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9(R918A)-
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


NLS
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF



DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAGFIARQLVETRQVIKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF



RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA



KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR



KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV



LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLF



ELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH



KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA



FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


101
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9(R919P)-
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


NLS
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF



DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA



PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK



FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD



NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM



TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKEL



GSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKD



DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG



GLSELDKAGFIKPQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDF



RKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIA



KSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVR



KVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSV



LVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLF



ELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH



KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA



FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKK



K





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVG


102
WAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRK


3xFlag-NLS-
NRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIY


SpCas9-
HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQL


NLS(N690C
FEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF


T769I
DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNSDAILLSDILRVNTEITKA


G915M
PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYK


N980K):
FIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD


LZ3Cas9Addgene
NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM


#140561:
TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK



TNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED



ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDK



QSGKTILDFLKSDGFACRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAI



KKGILQTVKVVDELVKVMGRHKPENIVIEMARENQITQKGQKNSRERMKRIEEGIKELG



SQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS



IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS



ELDKAMFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRK



DFQFYKVREINKYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSE



QEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKV



LSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLV



VAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFEL



ENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKH



YLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFK



YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKKK





SEQ ID NO
MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVEASMKRNYILGLDIGITSVGYGIID


103
YETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKKLLFDYNLLTDH


3xFlag-NLS-
SELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISR


SaCas9-P2A-
NSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFI


EGFP:
DTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY



NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVT



STGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEE



IEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTL



VDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTN



ERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVS



FDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKE



YLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSF



LRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAES



MPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLI



VNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYY



EETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDV



YLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKIN



GELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILG



NLYEVKSKKHPQIIKKGRSGGGEGRGSLLTCGDVEENPGPMVSKGEELFTGVVPILVEL



DGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDH



MKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNI



LGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL



LPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK





SEQ ID NO
MSIYQEFVNKYSLSKTLREELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYHQF


104
FIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSEKFKN


FnCas12a-
LFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWTTYFKGF


NLS-
HENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELT


3xHA(addgene
FDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGINEYI


#64709):
NLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTMQSFYEQIAAFKT



VEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDYSVIGTAVLEYITQQI



APKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDIDKQCRFEEILANFAAIP



MIFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIKDLLDQTNNLLHKLKIFHIS



QSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYITQKPYSDEKFKLNFENSTLA



NGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFDDKAIKENKGEGYKKIVYKLLPG



ANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKNGSPQKGYEKFEFNIEDCRKFIDFYK



QSISKHPEWKDFGFRFSDTQRYNSIDEFYREVENQGYKLIFENISESYIDSVVNQGKLYL



FQIYNKDFSAYSKGRPNLHTLYWKALFDERNLQDVVYKLNGEAELFYRKQSIPKKITHP



AKEAIANKNKDNPKKESVFEYDLIKDKRFTEDKFFFHCPITINFKSSGANKFNDEINLLLK



EKANDVHILSIDRGERHLAYYTLVDGKGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDR



DSARKDWKKINNIKEMKEGYLSQVVHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQV



YQKLEKMLIEKLNYLVFKDNEFDKTGGVLRAYQLTAPEETFKKMGKQTGITYYVPAGFT



SKICPVTGFVNQLYPKYESVSKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGK



WTIASFGSRLINFRNSDKNHNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDK



KFFAKLTSVLNTILQMRNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGA



YHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNNKRPAATKKAGQAKKKK



GSYPYDVPDYAYPYDVPDYAYPYDVPDYA





SEQ ID NO
MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTY


105
ADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAI


AsCas12a-
NKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNVF


NLS-
SAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFP


3xHA(addgene
FYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLF


#69982):
KQILSDRNTLSFILEEFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHK



KLETTSSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHEDINLQEIISAAGKE



LSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESN



EVDPEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNK



EKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIP



KCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAKKTGDQK



GYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAE



KEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAEL



FYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVNHRLSHDLSDEARA



LLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETPIIG



IDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKD



LKQGYLSQVIHEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNC



LVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDPFV



WKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEK



NETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKL



LENDDSHAIDTMVALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMD



ADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRNKRPAATKKAGQ



AKKKKGSYPYDVPDYAYPYDVPDYAYPYDVPDYA





SEQ ID NO
MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYL


106
SFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFK


HLbCas12a-
KDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTR


NLS-
YISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGF


3xHA(addgene
VTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVF


#69988):
RNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAE



YDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEI



YKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRD



ESFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETD



YRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFS



KKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNF



SETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGT



PNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANSPIANKNPDNPKK



TTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGER



NLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIK



ELKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNY



MVDKKSNPCATGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKT



KYTSIADSKKFISSFDRIMYVPEEDLEEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRN



PKKNNVFDWEEVCLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLML



QMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARKVLWA



IGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKHKRPAATKKAGQAKKKKGSYPYDVP



DYAYPYDVPDYAYPYDVPDYA





SEQ ID NO
GGGSGGGSGGGS


107



3xGS:






SEQ ID NO
SGGSSGGSSGSETPGTSESATPESSGGSSGGS


108



(SGGS)2-



XTEN-



(SGGS)2






SEQ ID NO
AEAAAKEAAAKEAAAKEAAAKALEAEAAAKEAAAKEAAAKEAAAKA


109



(H4)2:






SEQ ID NO
GSDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAA


110



3xFlag-NLS:






SEQ ID NO
GSDYKDHDGDYKDHDIDYKDDDDKGIHGVPAA


111



3xFlag:






SEQ ID NO
GSGSEAAAKEAAAKEAAAKEAAAKALEAAAAKEAAAKEAAAKEAAAKGSGSAAAKE


112
AAAKEAAAKEAAAKGSGS


(H4)3:






SEQ ID NO
AGSGGSGGSGGSPVPSTPPTNSSSTPPTPSPSPVPSTPPTNSSSTPPTPSPSPVPSTPPTNSSS


113
TPPTPSPSAS


GPcPcPc:






SEQ ID NO
AGSGGSGGSGGSPVPSTPPTPSPSTPPTPSPSGGSGNSSGSGGSPVPSTPPTPSPSTPPTPSPS


114
AS


GPGcP:






SEQ ID NO
AGSGGSGGSGGSPVPSTPPTPSPSTPPTPSPSIQRTPKIQVYSRHPAENGKSNFLNCYVSGF


115
HPSDIEVDLLKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQP


GPbGbP:
KIVKWDRDGGSGGSGGSGGSIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDL



LKNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRD



PVPSTPPTPSPSTPPTPSPSAS





SEQ ID NO
AGSGGSGGSGGSPVPSTPPTPSPSTPPTPSPSDGRYSLTYIYTGLSKHVEDVPAFQALGSL


116
NDLQFFRYNSKDRKSQPMGLWRQVEGMEDWKQDSQLQKAREDIFMETLKDIVEYYND


GPZP:
SNGSHVLQGRFGCEIENNRSSGAFWKYYYDGKDYIEFNKEIPAWVPFDPAAQITKQKW



EAEPVYVQRAKAYLEEECPATLRKYLKYSKNILDRQDPPSVVVTSHQAPGEKKKLKCL



AYDFYPGKIDVHWTRAGEVQEPELRGDVLHNGNGTYQSWVVVAVPPQDTAPYSCHVQ



HSSLAQPLVVPWEASPVPSTPPTPSPSTPPTPSAS





SEQ ID NO
AGSGGSGGSGGSGGSGGSGGSGGSDGRYSLTYIYTGLSKHVEDVPAFQALGSLNDLQFF


117
RYNSKDRKSQPMGLWRQVEGMEDWKQDSQLQKAREDIFMETLKDIVEYYNDSNGSHV


GGZGZP:
LQGRFGCEIENNRSSGAFWKYYYDGKDYIEFNKEIPAWVPFDPAAQITKQKWEAEPVY



VQRAKAYLEEECPATLRKYLKYSKNILDRQDPPSVVVTSHQAPGEKKKLKCLAYDFYP



GKIDVHWTRAGEVQEPELRGDVLHNGNGTYQSWVVVAVPPQDTAPYSCHVQHSSLAQ



PLVVPWEASGGSGGSGGSGGSDGRYSLTYIYTGLSKHVEDVPAFQALGSLNDLQFFRYN



SKDRKSQPMGLWRQVEGMEDWKQDSQLQKAREDIFMETLKDIVEYYNDSNGSHVLQG



RFGCEIENNRSSGAFWKYYYDGKDYIEFNKEIPAWVPFDPAAQITKQKWEAEPVYVQR



AKAYLEEECPATLRKYLKYSKNILDRQDPPSVVVTSHQAPGEKKKLKCLAYDFYPGKID



VHWTRAGEVQEPELRGDVLHNGNGTYQSWVVVAVPPQDTAPYSCHVQHSSLAQPLVV



PWEASPVPSTPPTPSPSTPPTPSPSAS









The skilled person in the art would appreciate that the amino acid sequences, peptides, polypeptides, nucleases, polymerases, blunting enzymes, guide RNAs, and single guide RNAs disclosed herein can be encoded by nucleic acid molecules. The skilled person in the art would also appreciate that vectors comprising these nucleic acid molecules could be used as vehicles to carry the genetic materials into cells. The vector can be a plasmid and is generally made of a DNA sequence that consists of an insert and a larger sequence that serves as the “backbone” of the vector.


EXAMPLES

While several experimental Examples are contemplated, these Examples are intended non-limiting.


Example 1
Indels Editing in PCSK9 Gene Using Cas9 and Blunting Enzymes

To test for the efficiency of inducing indels in a target gene using Cas9 and blunting enzymes, Cas9 and PCSK9 exon 12 targeting sgRNA were co-transferred into cultured mammalian cells in combination with DNA polymerase μ (POLM), EXOG, T4 DNA polymerase (T4pol), DNA polymerase λ (POLL), MGME1, RecJ exonuclease (RecJ) or Nuclease S1 (nucS). Cas9 and sgRNA alone served as the negative control. The occurrence of indels for the control and each of the combinations was measured. HEK293T cells were used. Results for each of the combinations are presented in FIGS. 11A-11H and comparisons between the control and blunting enzymes are presented in FIGS. 12A-12B.


POLM (FIG. 11B), T4pol (FIG. 11D) and POLL (FIG. 11E) were found to increase the percentage of +1 insertion from 14.4% to 19.6%, 14.4% to 36.75%, and 14.4% to 39.55%, respectively. EXOG (FIG. 11C), MGME1 (FIG. 11F) and RecJ (FIG. 11G) were found to increase the percentage of −1 deletion from 4.3% to 5.05%, 4.3% to 6.35%, and 4.3% to 5.5% respectively.


POLL (FIG. 12A) and T4pol (FIG. 12B) were found to increase the +1 insertion frequency from 9.4% to 35.0% and 9.4% to 30.3% respectively.


Example 2
Indels Editing in GYPB Gene Using Cas9 and Blunting Enzymes

To test for the efficiency of inducing indels in a target gene using Cas9 and blunting enzymes, Cas9 and GYPB targeting sgRNA were co-transferred into cultured mammalian cells in combination with DNA polymerase μ (POLM), EXOG, T4 DNA polymerase (T4pol), DNA polymerase λ (POLL), MGME, RecJ exonuclease (RecJ) or Nuclease S1 (nucS). Cas9 and sgRNA alone served as the negative control. The occurrence of indels for the control and each of the combinations was measured. Results for each of the combinations are presented in FIGS. 13A-13H.


POLM (FIG. 13B), T4pol (FIG. 13D) and POLL (FIG. 13E) were found to increase the percentage of +1 insertion mutations from 10.5% to 13.7%, 10.5% to 13.4%, and 10.5% to 22.1% respectively. T4 polymerase (FIG. 13D) was found to increase the percentage of −1 deletion mutations from 1.7% to 9.05%


Example 3
Indels Editing in TPH2 Gene Using Cas9 and Blunting Enzymes

To test for the efficiency of inducing indels in a target gene using Cas9 and blunting enzymes, Cas9 and TPH2 targeting sgRNA were co-transferred into cultured mammalian cells in combination with POLM, EXOG, T4 polymerase, DNA polymerase λ (POLL), MGME1, RecJ exonuclease (RecJ) or Nuclease S1 (nucS). Cas9 and sgRNA alone served as the negative control. The occurrence of indels for the control and each of the combinations was measured. Results for each of the combinations are presented in FIGS. 14A-14H.


DNA polymerase μ (POLM) (FIG. 14B) and DNA polymerase λ (POLL) (FIG. 14E) were found to increase the percentage of +1 insertion mutations from 0% to 12.5% and 0% to 2.95 respectively. T4 DNA polymerase (T4pol) (FIG. 14D) were found to increase the percentage of −1 deletion mutations from 13.2% to 36.7%.


One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A composition comprising: (a) a target specific nuclease, wherein the target comprises a double stranded DNA (dsDNA); and(b) a double strand break (DSB)-end blunting enzyme.
  • 2. The composition of claim 1, wherein the target specificity of the nuclease is provided by a guide RNA (gRNA).
  • 3. The composition of claim 2, wherein the gRNA is a single guide RNA (sgRNA).
  • 4. The composition of claim 3, wherein the sgRNA comprises a nucleic acid sequence at least 75% identical to the nucleic acid sequence of SEQ ID NOs: 54-64.
  • 5. The composition of claim 3, further comprising a MS2-binding protein, wherein the sgRNA comprises one or more MS2 stem loops, and wherein the MS2-binding protein is linked to the sgRNA by the one or more MS2 stem loops and binds to the DSB-end blunting enzyme.
  • 6. The composition of any one of claims 1-5, wherein the nuclease predominantly induces staggered ends on the cleaved dsDNA.
  • 7. The composition of claim 6, wherein the nuclease is an altered scissile variant.
  • 8. The composition of claim 7, wherein the altered scissile variant is ΔF916, LZ3Cas9 (N690C, T769I, G915M, N980K), G915F, F916P, R918A, R919P or Q920P.
  • 9. The composition of any one of claims 1-8, wherein the nuclease is selected from the group consisting of SpCas9, LbCas12a, AsCas12a and FnCas12a.
  • 10. The composition of any one of claims 1-6, wherein the nuclease comprises an amino acid sequence at least 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106
  • 11. The composition of claim 10, wherein the nuclease comprises an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 12. The composition of claim 10, wherein the nuclease comprises an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 13. The composition of claim 10, wherein the nuclease comprises an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 14. The composition of claim 10, wherein the nuclease comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 15. The composition of claim 10, wherein the amino acid sequence specifically binds to a protospacer-adjacent motif (PAM).
  • 16. The composition of claim 15, wherein the PAM is selected from the group consisting of NNNNGATT, NNNNGNNN, NNG, NG, NGAN, NGNG, NGAG, NGCG, NAAG, NGN, NRN, NNGRRN, NNNRRT, TTTN, TTTV, TYCV, TATV, TYCV, TATV, TTN, KYTV, TYCV, TATV, and TBN.
  • 17. The composition of any of the preceding claims, wherein the DSB-end blunting enzyme is a polymerase.
  • 18. The composition of claim 17, wherein the polymerase is selected from the group consisting of DNA polymerase λ (POLL), DNA polymerase μ (POLM), DNA polymerase β (POLB), DNA polymerase γ (POLG), DNA polymerase ι (POLI), DNA polymerase η (POLH), TENT4A, DNA polymerase ν (POLN), DNA Ligase 4, DNTT, XRCC4, DNA Polymerase IV, fungi pol IV-like DNA polymerase, DNA polymerase/3′-5′ exonuclease Pol X, and T4 DNA polymerase (T4pol).
  • 19. The composition of any one of claims 1-16, wherein the DSB-end blunting enzyme is a single-strand DNA specific nuclease.
  • 20. The composition of claim 19, wherein the single-strand DNA specific nuclease is selected from the group consisting of MGME1, FEN1, DNA2, XRN2, EXOG, EXO5, AP endonuclease, RecJ exonuclease (RecJ), XseA, XseB, S1 nuclease (nucS), P1 nuclease, Artemis, T4 DNA polymerase (T4pol), and Csm1.
  • 21. The composition of any of the preceding claims, wherein the DSB-end blunting enzyme is covalently bound to the nuclease by a linker.
  • 22. The composition of claim 21, wherein the linker is a peptide.
  • 23. The composition of any of the preceding claims, wherein the dsDNA is in a cell.
  • 24. The composition of claim 23, wherein the cell is a eukaryotic cell.
  • 25. The composition of claim 24, wherein the eukaryotic cell is a mammalian cell.
  • 26. The composition of claim 25, wherein the mammalian cell is a human cell.
  • 27. The composition of any of the preceding claims, wherein the composition further comprises an inhibitor of the microhomology-mediated end joining (MMEJ) pathway.
  • 28. The composition of claim 27, wherein the MMEJ pathway inhibitor is a CtIP or MRN inhibitor.
  • 29. The composition of claim 28, wherein the CtIP inhibitor is selected from KLHL15 and PIN1.
  • 30. The composition of claim 29, wherein the MRN inhibitor is selected from E1b55K and E40rf6.
  • 31. A first nucleic acid molecule encoding the nuclease of any of the preceding claims.
  • 32. A second nucleic acid molecule encoding the DSB-end blunting enzyme of any of the preceding claims.
  • 33. A third nucleic acid molecule encoding the sgRNA of any of the preceding claims.
  • 34. One or more vectors comprising the nucleic acid molecule of claims 30-32.
  • 35. A cell comprising the composition of claims 1-30, the nucleic acid molecule of claims 31-33 or the one or more vectors of claim 34.
  • 36. The cell of claim 35, wherein the cell is a prokaryotic cell.
  • 37. The cell of claim 35, wherein the cell is a eukaryotic cell.
  • 38. The cell of claim 37, wherein the eukaryotic cell is a mammalian cell.
  • 39. The cell of claim 38, wherein the mammalian cell is a human cell.
  • 40. A method of inserting or deleting one or more single base pairs in a double-stranded DNA (dsDNA), the method comprising: (a) cleaving the dsDNA at a target site with a target specific nuclease, wherein the cleavage results in overhangs on both dsDNA ends;(b) inserting a nucleotide complementary to the overhanging nucleotide on both of the dsDNA ends using a double strand break (DSB)-end blunting enzyme, or removing the overhanging nucleotide on both of the dsDNA ends using the DSB-end blunting enzyme; and(c) ligating the dsDNA ends together,
  • 41. The method of claim 40, wherein the target specificity of the nuclease is provided by a guide RNA (gRNA).
  • 42. The method of claim 41, wherein the gRNA is a single guide RNA (sgRNA).
  • 43. The method of claim 42, wherein the sgRNA comprises a nucleic acid sequence at least 75% identical to the nucleic acid sequence of SEQ ID NOs: 54-64.
  • 44. The method of claim 42, wherein the sgRNA comprises one or more MS2 stem loops that link a MS2-binding protein to the sgRNA, and wherein the MS2-binding protein binds to the DSB-blunting enzyme.
  • 45. The method of claim 40, wherein the DSB-end blunting enzyme is overexpressed.
  • 46. The method of any one of claims 40-45, wherein the nuclease induces staggered ends on the cleaved dsDNA.
  • 47. The method of claim 46, wherein the nuclease is an altered scissile variant.
  • 48. The method of claim 47, wherein the altered scissile variant is ΔF916, G915F, F916P, R918A, R919P or Q920P.
  • 49. The method of any one of claims 40-48, wherein the nuclease is selected from the group consisting of SpCas9, LZ3Cas9 (N690C, T769I, G915M, N980K), LbCas12a, AsCas12a and FnCas12a.
  • 50. The method of any one of claims 40-46 wherein the nuclease comprises an amino acid sequence at least 85% identical to an amino acid sequence selected from the group consisting of SEQ ID Nos: 95-106
  • 51. The method of claim 50, wherein the nuclease comprises an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 52. The method of claim 50, wherein the nuclease comprises an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 53. The method of claim 50, wherein the nuclease comprises an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 54. The method of claim 50, wherein the nuclease comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 95-106.
  • 55. The method of claim 40, wherein the amino acid sequence specifically binds to a protospacer-adjacent motif (PAM).
  • 56. The composition of claim 55, wherein the PAM is selected from the group consisting of NNNNGATT, NNNNGNNN, NNG, NG, NGAN, NGNG, NGAG, NGCG, NAAG, NGN, NRN, NNGRRN, NNNRRT, TTTN, TTTV, TYCV, TATV, TYCV, TATV, TTN, KYTV, TYCV, TATV, and TBN.
  • 57. The method of any one of claims 40-56, wherein the DSB-end blunting enzyme is a polymerase.
  • 58. The method of claim 57, wherein the polymerase is selected from the group consisting of of DNA polymerase λ (POLL), DNA polymerase μ (POLM), DNA polymerase β, DNA polymerase γ (POLG), DNA polymerase ι (POLI), DNA polymerase η (POLH), TENT4A, DNA polymerase ν (POLN), DNA Ligase 4, DNTT, XRCC4, DNA Polymerase IV, fungi pol IV-like DNA polymerase, DNA polymerase/3′-5′ exonuclease Pol X, and T4 DNA polymerase (T4pol).
  • 59. The method of claim 40, wherein the DSB-end blunting enzyme is a single-strand DNA specific nuclease.
  • 60. The method of claim 59, wherein the single-strand DNA specific nuclease is selected from the group consisting of MGME1, FEN1, DNA2, XRN2, EXOG, EXO5, AP endonuclease, RecJ exonuclease, XseA, XseB, S1 nuclease (nucS), P1 nuclease, Artemis, T4 DNA polymerase (T4pol), and Csm1.
  • 61. The method of any one of claims 40-60, wherein the DSB-end blunting enzyme is covalently bound to the nuclease by a linker.
  • 62. The method of claim 61 wherein the linker is a peptide.
  • 63. The method of any one of claims 40-62, wherein the dsDNA is in a cell.
  • 64. The method of claim 63, wherein the cell is a eukaryotic cell.
  • 65. The method of claim 64, wherein the eukaryotic cell is a mammalian cell.
  • 66. The method of claim 65, wherein the mammalian cell is a human cell.
  • 67. The method of any one of claims 40-66, wherein the method is further comprising an inhibitor of the microhomology-mediated end joining (MMEJ) pathway.
  • 68. The method of claim 67, wherein the MMEJ pathway inhibitor is a CtIP or MRN inhibitor.
  • 69. The method of claim 68, wherein the CtIP inhibitor is selected from KLHL15 and PIN1.
  • 70. The method of claim 68, wherein the MRN inhibitor is selected from E1b55K and E40rf6.
  • 71. A method of treating a disease caused by a frameshift mutation in the dsDNA in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the composition of any one of claims 1-30, the nucleic acid molecule of claims 31-33, the vector of claim 34 or the cell of claims 35-39.
  • 72. A method of treating a disease caused by a frameshift mutation in the dsDNA in a subject in need thereof comprising inserting or deleting a single base pair in the dsDNA with the frameshift mutation according to method of claims 40-70.
  • 73. A method of enhancing out-frame mutation in the dsDNA in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the composition of any one of claims 1-30, the nucleic acid molecule of claims 31-33, the vector of claim 34 or the cell of claims 35-39.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/913,048 filed on Oct. 9, 2019 and U.S. Provisional Application No. 62/984,422, filed on Mar. 3, 2020, the entire disclosures of which are hereby incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The invention was made with government support under Grant No. U01CA250554 awarded by the U.S. National Institute of Health (NIT)/National Cancer Institute (NCI) Next Generation of Cancer Model (NGCM) program. The government has certain rights in the invention.

Provisional Applications (2)
Number Date Country
62984422 Mar 2020 US
62913048 Oct 2019 US