Consumers of media content, such as movies, television programs, and short videos, are increasingly streaming media content over the Internet to client devices, such as laptops, smart TVs, and streaming media players. Typically, when online streaming is used, media content is constantly received in blocks and rendered on the client devices as the blocks are received. Online streaming may thus generate a higher bandwidth usage than other online activities.
When performed inefficiently, online streaming may waste network resources. For instance, network infrastructure may be under-utilized in situations where blocks of streamed content are requested one-by-one. In such situations, a client device may transmit a first request, receive a response, and transmit a second request only after the response to the first request is received. Streaming content in this manner may result in a network throughput that is below the network's bandwidth.
In some embodiments, a system for controlling delivery of content is provided. The system includes processing circuitry configured to: transmit, to a server, a plurality of requests for blocks of the content; while at least some of the plurality of requests are still outstanding: detect a change of a service characteristic of a connection between the system and the server; determine a preferred number of outstanding requests; and cancel at least some of the requests from the plurality that are still outstanding based on the preferred number and a count of the requests from the plurality that are still outstanding.
In some embodiments, a system for presenting media content using cached assets is provided. The system includes processing circuitry configured to: transmit to a server a plurality of requests for blocks of a content, the plurality including a first request for a first block of the content and a second request for a second block of the content; while the second request is still outstanding: receive a first block of the content responsive to the first request; determine a preferred number of outstanding requests; and when the preferred number of outstanding requests is greater than the number of requests from the plurality that are currently outstanding, transmit a third request for a third block before the second block is received by the processing circuitry; otherwise, when the preferred number of outstanding requests is less than or equal to the number of requests from the plurality that are currently outstanding, transmit the third request after the second block is received by the processing circuitry.
In some embodiments, a method for controlling delivery of content is provided, the method comprising: transmitting a plurality of requests for blocks of the content to a server; while at least some of the plurality of requests are still outstanding: detecting a change of a service characteristic of a connection with a server; determining, by a processing circuitry, a preferred number of outstanding requests; and cancelling at least some of the requests from the plurality that are still outstanding based on the preferred number and a count of the requests from the plurality that are still outstanding.
In some embodiments, a method for controlling delivery of content is provided, the method comprising: transmitting, by a device to a server, a plurality of requests for blocks of a content, the plurality including a first request for a first block of the content and a second request for a second block of the content; while the second request is still outstanding: receiving a first block of the content responsive to the first request; determining a preferred number of outstanding requests; and when the preferred number of outstanding requests is greater than the number of requests from the plurality that are currently outstanding, transmitting a third request for a third block of the content before the second block is received at the device; otherwise, when the preferred number of outstanding requests is less than or equal to the number of requests from the plurality that are currently outstanding, transmitting the third request after the second block is received at the device.
In some embodiments, a non-transitory computer-readable medium is provided that contains computer-executable instructions. The computer-executable instructions, when executed by a processing circuitry, cause the processing circuitry to perform a method for controlling delivery of content, the method comprising: transmitting a plurality of requests for blocks of the content to a server; while at least some of the plurality of requests are still outstanding: detecting a change of a service characteristic of a connection with a server; determining a preferred number of outstanding requests; and cancelling at least some of the requests from the plurality that are still outstanding based on the preferred number and a count of the requests from the plurality that are still outstanding.
In some embodiments, a non-transitory computer-readable medium is provided that contains computer-executable instructions. The computer-executable instructions, when executed by a processing circuitry, cause the processing circuitry to perform a method for controlling delivery of content, the method comprising: transmitting to a server a plurality of requests for blocks of a content, the plurality including a first request for a first block of the content and a second request for a second block of the content; while the second request is still outstanding, receiving a first block of the content responsive to the first request; determining a preferred number of outstanding requests; and when the preferred number of outstanding requests is greater than the number of requests from the plurality that are currently outstanding, transmitting a third request for a third block of the content before the second block is received at the device; when the preferred number of outstanding requests is less than or equal to the number of requests from the plurality that are currently outstanding, transmitting the third request after the second block is received at the device.
The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
This invention generally relates to systems, methods, and media for controlling delivery of content. In some embodiments, a technique for controlling delivery content is provided. In accordance with the technique, multiple requests for blocks of the streamed content may be issued simultaneously, or nearly simultaneously, by a client device without waiting for the receipt of a response to any of the requests. The requests may be received at a server and served in the order of their arrival. Requests that have been transmitted by the client, but for which a response has not been received may be referred to as outstanding requests.
In some embodiments, the number of outstanding requests may be dynamically increased in dependence upon predetermined criterion/or criteria. Furthermore, in some embodiments, the number of outstanding request may be dynamically reduced in response to predetermined criterion/or criteria. The number of outstanding requests may be reduced by cancelling some of the outstanding requests. Dynamically reducing and/or increasing the number of outstanding requests may enable the systems, methods, and media to react to unexpected events, such as increase/decrease of available network bandwidth leading to the occurrence of underflow conditions, and/or any other suitable event.
As referred to herein, the term “media content” or “content” should be understood to mean one or more electronically consumable media assets, such as television programs, pay-per-view programs, on-demand programs (e.g., as provided in video-on-demand (VOD) systems), Internet content (e.g., streaming content, downloadable content, Webcasts, etc.), movies, films, video clips, audio, audio books, and/or any other media or multimedia and/or combination of the same. As referred to herein, the term “multimedia” should be understood to mean media content that utilizes at least two different content forms described above, for example, text, audio, images, video, or interactivity content forms. Media content may be recorded, played, displayed or accessed by user equipment devices, but can also be part of a live performance. In some embodiments, media content can include over-the-top (OTT) content. Examples of OTT content providers include YOUTUBE, NETFLIX, and HULU, which provide audio and video via IP packets. Youtube is a trademark owned by Google Inc., Netflix is a trademark owned by Netflix Inc., and Hulu is a trademark owned by Hulu, LLC.
Media content can be provided from any suitable source in some embodiments. In some embodiments, media content can be electronically delivered to a users location from a remote location. For example, media content, such as a Video-On-Demand movie, can be delivered to a user's home from a cable system server. As another example, media content, such as a television program, can be delivered to a user's home from a streaming media provider over the Internet.
As illustrated in
Additional media guidance data, such as additional media identifiers, may be presented in response to a user selecting a navigational icon 108.
Display 100 may also include a media queue region 110 that lists one or more pieces of media content selected and queued for playback, and a video region 112 in which pieces of media content can be presented.
In some embodiments, information relating to a piece of media content can also be presented to a user. For example, information 118 can include a name of a piece of media content, a time at which the media content is available (if applicable), a source (e.g., channel, Web address, etc.) from which the media content can be obtained, a parental rating for the piece of media content, a duration of the piece of media content, a description of the piece of media content, a review or a quality rating of the piece of media content, and/or any other suitable information.
In some embodiments, pieces of media content can be played in a full sized display screen in response to a user selecting “full screen” button 120.
In some embodiments, a user may be able to set settings related to the interactive media guidance application by pressing a settings button, such as settings button 122 of
Turning to
In some embodiments, user television equipment device 202, user computer equipment device 204, and wireless user communication device 206, which can each be referred to herein as a “user equipment device,” can be any suitable devices for presenting media content, presenting an interactive media guidance application for selecting content, and/or performing any other suitable functions as described herein.
User television equipment device 202 can be any suitable user television equipment device or devices in some embodiments. For example, in some embodiments, user television equipment device 202 can include any suitable television, smart TV, set-top box, integrated receiver decoder (IRD) for handling satellite television, digital storage device, digital media receiver (DMR), digital media adapter (DMA), streaming media device, DVD player, DVD recorder, connected DVD, local media server, BLU-RAY player, BLU-RAY recorder, any other suitable user television equipment, and/or any other suitable combination of the same.
User computer equipment 204 can be any suitable user computer equipment in some embodiments. For example, in some embodiments, user computer equipment 204 can include any suitable personal computer (PC), laptop computer, tablet computer, WebTV box, personal computer television (PC/TV), PC media server, PC media center, hand-held computer, stationary telephone, non-portable gaming machine, any other suitable user computer equipment, and/or any other suitable combination of the same.
Wireless user communication device 206 can be any suitable wireless user communication device or devices in some embodiments. For example, in some embodiments, wireless user communication device 206 can include any suitable personal digital assistant (PDA), mobile telephone, portable video player, portable music player, portable gaming machine, smart phone, any other suitable wireless device, and/or any suitable combination of the same.
In some embodiments, user equipment devices may be connectable to a communications network. For example, in some embodiments, user equipment devices may be Internet-enabled allowing them to access Internet media content.
In some embodiments, communications network 214 may be any one or more networks including the Internet, a mobile phone network, a mobile voice network, a mobile data network (e.g., a 3G, 4G, or LTE network), a cable network, a satellite network, a public switched telephone network, a local area network, a wide area network, any other suitable type of communications network, and/or any suitable combination of communications networks.
Media content source 216 may include one or more types of content distribution equipment for distributing any suitable media content, including television distribution facility equipment, cable system head-end equipment, satellite distribution facility equipment, programming source equipment (e.g., equipment of television broadcasters, such as NBC, ABC, HBO, etc.), intermediate distribution facility equipment, Internet provider equipment, on-demand media server equipment, and/or any other suitable media content provider equipment, in some embodiments. NBC is a trademark owned by the National Broadcasting Company, Inc., ABC is a trademark owned by the American Broadcasting Companies, Inc., and HBO is a trademark owned by the Home Box Office, Inc.
Media content source 216 may be operated by the originator of content (e.g., a television broadcaster, a Webcast provider, etc.) or may be operated by a party other than the originator of content (e.g., an on-demand content provider, an Internet provider of content of broadcast programs for downloading, etc.), in some embodiments.
Media content source 216 may be operated by cable providers, satellite providers, on-demand providers, Internet providers, providers of over-the-top content, subscription providers, rental providers, and/or any other suitable provider(s) of content, in some embodiments.
Media content source 216 may include a remote media server used to store different types of content (including video content selected by a user), in a location remote from any of the user equipment devices, in some embodiments. Systems and methods for remote storage of content, and providing remotely stored content to user equipment are discussed in greater detail in connection with Ellis et al., U.S. Pat. No. 7,761,892, issued Jul. 20, 2010, which is hereby incorporated by reference herein in its entirety.
Media guidance data source 218 may provide any suitable media guidance data, such as names of pieces of media content, times at which the media content is available (if applicable), sources (e.g., channels, Web addresses, etc.) from which the media content can be obtained, parental ratings for the pieces of media content, durations of the pieces of media content, descriptions of the pieces of media content, reviews or quality ratings of the pieces of media content, and/or any other suitable information, in some embodiments.
Media guidance data may be provided by media guidance data source 218 to the user equipment devices using any suitable approach, in some embodiments. In some embodiments, for example, an interactive media guidance application may be a stand-alone interactive television program guide that receives this media guidance data from media guidance data source 218 via a data feed (e.g., a continuous feed or trickle feed). In some embodiments, this media guidance data may be provided to the user equipment on a television channel sideband, using an in-band digital signal, using an out-of-band digital signal, or by any other suitable data transmission technique from media guidance data source 218. In some embodiments, this media guidance data may be provided to user equipment on multiple analog or digital television channels from media guidance data source 218. In some embodiments, media guidance data from media guidance data source 218 may be provided to users' equipment using a client-server approach, wherein media guidance data source 218 acts as a server.
Cloud-based storage 230 can be any suitable storage for storing any suitable content, data, licenses, etc. so that it is accessible via communication network 214, in some embodiments. In some embodiments, cloud-based storage 230 can be virtualized pools of storage hosted in an Internet data center, such as the Amazon S3 storage provided by Amazon Web Services of Herndon, Virginia, USA. In some embodiments, cloud-based storage 230 can be used to “locally” cache media content for presentation on user equipment devices 202, 204, and/or 206 rather than store that content in user equipment devices 202, 204, and/or 206.
Although only one each of user equipment devices 202, 204, and/or 206, sources 216 and 218, and storage 230 are illustrated in
Each user may utilize more than one type of user equipment device in some embodiments. In some embodiments, any of user equipment devices 202, 204, and 206 can be combined, and any of sources 216 and 218 can be combined.
Paths 208, 210, 212, 220, 222, and 232 may separately or together include one or more communications paths, such as, a satellite path, a fiber-optic path, a cable path, a path that supports Internet communications (e.g., IPTV), free-space connections (e.g., for broadcast or other wireless signals), or any other suitable wired or wireless communications path or combination of such paths, in some embodiments. Path 212 is drawn with dotted lines to indicate that, in the exemplary embodiment shown in
Although communications paths are not drawn between user equipment devices 202, 204, and 206, sources 216 and 218, and storage 230, these components may communicate directly with each other via communication paths, such as those described above, as well via point-to-point communication paths, such as USB cables, IEEE 1394 cables, wireless paths (e.g., Bluetooth, infrared, IEEE 802.11x, etc.), or other communication via wired or wireless paths, in some embodiments. BLUETOOTH is a certification mark owned by Bluetooth SIG, INC. The user equipment devices 202, 204, and 206, sources 216 and 218, and storage 230 may also communicate with each other directly through an indirect path via communications network 214, in some embodiments.
In some embodiments, sources 216 and 218 and storage 230 can be implemented in any suitable hardware. For example, sources 216 and 218 and storage 230 can be implemented in any of a general purpose device such as a computer or a special purpose device such as a client, a server, mobile terminal (e.g., mobile phone), etc. Any of these general or special purpose devices can include any suitable components such as a hardware processor (which can be a microprocessor, digital signal processor, a controller, etc.).
Control circuitry 304 may include any suitable processing circuitry such as processing circuitry 306. As referred to herein, processing circuitry 306 can be circuitry that includes one or more microprocessors, microcontrollers, digital signal processors, programmable logic devices, field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), hardware processors, etc., and may include a multi-core processor (e.g., dual-core, quad-core, hexa-core, or any suitable number of cores) or a supercomputer, in some embodiments. In some embodiments, processing circuitry may be distributed across multiple separate processors or processing units, such as, for example, multiple of the same type of processing units (e.g., two Intel Core i7 processors) or multiple different processors (e.g., an Intel Core i5 processor and an Intel Core i7 processor).
Storage 308 can be any suitable digital storage mechanism in some embodiments. For example, storage 308 can include any device for storing electronic data, program instructions, computer software, firmware, register values, etc., such as random-access memory, read-only memory, hard drives, optical drives, digital video disc (DVD) recorders, compact disc (CD) recorders, BLU-RAY disc (BD) recorders, BLU-RAY 3D disc recorders, digital video recorders (DVR, sometimes called a personal video recorder, or PVR), solid state devices, quantum storage devices, gaming consoles, gaming media, or any other suitable fixed or removable storage devices, and/or any combination of the same. Storage 308 may be used to store media content, media guidance data, executable instructions (e.g., programs, software, scripts, etc.) for providing an interactive media guidance application, and for any other suitable functions, and/or any other suitable data or program code, in accordance with some embodiments. Nonvolatile memory may also be used (e.g., to launch a boot-up routine and other instructions), in some embodiments. Cloud-based storage may be used to supplement storage 308 or instead of storage 308 in some embodiments.
Control circuitry 304 may include video generating circuitry and tuning circuitry, such as one or more analog tuners, one or more MPEG-2 decoders or other digital decoding circuitry, high-definition tuners, or any other suitable tuning or video circuits or combinations of such circuits, in some embodiments. Encoding circuitry (e.g., for converting over-the-air, analog, or digital signals to MPEG signals for storage) may also be provided, in some embodiments. Control circuitry 304 may also include scaler circuitry for upconverting and downconverting content into the preferred output format of the user equipment 300, in some embodiments. Circuitry 304 may also include digital-to-analog converter circuitry and analog-to-digital converter circuitry for converting between digital and analog signals. The video generating circuitry may be used for presenting media content, in some embodiments. The tuning and encoding circuitry may be used by the user equipment device to receive and to display, to play, or to record content, in some embodiments. The tuning and encoding circuitry may also be used to receive guidance data, in some embodiments. The circuitry described herein, including for example, the tuning, video generating, encoding, decoding, encrypting, decrypting, scaler, and analog/digital circuitry, may be implemented using software running on one or more general purpose or special purpose hardware processors, in some embodiments. Multiple tuners may be provided to handle simultaneous tuning functions (e.g., watch and record functions, picture-in-picture (PIP) functions, multiple-tuner recording, etc.), in some embodiments. If storage 308 is provided as a separate device from user equipment 300, the tuning and encoding circuitry (including multiple tuners) may be associated with storage 308, in some embodiments.
A user may send instructions to control circuitry 304 using user input interface 310, in some embodiments. User input interface 310 may be any suitable user interface, such as a remote control, mouse, trackball, keypad, keyboard, touch screen, touchpad, stylus input, joystick, voice recognition interface, or other user input interfaces, in some embodiments.
Display 312 may be provided as a stand-alone device or integrated with other elements of user equipment device 300, in some embodiments. Display 312 may be one or more of a monitor, a television, a liquid crystal display (LCD) for a mobile device, or any other suitable equipment for displaying visual images, in some embodiments. In some embodiments, display 312 may be HDTV-capable. In some embodiments, display 312 may be a 3D display.
A video card or graphics card may generate the output to display 312, in some embodiments. The video card may offer various functions such as accelerated rendering of 3D scenes and 2D graphics, MPEG-2/MPEG-4 decoding, TV output, or the ability to connect multiple monitors, in some embodiments. The video card may be any processing circuitry described above in relation to control circuitry 304, in some embodiments. The video card may be integrated with the control circuitry 304 or may be integrated with display 312, in some embodiments.
Speakers 314 may be provided as integrated with other elements of user equipment device 300 or may be stand-alone units, in some embodiments. The audio component of media content displayed on display 312 may be played through speakers 314, in some embodiments. In some embodiments, the audio may be distributed to a receiver (not shown), which processes and outputs the audio via speakers 314.
I/O interface 316 can be any suitable I/O interface 316 in some embodiments. For example, in some embodiments, I/O interface 316 can be any suitable interface for coupling control circuitry 304 (and specifically processing circuitry 306) to one or more communications paths (e.g., paths 208, 210, and 212 described in
The processes for playing back media content, the interactive media guidance application and/or any other suitable functions as described herein may be implemented as stand-alone applications on user equipment devices in some embodiments. For example, the processes for playing back media content and/or the interactive media guidance application may be implemented as software or a set of executable instructions which may be stored in storage 308, and executed by control circuitry 304 of a user equipment device 300.
In some embodiments, the processes for playing back media content, the interactive media guidance application, and/or any other suitable functions as described herein may be implemented as client-server applications. In such client-server applications, a client application may reside on a user equipment device, and a server application may reside on a remote server, such as source 216. For example, the processes for playing back media content may be implemented partially as a client application on control circuitry 304 of user equipment device 300 and partially as a server application on media content source 216. As another example, an interactive media guidance application may be implemented partially as a client application on control circuitry 304 of user equipment device 300 and partially on a remote server (e.g., media guidance data source 218 of
Control circuitry 402 may include any suitable processing circuitry such as processing circuitry 404. As referred to herein, processing circuitry 404 can be circuitry that includes one or more microprocessors, microcontrollers, digital signal processors, programmable logic devices, field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), hardware processors, etc., and may include a multi-core processor (e.g., dual-core, quad-core, hexa-core, or any suitable number of cores) or a supercomputer, in some embodiments. In some embodiments, processing circuitry may be distributed across multiple separate processors or processing units, such as, for example, multiple of the same type of processing units (e.g., two Intel Core i7 processors) or multiple different processors (e.g., an Intel Core i5 processor and an Intel Core i7 processor).
Storage 406 can be any suitable digital storage mechanism in some embodiments. For example, storage 406 can include any device for storing electronic data, program instructions, computer software, firmware, register values, etc., such as random-access memory, read-only memory, hard drives, optical drives, digital video disc (DVD) recorders, compact disc (CD) recorders, BLU-RAY disc (BD) recorders, BLU-RAY 3D disc recorders, digital video recorders (DVR, sometimes called a personal video recorder, or PVR), solid state devices, quantum storage devices, gaming consoles, gaming media, or any other suitable fixed or removable storage devices, and/or any combination of the same. Storage 406 may be used to store media content, media guidance data, executable instructions (e.g., programs, software, scripts, etc.) for providing an interactive media guidance application, and for any other suitable functions, and/or any other suitable data or program code, in accordance with some embodiments. Nonvolatile memory may also be used (e.g., to launch a boot-up routine and other instructions). Cloud-based storage may be used to supplement storage 406 or instead of storage 406 in some embodiments.
Control circuitry 402 may include encoding circuitry for encoding media content (e.g., video or audio). Control circuitry 402 may also include adaptive bit streaming circuitry for encoding the media content into multiple bit rates and performing switches between the streams during normal playback based upon the streaming conditions. Control circuitry 402 may also include streaming circuitry for transmitting the different bit streams via network interface 408.
For example, in some embodiments, interface 408 can be any suitable interface for coupling control circuitry 402 (and specifically processing circuitry 404) to one or more communications networks. More particularly, for example, interface 408 can include a cable modem, an integrated services digital network (ISDN) modem, a digital subscriber line (DSL) modem, a telephone modem, an Ethernet card, a fiber-optic modem, a wireless modem, and/or any other suitable communications circuitry. In some embodiments, the I/O interface can be used by server 400 to stream content to a client device, such as device 300. More particularly, in some embodiments, interface 408 can be used to provide media content (e.g., broadcast programming, on-demand programming, Internet content, content available over a local area network (LAN) or wide area network (WAN), and/or any other suitable content). In some embodiments, interface 408 can also be used to receive commands, requests, from a client device. Such requests may be for blocks (e.g., chunks) of media content that is being streamed.
In operation, device 300 may transmit to server 400 requests for blocks of the content that is being streamed. Each request may be for a different block of the content. Each block of the content may be a fragment of a larger content file (e.g., a video file or an audio file) that is stored on the server. Furthermore, each block of content may have a size (e.g., 2 MB) and be associated with a bit rate (e.g., compression level) at which the content is encoded. The size and the content may be varied by device 300, in some embodiments. In some embodiments, each block may carry several seconds (e.g two (2) seconds) of playable content (e.g., video or audio).
In operation, server 400 may receive requests for blocks of content from a number of devices, including device 300. Depending on the time it takes a message to travel from the client to the server over the network and on the rate at which requests from various devices are arriving at the server, there might be a considerable delay between server 400 receiving a request for a block of content from device 300 and server 400 transmitting a response back to device 300 and when the client receives the response The larger the delay, the greater the latency of the connection between server 400 and device 300.
When requested blocks of content arrive at device 300, they may be stored in a memory buffer. The memory buffer may reside on device 300 or elsewhere. The memory buffer may be implemented as a first-in-first-out (FIFO) structure from which blocks of content are removed in the order of their arrival, decoded, and output for presentation to a user (e.g., via a display screen or a speaker). In order to ensure uninterrupted streaming of the content, blocks of the content should arrive in the buffer at a rate that is the same or greater than the rate at which the blocks are removed from the buffer. The rate at which the blocks are removed (e.g., the consumption rate of the content) relates to the presentation rate.
The connection between server 400 and device 300 must have sufficient small latency and sufficiently high bandwidth in order to ensure a proper quality of the streaming. The latency of the connection, in some embodiments, may be equal to the time differential between the transmission of a request for a block of content by the client device to server 400 and the receipt of the first network packet associated with the block of content at device 300. The bandwidth of the connection, in some embodiments, may be equal to the size of the block divided by the time differential between the receipt of the first and last network packet associated with a block of content The bandwidth of the connection may thus be based solely on the state of the network components (e.g., switches and bridges) that form the communications path(s), whereas the latency may also account for any delay in the serving of the requests that is attributable to server 400 and the network path chosen to deliver the content.
To increase the rate at which the connection is utilized, device 300 may use a technique herein referred to as pipelining. In some cases, pipelining multiple requests leads to lowering buffering delays and hence faster startup times. In accordance with this technique, device 300 may issue multiple requests simultaneously, or nearly simultaneously, before waiting for receipt of responses to any of the requests. The pipelining technique may increase the utilization rate by overlapping latency with simultaneous data download (e.g., throughput) of the connection between server 400 and device 300.
At time t13, device 300 can determine whether to increase the number of requests that are currently outstanding. In some embodiments, a request for a block of content may be considered outstanding if the request has been transmitted by device 300, but the requested block of content has not yet been received by device 300. In other embodiments, a request for a block of content may be considered outstanding if the request has been transmitted by device 300, but the block of content has not yet been transmitted by server 400. In this example, at time t13, Requests 2-5 are currently outstanding.
In some embodiments, device 300 may determine a preferred number of outstanding requests based on one or more service characteristics of the connection between device 300 and server 400. If the preferred number is greater than the number of requests that are currently outstanding, device 300 may transmit one or more additional requests in order to reach the preferred number.
In some embodiments, the preferred number of outstanding requests may be determined as follows:
where, tlatency is the latency (e.g., in seconds) of the connection between server 400 and device 300 and ttransmission is the time that is expected to take for a block of the content to be carried from server 400 to device 300 by one or more communications path(s) connecting server 400 to device 300. In some embodiments, ttransmission may be calculated as follows:
where, “block size” is the size of a requested block of the content (e.g., in Mbits) and bandwidth is the bandwidth of the connection—namely, the bandwidth, or expected bandwidth, of communications path(s) connecting device 300 to server 400 (e.g., in Mbits/sec). When the number of outstanding request is large enough, the server will continuously keep sending data to the client as there is always an outstanding (non-served) request available and the network is fully utilized.
It should be noted that any number of suitable criteria for determining the preferred number of outstanding requests may be used. For example, criteria that are similar to the policy rules R1-R9 discussed below may be used to determine the preferred number based on one or more of size of blocks that are being requested, number of requests that are currently outstanding, bit rate at which the content in the blocks is encoded, bandwidth of the communications link connecting device 300 to server 400, latency of the connection between device 300 and server 400, a calculation of the preferred number of requests and/or any other suitable criteria or criterion. In that regard, the disclosure is not limited to using Equation 1 to determine the preferred number of outstanding requests.
At time t14, device 300 can determine that the preferred number of outstanding requests is greater than the number of requests that are currently outstanding and transmits Request 6 to server 400. In some embodiments, multiple requests may be sent at time t14 in order to raise the total number of outstanding requests to the preferred number. In some embodiments, by increasing the number of outstanding requests, device 300 may fully utilize network 214. The request is received at the server at time t15.
At time t16, device 300 can determine whether to cancel any of the requests that are currently outstanding (e.g., Requests 2-6). By way of example, device 300 may cancel outstanding requests in response to the occurrence of one or more of the following events:
Specifically, in some embodiments, device 300 may cancel outstanding requests when the bandwidth of the connection between device 300 and server 400 either increases or decreases. Cancelling outstanding requests when the amount of available bandwidth has increased may permit device 300 to issue new requests for blocks of the content that have a higher encoding bit rate. Similarly, cancelling outstanding requests when the amount of available bandwidth has decreased may permit device 300 to issue new requests for blocks of the content that have a lower encoding bit rate. In that regard, device 300 may cancel outstanding requests in order to increase the quality of the content's playback (when additional bandwidth becomes available) or maintain the playback uninterrupted when the amount of available bandwidth decreases Device 300, in some embodiments, may adapt to changing network conditions by keeping the number of outstanding requests as low as possible while still ensuring an appropriate utilization level for network 214, or network path connecting device 300 to server 400.
At time t17, device 300 determines how many requests to cancel. The determination may be made in accordance with a policy rule. Examples of policy rules may include:
In some embodiments, the policy rule for cancelling one or more outstanding requests may be driven by at least two considerations that at are odds with one another. For example, it might be desirable for device 300 to switch to using a different encoding bit rate for the streamed content as soon as possible. Yet, it might also be desirable for device 300 to avoid a depletion of its buffer and disruptions in playback of the content over the course of switching to a different bit rate. To balance these considerations, as illustrated above, the policy rule for determining how many outstanding requests to cancel may be based on one or more of size of blocks that are being requested, number of requests that are currently outstanding, bit rate at which the content in the blocks is encoded, bandwidth of the communications link connecting device 300 to server 400, latency of the connection between device 300 and server 400, a calculation of the preferred number of requests, and/or any other suitable criteria or criterion.
At time t18, device 300 may cancel one or more outstanding requests. The cancelation may be performed based on the number determined at time t17. For example, if at time t17 device 300 determines that two (2) requests need to be canceled, the device may cancel the two outstanding requests that were transmitted most recently (e.g., Requests 5-6).
In some embodiments, outstanding requests may be canceled by device 300 transmitting a cancellation notice that identifies one or more outstanding requests. Upon receiving such a notice, server 400 may cancel processing of the identified requests. As another example, in some embodiments, the cancellation may involve terminating the current communications session between device 300 and server 400, starting a new communications session, and re-issuing requests that were outstanding when the first session was canceled except for those requests that needed to be canceled. Terminating the current communications session may be utilized as a means for request cancelation in circumstances where the OSI application layer protocol used for the content streaming does not permit selective request cancelation. HTTP 1.1 is an example of one such protocol. It should be noted that in some embodiments, due to the time it may take to cancel requests and build up a new connection, request cancellation may need to be avoided as much as possible.
In this example, responses to the requests that remain outstanding after the cancellation is performed, namely Requests 2-4, are transmitted at times t20a-c, t22a-c, and t24a-c, respectively. Those responses are received at client device 300 at times t21a-c, t23a-c, and t25a-c, respectively.
At 606, device 300 transmits a plurality of requests. Each request in the plurality specifies a different block of the content that device 300 seeks to obtain. In some embodiments, the number of requests in the plurality may depend on the set of measurements obtained at 604. Moreover, in some embodiments, the number of requests in the plurality may be determined using Equation 1 and/or one or more rules for determining a preferred number of outstanding requests.
At 608, a response to a request from the plurality is received at device 300. At 610, device 300 obtains another set of measurements of the same service characteristics whose measurements are obtained at 604. At 612, device 300 calculates a preferred number of outstanding requests. For example, in some embodiments, the preferred number may be calculated using Equation 1. As another example, in some embodiments, the preferred number may be calculated using one or more rules for calculating preferred numbers. As yet another example, in some embodiments, the preferred number may be calculated based on how many blocks of the content remain to be requested before the download of the content is finished.
At 614, a determination is made whether the preferred number of requests is determined to be greater than the number of service requests that are currently outstanding. If the preferred number is greater, at 616, one or more requests for other blocks of the content are transmitted from device 300 to server 400. Otherwise, process 600 proceeds to step 618. In some embodiments, the preferred number of outstanding requests may be re-calculated dynamically every time a response to an outstanding request is received.
At 618, device 300 monitors a service characteristic of the connection. The service characteristic may be one or more of latency, bandwidth or another characteristic that is indicative of the bandwidth and/or latency of the connection between device 300 and server 400, such as throughput, signal strength of network connection of the device 300, type of network access used by device (e.g., broadband, 3G, 4G), the time to cancel a request, or another similar characteristic. Device 300 may alone take measurements of the monitored characteristic or, additionally or alternatively, it may obtain the measurements from another node (e.g., server 400 or a network switch on the path between server 400 or device 300).
At 620, device 300 determines whether the value of the service characteristic has changed. In some aspects, device 300 may determine whether the most recent measurement of the monitored characteristic is greater or less (e.g., by a predetermined threshold or absolutely) than a previous measurement of the same characteristic. For example, in some embodiments, device 300 may determine whether the bandwidth of the connection between device 300 and server 400 has increased. Upon a positive determination, the process proceeds to 622. Otherwise, the process proceeds to 628.
At 622, device 300 calculates a preferred number of outstanding requests. The preferred number may be determined in accordance with Equation 1 or one or more rules for determining preferred numbers. In some embodiments, the preferred number may be calculated based on how many blocks of the content of have not been requested yet, and need to be requested before the download of the content is finished. At 624, device 300 determines whether the preferred number of requests is smaller than the number of requests that are currently outstanding. If the preferred number of requests is greater than or equal to the number of requests that are currently outstanding, the process proceeds to 628. Otherwise, in instances where the preferred number is less than the number of requests that are currently outstanding, the process proceeds to 626.
At 626, device 330 reduces the number of requests down to the preferred number. In doing so, device 300 may cancel as many requests as is necessary in order to bring the total number of outstanding requests down to the preferred number.
At 628, device 300 determines whether an underflow condition has occurred. In some embodiments, an underflow condition may exist when portions of the content that are stored in a media buffer of device 300 are consumed at a faster rate by the device than the rate at which new portions of the content arrive at device 300. In some aspects, underflow conditions may be caused by a decrease of the bandwidth, or increase of the latency, of the connection between server 400 and device 300. In other aspects, underflow conditions may be caused by events that take place at device 300 that cause the media content stored in the buffer to be depleted faster than expected (e.g., the receipt of a fast-forwarding instruction from a user).
Underflow conditions, in some embodiments, may be detected based on one or more of, amount of content data stored in the buffer, bit rate at which the content in the buffer is encoded, bandwidth of the connection, latency of the connection, and/or any other suitable quality of service metric of the connection. In some embodiments, an underflow condition may be considered to exist when the following inequality is met:
where “current rate” is the bandwidth of the connection between server 400 and device 300, “size data” is the sum of the sizes of all blocks that have been requested by the requests that are currently outstanding, tvideo in buffer is the total play time of all blocks of the content that are stored in the buffer, tdelay is a minimum playtime of content data that needs to be stored in the buffer of device 300 in order to prevent an underflow, tcancel request is an estimate of the time it takes the device 300 to cancel a request, and tsafety margin may be an additional safety margin that can be specified by an administrator. In some embodiments, tdelay may be set to equal between two (2) seconds and eight (8) seconds, or any other suitable variable. Furthermore, in some embodiments, t cancel request may be determined experimentally.
If an underflow condition is determined to have occurred, process 600 proceeds to 630. Otherwise, process 600 proceeds to 632. At 630, device 300 reduces the number requests from the plurality that are still outstanding down to the preferred number. In doing so, device 300 may cancel one or more of the outstanding requests. In some embodiments, the number of requests that are canceled may be determined in accordance with any one of the policy rules discussed with respect to
Furthermore, in some embodiments, whether an underflow condition exists may be determined with respect to an individual request for a block of content. In some of these embodiments, the value of tvideo in buffer may be based, at least partially, on the size, or playback duration, of one or more blocks of content that have been requested before the individual request is transmitted, but are yet to be downloaded at device 300. As can be readily appreciated, each downloaded block of content will increase the amount of content in the buffer, if it arrives before the buffer is depleted. Moreover, in some of these embodiments, the value of tvideo in buffer may be based on an estimate of the time it would take to download, at device 300, a block of content that is requested by one of the preceding requests in order to account for the fact that the content in the buffer is depleted while the block is being downloaded. Notably, whether an underflow condition exists may be determined with respect to each individual outstanding request in order to determine whether to cancel this request. This iterative approach may be more accurate and it may prevent unnecessary cancellations.
At 632, device 300 determines whether the amount of data stored in the buffer exceeds a predetermined threshold. If the amount of data is less than or equal to the threshold, the process proceeds to 636. Otherwise, the process proceeds to 634. At 634, in response to detecting that the threshold is exceeded, device 300 reduces the number of outstanding requests down to the preferred number. In doing so, device 300 may cancel one or more of the outstanding requests. In some embodiments, the number of requests that are canceled may be determined in accordance with any one of the policy rules discussed with respect to
At 636, device 300 determines whether the download of the content is completed. The download of the content is completed when the last block of the content has been received. If the download is completed, process 600 ends. Otherwise, the process returns to 608.
Although in the above example the tasks of process 600 are performed by device 300, or processing circuitry of device 300, in other examples one or more of the steps may be performed by server 400, or processing circuitry of 404 of server 400. It is to be understood that in such embodiments steps that are not performed by server 400 may still be performed by client device 300.
For instance, server 400, in some embodiments, may obtain the first set of measurements of service characteristics. By way of example, server 400, in some embodiments, may determine, at 604, the number of requests in the plurality, and communicate that number to device 300. Server 400, in some embodiments, may determine, at 608, the other set of measurements of service characteristics. Server 400, in some embodiments, may similarly determine the preferred number of outstanding requests. By way of example, server 400 may communicate, at 612, the determined number to device 300. Server 400, in some embodiments, may determine whether the preferred number is greater than the number of requests that are currently outstanding. Server 400, in some embodiments, may monitor, at 618, a characteristic of the connection. Server 400, in some embodiments, may determine, at 620, whether the monitored characteristic has changed. Server 400, in some embodiments, may calculate, at 622, the preferred number of outstanding requests. Server 400, in some embodiments, may determine, at 624, whether the preferred number is greater than the requests that are currently outstanding. Server 400, in some embodiments, may reduce, at 626, the number of outstanding requests if the preferred number is less than the number of requests that are currently outstanding (e.g., by removing requests from the waiting queue of the server). Server 400, in some embodiments, may determine, at 628, whether an underflow condition has occurred. Server 400, in some embodiments, may reduce, at 630, the number of outstanding requests in response to detecting the underflow condition.
Furthermore, in some embodiments, one or more of the tasks in process 600 that are not performed by server 400 or device 300 may be performed by another device that is part of network 214. In that regards, it is to be understood that the technique disclosed with respect to
Furthermore, it should be understood that the above steps of the flow diagrams of
In some embodiments, any suitable computer readable media can be used for storing instructions for performing the mechanisms and/or processes described herein. For example, in some embodiments, computer readable media can be transitory or non-transitory. For example, non-transitory computer readable media can include media such as magnetic media (such as hard disks, floppy disks, etc.), optical media (such as compact discs, digital video discs, Blu-ray discs, etc.), semiconductor media (such as flash memory, electrically programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM), etc.), any suitable media that is not fleeting or devoid of any semblance of permanence during transmission, and/or any suitable tangible media. As another example, transitory computer readable media can include signals on networks, in wires, conductors, optical fibers, circuits, any suitable media that is fleeting and devoid of any semblance of permanence during transmission, and/or any suitable intangible media.
The above described embodiments of the present disclosure are presented for purposes of illustration and not of limitation, and the present disclosure is limited only by the claims which follow.
The current application is a continuation of U.S. patent application Ser. No. 17/929,603 entitled “Systems, Methods, and Media for Controlling Delivery of Content” to van der Schaar et al., filed Sep. 2, 2022 and issued on Oct. 10, 2023 as U.S. Pat. No. 11,785,066, which is a continuation of U.S. patent application Ser. No. 17/068,737 entitled “Systems, Methods, and Media for Controlling Delivery of Content” to van der Schaar et al., filed Oct. 12, 2020 and issued on Sep. 6, 2022 as U.S. Pat. No. 11,438,394, which is a continuation of U.S. patent application Ser. No. 16/255,280 entitled “Systems, Methods, and Media for Controlling Delivery of Content” to van der Schaar et al., filed Jan. 23, 2019 and issued on Oct. 13, 2020 as U.S. Pat. No. 10,805,368, which is a continuation of U.S. patent application Ser. No. 14/943,004 entitled “Systems, Methods, and Media for Controlling Delivery of Content” to van der Schaar et al., filed Nov. 16, 2015 and issued on Mar. 5, 2019 as U.S. Pat. No. 10,225,299, which is a continuation of U.S. patent application Ser. No. 13/732,140 entitled “Systems, Methods, and Media for Controlling Delivery of Content” to van der Schaar et al., filed Dec. 31, 2012 and issued on Nov. 17, 2015 as U.S. Pat. No. 9,191,457, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3609227 | Kuljian | Sep 1971 | A |
3919474 | Benson | Nov 1975 | A |
4009331 | Goldmark et al. | Feb 1977 | A |
4694357 | Rahman et al. | Sep 1987 | A |
4694491 | Horne et al. | Sep 1987 | A |
4802170 | Trottier | Jan 1989 | A |
4964069 | Ely | Oct 1990 | A |
4974260 | Rudak | Nov 1990 | A |
5119474 | Beitel et al. | Jun 1992 | A |
5132992 | Yurt et al. | Jul 1992 | A |
5274758 | Beitel et al. | Dec 1993 | A |
5341474 | Gelman et al. | Aug 1994 | A |
5361332 | Yoshida et al. | Nov 1994 | A |
5396497 | Veltman | Mar 1995 | A |
5400401 | Wasilewski et al. | Mar 1995 | A |
5404436 | Hamilton | Apr 1995 | A |
5420801 | Dockter et al. | May 1995 | A |
5420974 | Morris et al. | May 1995 | A |
5471576 | Yee | Nov 1995 | A |
5477263 | Ocallaghan et al. | Dec 1995 | A |
5479303 | Suzuki et al. | Dec 1995 | A |
5487167 | Dinallo et al. | Jan 1996 | A |
5502766 | Boebert et al. | Mar 1996 | A |
5509070 | Schull | Apr 1996 | A |
5533021 | Branstad et al. | Jul 1996 | A |
5537408 | Branstad et al. | Jul 1996 | A |
5539908 | Chen et al. | Jul 1996 | A |
5541662 | Adams et al. | Jul 1996 | A |
5544318 | Schmitz et al. | Aug 1996 | A |
5550863 | Yurt et al. | Aug 1996 | A |
5574785 | Ueno et al. | Nov 1996 | A |
5583652 | Ware | Dec 1996 | A |
5589993 | Naimpally et al. | Dec 1996 | A |
5600721 | Kitazato | Feb 1997 | A |
5614940 | Cobbley et al. | Mar 1997 | A |
5621794 | Matsuda et al. | Apr 1997 | A |
5627936 | Prasad | May 1997 | A |
5630005 | Ort | May 1997 | A |
5633472 | DeWitt et al. | May 1997 | A |
5642171 | Baumgartner et al. | Jun 1997 | A |
5642338 | Fukushima et al. | Jun 1997 | A |
5655117 | Goldberg et al. | Aug 1997 | A |
5664044 | Ware | Sep 1997 | A |
5675382 | Bauchspies | Oct 1997 | A |
5675511 | Prasad et al. | Oct 1997 | A |
5684542 | Tsukagoshi | Nov 1997 | A |
5715403 | Stefik | Feb 1998 | A |
5717816 | Boyce et al. | Feb 1998 | A |
5719786 | Nelson et al. | Feb 1998 | A |
5745643 | Mishina | Apr 1998 | A |
5751280 | Abbott | May 1998 | A |
5751358 | Suzuki et al. | May 1998 | A |
5754648 | Ryan et al. | May 1998 | A |
5757968 | Ando | May 1998 | A |
5761417 | Henley et al. | Jun 1998 | A |
5763800 | Rossum et al. | Jun 1998 | A |
5765164 | Prasad et al. | Jun 1998 | A |
5794018 | Vrvilo et al. | Aug 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5813010 | Kurano et al. | Sep 1998 | A |
5819160 | Foladare et al. | Oct 1998 | A |
5822524 | Chen et al. | Oct 1998 | A |
5828370 | Moeller et al. | Oct 1998 | A |
5838791 | Torii et al. | Nov 1998 | A |
5841432 | Carmel et al. | Nov 1998 | A |
5844575 | Reid | Dec 1998 | A |
5848217 | Tsukagoshi et al. | Dec 1998 | A |
5852664 | Iverson et al. | Dec 1998 | A |
5854873 | Mori et al. | Dec 1998 | A |
5867625 | McLaren | Feb 1999 | A |
5874986 | Gibbon et al. | Feb 1999 | A |
5878135 | Blatter et al. | Mar 1999 | A |
5881038 | Oshima et al. | Mar 1999 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5892915 | Duso et al. | Apr 1999 | A |
5903261 | Walsh et al. | May 1999 | A |
5907597 | Mark | May 1999 | A |
5907658 | Murase et al. | May 1999 | A |
5912710 | Fujimoto | Jun 1999 | A |
5923869 | Kashiwagi et al. | Jul 1999 | A |
5946446 | Yanagihara | Aug 1999 | A |
5956729 | Goetz et al. | Sep 1999 | A |
5959690 | Toebes et al. | Sep 1999 | A |
5970147 | Davis | Oct 1999 | A |
5973679 | Abbott et al. | Oct 1999 | A |
5999812 | Himsworth | Dec 1999 | A |
6002834 | Hirabayashi et al. | Dec 1999 | A |
6005621 | Linzer et al. | Dec 1999 | A |
6009237 | Hirabayashi et al. | Dec 1999 | A |
6016381 | Taira et al. | Jan 2000 | A |
6018611 | Nogami et al. | Jan 2000 | A |
6031622 | Ristow et al. | Feb 2000 | A |
6038257 | Brusewitz et al. | Mar 2000 | A |
6038316 | Dwork et al. | Mar 2000 | A |
6044469 | Horstmann | Mar 2000 | A |
6046778 | Nonomura et al. | Apr 2000 | A |
6047100 | McLaren | Apr 2000 | A |
6057832 | Lev et al. | May 2000 | A |
6058240 | McLaren | May 2000 | A |
6064794 | McLaren et al. | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6079566 | Eleftheriadis et al. | Jun 2000 | A |
6097877 | Katayama et al. | Aug 2000 | A |
6108422 | Newby et al. | Aug 2000 | A |
6141754 | Choy | Oct 2000 | A |
6151634 | Glaser et al. | Nov 2000 | A |
6155840 | Sallette | Dec 2000 | A |
6157410 | Izumi et al. | Dec 2000 | A |
6169242 | Fay et al. | Jan 2001 | B1 |
6175921 | Rosen | Jan 2001 | B1 |
6192075 | Jeng et al. | Feb 2001 | B1 |
6195388 | Choi et al. | Feb 2001 | B1 |
6199107 | Dujari | Mar 2001 | B1 |
6204883 | Tsukagoshi | Mar 2001 | B1 |
6222981 | Rijckaert | Apr 2001 | B1 |
6266483 | Okada et al. | Jul 2001 | B1 |
6282320 | Hasegawa et al. | Aug 2001 | B1 |
6282653 | Berstis et al. | Aug 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6292621 | Tanaka et al. | Sep 2001 | B1 |
6308005 | Ando et al. | Oct 2001 | B1 |
6320905 | Konstantinides | Nov 2001 | B1 |
6330286 | Lyons et al. | Dec 2001 | B1 |
6347145 | Kato et al. | Feb 2002 | B2 |
6351538 | Uz | Feb 2002 | B1 |
6373803 | Ando et al. | Apr 2002 | B2 |
6374144 | Viviani et al. | Apr 2002 | B1 |
6389218 | Gordon et al. | May 2002 | B2 |
6389473 | Carmel et al. | May 2002 | B1 |
6395969 | Fuhrer | May 2002 | B1 |
6397230 | Carmel et al. | May 2002 | B1 |
6415031 | Colligan et al. | Jul 2002 | B1 |
6418270 | Steenhof et al. | Jul 2002 | B1 |
6430354 | Watanabe | Aug 2002 | B1 |
6441754 | Wang et al. | Aug 2002 | B1 |
6445877 | Okada et al. | Sep 2002 | B1 |
6449719 | Baker | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6453116 | Ando et al. | Sep 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6466733 | Kim | Oct 2002 | B1 |
6504873 | Vehvilaeinen | Jan 2003 | B1 |
6510513 | Danieli | Jan 2003 | B1 |
6510554 | Gordon et al. | Jan 2003 | B1 |
6512883 | Shim et al. | Jan 2003 | B2 |
6516064 | Osawa et al. | Feb 2003 | B1 |
6532262 | Fukuda et al. | Mar 2003 | B1 |
6535920 | Parry et al. | Mar 2003 | B1 |
6563549 | Sethuraman | May 2003 | B1 |
6578200 | Takao et al. | Jun 2003 | B1 |
6587506 | Noridomi et al. | Jul 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6621979 | Eerenberg et al. | Sep 2003 | B1 |
6625320 | Nilsson et al. | Sep 2003 | B1 |
6628713 | Kojima et al. | Sep 2003 | B1 |
6642967 | Saunders | Nov 2003 | B1 |
6654933 | Abbott et al. | Nov 2003 | B1 |
6658056 | Duruöz et al. | Dec 2003 | B1 |
6665835 | Gutfreund et al. | Dec 2003 | B1 |
6671408 | Kaku | Dec 2003 | B1 |
6690838 | Zhou | Feb 2004 | B2 |
6697568 | Kaku | Feb 2004 | B1 |
6714909 | Gibbon et al. | Mar 2004 | B1 |
6721794 | Taylor et al. | Apr 2004 | B2 |
6724944 | Kalevo et al. | Apr 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6751623 | Basso et al. | Jun 2004 | B1 |
6771703 | Oguz et al. | Aug 2004 | B1 |
6807306 | Girgensohn et al. | Oct 2004 | B1 |
6810031 | Hegde et al. | Oct 2004 | B1 |
6810131 | Nakagawa et al. | Oct 2004 | B2 |
6810389 | Meyer | Oct 2004 | B1 |
6813437 | Ando et al. | Nov 2004 | B2 |
6819394 | Nomura et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6856997 | Lee et al. | Feb 2005 | B2 |
6859496 | Boroczky et al. | Feb 2005 | B1 |
6868525 | Szabo | Mar 2005 | B1 |
6871006 | Oguz et al. | Mar 2005 | B1 |
6912253 | Li et al. | Jun 2005 | B1 |
6912513 | Candelore | Jun 2005 | B1 |
6917652 | Lyu | Jul 2005 | B2 |
6920179 | Anand et al. | Jul 2005 | B1 |
6931531 | Takahashi | Aug 2005 | B1 |
6931543 | Pang et al. | Aug 2005 | B1 |
6944621 | Collart | Sep 2005 | B1 |
6944629 | Shioi et al. | Sep 2005 | B1 |
6956901 | Boroczky et al. | Oct 2005 | B2 |
6957350 | Demos | Oct 2005 | B1 |
6965646 | Firestone | Nov 2005 | B1 |
6965724 | Boccon-Gibod et al. | Nov 2005 | B1 |
6965993 | Baker | Nov 2005 | B2 |
6970564 | Kubota et al. | Nov 2005 | B1 |
6983079 | Kim | Jan 2006 | B2 |
6985588 | Glick et al. | Jan 2006 | B1 |
6988144 | Luken et al. | Jan 2006 | B1 |
7006757 | Ando et al. | Feb 2006 | B2 |
7007170 | Morten | Feb 2006 | B2 |
7020287 | Unger | Mar 2006 | B2 |
7023924 | Keller et al. | Apr 2006 | B1 |
7023992 | Kubota et al. | Apr 2006 | B1 |
7043021 | Graunke et al. | May 2006 | B2 |
7043473 | Rassool et al. | May 2006 | B1 |
7051110 | Hagai et al. | May 2006 | B2 |
7054968 | Shrader et al. | May 2006 | B2 |
7058177 | Trimberger et al. | Jun 2006 | B1 |
7073191 | Srikantan et al. | Jul 2006 | B2 |
7103906 | Katz et al. | Sep 2006 | B1 |
7110542 | Tripathy | Sep 2006 | B1 |
7120250 | Candelore | Oct 2006 | B2 |
7124303 | Candelore et al. | Oct 2006 | B2 |
7127155 | Ando et al. | Oct 2006 | B2 |
7139868 | Parry et al. | Nov 2006 | B2 |
7143289 | Denning et al. | Nov 2006 | B2 |
7150045 | Koelle et al. | Dec 2006 | B2 |
7151832 | Fetkovich et al. | Dec 2006 | B1 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7165175 | Kollmyer et al. | Jan 2007 | B1 |
7167560 | Yu | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7185363 | Narin et al. | Feb 2007 | B1 |
7188183 | Paul et al. | Mar 2007 | B1 |
7191335 | Maillard | Mar 2007 | B1 |
7197234 | Chatterton | Mar 2007 | B1 |
7203313 | England et al. | Apr 2007 | B2 |
7206940 | Evans et al. | Apr 2007 | B2 |
7209892 | Galuten et al. | Apr 2007 | B1 |
7212726 | Zetts | May 2007 | B2 |
7231132 | Davenport | Jun 2007 | B1 |
7231516 | Sparrell et al. | Jun 2007 | B1 |
7233669 | Candelore | Jun 2007 | B2 |
7233948 | Shamoon et al. | Jun 2007 | B1 |
7237061 | Boic | Jun 2007 | B1 |
7242772 | Tehranchi | Jul 2007 | B1 |
7243346 | Seth et al. | Jul 2007 | B1 |
7274861 | Yahata et al. | Sep 2007 | B2 |
7295673 | Grab et al. | Nov 2007 | B2 |
7302490 | Gupta et al. | Nov 2007 | B1 |
7315829 | Tagawa et al. | Jan 2008 | B1 |
7328345 | Morten et al. | Feb 2008 | B2 |
7330875 | Parasnis et al. | Feb 2008 | B1 |
7340528 | Noblecourt et al. | Mar 2008 | B2 |
7346163 | Pedlow, Jr. et al. | Mar 2008 | B2 |
7349886 | Morten et al. | Mar 2008 | B2 |
7349976 | Glaser et al. | Mar 2008 | B1 |
7352956 | Winter et al. | Apr 2008 | B1 |
7356143 | Morten | Apr 2008 | B2 |
7356245 | Belknap et al. | Apr 2008 | B2 |
7363647 | Fakharzadeh | Apr 2008 | B1 |
7366788 | Jones et al. | Apr 2008 | B2 |
7376233 | Candelore et al. | May 2008 | B2 |
7376831 | Kollmyer et al. | May 2008 | B2 |
7382879 | Miller | Jun 2008 | B1 |
7389273 | Irwin et al. | Jun 2008 | B2 |
7397853 | Kwon et al. | Jul 2008 | B2 |
7400679 | Kwon et al. | Jul 2008 | B2 |
7406174 | Palmer | Jul 2008 | B2 |
7406176 | Zhu et al. | Jul 2008 | B2 |
7418132 | Hoshuyama | Aug 2008 | B2 |
7421411 | Kontio et al. | Sep 2008 | B2 |
7443449 | Momosaki et al. | Oct 2008 | B2 |
7454780 | Katsube et al. | Nov 2008 | B2 |
7457359 | Mabey et al. | Nov 2008 | B2 |
7457415 | Reitmeier et al. | Nov 2008 | B2 |
7460668 | Grab et al. | Dec 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7478325 | Foehr | Jan 2009 | B2 |
7484103 | Woo et al. | Jan 2009 | B2 |
7493018 | Kim | Feb 2009 | B2 |
7499930 | Naka et al. | Mar 2009 | B2 |
7499938 | Collart | Mar 2009 | B2 |
7515710 | Russell et al. | Apr 2009 | B2 |
7526450 | Hughes et al. | Apr 2009 | B2 |
7539213 | Guillemot et al. | May 2009 | B2 |
7546641 | Robert et al. | Jun 2009 | B2 |
7577980 | Kienzle et al. | Aug 2009 | B2 |
7594271 | Zhuk et al. | Sep 2009 | B2 |
7610365 | Kraft et al. | Oct 2009 | B1 |
7623759 | Shimoda | Nov 2009 | B2 |
7624337 | Sull et al. | Nov 2009 | B2 |
7627750 | Chan | Dec 2009 | B1 |
7627888 | Ganesan et al. | Dec 2009 | B2 |
7639921 | Seo et al. | Dec 2009 | B2 |
7640358 | Deshpande | Dec 2009 | B2 |
7640435 | Morten | Dec 2009 | B2 |
7644172 | Stewart et al. | Jan 2010 | B2 |
7653686 | Yoneda | Jan 2010 | B2 |
7664262 | Haruki | Feb 2010 | B2 |
7664872 | Osborne et al. | Feb 2010 | B2 |
7676555 | Bushee et al. | Mar 2010 | B2 |
7689510 | Lamkin et al. | Mar 2010 | B2 |
7697686 | Puiatti et al. | Apr 2010 | B2 |
7702925 | Hanko et al. | Apr 2010 | B2 |
7711052 | Hannuksela et al. | May 2010 | B2 |
7711647 | Gunaseelan et al. | May 2010 | B2 |
7720352 | Belknap et al. | May 2010 | B2 |
7734806 | Park | Jun 2010 | B2 |
7747853 | Candelore | Jun 2010 | B2 |
7756270 | Shimosato et al. | Jul 2010 | B2 |
7756271 | Zhu et al. | Jul 2010 | B2 |
7761892 | Ellis et al. | Jul 2010 | B2 |
7779097 | Lamkin et al. | Aug 2010 | B2 |
7787622 | Sprunk | Aug 2010 | B2 |
7788271 | Soma et al. | Aug 2010 | B2 |
7797720 | Gopalakrishnan et al. | Sep 2010 | B2 |
7817608 | Rassool et al. | Oct 2010 | B2 |
7840489 | Candelore | Nov 2010 | B2 |
7840693 | Gupta et al. | Nov 2010 | B2 |
7853980 | Pedlow, Jr. et al. | Dec 2010 | B2 |
7864186 | Robotham et al. | Jan 2011 | B2 |
7869691 | Kelly et al. | Jan 2011 | B2 |
7873740 | Sitaraman et al. | Jan 2011 | B2 |
7877002 | Ikeda et al. | Jan 2011 | B2 |
7881478 | Derouet | Feb 2011 | B2 |
7882034 | Hug et al. | Feb 2011 | B2 |
7885405 | Bong | Feb 2011 | B1 |
7895311 | Juenger | Feb 2011 | B1 |
7907833 | Lee | Mar 2011 | B2 |
7913277 | Rahrer | Mar 2011 | B1 |
7945143 | Yahata et al. | May 2011 | B2 |
7949703 | Matsuzaki et al. | May 2011 | B2 |
7962942 | Craner | Jun 2011 | B1 |
7970835 | St. Jacques | Jun 2011 | B2 |
7974714 | Hoffberg | Jul 2011 | B2 |
7984513 | Kyne et al. | Jul 2011 | B1 |
7991156 | Miller | Aug 2011 | B1 |
8001471 | Shaver et al. | Aug 2011 | B2 |
8010810 | Fitzgerald et al. | Aug 2011 | B1 |
8015491 | Shaver et al. | Sep 2011 | B2 |
8023562 | Zheludkov et al. | Sep 2011 | B2 |
8046453 | Olaiya | Oct 2011 | B2 |
8054880 | Yu et al. | Nov 2011 | B2 |
8065708 | Smyth et al. | Nov 2011 | B1 |
8069260 | Speicher et al. | Nov 2011 | B2 |
8073900 | Guedalia et al. | Dec 2011 | B2 |
8074083 | Lee et al. | Dec 2011 | B1 |
8078644 | Hannuksela | Dec 2011 | B2 |
8082442 | Keljo et al. | Dec 2011 | B2 |
8131875 | Chen | Mar 2012 | B1 |
8135041 | Ramaswamy | Mar 2012 | B2 |
8160157 | Lamy-Bergot et al. | Apr 2012 | B2 |
8169916 | Pai et al. | May 2012 | B1 |
8170210 | Manders et al. | May 2012 | B2 |
8190674 | Narayanan | May 2012 | B2 |
8195714 | Mckibben et al. | Jun 2012 | B2 |
8201264 | Grab et al. | Jun 2012 | B2 |
8213607 | Rose et al. | Jul 2012 | B2 |
8213768 | Morioka et al. | Jul 2012 | B2 |
8218439 | Deshpande | Jul 2012 | B2 |
8225061 | Greenebaum | Jul 2012 | B2 |
8233768 | Soroushian et al. | Jul 2012 | B2 |
8243924 | Chen et al. | Aug 2012 | B2 |
8245124 | Gupta | Aug 2012 | B1 |
8249168 | Graves | Aug 2012 | B2 |
8261356 | Choi et al. | Sep 2012 | B2 |
8265168 | Masterson et al. | Sep 2012 | B1 |
8270473 | Chen et al. | Sep 2012 | B2 |
8270819 | Vannier | Sep 2012 | B2 |
8275871 | Ram et al. | Sep 2012 | B2 |
8286213 | Seo | Oct 2012 | B2 |
8286621 | Halmone | Oct 2012 | B2 |
8289338 | Priyadarshi et al. | Oct 2012 | B2 |
8290157 | Candelore | Oct 2012 | B2 |
8291460 | Peacock | Oct 2012 | B1 |
8296434 | Miller et al. | Oct 2012 | B1 |
8311094 | Kamariotis et al. | Nov 2012 | B2 |
8311111 | Xu et al. | Nov 2012 | B2 |
8311115 | Gu et al. | Nov 2012 | B2 |
8312079 | Newsome et al. | Nov 2012 | B2 |
8321556 | Chatterjee et al. | Nov 2012 | B1 |
8325800 | Holcomb et al. | Dec 2012 | B2 |
8327009 | Prestenback et al. | Dec 2012 | B2 |
8341715 | Sherkin et al. | Dec 2012 | B2 |
8346753 | Hayes | Jan 2013 | B2 |
8365235 | Hunt et al. | Jan 2013 | B2 |
8369421 | Kadono et al. | Feb 2013 | B2 |
8380041 | Barton et al. | Feb 2013 | B2 |
8386621 | Park | Feb 2013 | B2 |
8396114 | Gu et al. | Mar 2013 | B2 |
8397265 | Henocq et al. | Mar 2013 | B2 |
8401188 | Swaminathan | Mar 2013 | B1 |
8401900 | Cansler et al. | Mar 2013 | B2 |
8407753 | Kuo | Mar 2013 | B2 |
8412841 | Swaminathan et al. | Apr 2013 | B1 |
8423889 | Zagorie et al. | Apr 2013 | B1 |
8452110 | Shoham et al. | May 2013 | B2 |
8456380 | Pagan | Jun 2013 | B2 |
8464066 | Price et al. | Jun 2013 | B1 |
8472792 | Butt | Jun 2013 | B2 |
8473630 | Galligan | Jun 2013 | B1 |
8484368 | Robert et al. | Jul 2013 | B2 |
8510303 | Soroushian et al. | Aug 2013 | B2 |
8510404 | Carmel et al. | Aug 2013 | B2 |
8514926 | Ro et al. | Aug 2013 | B2 |
8515265 | Kwon et al. | Aug 2013 | B2 |
8516529 | Lajoie et al. | Aug 2013 | B2 |
8526610 | Shamoon et al. | Sep 2013 | B2 |
8527645 | Proffit et al. | Sep 2013 | B1 |
8543842 | Ginter et al. | Sep 2013 | B2 |
8555329 | Fröjdh et al. | Oct 2013 | B2 |
8571993 | Kocher et al. | Oct 2013 | B2 |
8595378 | Cohn et al. | Nov 2013 | B1 |
8606069 | Okubo et al. | Dec 2013 | B2 |
8630419 | Mori | Jan 2014 | B2 |
8631247 | O'loughlin et al. | Jan 2014 | B2 |
8640166 | Craner et al. | Jan 2014 | B1 |
8649669 | Braness et al. | Feb 2014 | B2 |
8650599 | Shindo et al. | Feb 2014 | B2 |
8656183 | Russell et al. | Feb 2014 | B2 |
8677428 | Lewis et al. | Mar 2014 | B2 |
8681866 | Jia | Mar 2014 | B1 |
8683066 | Hurst et al. | Mar 2014 | B2 |
8689267 | Hunt | Apr 2014 | B2 |
8726264 | Allen et al. | May 2014 | B1 |
8731193 | Farkash et al. | May 2014 | B2 |
8731369 | Li et al. | May 2014 | B2 |
RE45052 | Li | Jul 2014 | E |
8767825 | Wang et al. | Jul 2014 | B1 |
8774609 | Drake et al. | Jul 2014 | B2 |
8781122 | Chan et al. | Jul 2014 | B2 |
8782268 | Pyle et al. | Jul 2014 | B2 |
8804956 | Hiriart | Aug 2014 | B2 |
8805109 | Shoham et al. | Aug 2014 | B2 |
8806188 | Braness et al. | Aug 2014 | B2 |
8818171 | Soroushian et al. | Aug 2014 | B2 |
8818896 | Candelore | Aug 2014 | B2 |
8819116 | Tomay et al. | Aug 2014 | B1 |
8832434 | Apostolopoulos et al. | Sep 2014 | B2 |
8843586 | Pantos et al. | Sep 2014 | B2 |
8849950 | Stockhammer et al. | Sep 2014 | B2 |
8850205 | Choi et al. | Sep 2014 | B2 |
8850498 | Roach et al. | Sep 2014 | B1 |
8856218 | Inskip | Oct 2014 | B1 |
8897370 | Wang et al. | Nov 2014 | B1 |
8908984 | Shoham et al. | Dec 2014 | B2 |
8909922 | Kiefer et al. | Dec 2014 | B2 |
8914534 | Braness et al. | Dec 2014 | B2 |
8914836 | Shivadas et al. | Dec 2014 | B2 |
8918533 | Chen et al. | Dec 2014 | B2 |
8918535 | Ma et al. | Dec 2014 | B2 |
8918636 | Kiefer | Dec 2014 | B2 |
8918908 | Ziskind et al. | Dec 2014 | B2 |
8948249 | Sun et al. | Feb 2015 | B2 |
8964977 | Ziskind et al. | Feb 2015 | B2 |
8997161 | Priyadarshi et al. | Mar 2015 | B2 |
8997254 | Amidei et al. | Mar 2015 | B2 |
9014471 | Shoham et al. | Apr 2015 | B2 |
9015782 | Acharya et al. | Apr 2015 | B2 |
9025659 | Soroushian et al. | May 2015 | B2 |
9038116 | Knox et al. | May 2015 | B1 |
9038121 | Kienzle et al. | May 2015 | B2 |
9042670 | Carmel et al. | May 2015 | B2 |
9049497 | Chen et al. | Jun 2015 | B2 |
9060207 | Scherkus et al. | Jun 2015 | B2 |
9094737 | Shivadas et al. | Jul 2015 | B2 |
9098335 | Muthiah et al. | Aug 2015 | B2 |
9111098 | Smith et al. | Aug 2015 | B2 |
9124773 | Chan et al. | Sep 2015 | B2 |
9125073 | Oyman et al. | Sep 2015 | B2 |
9184920 | Grab et al. | Nov 2015 | B2 |
9191151 | Luby et al. | Nov 2015 | B2 |
9191457 | Van der Schaar et al. | Nov 2015 | B2 |
9197685 | Soroushian | Nov 2015 | B2 |
9201922 | Soroushian et al. | Dec 2015 | B2 |
9203816 | Brueck et al. | Dec 2015 | B2 |
9210481 | Braness et al. | Dec 2015 | B2 |
9215466 | Zhai et al. | Dec 2015 | B2 |
9247311 | Kiefer | Jan 2016 | B2 |
9247312 | Braness et al. | Jan 2016 | B2 |
9247317 | Shivadas et al. | Jan 2016 | B2 |
9253178 | Blom et al. | Feb 2016 | B2 |
9264475 | Shivadas et al. | Feb 2016 | B2 |
9294531 | Zhang et al. | Mar 2016 | B2 |
9313510 | Shivadas et al. | Apr 2016 | B2 |
9343112 | Amidei et al. | May 2016 | B2 |
9344517 | Shivadas et al. | May 2016 | B2 |
9344721 | Dikvall | May 2016 | B2 |
9380096 | Luby et al. | Jun 2016 | B2 |
9386064 | Luby et al. | Jul 2016 | B2 |
9406066 | Candelore | Aug 2016 | B2 |
9467708 | Soroushian et al. | Oct 2016 | B2 |
9479805 | Rothschild et al. | Oct 2016 | B2 |
9485469 | Kahn et al. | Nov 2016 | B2 |
9485546 | Chen et al. | Nov 2016 | B2 |
9510031 | Soroushian et al. | Nov 2016 | B2 |
9571827 | Su et al. | Feb 2017 | B2 |
9584557 | Panje et al. | Feb 2017 | B2 |
9584847 | Ma et al. | Feb 2017 | B2 |
9615061 | Carney et al. | Apr 2017 | B2 |
9621522 | Kiefer et al. | Apr 2017 | B2 |
9628536 | Luby et al. | Apr 2017 | B2 |
9667684 | Ziskind et al. | May 2017 | B2 |
9672286 | Soroushian et al. | Jun 2017 | B2 |
9674254 | Pare et al. | Jun 2017 | B2 |
9686332 | Binns et al. | Jun 2017 | B1 |
9706259 | Chan et al. | Jul 2017 | B2 |
9712890 | Shivadas et al. | Jul 2017 | B2 |
9761274 | Delpuch et al. | Sep 2017 | B2 |
9798863 | Grab et al. | Oct 2017 | B2 |
9813740 | Panje et al. | Nov 2017 | B2 |
9866878 | van der Schaar et al. | Jan 2018 | B2 |
9883204 | Braness et al. | Jan 2018 | B2 |
9906785 | Naletov et al. | Feb 2018 | B2 |
9955195 | Soroushian | Apr 2018 | B2 |
9967189 | Patel | May 2018 | B2 |
9967305 | Braness | May 2018 | B2 |
9967521 | Kahn et al. | May 2018 | B2 |
10169094 | Iyer | Jan 2019 | B2 |
10171873 | Krebs | Jan 2019 | B2 |
10212486 | Chan et al. | Feb 2019 | B2 |
10225299 | van der Schaar et al. | Mar 2019 | B2 |
10225588 | Kiefer et al. | Mar 2019 | B2 |
10244272 | Kiefer et al. | Mar 2019 | B2 |
10264255 | Naletov et al. | Apr 2019 | B2 |
10313252 | Koopmans | Jun 2019 | B2 |
10321168 | van der Schaar et al. | Jun 2019 | B2 |
10341698 | Kiefer et al. | Jul 2019 | B2 |
10368096 | Braness et al. | Jul 2019 | B2 |
10382785 | Braness et al. | Aug 2019 | B2 |
10437896 | Soroushian et al. | Oct 2019 | B2 |
10462537 | Shivadas et al. | Oct 2019 | B2 |
10484749 | Chan et al. | Nov 2019 | B2 |
10645429 | Soroushian | May 2020 | B2 |
10708587 | Soroushian et al. | Jul 2020 | B2 |
10715806 | Naletov et al. | Jul 2020 | B2 |
10798143 | Soroushian et al. | Oct 2020 | B2 |
10805368 | van der Schaar et al. | Oct 2020 | B2 |
10856020 | Kiefer et al. | Dec 2020 | B2 |
10878065 | Grab et al. | Dec 2020 | B2 |
10893305 | van der Schaar et al. | Jan 2021 | B2 |
10931982 | Soroushian | Feb 2021 | B2 |
10992955 | Braness et al. | Apr 2021 | B2 |
11102553 | Chan et al. | Aug 2021 | B2 |
RE48761 | Shivadas et al. | Sep 2021 | E |
11172044 | Zhu et al. | Nov 2021 | B2 |
11438394 | Van Der Schaar et al. | Sep 2022 | B2 |
11457054 | Soroushian et al. | Sep 2022 | B2 |
11470405 | Shivadas et al. | Oct 2022 | B2 |
11638033 | Braness et al. | Apr 2023 | B2 |
11683542 | Kiefer et al. | Jun 2023 | B2 |
11711552 | Van der Schaar et al. | Jul 2023 | B2 |
11785066 | Van der Schaar et al. | Oct 2023 | B2 |
20010021276 | Zhou | Sep 2001 | A1 |
20010030710 | Werner | Oct 2001 | A1 |
20010036355 | Kelly et al. | Nov 2001 | A1 |
20010046299 | Wasilewski et al. | Nov 2001 | A1 |
20010052077 | Fung et al. | Dec 2001 | A1 |
20010052127 | Seo et al. | Dec 2001 | A1 |
20010053222 | Wakao et al. | Dec 2001 | A1 |
20010055337 | Matsuzaki et al. | Dec 2001 | A1 |
20020026560 | Jordan et al. | Feb 2002 | A1 |
20020034252 | Owen et al. | Mar 2002 | A1 |
20020048450 | Zetts | Apr 2002 | A1 |
20020051494 | Yamaguchi et al. | May 2002 | A1 |
20020057739 | Hasebe et al. | May 2002 | A1 |
20020057898 | Normile | May 2002 | A1 |
20020062313 | Lee et al. | May 2002 | A1 |
20020067432 | Kondo et al. | Jun 2002 | A1 |
20020075572 | Boreczky et al. | Jun 2002 | A1 |
20020076112 | Devara | Jun 2002 | A1 |
20020087569 | Fischer et al. | Jul 2002 | A1 |
20020089523 | Hodgkinson | Jul 2002 | A1 |
20020091665 | Beek et al. | Jul 2002 | A1 |
20020093571 | Hyodo | Jul 2002 | A1 |
20020107802 | Philips | Aug 2002 | A1 |
20020110193 | Yoo et al. | Aug 2002 | A1 |
20020114330 | Cheung et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020118953 | Kim | Aug 2002 | A1 |
20020120934 | Abrahams et al. | Aug 2002 | A1 |
20020135607 | Kato et al. | Sep 2002 | A1 |
20020136298 | Anantharamu et al. | Sep 2002 | A1 |
20020141503 | Kobayashi et al. | Oct 2002 | A1 |
20020143413 | Fay et al. | Oct 2002 | A1 |
20020143547 | Fay et al. | Oct 2002 | A1 |
20020147980 | Satoda | Oct 2002 | A1 |
20020154779 | Asano et al. | Oct 2002 | A1 |
20020159528 | Graziani et al. | Oct 2002 | A1 |
20020159598 | Rubinstein et al. | Oct 2002 | A1 |
20020161462 | Fay | Oct 2002 | A1 |
20020161797 | Gallo et al. | Oct 2002 | A1 |
20020164024 | Arakawa et al. | Nov 2002 | A1 |
20020169926 | Pinckney et al. | Nov 2002 | A1 |
20020169971 | Asano et al. | Nov 2002 | A1 |
20020180929 | Tseng et al. | Dec 2002 | A1 |
20020184159 | Tadayon et al. | Dec 2002 | A1 |
20020184515 | Oho et al. | Dec 2002 | A1 |
20020191112 | Akiyoshi et al. | Dec 2002 | A1 |
20020191959 | Lin et al. | Dec 2002 | A1 |
20020191960 | Fujinami et al. | Dec 2002 | A1 |
20030001964 | Masukura et al. | Jan 2003 | A1 |
20030002577 | Pinder | Jan 2003 | A1 |
20030002578 | Tsukagoshi et al. | Jan 2003 | A1 |
20030005442 | Brodersen et al. | Jan 2003 | A1 |
20030021296 | Wee et al. | Jan 2003 | A1 |
20030031178 | Haeri | Feb 2003 | A1 |
20030035488 | Barrau | Feb 2003 | A1 |
20030035545 | Jiang | Feb 2003 | A1 |
20030035546 | Jiang et al. | Feb 2003 | A1 |
20030041257 | Wee et al. | Feb 2003 | A1 |
20030043847 | Haddad | Mar 2003 | A1 |
20030044080 | Frishman et al. | Mar 2003 | A1 |
20030051237 | Sako et al. | Mar 2003 | A1 |
20030053541 | Sun et al. | Mar 2003 | A1 |
20030061305 | Copley et al. | Mar 2003 | A1 |
20030061369 | Aksu et al. | Mar 2003 | A1 |
20030063675 | Kang et al. | Apr 2003 | A1 |
20030065777 | Mattila et al. | Apr 2003 | A1 |
20030077071 | Lin et al. | Apr 2003 | A1 |
20030078891 | Capitant | Apr 2003 | A1 |
20030078930 | Surcouf et al. | Apr 2003 | A1 |
20030079222 | Boykin et al. | Apr 2003 | A1 |
20030081776 | Candelore | May 2003 | A1 |
20030093799 | Kauffman et al. | May 2003 | A1 |
20030123855 | Okada et al. | Jul 2003 | A1 |
20030128296 | Lee | Jul 2003 | A1 |
20030133506 | Haneda | Jul 2003 | A1 |
20030135633 | Dror et al. | Jul 2003 | A1 |
20030135742 | Evans | Jul 2003 | A1 |
20030142594 | Tsumagari et al. | Jul 2003 | A1 |
20030142872 | Koyanagi | Jul 2003 | A1 |
20030152224 | Candelore et al. | Aug 2003 | A1 |
20030152370 | Otomo et al. | Aug 2003 | A1 |
20030163824 | Gordon et al. | Aug 2003 | A1 |
20030165328 | Grecia | Sep 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030185302 | Abrams | Oct 2003 | A1 |
20030185542 | McVeigh et al. | Oct 2003 | A1 |
20030206558 | Parkkinen et al. | Nov 2003 | A1 |
20030206717 | Yogeshwar et al. | Nov 2003 | A1 |
20030210821 | Yogeshwar et al. | Nov 2003 | A1 |
20030216922 | Gonzales et al. | Nov 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030231863 | Eerenberg et al. | Dec 2003 | A1 |
20030231867 | Gates et al. | Dec 2003 | A1 |
20030233464 | Walpole et al. | Dec 2003 | A1 |
20030236836 | Borthwick | Dec 2003 | A1 |
20030236907 | Stewart et al. | Dec 2003 | A1 |
20040001594 | Krishnaswamy et al. | Jan 2004 | A1 |
20040003008 | Wasilewski et al. | Jan 2004 | A1 |
20040006701 | Kresina | Jan 2004 | A1 |
20040021684 | Millner | Feb 2004 | A1 |
20040022391 | Obrien | Feb 2004 | A1 |
20040024688 | Bi et al. | Feb 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040028227 | Yu | Feb 2004 | A1 |
20040031058 | Reisman | Feb 2004 | A1 |
20040037421 | Truman | Feb 2004 | A1 |
20040039916 | Aldis et al. | Feb 2004 | A1 |
20040047592 | Seo et al. | Mar 2004 | A1 |
20040047607 | Seo et al. | Mar 2004 | A1 |
20040047614 | Green | Mar 2004 | A1 |
20040049690 | Candelore et al. | Mar 2004 | A1 |
20040049694 | Candelore | Mar 2004 | A1 |
20040052501 | Tam | Mar 2004 | A1 |
20040071453 | Valderas | Apr 2004 | A1 |
20040073917 | Pedlow et al. | Apr 2004 | A1 |
20040076237 | Kadono et al. | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040081434 | Jung et al. | Apr 2004 | A1 |
20040084035 | Newton | May 2004 | A1 |
20040088557 | Malcolm et al. | May 2004 | A1 |
20040093494 | Nishimoto et al. | May 2004 | A1 |
20040093618 | Baldwin et al. | May 2004 | A1 |
20040101059 | Joch et al. | May 2004 | A1 |
20040101142 | Nasypny | May 2004 | A1 |
20040105549 | Suzuki et al. | Jun 2004 | A1 |
20040107356 | Shamoon et al. | Jun 2004 | A1 |
20040114687 | Ferris et al. | Jun 2004 | A1 |
20040117347 | Seo et al. | Jun 2004 | A1 |
20040136698 | Mock | Jul 2004 | A1 |
20040139335 | Diamand et al. | Jul 2004 | A1 |
20040143760 | Alkove et al. | Jul 2004 | A1 |
20040146276 | Ogawa | Jul 2004 | A1 |
20040150747 | Sita | Aug 2004 | A1 |
20040158878 | Ratnakar et al. | Aug 2004 | A1 |
20040184534 | Wang | Sep 2004 | A1 |
20040184616 | Morten et al. | Sep 2004 | A1 |
20040202320 | Amini et al. | Oct 2004 | A1 |
20040208245 | Macinnis et al. | Oct 2004 | A1 |
20040213094 | Suzuki | Oct 2004 | A1 |
20040213547 | Hayes | Oct 2004 | A1 |
20040217971 | Kim | Nov 2004 | A1 |
20040243488 | Yamamoto et al. | Dec 2004 | A1 |
20040243714 | Wynn et al. | Dec 2004 | A1 |
20040255115 | DeMello et al. | Dec 2004 | A1 |
20040255236 | Collart | Dec 2004 | A1 |
20040267952 | He et al. | Dec 2004 | A1 |
20050004875 | Kontio et al. | Jan 2005 | A1 |
20050005025 | Harville et al. | Jan 2005 | A1 |
20050005143 | Lang et al. | Jan 2005 | A1 |
20050013494 | Srinivasan et al. | Jan 2005 | A1 |
20050015509 | Sitaraman et al. | Jan 2005 | A1 |
20050015797 | Noblecourt et al. | Jan 2005 | A1 |
20050038826 | Bae et al. | Feb 2005 | A1 |
20050052294 | Liang et al. | Mar 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050063541 | Candelore | Mar 2005 | A1 |
20050066063 | Grigorovitch et al. | Mar 2005 | A1 |
20050071280 | Irwin et al. | Mar 2005 | A1 |
20050076232 | Kawaguchi | Apr 2005 | A1 |
20050089091 | Kim et al. | Apr 2005 | A1 |
20050094808 | Pedlow, Jr. et al. | May 2005 | A1 |
20050102371 | Aksu | May 2005 | A1 |
20050108320 | Lord et al. | May 2005 | A1 |
20050114534 | Lee | May 2005 | A1 |
20050114896 | Hug | May 2005 | A1 |
20050120132 | Hutter | Jun 2005 | A1 |
20050132208 | Hug et al. | Jun 2005 | A1 |
20050138655 | Zimler et al. | Jun 2005 | A1 |
20050144468 | Northcutt | Jun 2005 | A1 |
20050149450 | Stefik et al. | Jul 2005 | A1 |
20050157948 | Lee | Jul 2005 | A1 |
20050177741 | Chen et al. | Aug 2005 | A1 |
20050180641 | Clark | Aug 2005 | A1 |
20050183120 | Jain et al. | Aug 2005 | A1 |
20050190911 | Pare et al. | Sep 2005 | A1 |
20050192904 | Candelore | Sep 2005 | A1 |
20050193070 | Brown et al. | Sep 2005 | A1 |
20050193322 | Lamkin et al. | Sep 2005 | A1 |
20050196147 | Seo et al. | Sep 2005 | A1 |
20050198364 | Val et al. | Sep 2005 | A1 |
20050204289 | Mohammed et al. | Sep 2005 | A1 |
20050207442 | Zoest et al. | Sep 2005 | A1 |
20050207578 | Matsuyama et al. | Sep 2005 | A1 |
20050210145 | Kim et al. | Sep 2005 | A1 |
20050216752 | Hofmeyr et al. | Sep 2005 | A1 |
20050223412 | Nadalin et al. | Oct 2005 | A1 |
20050227773 | Lu et al. | Oct 2005 | A1 |
20050243912 | Kwon et al. | Nov 2005 | A1 |
20050254508 | Aksu et al. | Nov 2005 | A1 |
20050262257 | Major et al. | Nov 2005 | A1 |
20050265555 | Pippuri | Dec 2005 | A1 |
20050273695 | Schnurr | Dec 2005 | A1 |
20050275656 | Corbin et al. | Dec 2005 | A1 |
20060013568 | Rodriguez | Jan 2006 | A1 |
20060015580 | Gabriel et al. | Jan 2006 | A1 |
20060015813 | Chung et al. | Jan 2006 | A1 |
20060020825 | Grab | Jan 2006 | A1 |
20060026294 | Virdi et al. | Feb 2006 | A1 |
20060026302 | Bennett et al. | Feb 2006 | A1 |
20060026654 | An et al. | Feb 2006 | A1 |
20060036549 | Wu | Feb 2006 | A1 |
20060037057 | Xu | Feb 2006 | A1 |
20060039481 | Shen et al. | Feb 2006 | A1 |
20060052095 | Vazvan | Mar 2006 | A1 |
20060053080 | Edmonson et al. | Mar 2006 | A1 |
20060059223 | Klemets et al. | Mar 2006 | A1 |
20060064605 | Giobbi | Mar 2006 | A1 |
20060078301 | Ikeda et al. | Apr 2006 | A1 |
20060083302 | Han et al. | Apr 2006 | A1 |
20060093318 | Cohen et al. | May 2006 | A1 |
20060093320 | Hallberg et al. | May 2006 | A1 |
20060095472 | Krikorian et al. | May 2006 | A1 |
20060109856 | Deshpande | May 2006 | A1 |
20060120378 | Usuki et al. | Jun 2006 | A1 |
20060126717 | Boyce et al. | Jun 2006 | A1 |
20060129909 | Butt et al. | Jun 2006 | A1 |
20060165163 | Burazerovic et al. | Jul 2006 | A1 |
20060165233 | Nonaka et al. | Jul 2006 | A1 |
20060168298 | Aoki et al. | Jul 2006 | A1 |
20060168639 | Gan et al. | Jul 2006 | A1 |
20060173887 | Breitfeld et al. | Aug 2006 | A1 |
20060179239 | Fluhr | Aug 2006 | A1 |
20060181965 | Collart | Aug 2006 | A1 |
20060210245 | Mccrossan et al. | Sep 2006 | A1 |
20060212370 | Shear et al. | Sep 2006 | A1 |
20060218251 | Tanabe | Sep 2006 | A1 |
20060235880 | Qian | Oct 2006 | A1 |
20060235883 | Krebs | Oct 2006 | A1 |
20060245727 | Nakano et al. | Nov 2006 | A1 |
20060259588 | Lerman et al. | Nov 2006 | A1 |
20060263056 | Lin et al. | Nov 2006 | A1 |
20060267986 | Bae | Nov 2006 | A1 |
20060274835 | Hamilton et al. | Dec 2006 | A1 |
20060294164 | Armangau et al. | Dec 2006 | A1 |
20070005333 | Setiohardjo et al. | Jan 2007 | A1 |
20070024706 | Brannon, Jr. et al. | Feb 2007 | A1 |
20070031110 | Rijckaert | Feb 2007 | A1 |
20070033419 | Kocher et al. | Feb 2007 | A1 |
20070044010 | Sull et al. | Feb 2007 | A1 |
20070047645 | Takashima | Mar 2007 | A1 |
20070047901 | Ando et al. | Mar 2007 | A1 |
20070053293 | Mcdonald et al. | Mar 2007 | A1 |
20070053513 | Hoffberg | Mar 2007 | A1 |
20070055982 | Spilo | Mar 2007 | A1 |
20070058928 | Naito et al. | Mar 2007 | A1 |
20070061595 | Chen | Mar 2007 | A1 |
20070067472 | Maertens et al. | Mar 2007 | A1 |
20070067622 | Nakano et al. | Mar 2007 | A1 |
20070083467 | Lindahl et al. | Apr 2007 | A1 |
20070083617 | Chakrabarti et al. | Apr 2007 | A1 |
20070086528 | Mauchly et al. | Apr 2007 | A1 |
20070100757 | Rhoads | May 2007 | A1 |
20070101271 | Hua et al. | May 2007 | A1 |
20070101387 | Hua et al. | May 2007 | A1 |
20070106863 | Bonwick et al. | May 2007 | A1 |
20070133603 | Weaver | Jun 2007 | A1 |
20070136817 | Nguyen | Jun 2007 | A1 |
20070140647 | Kusunoki et al. | Jun 2007 | A1 |
20070154165 | Hemmeryckx-Deleersnijder et al. | Jul 2007 | A1 |
20070156770 | Espelien | Jul 2007 | A1 |
20070157267 | Lopez-Estrada | Jul 2007 | A1 |
20070162568 | Gupta et al. | Jul 2007 | A1 |
20070162981 | Morioka et al. | Jul 2007 | A1 |
20070166000 | Nallur et al. | Jul 2007 | A1 |
20070168541 | Gupta et al. | Jul 2007 | A1 |
20070168542 | Gupta et al. | Jul 2007 | A1 |
20070178933 | Nelson | Aug 2007 | A1 |
20070180051 | Kelly et al. | Aug 2007 | A1 |
20070180125 | Knowles et al. | Aug 2007 | A1 |
20070185982 | Nakanowatari et al. | Aug 2007 | A1 |
20070192810 | Pritchett et al. | Aug 2007 | A1 |
20070201502 | Abramson | Aug 2007 | A1 |
20070201695 | Saarikivi | Aug 2007 | A1 |
20070204003 | Abramson | Aug 2007 | A1 |
20070204011 | Shaver et al. | Aug 2007 | A1 |
20070204115 | Abramson | Aug 2007 | A1 |
20070217339 | Zhao | Sep 2007 | A1 |
20070217759 | Dodd | Sep 2007 | A1 |
20070220118 | Loyer | Sep 2007 | A1 |
20070234391 | Hunter et al. | Oct 2007 | A1 |
20070239839 | Buday et al. | Oct 2007 | A1 |
20070250536 | Tanaka et al. | Oct 2007 | A1 |
20070255940 | Ueno | Nov 2007 | A1 |
20070256141 | Nakano et al. | Nov 2007 | A1 |
20070271317 | Carmel et al. | Nov 2007 | A1 |
20070271385 | Davis et al. | Nov 2007 | A1 |
20070271830 | Holt et al. | Nov 2007 | A1 |
20070274679 | Yahata et al. | Nov 2007 | A1 |
20070277219 | Toebes et al. | Nov 2007 | A1 |
20070277234 | Bessonov et al. | Nov 2007 | A1 |
20070280298 | Hearn et al. | Dec 2007 | A1 |
20070288745 | Kwan | Dec 2007 | A1 |
20070292107 | Yahata et al. | Dec 2007 | A1 |
20070297422 | Matsuo et al. | Dec 2007 | A1 |
20080005175 | Bourke et al. | Jan 2008 | A1 |
20080008319 | Poirier | Jan 2008 | A1 |
20080008455 | De Lange et al. | Jan 2008 | A1 |
20080022005 | Wu et al. | Jan 2008 | A1 |
20080030614 | Schwab | Feb 2008 | A1 |
20080043832 | Barkley et al. | Feb 2008 | A1 |
20080046718 | Grab et al. | Feb 2008 | A1 |
20080046925 | Lee et al. | Feb 2008 | A1 |
20080052306 | Wang et al. | Feb 2008 | A1 |
20080066099 | Brodersen et al. | Mar 2008 | A1 |
20080066181 | Haveson et al. | Mar 2008 | A1 |
20080069204 | Uchiike | Mar 2008 | A1 |
20080077592 | Brodie et al. | Mar 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086570 | Dey et al. | Apr 2008 | A1 |
20080086747 | Rasanen et al. | Apr 2008 | A1 |
20080101466 | Swenson et al. | May 2008 | A1 |
20080101718 | Yang et al. | May 2008 | A1 |
20080104633 | Noblecourt et al. | May 2008 | A1 |
20080120330 | Reed et al. | May 2008 | A1 |
20080120342 | Reed et al. | May 2008 | A1 |
20080120389 | Bassali et al. | May 2008 | A1 |
20080120637 | Deiss | May 2008 | A1 |
20080126248 | Lee et al. | May 2008 | A1 |
20080131078 | Jeong et al. | Jun 2008 | A1 |
20080133767 | Birrer et al. | Jun 2008 | A1 |
20080134043 | Georgis | Jun 2008 | A1 |
20080137541 | Agarwal et al. | Jun 2008 | A1 |
20080137736 | Richardson et al. | Jun 2008 | A1 |
20080137847 | Candelore et al. | Jun 2008 | A1 |
20080137848 | Kocher et al. | Jun 2008 | A1 |
20080151817 | Fitchett | Jun 2008 | A1 |
20080155615 | Craner et al. | Jun 2008 | A1 |
20080160911 | Chou et al. | Jul 2008 | A1 |
20080162949 | Sato et al. | Jul 2008 | A1 |
20080168516 | Flick et al. | Jul 2008 | A1 |
20080172441 | Speicher et al. | Jul 2008 | A1 |
20080177793 | Epstein et al. | Jul 2008 | A1 |
20080184119 | Eyal et al. | Jul 2008 | A1 |
20080187283 | Takahashi | Aug 2008 | A1 |
20080192818 | DiPietro et al. | Aug 2008 | A1 |
20080195664 | Maharajh et al. | Aug 2008 | A1 |
20080195744 | Bowra et al. | Aug 2008 | A1 |
20080196076 | Shatz et al. | Aug 2008 | A1 |
20080201705 | Wookey | Aug 2008 | A1 |
20080205860 | Holtman | Aug 2008 | A1 |
20080209534 | Keronen et al. | Aug 2008 | A1 |
20080219449 | Ball et al. | Sep 2008 | A1 |
20080229025 | Plamondon | Sep 2008 | A1 |
20080240144 | Kruse et al. | Oct 2008 | A1 |
20080253454 | Imamura et al. | Oct 2008 | A1 |
20080256105 | Nogawa et al. | Oct 2008 | A1 |
20080263354 | Beuque et al. | Oct 2008 | A1 |
20080266522 | Weisgerber | Oct 2008 | A1 |
20080271102 | Kienzle et al. | Oct 2008 | A1 |
20080279535 | Haque et al. | Nov 2008 | A1 |
20080294453 | Baird-Smith et al. | Nov 2008 | A1 |
20080298358 | John et al. | Dec 2008 | A1 |
20080310454 | Bellwood et al. | Dec 2008 | A1 |
20080310496 | Fang | Dec 2008 | A1 |
20080313541 | Shafton et al. | Dec 2008 | A1 |
20080320100 | Pantos et al. | Dec 2008 | A1 |
20080320160 | Sitaraman et al. | Dec 2008 | A1 |
20090006302 | Chen | Jan 2009 | A1 |
20090010429 | Kim et al. | Jan 2009 | A1 |
20090010622 | Yahata et al. | Jan 2009 | A1 |
20090013195 | Ochi et al. | Jan 2009 | A1 |
20090031220 | Tranchant et al. | Jan 2009 | A1 |
20090037959 | Suh et al. | Feb 2009 | A1 |
20090048852 | Burns et al. | Feb 2009 | A1 |
20090055546 | Jung et al. | Feb 2009 | A1 |
20090060452 | Chaudhri | Mar 2009 | A1 |
20090064341 | Hartung et al. | Mar 2009 | A1 |
20090066839 | Jung et al. | Mar 2009 | A1 |
20090067367 | Buracchini et al. | Mar 2009 | A1 |
20090077143 | Macy, Jr. | Mar 2009 | A1 |
20090097644 | Haruki | Apr 2009 | A1 |
20090106082 | Senti et al. | Apr 2009 | A1 |
20090116821 | Shibamiya et al. | May 2009 | A1 |
20090132599 | Soroushian et al. | May 2009 | A1 |
20090132721 | Soroushian et al. | May 2009 | A1 |
20090132824 | Terada et al. | May 2009 | A1 |
20090136216 | Soroushian et al. | May 2009 | A1 |
20090138570 | Miura et al. | May 2009 | A1 |
20090150406 | Giblin | Jun 2009 | A1 |
20090150557 | Wormley et al. | Jun 2009 | A1 |
20090165148 | Frey et al. | Jun 2009 | A1 |
20090168795 | Segel et al. | Jul 2009 | A1 |
20090169001 | Tighe et al. | Jul 2009 | A1 |
20090169181 | Priyadarshi et al. | Jul 2009 | A1 |
20090172201 | Carmel et al. | Jul 2009 | A1 |
20090178090 | Oztaskent | Jul 2009 | A1 |
20090196139 | Bates et al. | Aug 2009 | A1 |
20090201988 | Gazier et al. | Aug 2009 | A1 |
20090217317 | White et al. | Aug 2009 | A1 |
20090226148 | Nesvadba et al. | Sep 2009 | A1 |
20090228395 | Wegner et al. | Sep 2009 | A1 |
20090249081 | Zayas | Oct 2009 | A1 |
20090265737 | Issa et al. | Oct 2009 | A1 |
20090268905 | Matsushima et al. | Oct 2009 | A1 |
20090276636 | Grab et al. | Nov 2009 | A1 |
20090282162 | Mehrotra et al. | Nov 2009 | A1 |
20090290706 | Amini et al. | Nov 2009 | A1 |
20090290708 | Schneider et al. | Nov 2009 | A1 |
20090293116 | DeMello | Nov 2009 | A1 |
20090300204 | Zhang et al. | Dec 2009 | A1 |
20090303241 | Priyadarshi et al. | Dec 2009 | A1 |
20090307258 | Priyadarshi et al. | Dec 2009 | A1 |
20090307267 | Chen et al. | Dec 2009 | A1 |
20090310819 | Hatano | Dec 2009 | A1 |
20090310933 | Lee | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090316783 | Au et al. | Dec 2009 | A1 |
20090328124 | Khouzam et al. | Dec 2009 | A1 |
20090328228 | Schnell | Dec 2009 | A1 |
20100002069 | Eleftheriadis et al. | Jan 2010 | A1 |
20100005393 | Tokashiki et al. | Jan 2010 | A1 |
20100040351 | Toma et al. | Feb 2010 | A1 |
20100057928 | Kapoor | Mar 2010 | A1 |
20100058061 | Folta et al. | Mar 2010 | A1 |
20100058405 | Ramakrishnan et al. | Mar 2010 | A1 |
20100074324 | Qian et al. | Mar 2010 | A1 |
20100074333 | Au et al. | Mar 2010 | A1 |
20100082970 | Lindahl et al. | Apr 2010 | A1 |
20100083322 | Rouse | Apr 2010 | A1 |
20100094969 | Zuckerman et al. | Apr 2010 | A1 |
20100095121 | Shetty et al. | Apr 2010 | A1 |
20100106968 | Mori et al. | Apr 2010 | A1 |
20100107260 | Orrell et al. | Apr 2010 | A1 |
20100111192 | Graves | May 2010 | A1 |
20100138903 | Medvinsky | Jun 2010 | A1 |
20100142915 | Mcdermott et al. | Jun 2010 | A1 |
20100142917 | Isaji | Jun 2010 | A1 |
20100158109 | Dahlby et al. | Jun 2010 | A1 |
20100161825 | Ronca et al. | Jun 2010 | A1 |
20100166060 | Ezure et al. | Jul 2010 | A1 |
20100185854 | Burns et al. | Jul 2010 | A1 |
20100186092 | Takechi et al. | Jul 2010 | A1 |
20100189183 | Gu et al. | Jul 2010 | A1 |
20100198943 | Harrang et al. | Aug 2010 | A1 |
20100218208 | Holden | Aug 2010 | A1 |
20100228795 | Hahn | Sep 2010 | A1 |
20100235472 | Sood et al. | Sep 2010 | A1 |
20100235528 | Bocharov et al. | Sep 2010 | A1 |
20100250532 | Soroushian et al. | Sep 2010 | A1 |
20100262712 | Kim et al. | Oct 2010 | A1 |
20100278271 | MacInnis | Nov 2010 | A1 |
20100290761 | Drake et al. | Nov 2010 | A1 |
20100299522 | Khambete et al. | Nov 2010 | A1 |
20100306249 | Hill et al. | Dec 2010 | A1 |
20100313225 | Cholas et al. | Dec 2010 | A1 |
20100313226 | Cholas et al. | Dec 2010 | A1 |
20100316126 | Chen et al. | Dec 2010 | A1 |
20100319014 | Lockett et al. | Dec 2010 | A1 |
20100319017 | Cook | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110002381 | Yang et al. | Jan 2011 | A1 |
20110010466 | Fan et al. | Jan 2011 | A1 |
20110016225 | Park et al. | Jan 2011 | A1 |
20110022432 | Ishida et al. | Jan 2011 | A1 |
20110035517 | Minnick et al. | Feb 2011 | A1 |
20110047209 | Lindholm et al. | Feb 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110058675 | Brueck et al. | Mar 2011 | A1 |
20110060808 | Martin et al. | Mar 2011 | A1 |
20110066673 | Outlaw | Mar 2011 | A1 |
20110067057 | Karaoguz et al. | Mar 2011 | A1 |
20110069757 | Ammu et al. | Mar 2011 | A1 |
20110078440 | Feng et al. | Mar 2011 | A1 |
20110080940 | Bocharov | Apr 2011 | A1 |
20110082914 | Robert et al. | Apr 2011 | A1 |
20110082924 | Gopalakrishnan | Apr 2011 | A1 |
20110083009 | Shamoon et al. | Apr 2011 | A1 |
20110096828 | Chen et al. | Apr 2011 | A1 |
20110099594 | Chen et al. | Apr 2011 | A1 |
20110103374 | Lajoie et al. | May 2011 | A1 |
20110107379 | Lajoie et al. | May 2011 | A1 |
20110116772 | Kwon et al. | May 2011 | A1 |
20110119395 | Ha et al. | May 2011 | A1 |
20110126104 | Woods et al. | May 2011 | A1 |
20110126191 | Hughes et al. | May 2011 | A1 |
20110129011 | Cilli et al. | Jun 2011 | A1 |
20110135090 | Chan et al. | Jun 2011 | A1 |
20110138018 | Raveendran et al. | Jun 2011 | A1 |
20110142415 | Rhyu | Jun 2011 | A1 |
20110145726 | Wei et al. | Jun 2011 | A1 |
20110145858 | Philpott et al. | Jun 2011 | A1 |
20110149753 | Bapst et al. | Jun 2011 | A1 |
20110150100 | Abadir | Jun 2011 | A1 |
20110153785 | Minborg et al. | Jun 2011 | A1 |
20110153835 | Rimac et al. | Jun 2011 | A1 |
20110158470 | Martin et al. | Jun 2011 | A1 |
20110164679 | Satou et al. | Jul 2011 | A1 |
20110170408 | Furbeck et al. | Jul 2011 | A1 |
20110170687 | Hyodo et al. | Jul 2011 | A1 |
20110173345 | Knox et al. | Jul 2011 | A1 |
20110179185 | Wang et al. | Jul 2011 | A1 |
20110184738 | Kalisky et al. | Jul 2011 | A1 |
20110191439 | Dazzi et al. | Aug 2011 | A1 |
20110191803 | Baldwin et al. | Aug 2011 | A1 |
20110197237 | Turner | Aug 2011 | A1 |
20110197261 | Dong et al. | Aug 2011 | A1 |
20110197267 | Gravel et al. | Aug 2011 | A1 |
20110213827 | Kaspar et al. | Sep 2011 | A1 |
20110222786 | Carmel et al. | Sep 2011 | A1 |
20110225302 | Park et al. | Sep 2011 | A1 |
20110225315 | Wexler et al. | Sep 2011 | A1 |
20110225417 | Maharajh et al. | Sep 2011 | A1 |
20110238789 | Luby et al. | Sep 2011 | A1 |
20110239078 | Luby et al. | Sep 2011 | A1 |
20110246657 | Glow | Oct 2011 | A1 |
20110246659 | Bouazizi | Oct 2011 | A1 |
20110246661 | Manzari et al. | Oct 2011 | A1 |
20110252118 | Pantos et al. | Oct 2011 | A1 |
20110264530 | Santangelo et al. | Oct 2011 | A1 |
20110268178 | Park et al. | Nov 2011 | A1 |
20110276555 | Fiero | Nov 2011 | A1 |
20110276695 | Maldaner et al. | Nov 2011 | A1 |
20110280307 | MacInnis et al. | Nov 2011 | A1 |
20110283012 | Melnyk | Nov 2011 | A1 |
20110291723 | Hashimoto | Dec 2011 | A1 |
20110296048 | Knox et al. | Dec 2011 | A1 |
20110302319 | Ha et al. | Dec 2011 | A1 |
20110305273 | He et al. | Dec 2011 | A1 |
20110314130 | Strasman | Dec 2011 | A1 |
20110314176 | Frojdh et al. | Dec 2011 | A1 |
20110314500 | Gordon | Dec 2011 | A1 |
20120005312 | Mcgowan et al. | Jan 2012 | A1 |
20120005368 | Knittle et al. | Jan 2012 | A1 |
20120017282 | Kang et al. | Jan 2012 | A1 |
20120023251 | Pyle et al. | Jan 2012 | A1 |
20120036365 | Kyslov et al. | Feb 2012 | A1 |
20120036544 | Chen et al. | Feb 2012 | A1 |
20120042090 | Chen et al. | Feb 2012 | A1 |
20120047542 | Lewis et al. | Feb 2012 | A1 |
20120066360 | Ghosh | Mar 2012 | A1 |
20120093214 | Urbach | Apr 2012 | A1 |
20120110120 | Willig et al. | May 2012 | A1 |
20120114302 | Randall | May 2012 | A1 |
20120124191 | Lyon | May 2012 | A1 |
20120134496 | Farkash et al. | May 2012 | A1 |
20120137336 | Applegate et al. | May 2012 | A1 |
20120144117 | Weare et al. | Jun 2012 | A1 |
20120144445 | Bonta et al. | Jun 2012 | A1 |
20120147958 | Ronca et al. | Jun 2012 | A1 |
20120166633 | Baumback et al. | Jun 2012 | A1 |
20120167132 | Mathews et al. | Jun 2012 | A1 |
20120170642 | Braness et al. | Jul 2012 | A1 |
20120170643 | Soroushian et al. | Jul 2012 | A1 |
20120170906 | Soroushian et al. | Jul 2012 | A1 |
20120170915 | Braness et al. | Jul 2012 | A1 |
20120173751 | Braness et al. | Jul 2012 | A1 |
20120177101 | Van Der Schaar | Jul 2012 | A1 |
20120179834 | Van Der Schaar et al. | Jul 2012 | A1 |
20120188069 | Colombo et al. | Jul 2012 | A1 |
20120189069 | Iannuzzelli et al. | Jul 2012 | A1 |
20120201475 | Carmel et al. | Aug 2012 | A1 |
20120201476 | Carmel et al. | Aug 2012 | A1 |
20120233345 | Hannuksela | Sep 2012 | A1 |
20120240176 | Ma et al. | Sep 2012 | A1 |
20120254455 | Adimatyam et al. | Oct 2012 | A1 |
20120257678 | Zhou et al. | Oct 2012 | A1 |
20120260277 | Kosciewicz | Oct 2012 | A1 |
20120263434 | Wainner et al. | Oct 2012 | A1 |
20120265562 | Daouk et al. | Oct 2012 | A1 |
20120278496 | Hsu | Nov 2012 | A1 |
20120281767 | Duenas et al. | Nov 2012 | A1 |
20120288015 | Zhang et al. | Nov 2012 | A1 |
20120289147 | Raleigh et al. | Nov 2012 | A1 |
20120294355 | Holcomb et al. | Nov 2012 | A1 |
20120297039 | Acuna et al. | Nov 2012 | A1 |
20120307883 | Graves | Dec 2012 | A1 |
20120311094 | Biderman et al. | Dec 2012 | A1 |
20120311174 | Bichot et al. | Dec 2012 | A1 |
20120314778 | Salustri et al. | Dec 2012 | A1 |
20120317235 | Nguyen et al. | Dec 2012 | A1 |
20120331167 | Hunt | Dec 2012 | A1 |
20130007223 | Luby et al. | Jan 2013 | A1 |
20130013730 | Li et al. | Jan 2013 | A1 |
20130013803 | Bichot et al. | Jan 2013 | A1 |
20130019107 | Grab et al. | Jan 2013 | A1 |
20130019273 | Ma et al. | Jan 2013 | A1 |
20130028534 | Tatsuka et al. | Jan 2013 | A1 |
20130041808 | Pham et al. | Feb 2013 | A1 |
20130044821 | Braness et al. | Feb 2013 | A1 |
20130046849 | Wolf | Feb 2013 | A1 |
20130046902 | Villegas Nuñez et al. | Feb 2013 | A1 |
20130051554 | Braness et al. | Feb 2013 | A1 |
20130051767 | Soroushian et al. | Feb 2013 | A1 |
20130051768 | Soroushian et al. | Feb 2013 | A1 |
20130054958 | Braness et al. | Feb 2013 | A1 |
20130055084 | Soroushian et al. | Feb 2013 | A1 |
20130058393 | Soroushian | Mar 2013 | A1 |
20130058480 | Ziskind et al. | Mar 2013 | A1 |
20130061040 | Kiefer et al. | Mar 2013 | A1 |
20130061045 | Kiefer et al. | Mar 2013 | A1 |
20130064466 | Carmel et al. | Mar 2013 | A1 |
20130066838 | Singla et al. | Mar 2013 | A1 |
20130080267 | McGowan | Mar 2013 | A1 |
20130094565 | Yang et al. | Apr 2013 | A1 |
20130097309 | Ma et al. | Apr 2013 | A1 |
20130114944 | Soroushian et al. | May 2013 | A1 |
20130124859 | Pestoni et al. | May 2013 | A1 |
20130128962 | Rajagopalan et al. | May 2013 | A1 |
20130152767 | Katz et al. | Jun 2013 | A1 |
20130159633 | Lilly | Jun 2013 | A1 |
20130166580 | Maharajh | Jun 2013 | A1 |
20130166765 | Kaufman | Jun 2013 | A1 |
20130166906 | Swaminathan et al. | Jun 2013 | A1 |
20130169863 | Smith | Jul 2013 | A1 |
20130170561 | Hannuksela | Jul 2013 | A1 |
20130170764 | Carmel et al. | Jul 2013 | A1 |
20130173513 | Chu et al. | Jul 2013 | A1 |
20130179199 | Ziskind et al. | Jul 2013 | A1 |
20130179589 | Mccarthy et al. | Jul 2013 | A1 |
20130179992 | Ziskind et al. | Jul 2013 | A1 |
20130182952 | Carmel et al. | Jul 2013 | A1 |
20130196292 | Brennen et al. | Aug 2013 | A1 |
20130212228 | Butler et al. | Aug 2013 | A1 |
20130223812 | Rossi | Aug 2013 | A1 |
20130226578 | Bolton et al. | Aug 2013 | A1 |
20130226635 | Fisher | Aug 2013 | A1 |
20130227081 | Luby et al. | Aug 2013 | A1 |
20130227111 | Wright et al. | Aug 2013 | A1 |
20130227122 | Gao | Aug 2013 | A1 |
20130297602 | Soroushian et al. | Nov 2013 | A1 |
20130301424 | Kotecha et al. | Nov 2013 | A1 |
20130311670 | Tarbox et al. | Nov 2013 | A1 |
20130329781 | Su et al. | Dec 2013 | A1 |
20140003516 | Soroushian | Jan 2014 | A1 |
20140019592 | Arana et al. | Jan 2014 | A1 |
20140019593 | Reznik et al. | Jan 2014 | A1 |
20140037620 | Ferree et al. | Feb 2014 | A1 |
20140047141 | Sadeghi | Feb 2014 | A1 |
20140052823 | Gavade et al. | Feb 2014 | A1 |
20140059156 | Freeman et al. | Feb 2014 | A1 |
20140096171 | Shivadas et al. | Apr 2014 | A1 |
20140096269 | Amidei et al. | Apr 2014 | A1 |
20140101722 | Moore | Apr 2014 | A1 |
20140114951 | Sasaki et al. | Apr 2014 | A1 |
20140115650 | Zhang et al. | Apr 2014 | A1 |
20140119432 | Wang et al. | May 2014 | A1 |
20140140253 | Lohmar et al. | May 2014 | A1 |
20140140396 | Wang et al. | May 2014 | A1 |
20140140417 | Shaffer et al. | May 2014 | A1 |
20140143301 | Watson et al. | May 2014 | A1 |
20140143431 | Watson et al. | May 2014 | A1 |
20140143440 | Ramamurthy et al. | May 2014 | A1 |
20140149557 | Lohmar et al. | May 2014 | A1 |
20140177734 | Carmel et al. | Jun 2014 | A1 |
20140189065 | van der Schaar et al. | Jul 2014 | A1 |
20140201382 | Shivadas et al. | Jul 2014 | A1 |
20140211840 | Butt et al. | Jul 2014 | A1 |
20140211859 | Carmel et al. | Jul 2014 | A1 |
20140241420 | Orton-jay et al. | Aug 2014 | A1 |
20140241421 | Orton-jay et al. | Aug 2014 | A1 |
20140247869 | Su et al. | Sep 2014 | A1 |
20140250473 | Braness et al. | Sep 2014 | A1 |
20140258714 | Grab | Sep 2014 | A1 |
20140269927 | Naletov et al. | Sep 2014 | A1 |
20140269936 | Shivadas et al. | Sep 2014 | A1 |
20140280763 | Grab et al. | Sep 2014 | A1 |
20140297804 | Shivadas et al. | Oct 2014 | A1 |
20140297881 | Shivadas et al. | Oct 2014 | A1 |
20140355668 | Shoham et al. | Dec 2014 | A1 |
20140355958 | Soroushian et al. | Dec 2014 | A1 |
20140359678 | Shivadas et al. | Dec 2014 | A1 |
20140359679 | Shivadas et al. | Dec 2014 | A1 |
20140359680 | Shivadas et al. | Dec 2014 | A1 |
20140376720 | Chan et al. | Dec 2014 | A1 |
20150006662 | Braness | Jan 2015 | A1 |
20150019550 | Maharajh et al. | Jan 2015 | A1 |
20150026677 | Stevens et al. | Jan 2015 | A1 |
20150043554 | Meylan et al. | Feb 2015 | A1 |
20150049957 | Shoham et al. | Feb 2015 | A1 |
20150063693 | Carmel et al. | Mar 2015 | A1 |
20150067715 | Koat et al. | Mar 2015 | A1 |
20150104153 | Braness et al. | Apr 2015 | A1 |
20150117836 | Amidei et al. | Apr 2015 | A1 |
20150117837 | Amidei et al. | Apr 2015 | A1 |
20150139419 | Kiefer et al. | May 2015 | A1 |
20150188758 | Amidei et al. | Jul 2015 | A1 |
20150188842 | Amidei et al. | Jul 2015 | A1 |
20150188921 | Amidei et al. | Jul 2015 | A1 |
20150188962 | Bulava et al. | Jul 2015 | A1 |
20150189017 | Amidei et al. | Jul 2015 | A1 |
20150189373 | Amidei et al. | Jul 2015 | A1 |
20150281310 | Ziskind et al. | Oct 2015 | A1 |
20150288530 | Oyman | Oct 2015 | A1 |
20150288996 | Van Der Schaar et al. | Oct 2015 | A1 |
20150334435 | Shivadas et al. | Nov 2015 | A1 |
20150373421 | Chan et al. | Dec 2015 | A1 |
20160048593 | Soroushian et al. | Feb 2016 | A1 |
20160070890 | Grab et al. | Mar 2016 | A1 |
20160112382 | Kiefer et al. | Apr 2016 | A1 |
20160149981 | van der Schaar | May 2016 | A1 |
20160219303 | Braness et al. | Jul 2016 | A1 |
20160323342 | Luby et al. | Nov 2016 | A1 |
20170011055 | Pitts | Jan 2017 | A1 |
20170026445 | Soroushian et al. | Jan 2017 | A1 |
20170041604 | Soroushian et al. | Feb 2017 | A1 |
20170083474 | Meswani et al. | Mar 2017 | A1 |
20170103754 | Higbie et al. | Apr 2017 | A1 |
20170214947 | Kiefer et al. | Jul 2017 | A1 |
20170223389 | Soroushian et al. | Aug 2017 | A1 |
20170238030 | Ziskind et al. | Aug 2017 | A1 |
20170280203 | Chan et al. | Sep 2017 | A1 |
20180007451 | Shivadas et al. | Jan 2018 | A1 |
20180046949 | Kahn et al. | Feb 2018 | A1 |
20180060543 | Grab et al. | Mar 2018 | A1 |
20180081548 | Barzik et al. | Mar 2018 | A1 |
20180131980 | Van Der Schaar et al. | May 2018 | A1 |
20180220153 | Braness et al. | Aug 2018 | A1 |
20180255366 | Lockett et al. | Sep 2018 | A1 |
20180262757 | Naletov et al. | Sep 2018 | A1 |
20180278975 | Soroushian | Sep 2018 | A1 |
20180285261 | Mandal et al. | Oct 2018 | A1 |
20180332094 | Braness | Nov 2018 | A1 |
20190020907 | Kiefer et al. | Jan 2019 | A1 |
20190020928 | Chan et al. | Jan 2019 | A1 |
20190045219 | Braness et al. | Feb 2019 | A1 |
20190045220 | Braness et al. | Feb 2019 | A1 |
20190045234 | Kiefer et al. | Feb 2019 | A1 |
20190158553 | Van Der Schaar et al. | May 2019 | A1 |
20190268596 | Naletov et al. | Aug 2019 | A1 |
20190297364 | van der Schaar et al. | Sep 2019 | A1 |
20190342587 | Kiefer et al. | Nov 2019 | A1 |
20190356928 | Braness et al. | Nov 2019 | A1 |
20200059706 | Shivadas et al. | Feb 2020 | A1 |
20200137460 | Chan et al. | Apr 2020 | A1 |
20200186854 | Soroushian | Jun 2020 | A1 |
20200226091 | Harriman | Jul 2020 | A1 |
20200396451 | Soroushian et al. | Dec 2020 | A1 |
20200396454 | Naletov et al. | Dec 2020 | A1 |
20210021662 | Soroushian et al. | Jan 2021 | A1 |
20210076082 | Kiefer et al. | Mar 2021 | A1 |
20210099504 | Van Der Schaar et al. | Apr 2021 | A1 |
20210136429 | Van Der Schaar et al. | May 2021 | A1 |
20210250608 | Braness et al. | Aug 2021 | A1 |
20210250627 | Soroushian | Aug 2021 | A1 |
20210256095 | Grab et al. | Aug 2021 | A1 |
20210329347 | Chan et al. | Oct 2021 | A1 |
20220224776 | Doshi | Jul 2022 | A1 |
20230067662 | Van Der Schaar et al. | Mar 2023 | A1 |
20230179837 | Shivadas et al. | Jun 2023 | A1 |
20230300372 | Braness et al. | Sep 2023 | A1 |
20230396552 | Lai | Dec 2023 | A1 |
Number | Date | Country |
---|---|---|
2010203605 | May 2015 | AU |
2237293 | Jul 1997 | CA |
2749170 | Jul 2010 | CA |
2749170 | Jun 2016 | CA |
2823829 | Jan 2019 | CA |
1169229 | Dec 1997 | CN |
1221284 | Jun 1999 | CN |
1235473 | Nov 1999 | CN |
1629939 | Jun 2005 | CN |
1662952 | Aug 2005 | CN |
1723696 | Jan 2006 | CN |
1756359 | Apr 2006 | CN |
1787422 | Jun 2006 | CN |
101252401 | Aug 2008 | CN |
101461149 | Jun 2009 | CN |
102138327 | Jul 2011 | CN |
102549557 | Jul 2012 | CN |
103858419 | Jun 2014 | CN |
103875248 | Jun 2014 | CN |
102549557 | Sep 2015 | CN |
105072454 | Nov 2015 | CN |
103875248 | Sep 2018 | CN |
108989847 | Dec 2018 | CN |
105072454 | Apr 2019 | CN |
108989847 | Mar 2021 | CN |
757484 | Feb 1997 | EP |
813167 | Dec 1997 | EP |
0818111 | Jan 1998 | EP |
0936812 | Aug 1999 | EP |
0818111 | Jan 2000 | EP |
1056273 | Nov 2000 | EP |
1158799 | Nov 2001 | EP |
1187483 | Mar 2002 | EP |
1335603 | Aug 2003 | EP |
1420580 | May 2004 | EP |
1453319 | Sep 2004 | EP |
1536646 | Jun 2005 | EP |
1553779 | Jul 2005 | EP |
1657835 | May 2006 | EP |
1283640 | Oct 2006 | EP |
1718074 | Nov 2006 | EP |
2180664 | Apr 2010 | EP |
2360923 | Aug 2011 | EP |
2384475 | Nov 2011 | EP |
2486517 | Aug 2012 | EP |
2486727 | Aug 2012 | EP |
2507995 | Oct 2012 | EP |
2564354 | Mar 2013 | EP |
2616991 | Jul 2013 | EP |
2617192 | Jul 2013 | EP |
2661696 | Nov 2013 | EP |
2661875 | Nov 2013 | EP |
2661895 | Nov 2013 | EP |
2486727 | Mar 2014 | EP |
2564354 | Mar 2014 | EP |
2616991 | Mar 2014 | EP |
2617192 | Mar 2014 | EP |
2716048 | Apr 2014 | EP |
2721826 | Apr 2014 | EP |
2486517 | Jun 2014 | EP |
2751990 | Jul 2014 | EP |
2807821 | Dec 2014 | EP |
2751990 | Apr 2015 | EP |
2661875 | Nov 2019 | EP |
2661696 | May 2020 | EP |
3697096 | Aug 2020 | EP |
3700219 | Aug 2020 | EP |
3742740 | Nov 2020 | EP |
3697096 | Jan 2022 | EP |
3975574 | Mar 2022 | EP |
3742740 | May 2022 | EP |
4124048 | Jan 2023 | EP |
2398210 | Aug 2004 | GB |
1125765 | Aug 2009 | HK |
1195183 | Feb 2018 | HK |
1260329 | Dec 2019 | HK |
1260329 | Nov 2021 | HK |
08046902 | Feb 1996 | JP |
08111842 | Apr 1996 | JP |
08163488 | Jun 1996 | JP |
08287613 | Nov 1996 | JP |
09037225 | Feb 1997 | JP |
H1175178 | Mar 1999 | JP |
11164307 | Jun 1999 | JP |
11275576 | Oct 1999 | JP |
11328929 | Nov 1999 | JP |
2000201343 | Jul 2000 | JP |
02001043668 | Feb 2001 | JP |
2001209726 | Aug 2001 | JP |
2001346165 | Dec 2001 | JP |
2002164880 | Jun 2002 | JP |
2002170363 | Jun 2002 | JP |
2002518898 | Jun 2002 | JP |
2002218384 | Aug 2002 | JP |
2003179597 | Jun 2003 | JP |
2003250113 | Sep 2003 | JP |
2004013823 | Jan 2004 | JP |
2004515941 | May 2004 | JP |
2004172830 | Jun 2004 | JP |
2004187161 | Jul 2004 | JP |
2004234128 | Aug 2004 | JP |
2004304767 | Oct 2004 | JP |
2004328218 | Nov 2004 | JP |
2005027153 | Jan 2005 | JP |
2005504480 | Feb 2005 | JP |
2005080204 | Mar 2005 | JP |
2005173241 | Jun 2005 | JP |
2005284041 | Oct 2005 | JP |
2005286881 | Oct 2005 | JP |
2006155500 | Jun 2006 | JP |
2006521035 | Sep 2006 | JP |
2006524007 | Oct 2006 | JP |
2007036666 | Feb 2007 | JP |
2007174375 | Jul 2007 | JP |
2007235690 | Sep 2007 | JP |
2007535881 | Dec 2007 | JP |
2008235999 | Oct 2008 | JP |
2009508452 | Feb 2009 | JP |
2009522887 | Jun 2009 | JP |
2009530917 | Aug 2009 | JP |
4516082 | May 2010 | JP |
2012514951 | Jun 2012 | JP |
2013513298 | Apr 2013 | JP |
5200204 | Jun 2013 | JP |
2014506430 | Mar 2014 | JP |
5681641 | Jan 2015 | JP |
5723888 | May 2015 | JP |
2015167357 | Sep 2015 | JP |
6038805 | Dec 2016 | JP |
6078574 | Feb 2017 | JP |
2017063453 | Mar 2017 | JP |
2018160923 | Oct 2018 | JP |
6453291 | Jan 2019 | JP |
6657313 | Feb 2020 | JP |
202080551 | May 2020 | JP |
2021158694 | Oct 2021 | JP |
7000475 | Dec 2021 | JP |
7332655 | Aug 2023 | JP |
2023138806 | Oct 2023 | JP |
100221423 | Sep 1999 | KR |
2002013664 | Feb 2002 | KR |
1020020064888 | Aug 2002 | KR |
20040039852 | May 2004 | KR |
20060030164 | Apr 2006 | KR |
20060106250 | Oct 2006 | KR |
20060116967 | Nov 2006 | KR |
100669616 | Jan 2007 | KR |
20070005699 | Jan 2007 | KR |
20070020727 | Feb 2007 | KR |
20090016282 | Feb 2009 | KR |
20100106418 | Oct 2010 | KR |
20110133024 | Dec 2011 | KR |
1020130133830 | Dec 2013 | KR |
20140056317 | May 2014 | KR |
101635876 | Jul 2016 | KR |
101874907 | Jul 2018 | KR |
101917763 | Nov 2018 | KR |
101928910 | Dec 2018 | KR |
10-1936142 | Jan 2019 | KR |
10-1981923 | May 2019 | KR |
10-1988877 | Jun 2019 | KR |
10-2020764 | Sep 2019 | KR |
10-2072839 | Jan 2020 | KR |
10-2074148 | Jan 2020 | KR |
10-2086995 | Mar 2020 | KR |
10-2122189 | Jun 2020 | KR |
10-2140339 | Jul 2020 | KR |
10-2163151 | Sep 2020 | KR |
10-2187792 | Dec 2020 | KR |
10-2195414 | Dec 2020 | KR |
102191317 | Dec 2020 | KR |
10-2241867 | Apr 2021 | KR |
10-2274290 | Jul 2021 | KR |
10-2352043 | Jan 2022 | KR |
10-2363764 | Feb 2022 | KR |
10-2408120 | Jun 2022 | KR |
10-2414735 | Jun 2022 | KR |
102445689 | Sep 2022 | KR |
2011007344 | Feb 2012 | MX |
316584 | Dec 2013 | MX |
2328040 | Jun 2008 | RU |
146026 | Dec 2010 | SG |
1995015660 | Jun 1995 | WO |
1996013121 | May 1996 | WO |
199800973 | Jan 1998 | WO |
1997031445 | Apr 1998 | WO |
199834405 | Aug 1998 | WO |
1998047290 | Oct 1998 | WO |
1999010836 | Mar 1999 | WO |
1999065239 | Dec 1999 | WO |
2000049762 | Aug 2000 | WO |
2000049763 | Aug 2000 | WO |
0104892 | Jan 2001 | WO |
2001031497 | May 2001 | WO |
2001050732 | Jul 2001 | WO |
2001065762 | Sep 2001 | WO |
2002001880 | Jan 2002 | WO |
2002008948 | Jan 2002 | WO |
200223315 | Mar 2002 | WO |
2002035832 | May 2002 | WO |
2002037210 | May 2002 | WO |
2002054196 | Jul 2002 | WO |
2002054776 | Jul 2002 | WO |
2002073437 | Sep 2002 | WO |
2002087241 | Oct 2002 | WO |
2003028293 | Apr 2003 | WO |
2003030000 | Apr 2003 | WO |
2003046750 | Jun 2003 | WO |
2003047262 | Jun 2003 | WO |
2003061173 | Jul 2003 | WO |
2003096136 | Nov 2003 | WO |
2004012378 | Feb 2004 | WO |
2004054247 | Jun 2004 | WO |
2004097811 | Nov 2004 | WO |
2004100158 | Nov 2004 | WO |
2004102571 | Nov 2004 | WO |
2005008385 | Jan 2005 | WO |
2005015935 | Feb 2005 | WO |
2005050373 | Jun 2005 | WO |
2005057906 | Jun 2005 | WO |
2005109224 | Nov 2005 | WO |
2005125214 | Dec 2005 | WO |
2006018843 | Feb 2006 | WO |
20060012398 | Feb 2006 | WO |
2006018843 | Dec 2006 | WO |
2007044590 | Apr 2007 | WO |
2007072257 | Jun 2007 | WO |
2007073347 | Jun 2007 | WO |
2007093923 | Aug 2007 | WO |
2007101182 | Sep 2007 | WO |
2007113836 | Oct 2007 | WO |
2008010275 | Jan 2008 | WO |
2008032908 | Mar 2008 | WO |
2008042242 | Apr 2008 | WO |
2008086313 | Jul 2008 | WO |
2008090859 | Jul 2008 | WO |
2007113836 | Nov 2008 | WO |
2008135932 | Nov 2008 | WO |
2007113836 | Dec 2008 | WO |
2009006302 | Jan 2009 | WO |
2009065137 | May 2009 | WO |
2009070770 | Jun 2009 | WO |
2009109976 | Sep 2009 | WO |
2010005673 | Jan 2010 | WO |
2010060106 | May 2010 | WO |
2010080911 | Jul 2010 | WO |
2010089962 | Aug 2010 | WO |
2010108053 | Sep 2010 | WO |
2010111261 | Sep 2010 | WO |
2010122447 | Oct 2010 | WO |
2010147878 | Dec 2010 | WO |
2010150470 | Dec 2010 | WO |
2011042898 | Apr 2011 | WO |
2011042900 | Apr 2011 | WO |
2011053658 | May 2011 | WO |
2011059274 | May 2011 | WO |
2011059291 | May 2011 | WO |
2011068668 | Jun 2011 | WO |
2011086190 | Jul 2011 | WO |
2011087449 | Jul 2011 | WO |
2011093835 | Aug 2011 | WO |
2011101371 | Aug 2011 | WO |
2011102791 | Aug 2011 | WO |
2011103364 | Aug 2011 | WO |
2011132184 | Oct 2011 | WO |
2011135558 | Nov 2011 | WO |
2012035533 | Mar 2012 | WO |
2012035534 | Mar 2012 | WO |
2012035534 | Jul 2012 | WO |
2012094171 | Jul 2012 | WO |
20120094181 | Jul 2012 | WO |
20120094189 | Jul 2012 | WO |
2012035533 | Aug 2012 | WO |
2012162806 | Dec 2012 | WO |
2012171113 | Dec 2012 | WO |
2013030833 | Mar 2013 | WO |
2013032518 | Mar 2013 | WO |
2013033334 | Mar 2013 | WO |
2013033335 | Mar 2013 | WO |
2013033458 | Mar 2013 | WO |
2013033458 | May 2013 | WO |
2013103986 | Jul 2013 | WO |
2013111126 | Aug 2013 | WO |
2013032518 | Sep 2013 | WO |
2013144942 | Oct 2013 | WO |
2014145901 | Sep 2014 | WO |
2014193996 | Dec 2014 | WO |
2014193996 | Feb 2015 | WO |
2015031982 | Mar 2015 | WO |
2013111126 | Jun 2015 | WO |
Entry |
---|
“IBM Closes Cryptolopes Unit,” Dec. 17, 1997, CNET News, Printed on Apr. 25, 2014 from http://news.cnet.com/IBM-closes-Cryptolopes-unit/2100-1001_3206465.html, 3 pgs. |
U.S. Appl. No. 13/905,804, “Notice of Allowance,” Aug. 12, 2015, 8 pgs. |
3GPP TS 26.247, V10.1.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Transparent end-to-end Packet-switches Streaming Services (PSS); Nov. 2011, 112 pgs. |
Broadq—The Ultimate Home Entertainment Software, printed May 11, 2009 from ittp://web.srchive.org/web/20030401122010/www.broadq.com/qcasttuner/, 1 pg. |
Chinese Patent Application 201180060590.1 office action dated Aug. 6, 2015, 11 pgs. |
Cloakware Corporation, “Protecting Digital Content Using Cloakware Code Transformation Technology”, Version 1.2, May 2002, pp. 1-10. |
Decision Granting Institution of Inter Partes Review 35 U.S.C. § 314, IPR2020-00558, U.S. Pat. No. 10,225,588, Aug. 26, 2020, 46 pgs. |
Declaration of Patrick McDaniel, Ph.D., Inter Partes Review of U.S. Pat. No. 10,225,588, IPR filed Feb. 15, 2020, 211 pgs. |
EP11774529 Supplementary European Search Report, completed Jan. 31, 2014, 2 pgs. |
European Search Report Application No. EP 08870152, Search Completed May 19, 2011, Mailed May 26, 2011, 9 pgs. |
European Search Report for Application 11855103.5, search completed Jun. 26, 2014, 9 pgs. |
European Search Report for Application 11855237.1, search completed Jun. 12, 2014, 9 pgs. |
European Supplementary Search Report for Application EP09759600, completed Jan. 25, 2011, 11 pgs. |
Examination report for GB1308663.2, dated May 18, 2016, 3 pgs. |
Extended European Search Report for European Application EP10821672, completed Jan. 30, 2014, 3 pgs. |
Extended European Search Report for European Application EP11824682, completed Feb. 6, 2014, 4 pgs. |
Extended European Search Report for European Application EP12828956.8, Report Completed Feb. 18, 2015, Mailed Mar. 2, 2015, 13 pgs. |
Extended European Search Report for European Application No. 14763140.2, Search completed Sep. 26, 2016, Mailed Oct. 5, 2016, 9 pgs. |
Extended European Search Report for European Application No. 19211286.0, Search completed Jul. 3, 2020, Mailed Jul. 13, 2020, 9 pgs. |
Extended European Search Report for European Application No. 19211291.0, Search completed Jul. 6, 2020, Mailed Jul. 14, 2020, 12 pgs. |
Extended European Search Report for European Application No. 21208230.9, Search completed Feb. 18, 2022, Mailed Mar. 1, 2022, 15 pgs. |
Extended European Search Report for European Application No. 20172313.7 Search completed Aug. 19, 2020 Mailed Aug. 27, 2020, 11 pgs. |
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pgs. |
Filed Application and Filing Receipt for U.S. Appl. No. 61/359,748, Application filed Jun. 29, 2010, Receipt mailed Jul. 13, 2010, 38 pgs. |
Final draft ETSI ES 202 109, V1.1.1, ETSI Standard, Terrestrial Trunked Radio (TETRA); Security; Synchronization mechanism for end-to-end encryption, Oct. 2002, 17 pgs. |
First Amended Complaint for Patent Infringement, DivX, LLC v. Netflix, Inc., No. 2:19-cv-1602-PSG, Am. Compl. (C.D. Cal Aug. 21, 2019), 229 pgs., IPR filed Feb. 15, 2020. |
Great Britain Application GB1308663.2 search report dated Jan. 5, 2017, 1 pg. |
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pgs. |
IBM Corporation and Microsoft Corporation, “Multimedia Programming Interface and Data Specifications 1.0”, Aug. 1991, printed from http://www.kk.iij4u.or.jp/˜kondo/wave/mpidata.txt on Mar. 6, 2006, 100 pgs. |
Information Technology—MPEG Systems Technologies—Part 7: Common Encryption in ISO Base Media File Format Files (ISO/IEC 23001-7), Apr. 2015, 24 pgs. |
InformationWeek, “Internet on Wheels”, InformationWeek: Front End: Daily Dose, Jul. 20, 1999, Printed on Mar. 26, 2014, 3 pgs. |
International Preliminary Report for Application No. PCT/US2011/066927, Filed Dec. 22, 2011, Report Issued Jul. 10, 2013, 13 pgs. |
International Preliminary Report for International Application No. PCT/US2011/067243, International Filing Date Dec. 23, 2011, Issued Jul. 10, 2013, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US14/30747, Report Issued Sep. 15, 2015, Mailed Sep. 24, 2015, 6 pgs. |
International Preliminary report on Patentability for International Application No. PCT/US2005/025845, report issued on Jun. 19, 2007, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2007/063950, Report Completed Dec. 18, 2009, 3 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/083816, issued May 18, 2010, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/56733, Issued Jun. 5, 2012, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/068276, issue Mar. 4, 2014, 23 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/053052, Completed Mar. 4, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/053223, Report Issued Mar. 4, 2014, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2011/067167, Issued Feb. 25, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/043181, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/039852, issued Dec. 1, 2015, mailed Dec. 5, 2015, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2010/020372, Completed Oct. 6, 2011, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/63950, completed Feb. 19, 2008; mailed Mar. 19, 2008, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US08/87999, completed Feb. 7, 2009, mailed Mar. 19, 2009, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US09/46588, completed Jul. 13, 2009, mailed Jul. 23, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2004/041667, completed May 24, 2007, mailed Jun. 20, 2007, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2005/025845, completed Feb. 5, 2007 and mailed May 10, 2007, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/020372, Completed Feb. 10, 2009, Mailed Mar. 1, 2010, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/56733, Completed Jan. 3, 2011, Mailed Jan. 14, 2011, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2011/067243, International Filing Date Dec. 23, 2011, Search Completed Apr. 24, 2012, Mailed May 8, 2012, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/053052, International Filing Date Aug. 30, 2012, Report Completed Oct. 25, 2012, Mailed Nov. 16, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/053223, International Filing Date Aug. 30, 2012, Report Completed Dec. 7, 2012, Mailed Mar. 7, 2013, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/043181, completed Nov. 27, 2013, mailed Dec. 6, 2013, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/30747, completed Jul. 30, 2014, Mailed Aug. 22, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/39852, completed Oct. 21, 2014, mailed Dec. 5, 2014, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/066927, completed Apr. 3, 2012, Mailed Apr. 20, 2012, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/067167, completed Jun. 19, 2012, Mailed Jul. 2, 2012, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/068276, completed Jun. 19, 2013, Mailed Jul. 8, 2013, 24 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/053053, search completed Oct. 23, 2012, mailed Nov. 13, 2012, 11 pgs. |
Search Report and Written Opinion for PCT/US2013/020572, International Filing Date Jan. 7, 2013, Search Completed Mar. 19, 2013, Mailed Apr. 29, 2013, 10 pgs. |
International Search Report for International Application No. PCT/SE2011/050166, Search completed Mar. 30, 2011, Mailed Mar. 30, 2011, 5 pgs. |
International Telecommunication Union, Telecommunication Standardization Sector of ITU, H.233, Line Transmission of Non-Telephone Signals, Confidentiality System for Audiovisual Services, ITU-T Recommendation H.233, Mar. 1993, 18 pgs. |
ISO/IEC 14496-12 Information technology—Coding of audio-visual objects—Part 12: ISO base media file format, Amendment 3: DASH support and RTP reception hint track processing, 2011, 44 pgs. |
ISO/IEC 14496-12 Information technology—Coding of audio-visual objects—Part 12: ISO base media file format, Feb. 2004 (“MPEG-4 Part 12 Standard”), 62 pgs. |
ISO/IEC 14496-12:2008(E) Informational Technology—Coding of Audio-Visual Objects Part 12: ISO Base Media File Format, Oct. 2008, 120 pgs. |
ISO/IEC CD 23001-6 MPEG systems technologies Part 6: Dynamic adaptive streaming over HTTP (DASH), Oct. 15, 2010, 70 pgs. |
ISO/IEC DIS 23009-1, Information technology—Dynamic adaptive streaming over HTTP (DASH)—Part 1: Media presentation description and segment formats, dated Aug. 30, 2011, 132 pgs. |
ISO/IEC FCD 23001-6 MPEG systems technologies Part 6: Dynamic adaptive streaming over HTTP (DASH), Jan. 28, 2011, 86 pgs. |
ISO/IEC JTC1/SC29/WG11, MPEG/M18620, Oct. 2010, Text of ISO/IEC 23001-6: Dynamic adaptive streaming over HTTP (DASH), 72 pgs. |
ISO/IEC JTC1/SC29/WG11, MPEG/N11578, Text of ISO/IEC 23001-6: Dynamic adaptive streaming over HTTP (DASH), Oct. 2010, 70 pgs. |
ISO/IEC JTC1/SC29-WG11—Coding of Moving Pictures and Audio, MPEG2010/M18692, Jan. 2010, 10 pgs. |
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, Printed on Oct. 21, 2011 from http://www.itsinternational.com/News/article.cfm?recordID=547, 2 pgs. |
Lifehacker—Boxqueue Bookmarklet Saves Videos for Later Boxee Watching, printed Jun. 16, 2009 from http://feeds.gawker.com/˜r/lifehacker/full/˜3/OHvDmrlgZZc/boxqueue-bookmarklet-saves-videos-for-late-boxee-watching, 2 pgs. |
Linksys Wireless-B Media Adapter Reviews, printed May 4, 2007 from http://reviews.cnet.com/Linksys_Wireless_B_Media_Adapter/4505-6739_7-30421900.html?tag=box, 5 pgs. |
Linksys, KISS DP-500, printed May 4, 2007 from http://www.kiss-technology.com/?p=dp500, 2 pgs. |
Microsoft Corporation, “Chapter 8, Multimedia File Formats” 1991, Microsoft Windows Multimedia Programmer's Reference, 3 cover pgs., pp. 8-1 to 8-20. |
Microsoft Corporation, Advanced Systems Format (ASF) Specification, Revision 01.20.03, Dec. 2004, 121 pgs. |
Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, May 3, 2011, 2 pgs. |
Microsoft Media Platform: Player Framework, “Silverlight Media Framework v1.1”, Jan. 2010, 2 pgs. |
Microsoft Windows® XP Media Center Edition 2005: Features, printed May 9, 2007, from http://www.microsoft.com/windowsxp/mediacenter/evaluation/features.mspx, 4 pgs. |
MPEG-DASH presentation at Streaming Media West 2011, Nov. 2011, 14 pgs. |
Office Action for Chinese Patent Application No. CN200880127596.4, dated May 6, 2014, 8 pgs. |
Office Action for U.S. Appl. No. 13/223,210, dated Apr. 30, 2015, 14 pgs. |
Office Action for U.S. Appl. No. 14/564,003, dated Apr. 17, 2015, 28 pgs. |
Open DML AVI-M-JPEG File Format Subcommittee, “Open DML AVI File Format Extensions”, Version 1.02, Feb. 28, 1996, 29 pgs. |
pc world.com, Future Gear: PC on the HiFi, and the TV, from http://www.pcworld.com/article/id, 108818-page,1/article.html, printed May 4, 2007, from IDG Networks, 2 pgs. |
Petition for Inter Partes Review of U.S. Pat. No. 10,225,588, IPR2020-00558, 96 pgs., IPR filed Feb. 15, 2020. |
Pomelo, LLC Tech Memo, Analysis of Netflix's Security Framework for ‘Watch Instantly’ Service, Mar.-Apr. 2009, 18 pgs. |
Power of Attorney—Hulu, LLC (IPR2020-00558), 4 pgs, IPR filed Feb. 15, 2020. |
Power of Attorney—Netflix, Inc. (IPR2020-00558), 4 pgs, IPR filed Feb. 15, 2020. |
Proceedings of the Second KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, Las Vegas, Nevada, Aug. 24, 2008, 34 pgs. |
Prosecution File History for U.S. Appl. No. 13/340,623 to Kiefer et al., (“Kiefer”), IPR filed Feb. 15, 2020, 1249 pgs., presented in 6 parts. |
Prosecution File History for U.S. Pat. No. 10,225,588, IPR filed Feb. 15, 2020, 2937 pgs., presented in 29 parts. |
Qtv—About BroadQ, printed May 11, 2009 from http://www.broadq.com/en/about.php, 1 pg. |
Search Report for Canadian patent application 2,816,621, dated Oct. 30, 2014, 6 pgs. |
Search report for European Patent Application 11838186.2, dated Jul. 13, 2017, 6 pgs. |
Server-Side Stream Repackaging (Streaming Video Technologies Panorama, Part 2), Jul. 2011, 15 pgs. |
Supplementary European Search Report for Application No. EP 04813918, Search Completed Dec. 19, 2012, 3 pgs. |
Supplementary European Search Report for Application No. EP 10729513, completed Dec. 9, 2013, 4 pgs. |
Supplementary European Search Report for EP Application 11774529, completed Jan. 31, 2014, 2 pgs. |
Supplementary European Search Report for European Application No. 07758499.3, Report Completed Jan. 25, 2013, 8 pgs. |
Text of ISO/IEC 23001-6: Dynamic adaptive streaming over HTTP (DASH), Oct. 2010, 71 pgs. |
U.S. Appl. No. 61/530,305, filed Sep. 1, 2011, 6 pgs. |
Universal Mobile Telecommunications System (UMTS), ETSI TS 126 233 V9.1.0 (Jun. 2011) 3GPP TS 26.233 version 9.1.0 Release 9, 18 pgs. |
Universal Mobile Telecommunications Systems (UMTS); ETSI TS 126 244 V9.4.0 (May 2011) 3GPP TS 26.244 version 9.4.0 Release 9, 58 pgs. |
Wayback Machine, Grooveshark—Features, All Your Music in One Place, printed Aug. 15, 2016 from https://web.archive.org/web/20081013115837/http://www,grooveshark.com/features, 6 pgs. |
Windows Media Center Extender for Xbox, printed May 9, 2007 from http://www.xbox.com/en-US/support/systemuse/xbox/console/mediacenterextender.htm, 2 pgs. |
Windows® XP Media Center Edition 2005, “Experience more entertainment”, retrieved from http://download.microsoft.com/download/c/9/a/c9a7000a-66b3-455b-860b-1c16f2eecfec/MCE.pdf on May 9, 2007, 2 pgs. |
Decision Granting Petitioner's Request on Rehearing 37 C.F.R. § 42.71(d) Granting Institution of Inter Partes Review 35 U.S.C. § 314, IPR2020-00614 U.S. Pat. No. 7,295,673, 29 pgs., Dec. 16, 2020. |
LINKSYS®: “Enjoy your digital music and pictures on your home entertainment center, without stringing wires!”, Model No. WMA 11B, printed May 9, 2007 from http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US/Layout&cid=1115416830950&p, 4 pgs. |
Microsoft Windows® XP Media Center Edition 2005, Frequently asked Questions, printed May 4, 2007 from http://www.microsoft.com/windowsxp/mediacenter/evaluation/faq.mspx, 6 pgs. |
3GPP TS 26.247, V1.3.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Transparent end-to-end Packet-switches Streaming Services (PSS);, Progressive Download and Dynamic Adaptive Streaming over http (3GP-DASH) (Release 10), Mar. 2011, 72 pgs. |
“Adaptive HTTP Streaming in PSS—Client Behaviour”, S4-AHI129, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; section 12.6.1. |
“Adaptive HTTP Streaming in PSS—Data Formats for HTTP—Streaming excluding MPD”, S4-AHI128, 3GPP TSGSA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; sections 12.2.1 and 12.2.4.2.1. |
“Adaptive HTTP Streaming in PSS—Discussion on Options”, S4-AHI130, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France; sections 1, 2.7-2.8, and 2.16-2.19. |
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs. |
“Adobe Flash Video File Format Specification”, Aug. 2010, Version 10.1, 89 pgs. |
“Apple HTTP Live Streaming specification”, Aug. 2017, 60 pgs. |
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, Printed on Nov. 27, 2013 from knowledge.kaltura.com/best-practices-multi-device-transcoding, 13 pgs. |
“Broadcom BCM7413 Product Brief”, Dec. 11, 2008, 2 pgs. |
“Common Interface Specification for Conditional Access and other Digital Video Broadcasting Decoder Applications”, European Standard, EN 50221, Feb. 1997, 86 pgs. |
“Container format (digital)”, printed Aug. 22, 2009 from http://en.wikipedia.org/wiki/Container_format_(digital), 4 pgs. |
“Data Encryption Decryption using AES Algorithm, Key and Salt with Java Cryptography Extension”, Available at https://www.digizol.com/2009/10/java-encrypt-decrypt-jce-salt.html, Oct. 200, 6 pgs. |
“Delivering Live and On-Demand Smooth Streaming”, Microsoft Silverlight, 2009, 28 pgs. |
“Diagram | Matroska”, Dec. 17, 2010, Retrieved from http://web.archive.org/web/201 01217114656/http://matroska.org/technical/diagram/index.html on Jan. 29, 2016, 5 pgs. |
“Draft CR: Trick Mode for HTTP Streaming”, 3GPP TSG-SA4 Meeting #58, Apr. 26-30, 2010, Vancouver, Canada, S4-100237, 3 pgs. |
“DVD-MPeg differences”, printed Jul. 2, 2009 from http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, 1 pg. |
“DVD subtitles”, sam.zoy.org/writings/dvd/subtitles, dated Jan. 9, 2001, printed Jul. 2, 2009, 4 pgs. |
“Final Committee Draft of MPEG-4 streaming text format”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“Fragmented Time Indexing of Representations”, S4-AHI126, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, France, 4 pgs. |
“Free music was never so cool before Grooveshark”, Wayback Machine, Grooveshark, Startup Meme, May 31, 2008, printed Aug. 15, 2016 from https://web.archive.org/web/20080601173852/http://startupmeme.com/2008/05/31/free-music-was-never-so-wool-before-grooveshark/, 2 pgs. |
“HTTP Based Adaptive Streaming over HSPA”, Apr. 2011, 73 pgs. |
“HTTP Live Streaming”, Mar. 2011, 24 pgs. |
“HTTP Live Streaming”, Sep. 2011, 33 pgs. |
“HTTP Live Streaming on the Leading Media CDN”, Akamai website, retrieved from http://www.akamai.com/html/resources/http-live-streaming.html, 2015, accessed May 11, 2015, 5 pgs. |
“IBM Spearheading Intellectual Property Protection Technology for Information on the Internet; Cryptolope Containers Have Arrived”, May 1, 1996, Business Wire, Printed on Aug. 1, 2014 from http://www.thefreelibrary.com/IBM+Spearheading+Intellectual+Property+Protection+Technology+for...-a018239381, 6 pgs. |
“Information Technology—Coding of audio-visual objects—Part 14: MP4 file format”, International Standard, ISO/IEC 14496-14, First Edition, Nov. 15, 2003, 18 pgs. |
“Information Technology—Coding of audio-visual objects—Part 17: Streaming text”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“Information technology—Coding of audio-visual objects—Part 18: Font compression and streaming”, ISO/IEC 14496-18, First edition Jul. 1, 2004, 26 pgs. |
“Information technology—Generic coding of moving pictures and associated audio information: Systems”, International Standard ISO/IEC 13818-1, Second Edition, Dec. 1, 2000, 174 pgs., (presented in two parts). |
“Information Technology—Coding of Audio Visual Objects—Part 2: Visual”, International Standard, ISO/IEC 14496-2, Third Edition, Jun. 1, 2004, pp. 1-724. (presented in three parts). |
“Information—Technology—Generic coding of moving pictures and associated audio: Systems, Recommendation H.222.0”, International Standard, ISO/IEC 13818-1, Draft 1209, Apr. 25, 1995, 151 pgs. |
“Information—Technology—Generic coding of moving pictures and associated audio: Systems, Recommendation H.222.0”, International Standard, ISO/IEC 13818-1, Draft 1540, Nov. 13, 1994, 161 pgs. |
“Instantly convert songs into tiny URLs with TinySong”, Wayback Machine, Startup Memo Technology Blog, printed Aug. 15, 2016 from https://seb.archive.org/web/2008919133853/http://startupmeme.com/instantly-convert-songs-into-tiny-urls-with-tinysong/, 4 pgs. |
“Java Cryptography Architecture API Specification & Reference”, Available at https://docs.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html, Jul. 25, 2004, 68 pgs. |
“Java Cryptography Extension, javax.crypto.Cipher class”, Available at https://docs.oracle.com/javase/1.5.0/docs/api/javax/crypto/Cipher.html, 2004, 24 pgs. |
“JCE Encryption—Data Encryption Standard (DES) Tutorial”, Available at https://mkyong.com/java/jce-encryption-data-encryption-standard-des-tutorial/, Feb. 25, 2009, 2 pgs. |
“KISS Players, KISS DP-500”, retrieved from http://www.kiss-technology.com/?p=dp500 on May 4, 2007, 1 pg. |
“Live and On-Demand Video with Silverlight and IIS Smooth Streaming”, Microsoft Silverlight, Windows Server Internet Information Services 7.0, Feb. 2010, 15 pgs. |
“Matroska”, Wikipedia, Jul. 10, 2017, retrieved from https://en.wikipedia.org/wiki/Matroska on Jul. 20, 2017, 3 pgs. |
“Matroska Streaming | Matroska”, Retrieved from the Internet: URL:http://web.archive.org/web/201 0121711431 O/http://matroska.org/technical!streaming/index.html [retrieved on Jan. 29, 2016], Dec. 17, 2010, 2 pgs. |
“Media Delivery Solutions for Streaming Video and Software Delivery”, Akamai website, Retrieved from http://www.akamai.com/html/solutions/media-delivery-solutions.html, 2015, Accessed May 11, 2015, 5 pgs. |
“Microsoft Announces Breakthrough Technology Enabling Simple Access to Broad Set of Digital Content, Including Music, Games, Video, Ring Tones and Pictures”, Microsoft, Feb. 12, 2017, Retrieved from https://news.microsoft.com/2007/02/12/microsoft-announces-breakthrough-technology-enabling-simple-access-to-broad-set-of-digital-content-including-music-games-video-ring-tones-and-pictures/, 5 pgs. |
“Microsoft Smooth Streaming specification”, Jul. 22, 2013, 56 pgs. |
“MovieLabs Specification for Next Generation Video—Version 1.0”, Motion Picture Laboratories, Inc., 2013, Retrieved from: http://movielabs.com/ngvideo/MovieLabs%20Specification%20for%20Next%20Generation%20Video%20v1.0.pdf, 5 pgs. |
“MPEG-2”, Wikipedia, Jun. 13, 2017, retrieved from https://en.wikipedia.org/wiki/MPEG-2 on Jul. 20, 2017, 13 pgs. |
“MPEG-4 File Format, Version 2”, Sustainability of Digital Formats: Planning for Library of Congress Collections, Retrieved from: https://www.loc.gov/preservation/digital/formats/fdd/fdd000155.shtml, Last updated Feb. 21, 2017, 8 pgs. |
“MPEG-4 Part 14”, Wikipedia, Jul. 10, 2017, retrieved from https://en.wikipedia.org/wiki/MPEG-4_Part_14 on Jul. 20, 2017, 5 pgs. |
“Netflix turns on subtitles for PC, Mac streaming”, Yahoo! News, Apr. 21, 2010, Printed on Mar. 26, 2014, 3 pgs. |
“OpenDML AVI File Format Extensions”, OpenDML AVI M-JPEG File Format Subcommittee, retrieved from www.the-labs.com/Video/odmlff2-avidef.pdf, Sep. 1997, 42 pgs. |
“Pixel aspect ratio—Wikipedia”, Nov. 24, 2010, pp. 1-8. |
“QCast Tuner for PS2”, printed May 11, 2009 from http://web.archive.org/web/20030210120605/www.divx.com/software/detail.php?ie=39, 2 pgs. |
“SDMI Secure Digital Music Initiative”, SDMI Portable Device Specification, Part 1, Version 1.0, Jul. 8, 1999, pp. 1-35. |
“Series H: Audiovisual and Multimedia Systems Infrastructure of audiovisual services—Coding of moving video; High efficiency video coding”, International Telecommunication Union, ITU-T H.265, Apr. 2015, 634 pages (presented in six parts). |
“Server ‘Trick Play’ support for MPEG-2 Transport Stream Files”, www.live555.com/liveMedia/transport-stream-trick-play.html, 2006, Dec. 31, 2020, 1 pg. |
“Single-Encode Streaming for Multiple Screen Delivery”, Telestream Wowza Media Systems, 2009, 6 pgs. |
“Smooth Streaming Client”, The Official Microsoft IIS Site, Sep. 24, 2010, 4 pgs. |
“Specifications | Matroska”, Retrieved from the Internet: URL:http://web.archive.org/web/201 00706041303/http:/1www.matroska.org/technical/specs/index.html [retrieved on Jan. 29, 2016, Jul. 6, 2010, 14 pgs. |
“Specifications Matroska”, Dec. 17, 2010, [retrieved on Mar. 2, 2018], https://web.archive.org/web/20101217110959/http://matroska.org/technical/specs/index.html 12 pgs. |
Supplementary European Search Report for Application No. EP 10834935, International Filing Date Nov. 15, 2010, Search Completed May 27, 2014, 9 pgs. |
“Supported Media Formats”, Supported Media Formats, Android Developers, Printed on Nov. 27, 2013 from developer.android.com/guide/appendix/media-formats.html, 3 pgs. |
“SWF and FLV File Format Specification”, Adobe, Jun. 2007, Version 9, 298 pgs. |
“Text of ISO/IEC 14496-18/COR1, Font compression and streaming”, ITU Study Group 16—Video Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N8664, Oct. 27, 2006, 8 pgs. |
“Text of ISO/IEC 14496-18/FDIS, Coding of Moving Pictures and Audio”, ITU Study Group 16—Videocoding Experts Group—ISO/IEC MPEG & ITU-VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N6215, Dec. 2003, 26 pgs. |
“The LIVE555 Media Server”, www.live555.com/mediaServer/#about, 2006, printed Dec. 31, 2020, 3 pgs. |
“The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE MultiMedia, vol. 18, No. 4, 2011, 7 pgs. |
“Thread: SSME (Smooth Streaming Medial Element) config.XML review (Smooth Streaming Client configuration file)”, Printed on Mar. 26, 2014, 3 pgs. |
“Transcoding Best Practices”, From movideo, Printed on Nov. 27, 2013 from code.movideo.com/Transcoding_Best_Practices, 5 pgs. |
“Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP) (Release 9)”, 3GPP TS 26.244 V9.0.0 (Dec. 2019), sections 7.1-7.4., Dec. 2009, 25 pgs. |
“Twitpic's Future”, Twitpic, Oct. 25, 2014, Retrieved from: https://web.archive.org/web/20150521043642/https://blog.twitpic.com/index.html, 12 pgs. |
“Using HTTP Live Streaming”, iOS Developer Library, http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple_ref/doc/uid/TP40008332-CH102-SW1, Feb. 11, 2014, 10 pgs. |
“Video File Format Specification”, Adobe, Apr. 2008, Version 9, 46 pgs. |
“Video Manager and Video Title Set IFO file headers”, printed Aug. 22, 2009 from http://dvd.sourceforge.net/dvdinfo/ifo.htm, 6 pgs. |
“What is a DVD?”, printed Aug. 22, 2009 from http://www.videohelp.com/dvd, 8 pgs. |
“What is a VOB file”, http://www.mpucoder.com/DVD/vobov.html, printed on Jul. 2, 2009, 2 pgs. |
“What is Fliggo?”, Wayback Machine, printed Aug. 15, 2016 from https://web.archive.org/web/20080623065120/http://www.fliggo.com/about, 3 pgs. |
“What's on a DVD?”, printed Aug. 22, 2009 from http://www.doom9.org/dvd-structure.htm, 5 pgs. |
“Windows Media Player 9”, Microsoft, Mar. 23, 2017, 3 pgs. |
U.S. Appl. No. 13/224,298, “Final Office Action Received”, May 19, 2014, 26 pgs. |
U.S. Appl. No. 13/905,804, “Non-Final Office Action Received”, U.S. Appl. No. 13/905,804, “Non-Final Office Action Received”, Jul. 25, 2014, 15 pgs. |
Abomhara et al., “Enhancing Selective Encryption for H.264/AVC Using Advanced Encryption Standard”, International Journal of computer Theory and Engineering, Apr. 2010, vol. 2, No. 2, pp. 223-229. |
Adams et al, “Will http adaptive streaming become the dominant mode of video delivery in cable networks?”, https://www.nctatechnicalpapers.com/Paper/2011/2011-will-http-adaptive-streaming-become-the-dominant-mode-of-video-delivery-in-cable-networks-, 10 pgs. |
ADB, “ADB-3800W Datasheet”, 2007, 2 pgs. |
Adhikari et al., “Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery”, 2012 Proceedings IEEE InfoCom, Mar. 25-30, 2012, Orlando, Florida, 9 pgs. |
Adzic et al., “Optimized Adaptive HTTP Streaming for Mobile Devices”, International Society for Optics and Photonics, Applications of Digital Image Processing XXXIV, vol. 8135, Sep. 2011, p. 81350T. |
Agi et al., “An Empirical Study of Secure MPEG Video Transmissions”, IEEE, Mar. 1996, 8 pgs., DOI: 10.1109/NDSS.1996.492420. |
Ahmed et al., “An Efficient Chaos-Based Feedback Stream Cipher (ECBFSC) for Image Encryption and Decryption”, Informatica, Mar. 2007, vol. 31, No. 1, pp. 121-129. |
Akhshabi et al., “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 23-25, 2011, 12 pgs. |
Alattar et al., “Improved selective encryption techniques for secure transmission of MPEG video bit-streams”, In Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), vol. 4, IEEE, 1999, pp. 256-260. |
Anonymous, “Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2002, pp. 1-9. |
Antoniou et al., “Adaptive Methods for the Transmission of Video Streams in Wireless Networks”, 2015, 50 pgs. |
Apostolopoulos et al., “Secure Media Streaming and Secure Transcoding”, Multimedia Security Technologies for Digital Rights Management, 2006, 33 pgs. |
Arachchi et al., “Adaptation-aware encryption of scalable H.264/AVC for content security”, Signal Processing: Image Communication, Jul. 2009, vol. 24, pp. 468-483, doi:10.1016/j.image.2009.02.004. |
Asai et al., “Essential Factors for Full-Interactive VOD Server: Video File System, Disk Scheduling, Network”, Proceedings of Globecom '95, Nov. 14-16, 1995, 6 pgs. |
Author Unknown, “Blu-ray Disc—Blu-ray Disc—Wikipedia, the free encyclopedia”, printed Oct. 30, 2008 from http://en.wikipedia.org/wiki/Blu-ray_Disc, 11 pgs. |
Author Unknown, “Blu-ray Movie Bitrates Here—Blu-ray Forum”, printed Oct. 30, 2008 from http://forum.blu-ray.com/showthread.php?t=3338, 6 pgs. |
Author Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., printed Jan. 24, 2007, USA, pp. 1-15. |
Author Unknown, “O'Reilly—802.11 Wireless Networks: The Definitive Guide, Second Edition”, printed Oct. 30, 2008 from http://oreilly.com/catalog/9780596100520, 2 pgs. |
Author Unknown, “Tunneling QuickTime RTSP and RTP over HTTP”, Published by Apple Computer, Inc.: 1999 (month unknown), 6 pgs. |
Author Unknown, “Turbo-Charge Your Internet and PC Performance”, printed Oct. 30, 2008 from Speedtest.net—The Global Broadband Speed Test, 1 pg. |
Author Unknown, “White paper, The New Mainstream Wireless LAN Standard”, Broadcom Corporation, Jul. 2003, 12 pgs. |
Beker et al., “Cipher Systems, The Protection of Communications”, 1982, 40 pgs. |
Bell et al., “The BellKor 2008 Solution to the Netflix Prize”, Netflix Prize, 2008, 21 pgs. |
Blasiak, “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pgs. |
Bloom et al., “Copy Protection for DVD Video”, Proceedings of the IEEE, vol. 87, No. 7, Jul. 1999, pp. 1267-1276. |
Bocharov et al, “Portable Encoding of Audio-Video Objects, The Protected Interoperable File Format (PIFF)”, Microsoft Corporation, First Edition Sep. 8, 2009, 30 pgs. |
Bross et al., “High Efficiency Video Coding (HEVC) text specification draft 10 (for FDIS & Last Call)”, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document: JCTVC-L1003_v34, 12th Meeting: Geneva, CH, Jan. 14-23, 2013 (presented in three parts). |
Bulterman et al., “Synchronized Multimedia Integration Language (SMIL 3.0)”, W3C Recommendation, Dec. 1, 2008, https://www.w3.org/TR/2008/REC-SMIL3-20081201/, 321 pgs. (presented in five parts). |
Cahill et al., “Locally Adaptive Deblocking Filter for Low Bit Rate Video”, Proceedings 2000 International Conference on Image Processing, Sep. 10-13, 2000, Vancouver, BC, Canada, 4 pgs. |
Candelore, File Wrapper, U.S. Appl. No. 60/372,901, filed Apr. 17, 2002, 5 pgs. |
Casares et al., “Simplifying Video Editing Using Metadata”, DIS2002, 2002, pp. 157-166. |
Catone, Josh, “10 Ways to Share Music on Twitter”, Mashable, May 29, 2009, Retrieved from: https://mashable.com/2009/05/29/twitter-music/#vJCdrVzNOOqx, 5 pgs. |
Chaddha et al., “A Frame-work for Live Multicast of Video Streams over the Internet”, Proceedings of 3rd IEEE International Conference on Image Processing, Sep. 19, 1996, Lausanne, Switzerland, 4 pgs. |
Cheng, “Partial Encryption for Image and Video Communication”, Thesis, Fall 1998, 95 pgs. |
Cheng et al., “Partial encryption of compressed images and videos”, IEEE Transactions on Signal Processing, vol. 48, No. 8, Aug. 2000, 33 pgs. |
Chesler, Oliver “TinySong is like TinyURL for music”, wire to the ear, Jun. 30, 2008, printed Aug. 15, 2016 from https://web.archive.org/web/20080907100459/http://www.wiretotheear.com/2008/06/30/tinysongis-like-tinyurl-for-music, 8 pgs. |
Cheung et al., “On the Use of Destination Set Grouping to Improve Fairness in Multicast Video Distribution”, Proceedings of IEEE INFOCOM'96, Conference on Computer Communications, vol. 2, IEEE, 1996, 23 pgs. |
Collet, “Delivering Protected Content, An Approach for Next Generation Mobile Technologies”, Thesis, 2010, 84 pgs. |
Concolato et al., “Live HTTP Streaming of Video and Subtitles within a Browser”, MMSys 2013, Feb. 26-Mar. 1, 2013, Oslo, Norway, 5 pgs. |
Conklin et al., “Video coding for streaming media delivery on the Internet”, IEEE Transactions on Circuits and Systems for Video Technology, Mar. 2001, vol. 11, No. 3, pp. 269-281. |
De Cock et al., “Complexity-Based Consistent-Quality Encoding in the Cloud”, IEEE International Conference on Image Processing (ICIP), Date of Conference Sep. 25-28, 2016, Phoenix, AZ, pp. 1484-1488. |
Deshpande et al., “Scalable Streaming of JPEG2000 Images Using Hypertext Transfer Protocol”, MULTIMEDIA '01: Proceedings of the Ninth ACM International Conference on Multimedia, Oct. 2001, pp. 372-381. https://doi.org/10.1145/500141.500197. |
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 29, 2011, 14 pgs. |
Diamantis et al., “Real Time Video Distribution using Publication through a Database”, Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No. 98EX237), Oct. 1990, 8 pgs. |
Graphics, Image Processing, and Vision (Cat. No. 98EX237), Oct. 1990, 8 pgs. |
Dworkin, “Recommendation for Block Cipher Modes of Operation: Methods and Techniques”, NIST Special Publication 800-38A, 2001, 66 pgs. |
Entone, “Amulet High Definition IP Television Receiver User's Guide”, 2008, 28 pgs. |
Entone, “Hydra HD IP Video Gateway”, 2008, 2 pgs. |
Eskicioglu et al., “An Integrated Approach to Encrypting Scalable Video”, Proceedings IEEE International Conference on Multimedia and Expo, Aug. 26-29, 2002, Lausanne, Switzerland, 4 pgs. |
ETSI, “Digital Video Broadcasting (DVB) Support for use of scrambling and Conditional Access (CA) within digital broadcasting systems”, Oct. 1996, 13 pgs. |
ETSI, “Digital Video Broadcasting (DVB); Implementation guidelines for the use of Video and Audio Coding in Contribution and Primary Distribution Applications based on the MPEG-2 Transport Stream”, ETSI TS 102 154 V1.2.1, May 2004, 73 pgs. |
Fahmi et al., “Proxy Servers for Scalable Interactive Video Support”, Computer, Sep. 2001, vol. 45, No. 9, pp. 54-60, https://doi.org/10.1109/2.947092. |
Fang et al., “Real-time deblocking filter for MPEG-4 systems”, Asia-Pacific Conference on Circuits and Systems, Oct. 28-31, 2002, Bail, Indonesia, pp. 541-544. |
Fecheyr-Lippens, “A Review of HTTP Live Streaming”, Internet Citation, Jan. 25, 2010, pp. 1-37. |
Fielding et al., “Hypertext Transfer Protocol—HTTP1.1”, Network Working Group, RFC 2616, Jun. 1999, 114 pgs. |
Fitzek et al., “A Prefetching Protocol for Continuous Media Streaming in Wireless Environments”, IEEE Journal on Selected Areas in Communications, Oct. 2001, vol. 19, No. 10, pp. 2015-2028, DOI: 10.1109/49.957315. |
Fukuda et al., “Reduction of Blocking Artifacts by Adaptive DCT Coefficient Estimation in Block-Based Video Coding”, Proceedings 2000 International Conference on Image Processing, Sep. 10-13, 2000, Vancouver, BC, Canada, pp. 969-972. |
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pgs. |
Garg et al., “An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks”, Wireless Communications and Networkings, Mar. 2003, pp. 1748-1753. |
Gast, “When is 54 Not Equal to 54? A Look at 802.11a, b and g Throughput”, Aug. 8, 2003, printed Oct. 30, 2008 from www.oreillynet.com/pub/a/wireless/2003/08/08/wireless_throughput.html, 4 pgs. |
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 2010,15 pgs. |
Griffith, “The Wireless Digital Picture Frame Arrives”, Wi-Fi Planet, printed May 4, 2007 from http://www.wi-fiplanet.com/news/article.php/3093141, Oct. 16, 2003, 3 pgs. |
Hartung et al., “DRM Protected Dynamic Adaptive HTTP Streaming”, MMSys 2011 Proceedings of the Second Annual ACM Conference on Multimedia Systems, San Jose, California, Feb. 23-25, 2011, pp. 277-282. |
Ho, “Digital Video Broadcasting Conditional Access Architecture”, Report prepared for CS265-Section 2, Fall 2002, Prof Stamp, 7 pgs. |
Huang, U.S. Pat. No. 7,729,426, U.S. Appl. No. 11/230,794, filed Sep. 20, 2005, 143 pgs. |
Huang et al., “Adaptive MLP post-processing for block-based coded images”, IEEE Proceedings—Vision, Image and Signal Processing, vol. 147, No. 5, Oct. 2000, pp. 463-473. |
Huang et al., “Architecture Design for Deblocking Filter in H.264/JVT/AVC”, 2003 International Conference on Multimedia and Expo., Jul. 6-9, 2003, Baltimore, MD, 4 pgs. |
Hunt, “Encoding for streaming”, The Netflix Blog, Nov. 6, 2008, printed from https://web.archive.org/web/20081216044437/http:/blog.netflix.com/2008/11/encoding-for-streaming.htm., retrieved on Feb. 8, 2022, 28 pgs. |
Hurtado Guzman, “Development and Implementation of an Adaptive HTTP Streaming Framework for H264/MVC Coded Media”, Politecnico di Torino, Nov. 2010, 108 pgs. |
Hwang et al., “Efficient and User Friendly Inter-domain Device Authentication/Access control for Home Networks”, Proceedings of the 2006 International Conference on Embedded and Ubiquitous Computing, Seoul, Korea, Aug. 1-4, 2006, pp. 131-140. |
INCITS/ISO/IEC, “Information Technology—Generic Coding Of Moving Pictures and Associated Audio Information: Video (Formerly ANSI/ISO/IEC 13818-2-2000)”, Second edition, Dec. 15, 2000, 220 pgs., (presented in two parts). |
Inlet Technologies, “Adaptive Delivery to iDevices”, 2010, 2 pgs. |
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2009, 2 pgs. |
Inlet Technologies, “HTTP versus RTMP”, 2009, 3 pgs. |
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2009, 2 pgs. |
I-O Data, “Innovation of technology arrived”, Nov. 2004, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf, 2 pgs. |
ISMA, “ISMA Encryption and Authentication, Version 1.1, AREA / Task Force: DRM”, Internet Streaming Media Alliance, Sep. 15, 2006, pp. 1-64. |
ITU-T, “Series J: Cable Networks and Transmission of Television, Sound Programme and Other Multimedia Signals”, Technical method for ensuring privacy in long-distance international MPEG-2 television transmission conforming to ITU-T J.89, ITU-T Recommendation J.96, Mar. 2001, 34 pgs. |
Jain et al., U.S. Appl. No. 61/522,623, filed Aug. 11, 2011, 44 pgs. |
Jung et al., “Design and Implementation of an Enhanced Personal Video Recorder for DTV”, IEEE Transactions on Consumer Electronics, vol. 47, No. 4, Nov. 2001, 6 pgs. |
Kabir, “Scalable and Interactive Multimedia Streaming Over the Internet”, Thesis, 2005, 207 pgs. |
Kalva, Hari “Delivering MPEG-4 Based Audio-Visual Services”, 2001, 113 pgs. |
Kang et al., “Access Emulation and Buffering Techniques for Steaming of Non-Stream Format Video Files”, IEEE Transactions on Consumer Electronics, vol. 43, No. 3, Aug. 2001, 7 pgs. |
Kaspar et al., “Using HTTP Pipelining to Improve Progressive Download over Multiple Heterogeneous Interfaces”, IEEE ICC proceedings, 2010, 5 pgs. |
Kim, Kyuheon “MPEG-2 ES/PES/TS/PSI”, Kyung-Hee University, Oct. 4, 2010, 66 pgs. |
Kim et al., “A Deblocking Filter with Two Separate Modes in Block-Based Video Coding”, IEEE transactions on circuits and systems for video technology, vol. 9, No. 1, 1999, pp. 156-160. |
Kim et al., “Tree-Based Group Key Agreement”, Feb. 2004, 37 pgs. |
Kozintsev et al., “Improving last-hop multicast streaming video over 802.11”, Workshop on Broadband Wireless Multimedia, Oct. 2004, pp. 1-10. |
Krikor et al., “Image Encryption Using DCT and Stream Cipher”, European Journal of Scientific Research, Jan. 2009, vol. 32, No. 1, pp. 48-58. |
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 2012, 58 pgs. |
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 2010, retrieved from http://www.streamingmedia.com/conferences/west2010/presentations/SMWest-12010-Expression-Encoder.pdf, 20 pgs. |
Laukens, “Adaptive Streaming—A Brief Tutorial”, EBU Technical Review, 2011, 6 pgs. |
Legault et al., “Professional Video Under 32-bit Windows Operating Systems”, SMPTE Journal, vol. 105, No. 12, Dec. 1996, 10 pgs. |
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, Dec. 22, 2010, 42 pgs. |
Lew et al., “Content-Based Multimedia Information Retrieval: State of the Art and Challenges”, ACM Transactions on Multimedia Computing, Communications and Applications, Feb. 2006, vol. 2, No. 1, pp. 1-19. |
Li et al, “Content-Aware Playout and Packet Scheduling for Video Streaming Over Wireless Links”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, pp. 885-895. |
Li et al., “Layered Video Multicast with Retransmission (LVMR): Evaluation of Hierarchical Rate Control”, Proceedings of IEEE INFOCOM'98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century, Cat. No. 98, vol. 3, 1998, 26 pgs. |
Lian et al., “Efficient video encryption scheme based on advanced video coding”, Multimed. Tools Appl. Vol. 38, 2008, pp. 75-89. |
Lian et al., “Recent Advances in Multimedia Information System Security”, Informatica, Jan. 2009, vol. 33, pp. 3-24. |
Lian et al., “Selective Video Encryption Based on Advanced Video Coding”, PCM, Nov. 2005, Part II, LNCS 3768, pp. 281-290. |
Lievaart, “Characteristics that differentiate CA Systems”, Irdeto access, Nov. 2001, 5 pgs. |
Lin et al., “Multipass Encoding for Reducing Pulsing Artifacts in Cloud Based Video Transcoding”, IEEE International Conference on Image Processing (ICIP), Date of Conference Sep. 27, 30, 2015, Quebec City, QC, Canada, pp. 907-911. |
List et al., “Adaptive deblocking filter”, IEEE transactions on circuits and systems for video technology, vol. 13, No. 7, Jul. 2003, pp. 614-619. |
Liu et al., “A Formal Framework for Component Deployment”, OOPSLA 2006, Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Language, and Applications, Portland, Oregon, Oct. 22-26, 2006, pp. 325-344. |
Lloyd, “Supporting Trick Mode Playback Universally Across the Digital Television Industry”, Thesis, 2005, 111 pgs. |
Lomas et al., “Educause Learning Initiative, Collaboration Tools”, Educause Learning Initiative, Aug. 2008, ELI Paper 2: 2008, 11 pgs. |
Long et al., “Silver: Simplifying Video Editing with Metadata”, Demonstrations, CHI 2003: New Horizons, Apr. 5-10, 2003, pp. 628-629. |
Macaulay et al., “Whitepaper—IP Streaming of MPEG-4: Native RTP vs MPEG-2 Transport Stream”, Envivio, Oct. 2005, 12 pgs. |
Martin et al., “Privacy Protected Surveillance Using Secure Visual Object Coding”, IEEE Transactions on Circuits and Systems for Video Technology, Aug. 2008, vol. 18, No. 8, pp. 1152-1162, DOI: 10.1109/TCSVT.2008.927110. |
Massoudi et al., “Overview on Selective Encryption of Image and Video: Challenges and Perspectives”, EURASIP Journal on Information Security, Nov. 2008, 18 pgs. |
Matroska, “Diagram”, Matroska, Technical/Info, Diagram, 2016, retrieved from https://www.matroska.org/technical/diagram/index.html on Jul. 20, 2017, 9 pgs. |
Matroska, “Specifications”, Matroska, Technical/Info, Specifications, Jun. 25, 2017, retrieved from https://www.matroska.org/technical/specs/index.html on Jul. 20, 2017, 20 pgs. |
McCanne et al., “Receiver-driven Layered Multicast”, Conference proceedings on Applications, technologies, architectures, and protocols for computer communications, Aug. 1996, 14 pgs. |
Meier, “Reduction of Blocking Artifacts in Image and Video Coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, No. 3, Apr. 1999, pp. 490-500. |
Meyer et al., “Security mechanisms for Multimedia-Data with the Example MPEG-I-Video”, SECMPEG, 1992, 10 pgs. |
Miras, “On Quality Aware Adaptation of Internet Video”, University of London, PhD dissertation, May 2004, 181 pgs. |
Molavi et al., “A Security Study of Digital TV Distribution Systems”, Thesis, Jun. 2005, 112 pgs. |
Montes, “Muusic: mashup de servicios web musicales”, Ingenieria Tecnica en Informatica de Gestion, Nov. 2008, 87 pgs. |
Morrison, “EA IFF 85 Standard for Interchange Format Files”, Jan. 14, 1985, printed from http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/IFF.txt on Mar. 6, 2006, 24 pgs. |
Moscoso, Pedro Gomes “Interactive Internet TV Architecture Based on Scalable Video Coding”, Instituto Superior Techico, Universidad Technica de Lisboa, May 2011, 103 pgs. |
MSDN, “Adaptive streaming, Expression Studio 2.0”, Apr. 23, 2009, 2 pgs. |
Nelson, “Arithmetic Coding + Statistical Modeling = Data Compression: Part 1—Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, USA, pp. 1-12. |
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs. |
Nelson, “The Data Compression Book”, M&T Publishing, 1992, 533 pgs., (presented in two parts). |
Nelson, Michael “IBM's Cryptolopes”, Complex Objects in Digital Libraries Course, Spring 2001, Retrieved from http://www.cs.odu.edu/˜mln/teaching/unc/inls210/?method=display&pkg_name=cryptolopes.pkg&element_name=cryptolopes.ppt, 12 pgs. |
Newton et al., “Preserving Privacy by De-identifying Facial Images”, Carnegie Mellon University School of Computer Science, Technical Report, CMU-CS-03-119, Mar. 2003, 26 pgs. |
Noboru, “Play Fast and Fine Video on Web! codec”, Co.9 No. 12, Dec. 1, 2003, pp. 178-179. |
Noe, “Matroska File Format (Under Construction!)”, Internet Citation, Jun. 24, 2007, XP002617671, 51pgs. Retrieved from the Internet: URL:http://web.archive.org/web/20070821155146/www.matroska.org/technical/specs/matroska.pdf [retrieved on Jan. 19, 2011], Jun. 24, 2007, 1-51. |
Noe, Alexander “AVI File Format”, http://www.alexander-noe.com/video/documentation/avi.pdf, Dec. 14, 2006, pp. 1-26. |
Noe, Alexander “Definitions”, Apr. 11, 2006, retrieved from http://www.alexander-noe.com/video/amg/definitions.html on Oct. 16, 2013, 2 pgs. |
O'Brien, U.S. Appl. No. 60/399,846, filed Jul. 30, 2002, 27 pgs. |
OIPF Open Forum, “OIPF Release 1 Specification, vol. 3, Content Metadata”, OIPF, Oct. 8, 2009, vol. 1.1, 47 pgs. |
OIPF Open Forum, “OIPF Release 1 Specification, vol. 7—Authentication, Content Protection and Service Protection”, OIPF, Oct. 8, 2009, vol. 1.1, 88 pgs. |
Ooyala, “Widevine Content Protection”, Ooyala Support Center for Developers. Ooyala, Inc., 2013. Jun. 3, 2013. http://support.ooyala.com/developers/documentation/concepts/player_v3_widevine_integration.html, 7 pgs. |
Open IPTV Forum, “Functional Architecture”, Jan. 16, 2008, vol. 1.1, 141 pgs. |
Open IPTV Forum, “Oipf Release 1 Specification, vol. 1—Overview”, OIPF, Oct. 8, 2009, vol. 1.1, 48 pgs. |
Open IPTV Forum, “OIPF Release 1 Specification, vol. 2, Media Formats”, OIPF, Oct. 8, 2009, vol. 1.1, 22 pgs. |
O'Rourke, “Improved Image Decompression for Reduced Transform Coding Artifacts”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, No. 6, Dec. 1995, pp. 490-499. |
Oyman et al., “Quality of Experience for HTTP Adaptive Streaming Services”, IEEE Communications Magazine, Apr. 2012, vol. 50, No. 4, pp. 20-27, DOI: 10.1109/MCOM.2012.6178830. |
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pgs. |
Ozer, Jan “Adaptive Streaming in the Field”, Streaming Media, Dec. 2010-Jan. 2011, pp. 36-47. |
Padiadpu, Rashmi “Towards Mobile Learning: A SCORM Player for the Google Android Platform”, Master Thesis, Hamburg University of Applied Sciences, 2008, 66 pgs. |
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pgs. |
Pantos, R “HTTP Live Streaming: draft-pantos-http-live-streaming-06”, Published by the Internet Engineering Task Force (IETF), Mar. 31, 2011, 24 pgs. |
Papagiannaki et al., “Experimental Characterization of Home Wireless Networks and Design Implications”, INFOCOM 2006, 25th IEEE International Conference of Computer Communications, Proceedings, Apr. 2006, 13 pgs. |
Park et al., “A postprocessing method for reducing quantization effects in low bit-rate moving picture coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, No. 1, Feb. 1999, pp. 161-171. |
Park et al., “An Efficient Encryption and Key Management Scheme for Layered Access Control of H.265/Scalable Video Coding”, IEICI Trans. Inf. & Syst., May 2009, vol. E92-D, No. 5, pp. 851-858, DOI: 1031587/transinf.E92.D.851. |
Park et al., “Combined Scheme of Encryption and Watermarking in H.264/Scalable Video Coding”, New Directions in Intelligent Interactive Multimedia, SCI 142, 2008, pp. 351-361. |
Peek, David “Consumer Distributed File Systems”, Dissertation, Doctor of Philosophy, Computer Science and Engineering, The University of Michigan, 2009, 118 pgs. |
Pereira, “Security on Over the Top TV Services”, Thesis, Nov. 2011, 114 pgs. |
Phamdo, “Theory of Data Compression”, printed on Oct. 10, 2003, 12 pgs. |
Qiao et al., “Comparison of MPEG Encryption Algorithms”, Comput. & Graphics, 1998, vol. 22, No. 4, pp. 437-448. |
Raju et al., “Fast and Secure Real-Time Video Encryption”, Sixth Indian Conference on Computer Vision, Graphics & Image Processing, Jan. 2009, pp. 257-264, doi:10.1109/ACVGIP.2008.100. |
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pgs. |
Richardson, “H.264 and MPEG-4 Video Compression”, Wiley, 2003, 306 pgs., (presented in 2 parts). |
Rosenberg et al., “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”, Network Working Group, RFC 3840, Aug. 2004, 36 pgs. |
Schulzrinne, H “Real Time Streaming Protocol 2.0 (RTSP): draft-ietfmmusic-rfc2326bis-27”, MMUSIC Working Group of the Internet Engineering Task Force (IETF), 296 pgs. (presented in two parts), Mar. 9, 2011, 296 pgs. |
Senoh et al., “DRM Renewability & Interoperability”, IEEE Xplore, Conference: Consumer Communications and Networking Conference, 2004, Feb. 2004, pp. 424-429, DOI: 10.1109/CCNC.2004.1286899 Conference: Consumer Communications and Networking Conference, 2004. CCNC 2004. First IEEE. |
Sheu, Tsang-Ling et al., “Dynamic layer adjustments for SVC segments in P2P streaming networks”, Computer Symposium (ICS), 2010, 2010 International, Tainan, Taiwan, R.O.C., pp. 793-798. |
Shojania et al., “Experiences with MPEG-4 Multimedia Streaming”, CiteSeer, Jan. 2001, 3 pgs., DOI: 10.1145/500141.500221. |
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 15 pgs. |
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pgs. |
Silvia, “Adaptive HTTP Streaming for Open Codecs”, Oct. 9, 2010, [retrieved on: Mar. 2, 2018, https://gingertech.net/2010/10/09/adaptive-http-streaming-for-open-codecs/, 15 pgs. |
Sima et al., “An Efficient Architecture for Adaptive Deblocking Filter of H.264 AVC Video Coding”, IEEE Transactions on Consumer Electronics, vol. 50, No. 1, Feb. 2004, pp. 292-296. |
Spanos et al., “Performance Study of a Selective Encryption Scheme for the Security of Networked, Real-Time Video”, Proceedings of the Fourth International Conference on Computer Communications and Networks, IC3N'95, Sep. 20-23, 1995, Las Vegas, NV, pp. 2-10. |
Srinivasan et al., “Windows Media Video 9: overview and applications”, Signal Processing: Image Communication, 2004, 25 pgs. |
Stockhammer, “Dynamic Adaptive Streaming over HTTP—Standards and Design Principles”, Proceedings of the second annual ACM conference on Multimedia, Feb. 2011, pp. 133-143. |
Stockhammer, “MPEG's Dynamic Adaptive Streaming over HTTP (DASH)—An Enabling Standard for Internet TV”, Qualcomm Incorporated, Apr. 11, 2015, Retrieved from the Internet, https://www.w3.org/2011/09/webtv/slides/W3C-Workshop.pdf, 30 pgs. |
Symes, “Video Compression Demystified”, McGraw-Hill, 2001, 353 pgs., (presented in two parts). |
Tan, Yap-Peng et al., “Video transcoding for fast forward/reverse video playback”, IEEE ICIP, 2002, pp. I-713 to I-716. |
Taxan, “AVel LinkPlayer2 for Consumer”, I-O Data USA—Products—Home Entertainment, printed May 4, 2007 from http://www.iodata.com/usa/products/products.php?cat=HNP&sc=AVEL&pld=AVLP2/DVDLA&ts=2&tsc, 1 pg. |
Taymans et al., “GStreamer Application Development Manual (1.6.0)”, 2007, 159 pgs. |
Thomas et al., “A Novel Secure H.264 Transcoder Using Selective Encryption”, Proceedings in International Conference on Image Processing, Jan. 2007, vol. 4, pp. IV-85-IV-88, DOI: 10.1109/ICIP.2007.4379960. |
Timmerer et al., “HTTP Streaming of MPEG Media”, Proceedings of Streaming Day, 2010, 4 pgs. |
Tiphaigne et al., “A Video Package for Torch”, Jun. 2004, 46 pgs. |
Toscher et al., “The BigChaos Solution to the Netflix Prize 2008”, Netflix Prize, Nov. 25, 2008, 17 pgs. |
Tosun et al., “Efficient multi-layer coding and encryption of MPEG video streams”, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No. 00TH8532), Jul. 30-Aug. 2, 2000, pp. 119-122, DOI: 10.1109/ICME.2000.869559. |
Trappe et al., “Key Management and Distribution for Secure Multimedia Multicast”, IEEE Transaction on Multimedia, vol. 5, No. 4, Dec. 2003, pp. 544-557. |
Tripathi et al., “Improving Multimedia Streaming with Content-Aware Video Scaling”, Retrieved from: http://digitalcommons.WPI.edu/computerscience-pubs/96, 2001, 17 pgs. |
Um, “Selective Video Encryption of Distributed Video Coded Bitstreams and Multicast Security over Wireless Networks”, Thesis, Aug. 2006, 142 pgs. |
Unknown, “AVI RIFF File Reference (Direct X 8.1 C++ Archive)”, printed from http://msdn.microsoft.com/archive/en-us/dx81_c/directx_cpp/htm/avirifffilereference.asp?fr . . . on Mar. 6, 2006, 7 pgs. |
Unknown, “Entropy and Source Coding (Compression)”, TCOM 570, Sep. 1999, pp. 1-22. |
Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., publication date unknown, 15 pgs. |
Van Deursen et al., “On Media Delivery Protocols in the Web”, 2010 IEEE International Conference on Multimedia and Expo, Jul. 19-23, 2010, 6 pgs. |
Van Grove, Jennifer “Top 5 Ways to Share Videos on Twitter”, Mashable, May 23, 2009, Retrieved from: https://mashable.com/2009/05/23/video-for-twitter/#Jvn9IIYy6qqA, 6 pgs. |
Venkatramani et al., “Securing Media for Adaptive Streaming”, Multimedia 2003 Proceedings of the Eleventh ACM International Conference on Multimedia, Nov. 2-8, 2003, Berkeley, California, 4 pgs. |
Ventura, Guillermo Albaida “Streaming of Multimedia Learning Objects”, AG Integrated Communication System, Mar. 2003, 101 pgs. |
Waggoner, “Compression for Great Digital Video”, 2002, 184 pgs. |
Wang, “Lightweight Encryption in Multimedia”, Thesis, Jun. 2005, 184 pgs. |
Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image Processing, Apr. 2004, vol. 13, No. 4, pp. 600-612. |
Watanabem et al., “MPEG-2 decoder enables DTV trick plays”, esearcher System LSI Development Lab, Fujitsu Laboratories Ltd., Kawasaki, Japan, Jun. 2001, 2 pgs. |
Watson, Mark “Input for DASH EE#1 (CMP): Pixel Aspect Ratio”, 94. MPEG Meeting; Oct. 11, 2010-Oct. 15, 2010; Guangzhou; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11), No. M18498, Oct. 28, 2010 (Oct. 28, 2010), XP030047088,, Oct. 2, 2010, 4 pgs. |
Weng, “A Multimedia Socail-Networking Community for Mobile Devices”, 2007, 30 pgs. |
Wiegand, “Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG”, Jan. 2002, 70 pgs. |
Willig et al., U.S. Appl. No. 61/409,285, filed Nov. 2, 2010, 43 pgs. |
Wong, “Web Client Programming with Perl”, 1997, printed Jan. 8, 2021 from: https://www.oreilly.com/openbook-webclientch03.html, 31 pgs. |
Wu, “A Fast MPEG Encryption Algorithm and Implementation of AES on CAM”, Thesis, Oct. 6, 2003, 91 pgs. |
Wu, Feng et al., “Next Generation Mobile Multimedia Communications: Media Codec and Media Transport Perspectives”, In China Communications, Oct. 2006, pp. 30-44. |
Yang et al., “Projection-Based Spatially Adaptive Reconstruction of Block-Transform Compressed Images”, IEEE Transactions on Image Processing, vol. 4, No. 7, Jul. 1995, pp. 896-908. |
Yang et al., “Regularized Reconstruction to Reduce Blocking Artifacts of Block Discrete Cosine Transform Compressed Images”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, No. 6, Dec. 1993, pp. 421-432. |
Yu et al., “Video deblocking with fine-grained scalable complexity for embedded mobile computing”, Proceedings 7th International Conference on Signal Processing, Aug. 31-Sep. 4, 2004, pp. 1173-1178. |
Yuksel, “Partial Encryption of Video for Communication and Storage”, Thesis, Sep. 2003, 78 pgs. |
Zakhor, “Iterative Procedures for Reduction of Blocking Effects in Transform Image Coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 2, No. 1, Mar. 1992, pp. 91-95. |
Zambelli, “Iis Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 31, 2009, XP055009366, Retrieved from the Internet: URL:http://img.prodek.It/documents/IIS_Smooth_Streaming_Technical_Overview.pdf, 17 pgs. |
Clean amended claims for U.S. Appl. No. 16/686,727, prepared Jun. 7, 2021. |
Declaration of Patrick McDaniel, Ph.D., Inter Partes Review of U.S. Pat. No. 9,184,920, Case No. IPR2020-00511, IPR filed Feb. 6, 2020, 168 pgs (presented in two parts). |
Defendant Hulu, LLC's Invalidity Contentions for U.S. Pat. Nos. 7,295,673; 8,139,651; 8,472,792; 9,270,720; 9,998,515; 10,212,486; 10,225,588, DIVX, LLC v. Hulu, LLC, Case No. 2:19-cv-1606-PSG-DFMx, C.D. Cal., Apr. 2, 2020, 136 pgs. |
Defendant Netflix, Inc.'s Invalidity Contentions for U.S. Pat. Nos. 7,295,673; 8,139,651; 8,472,792; 9,270,720; 9,998,515; 10,212,486; 10,225,588; 9,184,920, DIVX, LLC v. Netflix, Inc., Case No. 2:19-cv-1602-PSG-DFM, C.D. Cal., Apr. 2, 2020, 148 pgs. |
Email from KPPB LLP to Malcolm Cribbs regarding U.S. Appl. No. 16/686,727, dated Jun. 7, 2021. |
Email from KPPB LLP to Malcolm Cribbs regarding U.S. Appl. No. 16/686,727, dated May 13, 2021. |
Email from KPPB LLP to Malcolm Cribbs regarding U.S. Appl. No. 16/686,727, dated May 17, 2021. |
Email from KPPB LLP to Malcolm Cribbs regarding U.S. Appl. No. 16/686,727, dated May 18, 2021. |
Extended European Search Report for European Application No. 22196553.6, Search completed Dec. 1, 2022, Mailed Dec. 14, 2022, 13 pgs. |
Marked amended claims for U.S. Appl. No. 16/686,727, prepared Jun. 7, 2021. |
Order No. 40: Construing Certain Terms of the Asserted Claims of the Patent at Issue (Markman Claim Construction), Inv. No. 337-TA-1222, Mar. 12, 2021, 97 pgs. |
Petition for Inter Partes Review of U.S. Pat. No. 9,184,920, IPR2020-00511, 89 pgs., IPR filed Feb. 6, 2020. |
Power of Attorney—Netflix, Inc. (IPR2020-00511), IPR filed Feb. 6, 2020, 3 pgs. |
Proposed examiner amendments for U.S. Appl. No. 16/686,727, prepared May 13, 2021. |
Proposed examiner amendments for U.S. Appl. No. 16/686,727, prepared May 17, 2021. |
Proposed examiner amendments for U.S. Appl. No. 16/686,727, prepared May 18, 2021. |
Prosecution File History for U.S. Pat. No. 9,184,920, IPR filed Feb. 6, 2020, 1966 pgs., presented in 10 parts. |
“3GPP TS 26.247, V10.1.0”, 3rd Generation Partnership Project, Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switches Streaming Services (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH), (Release 10), Advanced Lte, Jun. 2011, 94 pages. |
“3GPP TS 26.234 V9.5.0”, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (Release 9), Jan. 20211, 191 pgs. |
But, “Limitations of existing MPEG-1 ciphers for streaming video”, vol. 40429. Technical Report CAIA, 2004, 7 pgs. |
Raj et al., “Server Side Trick Play for Video Streaming”, 2009 IEEE International Conference on Multimedia and Expo, Jun. 28, 2009, 4 pgs. |
Zhang et al., “Implementing Hierarchical Trick Play for HTTP Video Streaming”, Globecom Workshops (GC Wkshps), 2010 IEEE, Ieee, Piscataway, NJ, USA, 6, Dec. 2010, pp. 465-468, XP031859257, ISBN: 978-1-4244-8863-6. |
Number | Date | Country | |
---|---|---|---|
20240098127 A1 | Mar 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17929603 | Sep 2022 | US |
Child | 18457233 | US | |
Parent | 17068737 | Oct 2020 | US |
Child | 17929603 | US | |
Parent | 16255280 | Jan 2019 | US |
Child | 17068737 | US | |
Parent | 14943004 | Nov 2015 | US |
Child | 16255280 | US | |
Parent | 13732140 | Dec 2012 | US |
Child | 14943004 | US |