This invention is directed to a tamper evident closure assembly for use with a fitting for a medical device including, but not limited to, a female fitting and/or an enteral female fitting. The closure assembly includes a flow restrictive cap having an indicator member removably connected thereto and initially and removably disposed within a housing. Removal of the cap from the housing, once connected to the fitting, results in the detached indicator member being captured within the housing. Retention of the indicator member within the housing is determinative of use of the cap and possible evidence of tampering, upon an attempted reinsertion of the cap within the housing.
In the medical field, it is a relatively common procedure for authorized medical personnel to order that a patient be given a drug or medication by injection or other procedures, including administering fluids to a patient by intravenous (IV) infusion. It is also relatively common procedure for a number of administering devices to be pre-loaded or filled by a pharmacist or other authorized personnel whether within the hospital or at another facility and location, which may be generally referred to as a filling station. However, a filling station is typically located in a remote part of the facility, relative to the patient care area where the injection is to be administered. Indeed, at large medical facilities, a filling station may resemble a facility on the hospital grounds from which drugs and other fluids are delivered to multiple nursing stations at different locations. Because of the remote location of many nurse's stations, relative to a filling station, a fluid or drug loaded administering device is very often given to another person for delivery to a nurse's station for subsequent dosing of the patient by a duly qualified nurse or other medically trained person. Also, and especially in the case where a drug has been prescribed and loaded in the administering device that is a very expensive or addictive, such as but not limited to morphine, there is a danger that the pre-loaded syringe or other administering device will be tampered with at some point, by a person seeking unauthorized access thereto. This possibility can present real danger in that if such person were to gain access to the prescribed medicine and then, inappropriately and without concern, substitute some other, unauthorized material in the syringe which looks like the actual prescribed medicine and dosage. By way of an example only, if saline solution were substituted for a dose of morphine or numerous other drugs, the result can be extremely serious. Thus, there is a problem of knowing if a sealed, preloaded syringe or other administering device has, or has not, been exposed to contamination or might otherwise have been compromised by its being tampered with. This and related types of problems have been described in one or more previously granted U.S. patents granted to one of the inventors herein, such as U.S. Pat. No. 5,328,474.
In addition to the administration of drugs, medicine, etc., meaningful protection is required in the use of enteral feeding sets, like medical devices and accessories. As commonly recognized in the medical and related professions, the term “enteral” relates to the administration or removal of fluid in the form of liquid or gas to or from the gastrointestinal tract. Moreover, enteral connectors and/or fixtures of the type referred to herein relate to medical devices or accessories which are intended for use in enteral applications. Further, small-bore connectors for enteral application may be employed for delivery of enteral nutrition fluid from a fluid source to the patient. Additionally, it is pointed out that enteral feeding sets and extension sets may include a female fixture, wherein the source of fluid flows to the patient initially through the female fixture and to and through a cooperatively structured male enteral fixture.
Also, with regard to administering fluids to a patient by intravenous (IV) infusion, a variety of IV assemblies are known and are useful in the treatment of a number of medical conditions, as a variety of fluids and/or medicines can be administered to a patient utilizing such assemblies over a prescribed period of time and in controlled amounts. In use, a conventional IV administration assembly typically includes a reservoir or container, in the form of a bottle or more commonly, a flexible material bag, suspended on a pole or like support structure located substantially adjacent to the patient being treated, typically in an elevated relation thereto. In addition, the IV fluid flows from the supported and elevated IV bag to the patient by means of elongated, flexible tubing connected at a proximal end to the IV bag and at the other distal end, connected intravenously to the patient by way of a catheter or like structure. The IV delivery tube is also structured to connect at one end to or be interconnected with an appropriate connector, often having somewhat of a “Y” shape, that is associated with the IV assembly and in fluid communication with either the contents of the IV bag or alternatively, with the catheter in use on the patient for intravenous administration of fluids and medicines.
One such connector may be in the form of a female connector attached to the IV bag or other container and disposed in fluid communication with the contents thereof. An appropriate female connector may be in the form of a female luer connector which at least partially defines, along with a male luer connector, a “luer lock” connector assembly, as is well known in the medical profession. The male luer connector is secured to the IV delivery tubing, such as at the proximal end, and is specifically structured to be attached to the female luer connector in a manner which establishes fluid communication with contents of the IV container, and facilitates a flow of the IV fluid from the IV container through the connected male and female luer connectors. As a result, fluid flow between the patient and the interior of the IV bag is established. As is also well known, various types of valves and/or flow regulating devices may be operatively associated with the IV assembly to regulate the amount of fluid or rate of fluid delivery to the patient during the administration procedure.
In addition, known IV containers or reservoirs may incorporate an additional female luer connector or other female type connector which are disposed in fluid communication with the IV delivery tubing, such as but not limited to at the IV bag. This additional female luer connector is provided to administer additional liquid agents, such as pain medication, antibiotics, and/or other medicinal compositions, to the IV fluid being delivered to the patient. However, such an additional female luer connector may remain unused or may be accessed at a time subsequent to the initiation of the IV fluid administration, such as when additional medication or another composition is required or prescribed.
In periods of non-use, it is important to maintain a female luer connector in a closed and fluid sealed condition in order to maintain sterility, and also, the integrity of the IV fluid prior to use. This is also important in order to restrict unauthorized access to the IV fluid and even to the female luer connector.
Therefore, and regardless of the known or conventional attempts to date to provide a fluid restricting closure to protect the contents of preloaded administering devices and/or enteral devices, certain problems still remain in this field of art. Accordingly, there is a need in this area for an improved, closure assembly which provides a secure and reliable fluid restricting or sealing connection to the discharge fixture or connector such as, but not limited to a female fixture associated with an enteral administering device. If any such new closure assembly were developed, it should also have additional structural and operative features which can provide a clear and reliable indication that use and/or attempted tampering with the patent administering device has occurred.
Further, if any such new closure assembly were developed it should include structural features capable of providing both visual and audible indications that tampering and/or use of the administering device has occurred. Also, any such closure assembly should be capable of use with little or no structural modification with a variety of different connectors, fixtures, administering devices, etc. Finally, any such improved closure assembly should also be structurally and operatively reliable, while still remaining cost effective to manufacture and assemble, in order to facilitate widespread use and acceptance throughout the medical profession.
The present invention is directed to a tamper evident closure assembly of the type which is attachable in flow restricting relation to a fitting. As explained in greater detail hereinafter, structural and operative features of the inventive closure assembly in one or more preferred embodiments, including components thereof, facilitate its connection in flow restricting relation to a female enteral fitting. Also, the closure assembly of the present invention is structured to provide a clear indication of use or attempted tampering with the closure assembly, such fitting and/or fluid source associated with the fitting.
As used herein and as commonly recognized, the term “enteral” relates to the administration or removal of fluid, in the form of liquid or gas, to or from the gastrointestinal tract. Moreover, enteral connectors and/or fixtures of the type referred to herein relate to medical devices or accessories which are intended for use in enteral applications. Further, small-bore connectors for enteral application may be employed for delivery of enteral nutrition fluid from a fluid source to the patient. Therefore, enteral feeding sets and extension sets may include a female fixture/connector, wherein fluid from the source the source flows to the patient initially through the female fixture and to and through a cooperatively structured and attached male enteral fixture. Accordingly, in order to restrict access and maintain the integrity of the source of fluid associated with the female fixture, the closure assembly of the present invention is structured to connect to the female enteral fixture in flow restricting relation thereto, prior to the interconnection of the female enteral fixture to the male enteral fixture.
As such, the various embodiments of the closure assembly of the present invention include operative and structural features which effectively accomplish a flow restricting connection to such a female fitting. At the same time, the closure assembly provides clear evidence of use of the fitting and/or associated fluid source as well tampering therewith in situations involving unauthorized use or access to the fitting and/or fluid source. However, it is emphasized that the various structural features of the one or more preferred embodiments of the closure assembly of the present invention are such that the invention is not limited to use with female fittings and/or female enteral fittings. To the contrary, the closure assembly of the present invention may be utilized to establish a flow restricting connection and closure of different fittings, connectors, etc. associated with a variety of different medical devices, accessories, etc. Such additional connectors/fittings with which the closure assembly of the present invention may be used include, but are not limited to, male Parental fittings, IV fittings; Luer fittings; Neuraxial fittings; Epidural fittings; anesthesia fittings, and potentially others, whether now known or yet to be developed and/or put into use.
Therefore, the closure assembly of the present invention comprises a cap connectable in flow restricting relation to a cooperatively structured fitting such as, but not limited to, the type specifically or generally referred to herein. Further, an indicator member preferably, but not necessarily, in the form of a ring or other type of annular structure is removably connected to an exterior of the cap and is movable therewith while still connected thereto. A housing having a hollow interior and an access opening is dimensioned and configured to contain the cap and connected indicator member within the housing. Moreover, the access opening is disposed, dimensioned and configured to allow passage of the cap there through at substantially the same time it is detached from the indicator member. Therefore, in at least one embodiment of the housing of the closure assembly, the access opening is disposed and dimensioned to restrict passage of the indicator member there through concurrently with the through passage of the cap. In use, an attempted removal of the cap from the housing, such as when the cap is connected to a corresponding fixture, results in a portion of the interior of the housing engaging and/or interfering with the indicator member causing its detachment from the cap.
In order to facilitate the removable connection of the indicator member and/or ring from the exterior of the cap at least one, but in certain practical applications, a plurality of frangible tabs are provided. The one or more tabs are formed from a frangible or breakable material and are interconnected between an exterior surface of the cap and an interior surface of the indicator member. In addition, the one or more frangible tabs are structured for generally precise breakage along a corresponding length thereof. As described in greater detail below, the breakage occurs along the length of the tab in spaced relation to both the exterior surface of the cap and an interior surface of the indicator member. As a result, a tab segment remains on both the exterior surface of the cap and an interior surface of the indicator member. One or both of the tab segments include an exposed face having a curvilinear or other predetermined configuration which restricts interfering engagement or a “hang-up” there-between subsequent to the disconnection of the indicator member from the exterior surface of the cap. Such an interfering engagement or hang-up could possibly result in a failure of the indicator member to assume a normally detached orientation from the cap, the latter being an intended goal of the invention in some embodiments. Accordingly, the breakage is disposed along the length of the one or more tabs at a location which ensures a clearance space existing between each tab segment and the oppositely disposed exterior or interior surfaces of the cap and indicator member, respectively.
As indicated, upon removal of the cap, such as when connected to a corresponding fixture, the indicator member will be captured within the interior of the housing. Accordingly, when captured, the indicator member will provide a clear indication that the cap has been used and/or at least removed from the interior of the housing. Further, upon an attempted reinsertion of the cap within the housing, the existence of the indicator member in a detached orientation from the cap, would be indicative of an attempted tampering with and/or unauthorized use of the closure assembly, fixture or fluid source with which the attached fixture is associated.
Further, the various preferred embodiments of the closure assembly provide one or more effective ways to determine the existence of the detached indicator member being captured within the housing in a detached orientation. Moreover, the detection of the captured indicator member may be accomplished by visual observation and/or by sound. More specifically, the structure and/or material from which the indicator member is formed is sufficient to facilitate a sound being generated upon manipulation, such as by shaking, of the housing, once the indicator member is detached from the cap. Such shaking of the housing will result in a “rattling” sound of the cap within the interior of the housing.
In addition, one or more embodiments of the housing may include a viewing structure formed therein. The viewing structure may take a variety of different forms such as, but not limited to, a portion and/or substantially the entirety of the sidewall of the housing being substantially transparent. As used herein, being “substantially transparent” is meant to include the material of the housing being at least translucent so as to allow at least minimal viewing within the housing. As a result, a user can determine the location and/or other physical characteristics of the indicator member being in either a detached orientation or an attached orientation.
Further by way of example, the viewing structure of the housing may be in the form of at least one viewing port or window that is preferably formed in a sidewall portion of the housing. The viewing port or window is disposed, dimensioned and structured to facilitate a visual observance of the interior of the housing, as well as one or more components of the closure assembly specifically including, but not limited to, the indicator member. A visual determination of the indicator member being in the attached orientation to the cap or a detached orientation therefrom, is also facilitated by an “identifier” incorporated on or in at least the indicator member. Such identifier is structured to facilitate a visual distinction between the indicator member and other components on the interior of the housing, possibly including interior portions of the housing itself. Further by way of example, the identifier may be in the form of a color coding, difference in surface textures, indicia, markings, pictorial displays, etc., all of which may be incorporated, individually or in combination, in the structure of the indicator.
Further by way of example, when a color coding is utilized as the identifier, the color of the indicator member is ideally selected so as to be clearly distinctive from the observable color of the cap, as well as the interior portions of the housing itself. As a result, the color coding will allow an observer to distinguish the component being viewed through the aforementioned viewing structure by distinguishing the various colors of the indicator member, cap, housing, etc. As a result, an observer will be able to easily determine whether or not the cap has been used and removed from the housing and/or whether tampering is being attempted or has occurred by virtue of the color of the component being visually observed through the viewing structure.
In addition, the closure assembly includes a drive assembly, which may be in the form of a “ramp and cliff” drive structure. More specifically, a first ramp and cliff drive segment is formed on the cap and a second ramp and cliff drive segment is formed on the housing, in movable and/or mating engagement with the first ramp and cliff drive segment. The first and second drive segments are cooperatively structured to define a concurrent single direction, driven rotation of said cap and said housing. In at least one preferred embodiment, the drive assembly is disposed in an exterior location, as versus a central location, on both the sidewall or skirt portion of the cap and the interior bottom or interior end surface of the housing. As such, the first drive segment is formed on and extending along an outer circumferential edge of a skirt or like sidewall portion of the cap. In cooperation there with, the second drive segment is formed on an inner surface of the housing in corresponding relation to the first segment, so as to accomplish the movable interactive engagement therewith.
Therefore, the one or more preferred embodiments of the closure assembly of the present invention provide an efficient and reliable structure for closing, sealing and providing a clear indication of prior use of a cooperatively structured fitting such as, but not limited to an enteral female fitting or other female connector or fitting of the type which may be associated with a fluid source and attendant medical device. The closure assembly is further structured to provide a clear indication of tampering or attempted access to the fixture and/or fluid source with which the fixture may be associated.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As represented throughout the accompanying Figures and with initial reference to
In more specific terms, one or more preferred embodiments of the closure assembly 10 includes an end cap 12 having an initially attached indicator member 14, which may be in the form of an indicator ring or similar annular or curvilinear structure. The indicator member 14 is removably connected to an exterior surface 12′ of the cap 12, as shown in
Additional structural features of the housing 16 include a closed end 22 which may be in the form of a bottom end portion. The closed end or bottom end portion 22 may be connected by sealing to the remainder of the body 16 such as by heat seal, sonic welding, etc. In the alternative, the closed end portion 22 may be integrally formed with a remainder of the housing 16. As also represented, the closed end portion 22 is oppositely disposed to the aforementioned access opening 20.
Therefore, upon initial use the cap 12, with the indicator member 14 connected to an exterior surface 12′ thereof, is disposed within the interior 18 of the housing 16. It is also of note that the access opening 20 is large enough to allow the cap 12 to pass there-through, such as when attached to the fixture 100. However, upon removal of the cap 12, the indicator member 14 will engage or abut against interior portions of the housing 16, causing its detachment from the exterior surface 12′ of the cap 12, as represented in
Accordingly, one operative feature of the various preferred embodiments of the closure assembly 10 includes an effective indication that the cap 12 has been removed from the interior 18 of the housing 16 for use, such as when attached to a corresponding fixture 100. Further, any attempt to hide the fact that the cap 12 has been removed from the housing 16 will be evident by the inability to reattach the indicator member 14 to the exterior 12′ of the cap 12, as explained hereinafter.
With reference to
Therefore,
Moreover, an attempted reinsertion of the cap 12 and connected fitting 100 into the interior 18 (
As generally described, one structural and operative feature of the closure assembly 10, in one or more preferred embodiments, includes the indicator member 14 being detachable from the exterior surface 12′ of the cap 12. As also indicated, this detachment of the indicator member 14 will occur substantially concurrent to the removal of the cap 12 from the interior 18 of the housing 16, such as through the access opening 20. Therefore, the removable connection of the indicator member 14 to the exterior of the cap 12 can be accomplished by at least one frangible tab 28. In certain practical applications, it may be preferred to include a plurality of frangible tabs 28 disposed in spaced relation to one another about the outer surface 12′ of the cap 12. More specific structural details of each of the one or more frangible tabs 28 is represented in detail in
Further, each of the one or more tabs 28 is structured to accomplish a predetermined, substantially precise “breakage” along the length thereof. The predetermined breakage is schematically indicated as 17 in
Another preferred embodiment of the closure assembly 10 is represented in
Distinguishing structural features between the closure assemblies 10 of the embodiment of
By way of example, the selected identifier may be in the form of “color coding”, wherein one or more distinguishing colors are incorporated in the various components of the closure assembly 10. More specifically, the identifier may be incorporated in the indicator member or ring 14 and include a bright or vibrant distinguishing color. In turn, other interior components or portions of the housing 116, such as a shield 48 (
Therefore, the presence of an identifier such as in the form of “color coding” will enhance an observer's visual observation due to the fact that the shield 48 will be one distinguishing color and the indicator member 14 will be a different distinguishing color. As such, viewing of the interior 18 of the housing 116, when indicator member is in the detached orientation, as represented in
As noted above, the viewing structure 42 being in the form of the viewing port or window 44 can be used in combination with or separately from the transparent portion 44′ of the sidewall of the housing 116. At least one additional option would be the ability to observe “extended color indication”, through a transparent portion 44′ of the housing 116. As such, the closed end 22 of the cap 12 could include a distinguishing color. The indicator member or ring 14 could be the same or other, possibly complementary, distinguishing color. However, in this additional option, before the indicator member is detached from the cap 12 it will be in the attached orientation. The attached orientation of the indicator member 14 will not be initially viewable through the transparent portion 44′. Such non-observance could be the result of the indicator member 14 being positioned behind the shield like structure 48, such as in a space 49′, rather than being in the space 49 in front thereof, as represented in
Accordingly, the use of an appropriate and visually distinguishable “identifier” being incorporated in the structure of the indicator member 14 and other components of the closure assembly 10 provide a reliable indication of prior use and possible tampering. It is further emphasized that the indicator member 14 may be indicative of prior use and/or tampering when it is disposed in either the attached orientation or the detached orientation. It is further emphasized that the structural and operative features of at least the embodiment of
Yet another preferred embodiment of the closure assembly 10 is represented in an unassembled state in
Distinguishing features of the preferred embodiment of the closure assembly 10 of
Therefore, the drive assembly 140 comprises and may be accurately described as an exteriorly located “ramp and cliff” drive structure. As should be apparent, the exterior location of the drive assembly 140 is distinguishable from the central location of the “ramp and cliff” drive assembly 40 of the embodiments of
As set forth above with regard to
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
The present application is a divisional application of a previously filed, currently pending application having Ser. No. 14/613,080, filed on Feb. 3, 2015, which claims priority to a previously filed, U.S. Provisional patent application having Ser. No. 61/937,874 and a filing date of Feb. 10, 2014, as well as to another previously filed U.S. Provisional application, namely, that having Ser. No. 61/936,044 filed on Feb. 5, 2014, and to one additional previously filed, U.S. Provisional application, namely that having Ser. No. 61/935,096 filed on Feb. 3, 2014, the contents of all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
732662 | Smith | Jun 1903 | A |
1678991 | Marschalek | Jul 1928 | A |
1970631 | Sherman | Aug 1934 | A |
2477598 | Hain | Aug 1949 | A |
2739590 | Yochem | Mar 1956 | A |
2823674 | Yochem | Feb 1958 | A |
2834346 | Adams | May 1958 | A |
2875761 | Helmer et al. | Mar 1959 | A |
2888015 | Hunt | May 1959 | A |
2952255 | Hein, Jr. | Sep 1960 | A |
3122280 | Goda | Feb 1964 | A |
3245567 | Knight | Apr 1966 | A |
3323798 | Miller | Jun 1967 | A |
3364890 | Andersen | Jan 1968 | A |
3368673 | Johnson | Feb 1968 | A |
3598120 | Mass | Aug 1971 | A |
3610241 | LeMarie | Oct 1971 | A |
3700215 | Hardman et al. | Oct 1972 | A |
3706307 | Hasson | Dec 1972 | A |
3712749 | Roberts | Jan 1973 | A |
3747751 | Miller et al. | Jul 1973 | A |
3872867 | Killinger | Mar 1975 | A |
3904033 | Haerr | Sep 1975 | A |
3905375 | Toyama | Sep 1975 | A |
3937211 | Merten | Feb 1976 | A |
4005739 | Winchell | Feb 1977 | A |
4043334 | Brown et al. | Aug 1977 | A |
4046145 | Choksi et al. | Sep 1977 | A |
4068696 | Winchell | Jan 1978 | A |
4216585 | Hatter | Aug 1980 | A |
4216872 | Bean | Aug 1980 | A |
4244366 | Raines | Jan 1981 | A |
4252122 | Halvorsen | Feb 1981 | A |
4271972 | Thor | Jun 1981 | A |
4286591 | Raines | Sep 1981 | A |
4286640 | Knox et al. | Sep 1981 | A |
4313539 | Raines | Feb 1982 | A |
4369781 | Gilson et al. | Jan 1983 | A |
4420085 | Wilson et al. | Dec 1983 | A |
4430077 | Mittleman et al. | Feb 1984 | A |
4457445 | Hanks et al. | Jul 1984 | A |
D277783 | Beck | Feb 1985 | S |
4521237 | Logothetis | Jun 1985 | A |
4530697 | Kuhlemann et al. | Jul 1985 | A |
4571242 | Klein et al. | Feb 1986 | A |
4589171 | McGill | May 1986 | A |
4664259 | Landis | May 1987 | A |
4667837 | Vitello et al. | May 1987 | A |
4676530 | Nordgren et al. | Jun 1987 | A |
4693707 | Dye | Sep 1987 | A |
4726483 | Drozd | Feb 1988 | A |
4743229 | Chu | May 1988 | A |
4743231 | Kay et al. | May 1988 | A |
4760847 | Vaillancourt | Aug 1988 | A |
4813564 | Cooper et al. | Mar 1989 | A |
4832695 | Rosenberg et al. | May 1989 | A |
4834706 | Beck et al. | May 1989 | A |
4842592 | Caggiani et al. | Jun 1989 | A |
4844906 | Hermelin et al. | Jul 1989 | A |
4906231 | Young | Mar 1990 | A |
4919285 | Roof et al. | Apr 1990 | A |
4936445 | Grabenkort | Jun 1990 | A |
5009323 | Montgomery et al. | Apr 1991 | A |
5049129 | Zdeb et al. | Sep 1991 | A |
5057093 | Clegg et al. | Oct 1991 | A |
D323392 | Byrne | Jan 1992 | S |
5135496 | Vetter et al. | Aug 1992 | A |
5165560 | Ennis, III et al. | Nov 1992 | A |
5230429 | Etheredge, III | Jul 1993 | A |
5267983 | Oilschlager et al. | Dec 1993 | A |
5292308 | Ryan | Mar 1994 | A |
5293993 | Yates, Jr. et al. | Mar 1994 | A |
5295599 | Smith | Mar 1994 | A |
5312367 | Nathan | May 1994 | A |
5312368 | Haynes | May 1994 | A |
5328466 | Denmark | Jul 1994 | A |
5328474 | Raines | Jul 1994 | A |
5356380 | Hoekwater et al. | Oct 1994 | A |
5380295 | Vacca | Jan 1995 | A |
5405339 | Kohnen et al. | Apr 1995 | A |
5456668 | Ogle, II | Oct 1995 | A |
5458580 | Hajishoreh | Oct 1995 | A |
5468224 | Souryal | Nov 1995 | A |
5531695 | Swisher | Jul 1996 | A |
5540666 | Barta et al. | Jul 1996 | A |
5549571 | Sak | Aug 1996 | A |
5558648 | Shields | Sep 1996 | A |
5584817 | van den Haak | Dec 1996 | A |
5588239 | Anderson | Dec 1996 | A |
5624402 | Imbert | Apr 1997 | A |
5674209 | Yarger | Oct 1997 | A |
5695470 | Roussigne et al. | Dec 1997 | A |
5700247 | Grimard et al. | Dec 1997 | A |
5702374 | Johnson | Dec 1997 | A |
5713485 | Liff et al. | Feb 1998 | A |
5776124 | Wald | Jul 1998 | A |
5785691 | Vetter et al. | Jul 1998 | A |
5797885 | Rubin | Aug 1998 | A |
5807343 | Tucker et al. | Sep 1998 | A |
5829589 | Nguyen et al. | Nov 1998 | A |
D402766 | Smith et al. | Dec 1998 | S |
5883806 | Meador et al. | Mar 1999 | A |
5884457 | Ortiz et al. | Mar 1999 | A |
5902269 | Jentzen | May 1999 | A |
5951522 | Rosato et al. | Sep 1999 | A |
5951525 | Thorne et al. | Sep 1999 | A |
5954657 | Rados | Sep 1999 | A |
5957166 | Safabash | Sep 1999 | A |
5963136 | O'Brien | Oct 1999 | A |
5989227 | Vetter et al. | Nov 1999 | A |
5993437 | Raoz | Nov 1999 | A |
6000548 | Tsals | Dec 1999 | A |
D419671 | Jansen | Jan 2000 | S |
6021824 | Larsen et al. | Feb 2000 | A |
6027482 | Imbert | Feb 2000 | A |
6068614 | Kimber et al. | May 2000 | A |
D430293 | Jansen | Aug 2000 | S |
D431864 | Jansen | Oct 2000 | S |
6126640 | Tucker et al. | Oct 2000 | A |
6190364 | Imbert | Feb 2001 | B1 |
6193688 | Balestracci et al. | Feb 2001 | B1 |
6196593 | Petrick et al. | Mar 2001 | B1 |
6196998 | Jansen et al. | Mar 2001 | B1 |
6235376 | Miyazaki et al. | May 2001 | B1 |
6280418 | Reinhard et al. | Aug 2001 | B1 |
6287671 | Bright et al. | Sep 2001 | B1 |
6322543 | Singh et al. | Nov 2001 | B1 |
6338200 | Baxa et al. | Jan 2002 | B1 |
6375640 | Teraoka | Apr 2002 | B1 |
6394983 | Mayoral et al. | May 2002 | B1 |
6485460 | Eakins et al. | Nov 2002 | B2 |
6500155 | Sasso | Dec 2002 | B2 |
6520935 | Jansen et al. | Feb 2003 | B1 |
6540697 | Chen | Apr 2003 | B2 |
6565529 | Kimber et al. | May 2003 | B1 |
6581792 | Limanjaya | Jun 2003 | B1 |
6585691 | Vitello | Jul 2003 | B1 |
6592251 | Edwards et al. | Jul 2003 | B2 |
6666852 | Niedospial, Jr. | Dec 2003 | B2 |
6682798 | Kiraly | Jan 2004 | B1 |
6726652 | Eakins et al. | Apr 2004 | B2 |
6726672 | Hanley et al. | Apr 2004 | B1 |
6755220 | Castellano et al. | Jun 2004 | B2 |
6764469 | Broselow | Jul 2004 | B2 |
6796586 | Werth | Sep 2004 | B2 |
6821268 | Balestracci | Nov 2004 | B2 |
D501549 | McAllister et al. | Feb 2005 | S |
6921383 | Vitello | Jul 2005 | B2 |
6935560 | Andreasson et al. | Aug 2005 | B2 |
6942643 | Eakins et al. | Sep 2005 | B2 |
7055273 | Roshkoff | Jun 2006 | B2 |
7125397 | Woehr et al. | Oct 2006 | B2 |
7141286 | Kessler et al. | Nov 2006 | B1 |
7175081 | Andreasson et al. | Feb 2007 | B2 |
7182256 | Andreasson et al. | Feb 2007 | B2 |
7232066 | Andreasson et al. | Jun 2007 | B2 |
7240926 | Dalle et al. | Jul 2007 | B2 |
7299981 | Hickle et al. | Nov 2007 | B2 |
7374555 | Heinz et al. | May 2008 | B2 |
7404500 | Marteau et al. | Jul 2008 | B2 |
7410803 | Nollert et al. | Aug 2008 | B2 |
7425208 | Vitello | Sep 2008 | B1 |
7437972 | Yeager | Oct 2008 | B2 |
7482166 | Nollert et al. | Jan 2009 | B2 |
7588563 | Guala | Sep 2009 | B2 |
7594681 | DeCarlo | Sep 2009 | B2 |
7608057 | Woehr et al. | Oct 2009 | B2 |
7611487 | Woehr et al. | Nov 2009 | B2 |
7632244 | Buehler et al. | Dec 2009 | B2 |
D608900 | Giraud et al. | Jan 2010 | S |
7641636 | Moesli et al. | Jan 2010 | B2 |
D612939 | Boone, III et al. | Mar 2010 | S |
7681606 | Khan et al. | Mar 2010 | B2 |
7698180 | Fago et al. | Apr 2010 | B2 |
7735664 | Peters et al. | Jun 2010 | B1 |
7748892 | McCoy | Jul 2010 | B2 |
7762988 | Vitello | Jul 2010 | B1 |
7766919 | Delmotte | Aug 2010 | B2 |
7802313 | Czajka | Sep 2010 | B2 |
7918830 | Langan et al. | Apr 2011 | B2 |
7922213 | Werth | Apr 2011 | B2 |
8034041 | Domkowski | Oct 2011 | B2 |
8079518 | Turner et al. | Dec 2011 | B2 |
8091727 | Domkowski | Jan 2012 | B2 |
8118788 | Frezza | Feb 2012 | B2 |
8137324 | Bobst | Mar 2012 | B2 |
8140349 | Hanson et al. | Mar 2012 | B2 |
8252247 | Ferlic | Aug 2012 | B2 |
8257286 | Meyer et al. | Sep 2012 | B2 |
8328082 | Bochenko et al. | Dec 2012 | B1 |
8348895 | Vitello | Jan 2013 | B1 |
8353869 | Ranalletta et al. | Jan 2013 | B2 |
8443999 | Reinders | May 2013 | B1 |
D684057 | Kwon | Jun 2013 | S |
8512277 | Del Vecchio | Aug 2013 | B2 |
8556074 | Turner et al. | Oct 2013 | B2 |
8579116 | Pether et al. | Nov 2013 | B2 |
8591462 | Vitello | Nov 2013 | B1 |
8597255 | Emmott et al. | Dec 2013 | B2 |
8597271 | Langan et al. | Dec 2013 | B2 |
8616413 | Koyama | Dec 2013 | B2 |
D701304 | Lair et al. | Mar 2014 | S |
8672902 | Ruan et al. | Mar 2014 | B2 |
8702674 | Bochenko | Apr 2014 | B2 |
8777910 | Bauss et al. | Jul 2014 | B2 |
8777930 | Swisher et al. | Jul 2014 | B2 |
8852561 | Wagner et al. | Oct 2014 | B2 |
8864021 | Vitello | Oct 2014 | B1 |
8864707 | Vitello | Oct 2014 | B1 |
8864708 | Vitello | Oct 2014 | B1 |
8911424 | Weadock et al. | Dec 2014 | B2 |
8945082 | Geiger et al. | Feb 2015 | B2 |
9082157 | Gibson | Jul 2015 | B2 |
9101534 | Bochenko | Aug 2015 | B2 |
D738495 | Strong et al. | Sep 2015 | S |
D743019 | Schultz | Nov 2015 | S |
9199042 | Farrar et al. | Dec 2015 | B2 |
9199749 | Vitello | Dec 2015 | B1 |
9220486 | Schweiss et al. | Dec 2015 | B2 |
9220577 | Jessop et al. | Dec 2015 | B2 |
9227019 | Swift et al. | Jan 2016 | B2 |
D750228 | Strong et al. | Feb 2016 | S |
9272099 | Limaye et al. | Mar 2016 | B2 |
9311592 | Vitello et al. | Apr 2016 | B1 |
D756777 | Berge et al. | May 2016 | S |
9336669 | Bowden et al. | May 2016 | B2 |
D759486 | Ingram et al. | Jun 2016 | S |
D760384 | Niunoya et al. | Jun 2016 | S |
D760902 | Persson | Jul 2016 | S |
9402967 | Vitello | Aug 2016 | B1 |
9427715 | Palazzolo et al. | Aug 2016 | B2 |
9433768 | Tekeste et al. | Sep 2016 | B2 |
9463310 | Vitello | Oct 2016 | B1 |
D773043 | Insgram et al. | Nov 2016 | S |
D777903 | Schultz | Mar 2017 | S |
9662456 | Woehr | May 2017 | B2 |
D789529 | Davis et al. | Jun 2017 | S |
9687249 | Hanlon et al. | Jun 2017 | B2 |
9744304 | Swift et al. | Aug 2017 | B2 |
D797928 | Davis et al. | Sep 2017 | S |
D797929 | Davis et al. | Sep 2017 | S |
9764098 | Hund et al. | Sep 2017 | B2 |
9821152 | Vitello et al. | Nov 2017 | B1 |
D806241 | Swinney et al. | Dec 2017 | S |
D807503 | Davis et al. | Jan 2018 | S |
9855191 | Vitello et al. | Jan 2018 | B1 |
D815945 | Fischer | Apr 2018 | S |
9987438 | Stillson | Jun 2018 | B2 |
D825746 | Davis et al. | Aug 2018 | S |
10039913 | Yeh | Aug 2018 | B2 |
D831201 | Holtz et al. | Oct 2018 | S |
D820187 | Ryan | Nov 2018 | S |
10124122 | Zenker | Nov 2018 | B2 |
10166343 | Hunt et al. | Jan 2019 | B1 |
10166347 | Vitello | Jan 2019 | B1 |
10183129 | Vitello | Jan 2019 | B1 |
10207099 | Vitello | Feb 2019 | B1 |
D842464 | Davis et al. | Mar 2019 | S |
D847373 | Hurwit et al. | Apr 2019 | S |
10300263 | Hunt | May 2019 | B1 |
10307548 | Hunt et al. | Jun 2019 | B1 |
10315024 | Vitello et al. | Jun 2019 | B1 |
10376655 | Pupke et al. | Aug 2019 | B2 |
D859125 | Weagle et al. | Sep 2019 | S |
10758684 | Vitello et al. | Sep 2020 | B1 |
20010003150 | Imbert | Jun 2001 | A1 |
20010034506 | Hirschman et al. | Oct 2001 | A1 |
20010056258 | Evans | Dec 2001 | A1 |
20020007147 | Capes et al. | Jan 2002 | A1 |
20020023409 | Py | Feb 2002 | A1 |
20020097396 | Schafer | Jul 2002 | A1 |
20020099334 | Hanson et al. | Jul 2002 | A1 |
20020101656 | Blumenthal et al. | Aug 2002 | A1 |
20020133119 | Eakins et al. | Sep 2002 | A1 |
20030055685 | Cobb et al. | Mar 2003 | A1 |
20030146617 | Franko, Sr. | Aug 2003 | A1 |
20030183547 | Heyman | Oct 2003 | A1 |
20040008123 | Carrender et al. | Jan 2004 | A1 |
20040064095 | Vitello | Apr 2004 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040186437 | Frenette et al. | Sep 2004 | A1 |
20040225258 | Balestracci | Nov 2004 | A1 |
20050146081 | MacLean et al. | Jul 2005 | A1 |
20050148941 | Farrar et al. | Jul 2005 | A1 |
20050209555 | Middleton et al. | Sep 2005 | A1 |
20060084925 | Ramsahoye | Apr 2006 | A1 |
20060089601 | Dionigi | Apr 2006 | A1 |
20060173415 | Cummins | Aug 2006 | A1 |
20060189933 | Alheidt et al. | Aug 2006 | A1 |
20070060898 | Shaughnessy et al. | Mar 2007 | A1 |
20070106234 | Klein | May 2007 | A1 |
20070142786 | Lampropoulos et al. | Jun 2007 | A1 |
20070191690 | Hasse et al. | Aug 2007 | A1 |
20070219503 | Loop et al. | Sep 2007 | A1 |
20070257111 | Ortenzi | Nov 2007 | A1 |
20080068178 | Meyer | Mar 2008 | A1 |
20080097310 | Buehler et al. | Apr 2008 | A1 |
20080106388 | Knight | May 2008 | A1 |
20080140020 | Shirley | Jun 2008 | A1 |
20080243088 | Evans | Oct 2008 | A1 |
20080306443 | Neer | Dec 2008 | A1 |
20090084804 | Caspary | Apr 2009 | A1 |
20090099552 | Levy et al. | Apr 2009 | A1 |
20090149815 | Kiel et al. | Jun 2009 | A1 |
20090326481 | Swisher et al. | Dec 2009 | A1 |
20100084403 | Popish et al. | Apr 2010 | A1 |
20100126894 | Koukol et al. | May 2010 | A1 |
20100179822 | Reppas | Jul 2010 | A1 |
20100228226 | Nielsen | Sep 2010 | A1 |
20100252564 | Martinez et al. | Oct 2010 | A1 |
20100283238 | Deighan et al. | Nov 2010 | A1 |
20110044850 | Solomon et al. | Feb 2011 | A1 |
20110046550 | Schiller et al. | Feb 2011 | A1 |
20110046603 | Felsovalyi et al. | Feb 2011 | A1 |
20120064515 | Knapp et al. | Mar 2012 | A2 |
20120096957 | Ochman | Apr 2012 | A1 |
20120110950 | Schraudolph | May 2012 | A1 |
20130018356 | Prince et al. | Jan 2013 | A1 |
20130056130 | Alpert et al. | Mar 2013 | A1 |
20130088354 | Thomas | Apr 2013 | A1 |
20130237949 | Miller | Sep 2013 | A1 |
20130269592 | Heacock et al. | Oct 2013 | A1 |
20140000781 | Franko, Jr. | Jan 2014 | A1 |
20140034536 | Reinhardt et al. | Feb 2014 | A1 |
20140069202 | Fisk | Mar 2014 | A1 |
20140069829 | Evans | Mar 2014 | A1 |
20140135738 | Panian | May 2014 | A1 |
20140155868 | Nelson et al. | Jun 2014 | A1 |
20140163465 | Bartlett, II et al. | Jun 2014 | A1 |
20140257843 | Adler et al. | Sep 2014 | A1 |
20140326727 | Jouin et al. | Nov 2014 | A1 |
20140353196 | Key | Dec 2014 | A1 |
20150182686 | Okihara | Jul 2015 | A1 |
20150191633 | De Boer et al. | Jul 2015 | A1 |
20150305982 | Bochenko | Oct 2015 | A1 |
20150310771 | Atkinson et al. | Oct 2015 | A1 |
20160067422 | Davis et al. | Mar 2016 | A1 |
20160090456 | Ishimaru et al. | Mar 2016 | A1 |
20160144119 | Limaye et al. | May 2016 | A1 |
20160158110 | Swisher et al. | Jun 2016 | A1 |
20160158449 | Limaye et al. | Jun 2016 | A1 |
20160176550 | Vitello et al. | Jun 2016 | A1 |
20160328586 | Bowden et al. | Nov 2016 | A1 |
20160361235 | Swisher | Dec 2016 | A1 |
20160367439 | Davis et al. | Dec 2016 | A1 |
20170007771 | Duinat et al. | Jan 2017 | A1 |
20170014310 | Hyun et al. | Jan 2017 | A1 |
20170124289 | Hasan et al. | May 2017 | A1 |
20170173321 | Davis et al. | Jun 2017 | A1 |
20170203086 | Davis | Jul 2017 | A1 |
20170319438 | Davis et al. | Nov 2017 | A1 |
20170354792 | Ward | Dec 2017 | A1 |
20180001540 | Byun | Jan 2018 | A1 |
20180078684 | Peng et al. | Mar 2018 | A1 |
20180089593 | Patel et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
0148116 | Jul 1985 | EP |
WO 2008000279 | Jan 2008 | WO |
WO 2017086607 | May 2015 | WO |
Number | Date | Country | |
---|---|---|---|
61937874 | Feb 2014 | US | |
61936044 | Feb 2014 | US | |
61935096 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14613080 | Feb 2015 | US |
Child | 15908237 | US |