A closure assembly for use on a female luer connector or another generally similar type of female connector of the type used with intravenous (IV) administration assemblies for the dispensing of IV fluid and/or the adding of medicine or other agents to the liquid dispensed from the IV container. The closure assembly is structured to establish a closed, fluid sealing connection to the female luer connector and provide an obvious indication of tampering or attempted access to the female connector or contents of the IV reservoir or container associated therewith.
In the medical field, it is a relatively common procedure to administer fluids to a patient by intravenous (IV) infusion. A variety of IV assemblies are known and are useful in the treatment of a number of medical conditions, in that a variety of fluids and/or medicines can be administered to a patient utilizing such assemblies over a prescribed period of time and in controlled amounts. In use, a conventional IV administration assembly typically includes a reservoir or container, in the form of a bottle or more commonly, a flexible material bag, suspended on a pole or like support structure located substantially adjacent to the patient being treated, typically in an elevated relation thereto. In addition, the IV fluid flows from the supported and elevated IV bag to the patient by means of elongated, flexible tubing connected at a proximal end to the IV bag and at the other distal end, connected intravenously to the patient by way of a catheter or like structure. The IV delivery tube is also structured to connect at one end to or be interconnected with an appropriate connector, often having somewhat of a “Y” shape, that is associated with the IV assembly and in fluid communication with either the contents of the IV bag or alternatively, with the catheter in use on the patient for intravenous administration of fluids and medicines.
One such connector may be in the form of a female connector attached to the IV bag or other container and disposed in fluid communication with the contents thereof. An appropriate female connector may be in the form of a female luer connector which at least partially defines, along with a male luer connector, a “luer lock” connector assembly, as is well known in the medical profession. The male luer connector is secured to the IV delivery tubing, such as at the proximal end, and is specifically structured to be attached to the female luer connector in a manner which establishes fluid communication with contents of the IV container, and facilitates a flow of the IV fluid from the IV container through the connected male and female luer connectors. As a result, fluid flow between the patient and the interior of the IV bag is established. As is also well known, various types of valves and/or flow regulating devices may be operatively associated with the IV assembly to regulate the amount of fluid or rate of fluid delivery to the patient during the administration procedure.
In addition, known IV containers or reservoirs may incorporate an additional female luer connector or other female type connector which are disposed in fluid communication with the IV delivery tubing, such as but not limited to at the IV bag. This additional female luer connector is provided to administer additional liquid agents, such as pain medication, antibiotics, and/or other medicinal compositions, to the IV fluid being delivered to the patient. However, such an additional female luer connector may remain unused or may be accessed at a time subsequent to the initiation of the IV fluid administration, such as when additional medication or another composition is required or prescribed.
In periods of non-use, it is important to maintain a female connector including, but not limited to, a female luer connector in a closed and fluid sealed condition in order to maintain sterility, and also, the integrity of the IV fluid prior to use. This is also important in order to restrict unauthorized access to the IV fluid and even to the female luer connector. Therefore, there is a need in the medical field for an efficient, effective and easily applied closure assembly that would be capable of closing and sealing a female connector during periods of its non-use. If any such closure assembly were developed, it should also be structured to provide a clear visual indication whenever there has been tampering or other attempted access to the female connector and/or contents of the IV container. Moreover, if any such closure assembly were developed, it should also be structured for efficient attachment to the female connector so as to prevent re-attachment to the female connector, once unauthorized access has been attempted or accomplished. If any such closure assembly were developed, it should also be capable of being removed from the female connector in a manner which provides the aforementioned visual or other appropriate indication of complete, partial or other attempted access to the female luer connector.
Finally, the structural components as well as the operational characteristics of any such closure assembly developed should ideally also provide a sufficient degree of reliability relating to the secure closing and sealing of the female connector of the IV container, while clearly indicating when access thereto has occurred.
The present invention is intended to present a solution to these needs which remain in this field of art and as such, is directed to a closure assembly that is specifically, but not exclusively, structured for the closing and sealing of a female connector such as, but not limited to, a female luer connector having an interior flow port. Such female connectors are commonly used, along with a cooperatively structured male luer connector, as part of a “luer lock” connector assembly found on and/or used in combination with a variety of medical devices, including intravenous (IV) dispensing or administration assemblies. As such, the female luer connector or another generally similar type of female connector is disposed and structured to facilitate the dispensing of the IV fluid from the IV container and/or the addition of medicine or other agents to the IV liquid prior to or concurrent with its administration to a patient. Moreover, the female luer connector, as described above, facilitates the addition of medicine or other composition by means of a pre-loaded syringe which can be absent the use of a needle. Specifically, and as has become relatively commonplace following awareness of the AIDS virus and how AIDS is transmitted, needle-less syringes may be pre-loaded with a medicine or substance to be given to a patient. These needle-less syringes typically include an elongated, male-type of discharge nozzle that is dimensioned and configured to be received within the access port of a female luer connector and thereby, eliminate the need for an actual needle to be attached to the syringe.
Accordingly, and in order to restrict or at least provide a clear indication of attempted access to the female connector and the contents of the IV container, the present invention is directed to a closure assembly, which is connected in fluid sealing relation to the female connector. The structure of the closure assembly restricts its removal from the female luer connector without providing an obvious indication that tampering or attempted access has occurred. Also, once removed from the female connector, the tamper evident closure assembly of the present invention is ideally structured so that it cannot be re-attached, in an attempt to hide an unauthorized attempted at access.
Turning now to the structural and operative features of the present inventive closure assembly, they include a housing that has an at least partially hollow interior and is of a sufficient capacity to enclose and at least partially retain a flow restrictor therein. In addition, the housing includes a closed end portion and an oppositely disposed open end. The open end is of sufficient dimension to at least partially receive a portion of the female connector there-through into interactive connection with the flow restrictor. The flow restrictor is movably and removably disposed within the housing and is structured to be threaded or otherwise appropriately connected to the female connector concurrently to the closure assembly being attached to the female connector.
In addition, an indicator member is fixedly but preferably removably connected to the housing and is disposed on the interior thereof in at least partially surrounding relation to a corresponding part of the flow restrictor. At least one, but possibly a plurality of frangible members serve(s) to detachably interconnect the indicator member to the interior surface of the housing. The indicator member is thereby initially fixed, but detachable from the housing. Moreover, when fixed to the housing the indicator member and the aforementioned closed end portion of the housing are cooperatively disposed to movably retain the flow restrictor within the housing in a position which facilitates the movement of the flow restrictor into a connected orientation with the female luer connector.
As set forth above, the various preferred embodiments of the closure assembly of the present invention are specifically, but not exclusively, structured to close and seal a female connector of the type, such as but not limited to, a female luer connector which may be associated with an IV dispensing assembly. Therefore, structural components associated with the flow restrictor further include a male plug. In accordance with one aspect of the present invention, the male connector may include a structure which is equivalent or substantially similar to a male luer connector. As such, the male plug is dimensioned and configured to be inserted in flow restricting engagement within the interior access port of the female connector so as to prevent fluid flow there through and/or access to the contents of the IV container or other medical device associated with the female connector.
Additional structural and operative details of the present inventive closure assembly facilitate its attachment to a female connector in flow restricting engagement therewith. Further, once the closure assembly is attached to the female connector it cannot be removed there-from without providing a clear indication of tampering and/or attempted access to the female connector and the contents of the IV container. Also, once removed from the female connector, the closure assembly cannot be re-attached thereto in an operative manner.
The closure assembly of the present invention preferably also includes a drive assembly. In the illustrated embodiment described in detail hereinafter, the drive assembly can comprise a first and a second drive segment, wherein the first drive segment is connected to or mounted on the closed end portion of the housing. The second drive segment is cooperatively disposed relative to the first drive segment by being connected to or mounted on a portion of the flow restrictor which is disposed in confronting engagement with the interior surface of the closed end portion. In at least one preferred embodiment of the present invention, the first and second drive segments each include what may be referred to as a rotational type “ramp and cliff” drive structure. In addition, the ramp and cliff drive structures of each of the first and second drive segments may be mirror images of one another and substantially reversely oriented. As a result, interaction between the confronting surfaces of the first and second drive segments during rotation of the housing and the connected closed end portion, in a single predetermined direction, will cause rotation and axial movement of the flow restrictor and male plug attached thereto. As a result, the plug will be forced into the aforementioned inserted and flow restricting engagement within the interior port of the female connector. Therefore, the drive assembly of the present invention may be described as a “one-way drive assembly” due to the ability to rotate and axially position the flow restrictor and male plug into flow restricting engagement with the interior port of the female connector, only upon rotation of the housing in a single direction.
More specifically, the rotational type ramp and cliff structures formed on each of the first and second drive segments provide concurrent rotation of the housing and the flow restrictor, when the housing is rotated in only one, predetermined direction. Rotation of the housing in a direction opposite from the one, predetermined direction will result in the ramp and cliff drive structures being disposed out of driving relation to one another and a “slippage” or relative sliding movement there between. Therefore, it should be apparent that the flow restrictor and male plug fixedly secured thereto are movably and rotationally mounted within the interior of the housing. Due to the cooperative structuring of the first and second drive segments, the male plug will be inserted in flow restricting relation within the interior access port of the female connector as the housing is rotated in the one predetermined direction. However, rotation of the housing in the opposite direction will not accomplish a removal of the flow restrictor from its connection with the female connector or the male plug from the inserted, flow restricting relation with the interior access port of the female connector and therefore will not serve to remove the housing of the closure assembly from the female connector.
Removal of the housing from the female connector, in order to access the flow restrictor and eventually the contents of the IV container, can be effectively accomplished by exerting an axially directed “pull force” on the housing. Such an axially directed force, in order to be sufficient to remove the housing from the female connector must be adequate to detach the indicator member from the interior of the housing. Such detachment will be a result of the axial force exerted on the housing being sufficient to break or rupture the one or more frangible members which connect the indicator member to the interior of the housing, as set forth above. When the housing is detached, the indicator member, preferably in the form of a color-coded ring or like structure, will remain and be readily observable in surrounding relation to the now exposed flow restrictor, which will remain connected to the female connector. Therefore, a clear indication of tampering or attempted access to the contents of the IV container and/or female connector will be effectively provided by the observance of the exposed indicator member.
Accordingly, the one or more preferred embodiments of the closure assembly of the present invention provide a sufficient and reliable structure for closing and sealing a female luer connector or other female connector of the type which may be associated with an IV container or other device or container. The closure assembly is further structured to provide a clear indication of tampering or attempted access to the female connector and other devices which the female connector may be associated.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As represented in the accompanying drawings, the present invention is directed to a closure assembly generally indicated as 10 structured to close and provide a fluid seal with a female connector generally indicated as 12, as is perhaps best shown in
Accordingly, it is desirable to maintain the female connector 12 closed and sealed when not being used in order to prevent inadvertent and/or unauthorized access to the contents of the IV container with which the female connector 12 is associated. Therefore, at least one embodiment of the closure assembly 10 includes structural and operative features which accomplish a closed, fluid sealing of the female connector 12. Further, the closure assembly 10 is ideally structured to provide a clear indication of tampering or attempted access to the female connector 12 and the contents of the IV container with which it is associated.
As represented in
With primary reference to
Therefore, the indicator member 28 is initially disposed in fixed interconnection on the interior of the housing 16. In contrast, the flow restrictor 26 is movably disposed within and removable from the interior 18 of the housing 16. As clearly represented in the accompanying Figures, the flow restrictor 26 is at least initially movably and removably disposed and retained between the fixedly connected closed end portion 20 and the initially fixed indicator member 28. As a result, the flow restrictor 26 is disposed and dimensioned to move rotationally and axially within the interior 18 between the closed end portion 20 and the indicator member 28. Such movement of the flow restrictor 26 can be accomplished, at least initially, before connection of the closure assembly 10 to the female luer connector 12. As will be more fully explained, the rotational and axial movement of the flow restrictor 26 serves to accomplish the connection of the closure assembly 10 to the female connector 12 and the positioning of the flow restrictor 26 into a closed, fluid sealing relation within the interior access port 14 of the female connector 12 by operation of a drive assembly, generally indicated as 32.
With primary reference to
Yet additional features of the flow restrictor 26 include a casing 29 disposed in surrounding, outwardly spaced relation to the male plug 27. Relative dimensions and positions of the casing 29 and the male plug 27 facilitate the insertion and fluid restricting engagement of the male plug 27 into the interior of the port 14 of the female connector 12 when the closure assembly 10 is connected to the female connector 12 in the intended manner.
As represented in
The flow restrictor 26 is also cooperatively structured with the female connector 12 to accomplish a stable connection therewith. More specifically, attachment of the flow restrictor 26 in the inserted, flow restricting relation to the interior access port 14 of the female connector 12 is preferably accomplished by a threaded interconnection. Such cooperative structuring comprises the female luer connector 12 having outwardly extending ears or like projections 13. In cooperation therewith, a threaded portion(s) 31 of the flow restrictor 26 are disposed on an interior surface of the casing 29 of the flow restrictor 26. The interior threaded portion or surface 31 is disposed and structured to receive the protruding connecting ears 13 when the flow restrictor 26 and housing 16 are rotated relative to the female connector 12, as set forth above. As also indicated above, the rotation of the housing 16 in the predetermined one direction will cause the rotational movement of the flow restrictor 26 through interaction of the two drive segments 34 and 36 of the drive assembly 32. Such rotation of the flow restrictor 26 will cause a threaded engagement of the connecting ears 13 of the female connector 12 and the internally threaded surface or portion 31 of the flow restrictor 26 and a resulting axial movement between the flow restrictor 26 and the female connector 12. Moreover, threaded interaction of the ears 13 and the threaded portion 31 during concurrent rotation of the housing 16 and the flow restrictor 26 will facilitate the axial placement of the male plug 27 into an inserted, fluid sealing relation within the interior port 14 of the female connector 12.
As set forth above, attachment of the closure assembly 10 in a closed, fluid sealing engagement with the female connector 12 is facilitated by the operative and structural features of the drive assembly 32. As utilized, the drive assembly 32 may be more specifically described as a one-way drive assembly and includes the first drive segment 34 integrally or otherwise fixedly connected to an interior portion the closed end portion 20. The drive assembly 32 also includes a second drive segment 36 integrally or otherwise fixedly secured to an end or other appropriate portion of the flow restrictor 26 so as to be disposed in engaging, interactive relation to the first drive segment 34. Each of the first and second drive segments 34 and 36 are cooperatively structured to define the aforementioned one-way drive assembly by including the aforementioned “ramp and cliff” drive structure. More specifically, the ramp and cliff drive structures of each of the first and second drive segments 34 and 36 may comprise mirror image patterns, in relief of one another, as they are mounted on corresponding, confronting surfaces of the closed end portion 20 and flow restrictor 26, respectively. As described, the closed end portion 20 is fixedly secured to the remainder of the housing 16 and rotates therewith, while the flow restrictor 26 is movable within the housing 16. When assembled, the first drive segment 34, movable with the closed end portion 20, is disposed in confronting relation with the second drive segment 36, which is movable with the flow restrictor 26.
Therefore, a rotation of the housing 16 in a predetermined, single direction will cause a driving engagement of the first drive segment 34 with the second drive segment 36 and a forced, concurrent rotation of the flow restrictor 26 and male plug 27, with the housing 16. Continued rotation of the housing 16 and the flow restrictor 26 in the same, predetermined direction will result in a rotational and axial movement of the male plug 27 into an inserted, fluid flow restricting engagement within the interior port 14 of the female connector 12, as well as a threaded or other stable type connection of the flow restrictor 26 to the female connector 12. However, due to the structuring and relative orientations of the ramp and cliff structures of both the first and second drive segments 34 and 36, rotation of the housing 16 in a direction opposite to the one, predetermined preferred direction, will result in a slippage or sliding of the first and second drive segments 34 and 36 relative to one another. Therefore, rotation of the housing in this opposite direction will not accomplish removal of the male plug 27 from the inserted, fluid flow restricting engagement within the interior access port 14 of the female connector 12 or removal of the housing 16 from the female connector 12.
As a result of the above, access to the interior port 14 of the female connector 12 and accordingly the contents of a reservoir with which the female connector 12 may be associated is primarily, if not exclusively, accomplished by a pulling, substantially axially directed, force being applied to the housing 16. The degree of axial force applied to the housing 16, which allows it to be removed from the female connector 12 will be sufficient to cause a rupturing or breakage of the one or more frangible members 30. In turn, the indicator member 28 will be detached from the interior of the housing 16 and remain in surrounding relation to the exterior of the flow restrictor 26 which will still be threaded or otherwise connected to the female connector. Detachment of the housing 16 from the female connector 12 and the indicator member 28 will expose both the indicator member 28 and the still connected flow restrictor 26 resulting in a clear indication of tampering or attempted access to the female connector 12 and contents of the fluid reservoir with which it is associated. Further visual enhancement of attempted tampering may be accomplished by a color coding of the indicated member 28 thereby providing a clear visual indication with minimal observation that tampering or attempted access to the female luer connector 12 has occurred.
The structural advantages and operational versatility of the closure assembly 10 are more completely demonstrated in
Accordingly, once the closure assembly 10 is in the connected position of
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
The present application is a “divisional” patent application of and a claim of priority is made to an earlier filed application having Ser. No. 13/310,445 and a filing date of Dec. 2, 2011, which has matured into U.S. Pat. No. 8,864,708 on Oct. 21, 2014, which in turn, claimed priority to an earlier filed Provisional patent application having Ser. No. 61/419,508 filed on Dec. 3, 2010, as well as to another prior filed Provisional application, namely, that having Ser. No. 61/462,097 filed on Jan. 28, 2011, with the contents of all of these prior filed patent applications being incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
732662 | Smith | Jun 1903 | A |
1678991 | Marschalek | Jul 1928 | A |
1970631 | Sherman | Aug 1934 | A |
2477598 | Hain | Aug 1949 | A |
2739590 | Yochem | Mar 1956 | A |
2823674 | Yochem | Feb 1958 | A |
2834346 | Adams | May 1958 | A |
2875761 | Helmer et al. | Mar 1959 | A |
2888015 | Hunt | May 1959 | A |
2952255 | Hein, Jr. | Sep 1960 | A |
3122280 | Goda | Feb 1964 | A |
3245567 | Knight | Apr 1966 | A |
3323798 | Miller | Jun 1967 | A |
3364890 | Andersen | Jan 1968 | A |
3598120 | Mass | Aug 1971 | A |
3610241 | LeMarie | Oct 1971 | A |
3700215 | Hardman et al. | Oct 1972 | A |
3706307 | Hasson | Dec 1972 | A |
3712749 | Roberts | Jan 1973 | A |
3747751 | Miller et al. | Apr 1973 | A |
3872867 | Killinger | Mar 1975 | A |
3905375 | Toyama | Sep 1975 | A |
3937211 | Merten | Feb 1976 | A |
4043334 | Brown et al. | Aug 1977 | A |
4046145 | Choksi et al. | Sep 1977 | A |
4216585 | Hatter | Aug 1980 | A |
4216872 | Bean | Aug 1980 | A |
4244366 | Raines | Jan 1981 | A |
4252122 | Halvorsen | Feb 1981 | A |
4286591 | Raines | Sep 1981 | A |
4313539 | Raines | Feb 1982 | A |
4420085 | Wilson et al. | Dec 1983 | A |
4430077 | Mittleman et al. | Feb 1984 | A |
4457445 | Hanks et al. | Jul 1984 | A |
4521237 | Logothetis | Jun 1985 | A |
4530697 | Kuhlemann et al. | Jul 1985 | A |
4571242 | Klein et al. | Feb 1986 | A |
4589171 | McGill | May 1986 | A |
4667837 | Vitello et al. | May 1987 | A |
4693707 | Dye | Sep 1987 | A |
4726483 | Drozd | Feb 1988 | A |
4743229 | Chu | May 1988 | A |
4743231 | Kay et al. | May 1988 | A |
4760847 | Vaillancourt | Aug 1988 | A |
4832695 | Rosenberg et al. | May 1989 | A |
4834706 | Beck et al. | May 1989 | A |
4842592 | Caggiani et al. | Jun 1989 | A |
4844906 | Hermelin et al. | Jul 1989 | A |
4906231 | Young | Mar 1990 | A |
4919285 | Roof et al. | Apr 1990 | A |
5009323 | Montgomery et al. | Apr 1991 | A |
5049129 | Zdeb et al. | Sep 1991 | A |
5057093 | Clegg et al. | Oct 1991 | A |
5135496 | Vetter et al. | Aug 1992 | A |
5165560 | Ennis, III et al. | Nov 1992 | A |
5230429 | Etheredge, III | Jul 1993 | A |
5267983 | Oilschlager et al. | Dec 1993 | A |
5292308 | Ryan | Mar 1994 | A |
5295599 | Smith | Mar 1994 | A |
5328466 | Denmark | Jul 1994 | A |
5328474 | Raines | Jul 1994 | A |
5356380 | Hoekwater et al. | Oct 1994 | A |
5380295 | Vacca | Jan 1995 | A |
5405339 | Kohnen et al. | Apr 1995 | A |
5458580 | Hajishoreh | Oct 1995 | A |
5468224 | Souryal | Nov 1995 | A |
5531695 | Swisher | Jul 1996 | A |
5540666 | Barta et al. | Jul 1996 | A |
5549571 | Sak | Aug 1996 | A |
5558648 | Shields | Sep 1996 | A |
5584817 | Van Den Haak | Dec 1996 | A |
5588239 | Anderson | Dec 1996 | A |
5624402 | Imbert | Apr 1997 | A |
5674209 | Yarger | Oct 1997 | A |
5700247 | Grimard et al. | Dec 1997 | A |
5702374 | Johnson | Dec 1997 | A |
5776124 | Wald | Jul 1998 | A |
5785691 | Vetter et al. | Jul 1998 | A |
5797885 | Rubin | Aug 1998 | A |
5807343 | Tucker et al. | Sep 1998 | A |
5883806 | Meador et al. | Mar 1999 | A |
5884457 | Ortiz et al. | Mar 1999 | A |
5902269 | Jentzen | May 1999 | A |
5951522 | Rosato et al. | Sep 1999 | A |
5951525 | Thorne et al. | Sep 1999 | A |
5954657 | Rados | Sep 1999 | A |
5957166 | Safabash | Sep 1999 | A |
5989227 | Vetter et al. | Nov 1999 | A |
6000548 | Tsals | Dec 1999 | A |
6021824 | Larsen et al. | Feb 2000 | A |
6027482 | Imbert | Feb 2000 | A |
6068614 | Kimber et al. | May 2000 | A |
6126640 | Tucker et al. | Oct 2000 | A |
6190364 | Imbert | Feb 2001 | B1 |
6193688 | Balestracci et al. | Feb 2001 | B1 |
6196593 | Petrick et al. | Mar 2001 | B1 |
6196998 | Jansen et al. | Mar 2001 | B1 |
6235376 | Miyazaki et al. | May 2001 | B1 |
6280418 | Reinhard et al. | Aug 2001 | B1 |
6287671 | Bright et al. | Sep 2001 | B1 |
6322543 | Singh et al. | Nov 2001 | B1 |
6338200 | Baxa et al. | Jan 2002 | B1 |
6375640 | Teraoka | Apr 2002 | B1 |
6394983 | Mayoral et al. | May 2002 | B1 |
6485460 | Eakins et al. | Nov 2002 | B2 |
6500155 | Sasso | Dec 2002 | B2 |
6520935 | Jansen et al. | Feb 2003 | B1 |
6540697 | Chen | Apr 2003 | B2 |
6565529 | Kimber et al. | May 2003 | B1 |
6581792 | Limanjaya | Jun 2003 | B1 |
6585691 | Vitello | Jul 2003 | B1 |
6592251 | Edwards et al. | Jul 2003 | B2 |
6682798 | Kiraly | Jan 2004 | B1 |
6726652 | Eakins et al. | Apr 2004 | B2 |
6726672 | Hanley et al. | Apr 2004 | B1 |
6755220 | Castellano et al. | Jun 2004 | B2 |
6764469 | Broselow | Jul 2004 | B2 |
6821268 | Balestracci | Nov 2004 | B2 |
6921383 | Vitello | Jul 2005 | B2 |
6942643 | Eakins et al. | Sep 2005 | B2 |
7055273 | Roshkoff | Jun 2006 | B2 |
7141286 | Kessler et al. | Nov 2006 | B1 |
7182256 | Andreasson et al. | Feb 2007 | B2 |
7240926 | Dalle et al. | Jul 2007 | B2 |
7374555 | Heinz et al. | May 2008 | B2 |
7404500 | Marteau et al. | Jul 2008 | B2 |
7410803 | Nollert et al. | Aug 2008 | B2 |
7425208 | Vitello | Sep 2008 | B1 |
7437972 | Yeager | Oct 2008 | B2 |
7482166 | Nollert et al. | Jan 2009 | B2 |
7588563 | Guala | Sep 2009 | B2 |
7594681 | DeCarlo | Sep 2009 | B2 |
7632244 | Buehler et al. | Dec 2009 | B2 |
7641636 | Moesli et al. | Jan 2010 | B2 |
7735664 | Peters et al. | Jun 2010 | B1 |
7748892 | McCoy | Jul 2010 | B2 |
7762988 | Vitello | Jul 2010 | B1 |
7766919 | Delmotte | Aug 2010 | B2 |
7802313 | Czajka | Sep 2010 | B2 |
7918830 | Langan et al. | Apr 2011 | B2 |
8079518 | Turner et al. | Dec 2011 | B2 |
8091727 | Domkowski | Jan 2012 | B2 |
8137324 | Bobst | Mar 2012 | B2 |
8140349 | Hanson et al. | Mar 2012 | B2 |
8257286 | Meyer et al. | Sep 2012 | B2 |
8328082 | Bochenko et al. | Dec 2012 | B1 |
8348895 | Vitello | Jan 2013 | B1 |
8353869 | Ranalletta et al. | Jan 2013 | B2 |
8443999 | Reinders | May 2013 | B1 |
D684057 | Kwon | Jun 2013 | S |
8512277 | Del Vecchio | Aug 2013 | B2 |
8556074 | Turner et al. | Oct 2013 | B2 |
8579116 | Pether et al. | Nov 2013 | B2 |
8591462 | Vitello | Nov 2013 | B1 |
8597255 | Emmott et al. | Dec 2013 | B2 |
8597271 | Langan et al. | Dec 2013 | B2 |
8616413 | Koyama | Dec 2013 | B2 |
D701304 | Lair et al. | Mar 2014 | S |
8672902 | Ruan et al. | Mar 2014 | B2 |
8702674 | Bochenko | Apr 2014 | B2 |
8777930 | Swisher et al. | Jul 2014 | B2 |
8852561 | Wagner et al. | Oct 2014 | B2 |
8864021 | Vitello | Oct 2014 | B1 |
8864707 | Vitello | Oct 2014 | B1 |
8864708 | Vitello | Oct 2014 | B1 |
8945082 | Geiger et al. | Feb 2015 | B2 |
9101534 | Bochenko | Aug 2015 | B2 |
9199042 | Farrar et al. | Dec 2015 | B2 |
9199749 | Vitello | Dec 2015 | B1 |
9220486 | Schweiss et al. | Dec 2015 | B2 |
9220577 | Jessop et al. | Dec 2015 | B2 |
9272099 | Limaye et al. | Mar 2016 | B2 |
9311592 | Vitello | Apr 2016 | B1 |
D756777 | Berge et al. | May 2016 | S |
9336669 | Bowden et al. | May 2016 | B2 |
D759486 | Ingram et al. | Jun 2016 | S |
9402967 | Vitello | Aug 2016 | B1 |
9427715 | Palazzolo et al. | Aug 2016 | B2 |
9433768 | Tekeste et al. | Sep 2016 | B2 |
9463310 | Vitello | Oct 2016 | B1 |
D773043 | Insgram et al. | Nov 2016 | S |
D789529 | Davis et al. | Jun 2017 | S |
9687249 | Hanlon et al. | Jun 2017 | B2 |
D797928 | Davis et al. | Sep 2017 | S |
D797929 | Davis et al. | Sep 2017 | S |
9855191 | Vitello | Jan 2018 | B1 |
D815945 | Fischer | Apr 2018 | S |
D825746 | Davis et al. | Aug 2018 | S |
20010034506 | Hirschman et al. | Oct 2001 | A1 |
20010056258 | Evans | Dec 2001 | A1 |
20020023409 | Py | Feb 2002 | A1 |
20020099334 | Hanson et al. | Jul 2002 | A1 |
20020101656 | Blumenthal et al. | Aug 2002 | A1 |
20020133119 | Eakins et al. | Sep 2002 | A1 |
20030146617 | Franko, Sr. | Aug 2003 | A1 |
20030183547 | Heyman | Oct 2003 | A1 |
20040064095 | Vitello | Apr 2004 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040186437 | Frenette et al. | Sep 2004 | A1 |
20040225258 | Balestracci | Nov 2004 | A1 |
20050146081 | MacLean et al. | Jul 2005 | A1 |
20050148941 | Farrar et al. | Jul 2005 | A1 |
20050209555 | Middleton et al. | Sep 2005 | A1 |
20060084925 | Ramsahoye | Apr 2006 | A1 |
20060089601 | Dionigi | Apr 2006 | A1 |
20060173415 | Cummins | Aug 2006 | A1 |
20060189933 | Alheidt et al. | Aug 2006 | A1 |
20070060898 | Shaughnessy et al. | Mar 2007 | A1 |
20070106234 | Klein | May 2007 | A1 |
20070142786 | Lampropoulos et al. | Jun 2007 | A1 |
20070191690 | Hasse et al. | Aug 2007 | A1 |
20070219503 | Loop et al. | Sep 2007 | A1 |
20070257111 | Ortenzi | Nov 2007 | A1 |
20080068178 | Meyer | Mar 2008 | A1 |
20080097310 | Buehler et al. | Apr 2008 | A1 |
20080106388 | Knight | May 2008 | A1 |
20080243088 | Evans | Oct 2008 | A1 |
20080306443 | Neer | Dec 2008 | A1 |
20090099552 | Levy et al. | Apr 2009 | A1 |
20090149815 | Kiel et al. | Jun 2009 | A1 |
20090326481 | Swisher et al. | Dec 2009 | A1 |
20100084403 | Popish et al. | Apr 2010 | A1 |
20100126894 | Koukol et al. | May 2010 | A1 |
20100179822 | Reppas | Jul 2010 | A1 |
20100228226 | Nielsen | Sep 2010 | A1 |
20100252564 | Martinez et al. | Oct 2010 | A1 |
20100283238 | Deighan et al. | Nov 2010 | A1 |
20110044850 | Solomon et al. | Feb 2011 | A1 |
20110046550 | Schiller et al. | Feb 2011 | A1 |
20110046603 | Felsovalyi et al. | Feb 2011 | A1 |
20120064515 | Knapp et al. | Mar 2012 | A2 |
20120096957 | Ochman | Apr 2012 | A1 |
20120110950 | Schraudolph | May 2012 | A1 |
20130018356 | Prince et al. | Jan 2013 | A1 |
20130088354 | Thomas | Apr 2013 | A1 |
20130237949 | Miller | Sep 2013 | A1 |
20140000781 | Franko, Jr. | Jan 2014 | A1 |
20140034536 | Reinhardt et al. | Feb 2014 | A1 |
20140069829 | Evans | Mar 2014 | A1 |
20140135738 | Panian | May 2014 | A1 |
20140155868 | Nelson et al. | Jun 2014 | A1 |
20140257843 | Adler et al. | Sep 2014 | A1 |
20140326727 | Jouin et al. | Nov 2014 | A1 |
20140353196 | Key | Dec 2014 | A1 |
20150191633 | De Boer et al. | Jul 2015 | A1 |
20150305982 | Bochenko | Oct 2015 | A1 |
20150310771 | Atkinson et al. | Oct 2015 | A1 |
20160067422 | Davis et al. | Mar 2016 | A1 |
20160090456 | Ishimaru et al. | Mar 2016 | A1 |
20160144119 | Limaye et al. | May 2016 | A1 |
20160158110 | Swisher et al. | Jun 2016 | A1 |
20160158449 | Limaye et al. | Jun 2016 | A1 |
20160176550 | Vitello et al. | Jun 2016 | A1 |
20160328586 | Bowden et al. | Nov 2016 | A1 |
20160361235 | Swisher | Dec 2016 | A1 |
20160367439 | Davis et al. | Dec 2016 | A1 |
20170014310 | Hyun et al. | Jan 2017 | A1 |
20170124289 | Hasan et al. | May 2017 | A1 |
20170173321 | Davis et al. | Jun 2017 | A1 |
20170203086 | Davis | Jul 2017 | A1 |
20170319438 | Davis et al. | Nov 2017 | A1 |
20180001540 | Byun | Jan 2018 | A1 |
20180089593 | Patel et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
0148116 | Jul 1985 | EP |
WO 2017086607 | May 2015 | WO |
Number | Date | Country | |
---|---|---|---|
61419508 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13310445 | Dec 2011 | US |
Child | 14519833 | US |