Tamper indicating closure assembly

Information

  • Patent Grant
  • 10183129
  • Patent Number
    10,183,129
  • Date Filed
    Tuesday, October 21, 2014
    10 years ago
  • Date Issued
    Tuesday, January 22, 2019
    6 years ago
Abstract
A closure assembly structured for use with a female connector and being operative to indicate an attempted tampering or access thereto. A flow restrictor is movably and removably disposed within a housing and includes a male connector such as, but not limited to, a male luer connector comprising a plug disposed and structured to be inserted in flow restricting engagement within an interior port of the female connector. An indicator member is removably connected to an interior of the housing in surrounding relation to the flow restrictor and a drive assembly associated with both the flow restrictor and the housing is operable to dispose the male plug into the inserted, flow restricting engagement within the female connector. Attempted removal of the housing from the female connector, such as by an applied axial force, will detach the indicator member from the housing and expose it in a visually observable position on the flow restrictor, thereby indicating attempted access.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

A closure assembly for use on a female luer connector or another generally similar type of female connector of the type used with intravenous (IV) administration assemblies for the dispensing of IV fluid and/or the adding of medicine or other agents to the liquid dispensed from the IV container. The closure assembly is structured to establish a closed, fluid sealing connection to the female luer connector and provide an obvious indication of tampering or attempted access to the female connector or contents of the IV reservoir or container associated therewith.


Description of the Related Art

In the medical field, it is a relatively common procedure to administer fluids to a patient by intravenous (IV) infusion. A variety of IV assemblies are known and are useful in the treatment of a number of medical conditions, in that a variety of fluids and/or medicines can be administered to a patient utilizing such assemblies over a prescribed period of time and in controlled amounts. In use, a conventional IV administration assembly typically includes a reservoir or container, in the form of a bottle or more commonly, a flexible material bag, suspended on a pole or like support structure located substantially adjacent to the patient being treated, typically in an elevated relation thereto. In addition, the IV fluid flows from the supported and elevated IV bag to the patient by means of elongated, flexible tubing connected at a proximal end to the IV bag and at the other distal end, connected intravenously to the patient by way of a catheter or like structure. The IV delivery tube is also structured to connect at one end to or be interconnected with an appropriate connector, often having somewhat of a “Y” shape, that is associated with the IV assembly and in fluid communication with either the contents of the IV bag or alternatively, with the catheter in use on the patient for intravenous administration of fluids and medicines.


One such connector may be in the form of a female connector attached to the IV bag or other container and disposed in fluid communication with the contents thereof. An appropriate female connector may be in the form of a female luer connector which at least partially defines, along with a male luer connector, a “luer lock” connector assembly, as is well known in the medical profession. The male luer connector is secured to the IV delivery tubing, such as at the proximal end, and is specifically structured to be attached to the female luer connector in a manner which establishes fluid communication with contents of the IV container, and facilitates a flow of the IV fluid from the IV container through the connected male and female luer connectors. As a result, fluid flow between the patient and the interior of the IV bag is established. As is also well known, various types of valves and/or flow regulating devices may be operatively associated with the IV assembly to regulate the amount of fluid or rate of fluid delivery to the patient during the administration procedure.


In addition, known IV containers or reservoirs may incorporate an additional female luer connector or other female type connector which are disposed in fluid communication with the IV delivery tubing, such as but not limited to at the IV bag. This additional female luer connector is provided to administer additional liquid agents, such as pain medication, antibiotics, and/or other medicinal compositions, to the IV fluid being delivered to the patient. However, such an additional female luer connector may remain unused or may be accessed at a time subsequent to the initiation of the IV fluid administration, such as when additional medication or another composition is required or prescribed.


In periods of non-use, it is important to maintain a female connector including, but not limited to, a female luer connector in a closed and fluid sealed condition in order to maintain sterility, and also, the integrity of the IV fluid prior to use. This is also important in order to restrict unauthorized access to the IV fluid and even to the female luer connector. Therefore, there is a need in the medical field for an efficient, effective and easily applied closure assembly that would be capable of closing and sealing a female connector during periods of its non-use. If any such closure assembly were developed, it should also be structured to provide a clear visual indication whenever there has been tampering or other attempted access to the female connector and/or contents of the IV container. Moreover, if any such closure assembly were developed, it should also be structured for efficient attachment to the female connector so as to prevent re-attachment to the female connector, once unauthorized access has been attempted or accomplished. If any such closure assembly were developed, it should also be capable of being removed from the female connector in a manner which provides the aforementioned visual or other appropriate indication of complete, partial or other attempted access to the female luer connector.


Finally, the structural components as well as the operational characteristics of any such closure assembly developed should ideally also provide a sufficient degree of reliability relating to the secure closing and sealing of the female connector of the IV container, while clearly indicating when access thereto has occurred.


SUMMARY OF THE INVENTION

The present invention is intended to present a solution to these needs which remain in this field of art and as such, is directed to a closure assembly that is specifically, but not exclusively, structured for the closing and sealing of a female connector such as, but not limited to, a female luer connector having an interior flow port. Such female connectors are commonly used, along with a cooperatively structured male luer connector, as part of a “luer lock” connector assembly found on and/or used in combination with a variety of medical devices, including intravenous (IV) dispensing or administration assemblies. As such, the female luer connector or another generally similar type of female connector is disposed and structured to facilitate the dispensing of the IV fluid from the IV container and/or the addition of medicine or other agents to the IV liquid prior to or concurrent with its administration to a patient. Moreover, the female luer connector, as described above, facilitates the addition of medicine or other composition by means of a pre-loaded syringe which can be absent the use of a needle. Specifically, and as has become relatively commonplace following awareness of the AIDS virus and how AIDS is transmitted, needle-less syringes may be pre-loaded with a medicine or substance to be given to a patient. These needle-less syringes typically include an elongated, male-type of discharge nozzle that is dimensioned and configured to be received within the access port of a female luer connector and thereby, eliminate the need for an actual needle to be attached to the syringe.


Accordingly, and in order to restrict or at least provide a clear indication of attempted access to the female connector and the contents of the IV container, the present invention is directed to a closure assembly, which is connected in fluid sealing relation to the female connector. The structure of the closure assembly restricts its removal from the female luer connector without providing an obvious indication that tampering or attempted access has occurred. Also, once removed from the female connector, the tamper evident closure assembly of the present invention is ideally structured so that it cannot be re-attached, in an attempt to hide an unauthorized attempted at access.


Turning now to the structural and operative features of the present inventive closure assembly, they include a housing that has an at least partially hollow interior and is of a sufficient capacity to enclose and at least partially retain a flow restrictor therein. In addition, the housing includes a closed end portion and an oppositely disposed open end. The open end is of sufficient dimension to at least partially receive a portion of the female connector there-through into interactive connection with the flow restrictor. The flow restrictor is movably and removably disposed within the housing and is structured to be threaded or otherwise appropriately connected to the female connector concurrently to the closure assembly being attached to the female connector.


In addition, an indicator member is fixedly but preferably removably connected to the housing and is disposed on the interior thereof in at least partially surrounding relation to a corresponding part of the flow restrictor. At least one, but possibly a plurality of frangible members serve(s) to detachably interconnect the indicator member to the interior surface of the housing. The indicator member is thereby initially fixed, but detachable from the housing. Moreover, when fixed to the housing the indicator member and the aforementioned closed end portion of the housing are cooperatively disposed to movably retain the flow restrictor within the housing in a position which facilitates the movement of the flow restrictor into a connected orientation with the female luer connector.


As set forth above, the various preferred embodiments of the closure assembly of the present invention are specifically, but not exclusively, structured to close and seal a female connector of the type, such as but not limited to, a female luer connector which may be associated with an IV dispensing assembly. Therefore, structural components associated with the flow restrictor further include a male plug. In accordance with one aspect of the present invention, the male connector may include a structure which is equivalent or substantially similar to a male luer connector. As such, the male plug is dimensioned and configured to be inserted in flow restricting engagement within the interior access port of the female connector so as to prevent fluid flow there through and/or access to the contents of the IV container or other medical device associated with the female connector.


Additional structural and operative details of the present inventive closure assembly facilitate its attachment to a female connector in flow restricting engagement therewith. Further, once the closure assembly is attached to the female connector it cannot be removed there-from without providing a clear indication of tampering and/or attempted access to the female connector and the contents of the IV container. Also, once removed from the female connector, the closure assembly cannot be re-attached thereto in an operative manner.


The closure assembly of the present invention preferably also includes a drive assembly. In the illustrated embodiment described in detail hereinafter, the drive assembly can comprise a first and a second drive segment, wherein the first drive segment is connected to or mounted on the closed end portion of the housing. The second drive segment is cooperatively disposed relative to the first drive segment by being connected to or mounted on a portion of the flow restrictor which is disposed in confronting engagement with the interior surface of the closed end portion. In at least one preferred embodiment of the present invention, the first and second drive segments each include what may be referred to as a rotational type “ramp and cliff” drive structure. In addition, the ramp and cliff drive structures of each of the first and second drive segments may be mirror images of one another and substantially reversely oriented. As a result, interaction between the confronting surfaces of the first and second drive segments during rotation of the housing and the connected closed end portion, in a single predetermined direction, will cause rotation and axial movement of the flow restrictor and male plug attached thereto. As a result, the plug will be forced into the aforementioned inserted and flow restricting engagement within the interior port of the female connector. Therefore, the drive assembly of the present invention may be described as a “one-way drive assembly” due to the ability to rotate and axially position the flow restrictor and male plug into flow restricting engagement with the interior port of the female connector, only upon rotation of the housing in a single direction.


More specifically, the rotational type ramp and cliff structures formed on each of the first and second drive segments provide concurrent rotation of the housing and the flow restrictor, when the housing is rotated in only one, predetermined direction. Rotation of the housing in a direction opposite from the one, predetermined direction will result in the ramp and cliff drive structures being disposed out of driving relation to one another and a “slippage” or relative sliding movement there between. Therefore, it should be apparent that the flow restrictor and male plug fixedly secured thereto are movably and rotationally mounted within the interior of the housing. Due to the cooperative structuring of the first and second drive segments, the male plug will be inserted in flow restricting relation within the interior access port of the female connector as the housing is rotated in the one predetermined direction. However, rotation of the housing in the opposite direction will not accomplish a removal of the flow restrictor from its connection with the female connector or the male plug from the inserted, flow restricting relation with the interior access port of the female connector and therefore will not serve to remove the housing of the closure assembly from the female connector.


Removal of the housing from the female connector, in order to access the flow restrictor and eventually the contents of the IV container, can be effectively accomplished by exerting an axially directed “pull force” on the housing. Such an axially directed force, in order to be sufficient to remove the housing from the female connector must be adequate to detach the indicator member from the interior of the housing. Such detachment will be a result of the axial force exerted on the housing being sufficient to break or rupture the one or more frangible members which connect the indicator member to the interior of the housing, as set forth above. When the housing is detached, the indicator member, preferably in the form of a color-coded ring or like structure, will remain and be readily observable in surrounding relation to the now exposed flow restrictor, which will remain connected to the female connector. Therefore, a clear indication of tampering or attempted access to the contents of the IV container and/or female connector will be effectively provided by the observance of the exposed indicator member.


Accordingly, the one or more preferred embodiments of the closure assembly of the present invention provide a sufficient and reliable structure for closing and sealing a female luer connector or other female connector of the type which may be associated with an IV container or other device or container. The closure assembly is further structured to provide a clear indication of tampering or attempted access to the female connector and other devices which the female connector may be associated.


These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:



FIG. 1 is a perspective view in exploded form of the closure assembly of the present invention in a position for attachment to a female connector, such as a female luer connector, of the type used with IV dispensing assemblies.



FIG. 2 is a perspective view in exploded form of the embodiment of FIG. 1 disclosing interior portions of the closure assembly.



FIG. 3 is a top perspective view of the embodiments of FIGS. 1 and 2 disclosing further structural features on the interior of the closure assembly of the present invention.



FIG. 4 is a perspective view in exploded form of the operative and structural components of at least one preferred embodiment of the closure assembly of the present invention.



FIG. 5 is a perspective view in exploded form representing additional structural features of the closure assembly of the embodiment of FIG. 4.



FIG. 5A is a perspective view of another preferred embodiment of a component of the closure assembly of the present invention.



FIG. 6 is a top perspective view in exploded form representing additional structural features of the closure assembly of the embodiments of FIGS. 4 and 5.



FIG. 7 is a perspective view in partial phantom of the closure assembly of the present invention connected in an operative position relative to a female connector.



FIG. 8 is a perspective view in exploded form of the closure assembly of the embodiment of FIG. 7, wherein access to the female connector is attempted, resulting in a housing of the closure assembly having been removed exposing an indicator member evidencing the attempted access.





Like reference numerals refer to like parts throughout the several views of the drawings.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

As represented in the accompanying drawings, the present invention is directed to a closure assembly generally indicated as 10 structured to close and provide a fluid seal with a female connector generally indicated as 12, as is perhaps best shown in FIGS. 1 and 2. In at least one preferred embodiment, the female connector 12 is more specifically defined and structured as a female luer connector including, as shown in FIG. 1, an interior port or access port 14 structured for the passage of fluid therethrough from a IV container or IV bag, or other reservoir with which the female luer connector 12 is associated. By way of example, a female luer connector or other female type connector may be connected to and/or directly associated with an intravenous (IV) dispensing assembly (not shown) of the type commonly used to administer fluid to a patient over a prescribed period of time, as has been described previously herein. As such, elongated flexible tubing having a male luer connector secured to one end may be attached to the female connector 12, shown in FIG. 2, by insertion within the interior access port 14 in order to dispense the fluid contents from the IV container to the patient. In addition, the female luer connector 12 may also be utilized to add an additional agent or composition to the fluid being dispensed from the IV container. In such situations, a preloaded syringe having an elongated nozzle may be inserted into the access port 14 of the female connector 12. However, as set forth above and additionally herein, one or more embodiments of the closure assembly 10 of the present invention is not limited to a luer type connector. To the contrary, the female connector 12 and access port 14 may be structured to be other than a female luer connector and the male plug member 27 of the flow restrictor 26 may be other than a male luer connector.


Accordingly, it is desirable to maintain the female connector 12 closed and sealed when not being used in order to prevent inadvertent and/or unauthorized access to the contents of the IV container with which the female connector 12 is associated. Therefore, at least one embodiment of the closure assembly 10 includes structural and operative features which accomplish a closed, fluid sealing of the female connector 12. Further, the closure assembly 10 is ideally structured to provide a clear indication of tampering or attempted access to the female connector 12 and the contents of the IV container with which it is associated.


As represented in FIGS. 1-6, the closure assembly 10 includes a housing 16 having an at least partially hollow interior 18 of sufficient dimension and configuration to hold additional structural components operatively associated with the closure assembly 10. Also, the housing 16 includes a closed end portion 20 and an oppositely disposed open end 22. The open end 22 is sufficiently dimensioned and configured to allow at least a portion of the female luer connector 12 to pass therethough. Therefore, when the closure assembly 10 is operatively connected to the female connector 12, at least a portion of the female connector 12 associated with the interior female port 14 is disposed at least partially within the interior 18 of the housing 16 by passing through the open end 22.



FIGS. 1-3 collectively and schematically represent relative orientations of the closure assembly 10, including housing 16, and the female luer connector 12 immediately prior to interconnection therebetween. In contrast, FIGS. 4-6 provide schematic representations of the different structural components of the closure assembly 10 and the operative features associated therewith. Moreover, at least one embodiment of the closure assembly 10 is represented in an unassembled state for purposes of clarity. It is emphasized that the closure assembly 10 will be fully assembled as disclosed in FIGS. 1-3 prior to connection to the female luer connector 12.


With primary reference to FIGS. 4-6, the housing 16 includes the closed end portion 20 being fixedly connected to one end thereof, which is oppositely disposed to the open end 22. As set forth above, the at least partially hollow interior 18 of the housing 16 is dimensioned and configured to receive a flow restrictor generally indicated as 26 therein. Further, an indicator member 28 preferably includes an annular configuration having an interior dimension sufficient to receive at least a portion of the flow restrictor 26 therethrough, as also represented in FIGS. 2 and 3. The indicator member 28 is fixedly but detachably secured to the interior surface of the housing 16 by at least one but possibly a plurality of frangible members 30. One or more frangible members 30 are fixedly but detachably secured in interconnecting relation between the interior surface of the housing 16 and the exterior surface of the indicator member 28. Moreover, the one or more frangible members 30 are specifically structured to break or rupture and thereby be detached from their initially interconnecting relation between the housing 16 and indicator member 28 upon a sufficient force including, but not limited to, an axial force, being applied to the housing 16, as set forth in greater detail hereinafter.


Therefore, the indicator member 28 is initially disposed in fixed interconnection on the interior of the housing 16. In contrast, the flow restrictor 26 is movably disposed within and removable from the interior 18 of the housing 16. As clearly represented in the accompanying Figures, the flow restrictor 26 is at least initially movably and removably disposed and retained between the fixedly connected closed end portion 20 and the initially fixed indicator member 28. As a result, the flow restrictor 26 is disposed and dimensioned to move rotationally and axially within the interior 18 between the closed end portion 20 and the indicator member 28. Such movement of the flow restrictor 26 can be accomplished, at least initially, before connection of the closure assembly 10 to the female luer connector 12. As will be more fully explained, the rotational and axial movement of the flow restrictor 26 serves to accomplish the connection of the closure assembly 10 to the female connector 12 and the positioning of the flow restrictor 26 into a closed, fluid sealing relation within the interior access port 14 of the female connector 12 by operation of a drive assembly, generally indicated as 32.


With primary reference to FIGS. 3-6, the intended closed, fluid sealing connection of the closure assembly 10 with the female connector 12 is facilitated by the structuring of the flow restrictor 26 to include a male plug 27. Moreover, in at least one preferred embodiment, the male plug 27 is structured to substantially define a male luer connector. More specifically, in at least one embodiment the flow restrictor 26 includes the male plug 27 having an exterior, tapered or frusto-conical configuration and a closed outer end portion 27′. The male plug 27 is integrally or otherwise fixed to the remainder of the flow restrictor 26 and is disposed to be inserted in flow restricting engagement within the interior access port 14 of the female connector 12.


Yet additional features of the flow restrictor 26 include a casing 29 disposed in surrounding, outwardly spaced relation to the male plug 27. Relative dimensions and positions of the casing 29 and the male plug 27 facilitate the insertion and fluid restricting engagement of the male plug 27 into the interior of the port 14 of the female connector 12 when the closure assembly 10 is connected to the female connector 12 in the intended manner.


As represented in FIGS. 4-5, the casing 29 also includes an exterior structure which may include a plurality of curved segmented portions 29′ separated by spaces 29″ which are disposed on opposite sides of the casing 29. The dimension and disposition of the segmented portions 29′ may facilitate a movable but secure positioning of the flow restrictor 26 on the interior 18 of the housing 16. Also, the configuration of the exterior of the casing 29, as collectively defined by the alternating curved segments 29′ and spaces 29″ may facilitate the gripping and manual rotation of the flow restrictor 26 relative to the female connector 12 by an individual, when such is required. However, in the additional embodiment of FIG. 5A, the flow restrictor 26′ is structurally modified and generally indicated as 129. As shown, the exterior of the casing 129 includes an exterior structure and/or surface that offers a smoother configuration with less sharp edges, so that manipulation, when needed, is facilitated. Thus, the casing 129 comprises oppositely disposed curved segments 129′ separated from one another by oppositely disposed substantially flat segments 129″. Therefore, in the embodiment of FIG. 5A, the spaces 29″ have been eliminated and replaced by the flat segments 129″. As a result, the configuration of at least a portion of the exterior structure or surface of the casing 129, is collectively defined by the alternating curved segments 129′ and flat segments 129″, wherein each of the flat segments 129″ is disposed between two adjacent curved segments 129′. This alternating curved segments 129′ and flat segments 129″ structure may further facilitate the gripping and manual rotation of the flow restrictor 26′/126 relative to the female connector 12 by an individual without causing damage or discomfort, when such is required.


The flow restrictor 26 is also cooperatively structured with the female connector 12 to accomplish a stable connection therewith. More specifically, attachment of the flow restrictor 26 in the inserted, flow restricting relation to the interior access port 14 of the female connector 12 is preferably accomplished by a threaded interconnection. Such cooperative structuring comprises the female luer connector 12 having outwardly extending ears or like projections 13. In cooperation therewith, a threaded portion(s) 31 of the flow restrictor 26 are disposed on an interior surface of the casing 29 of the flow restrictor 26. The interior threaded portion or surface 31 is disposed and structured to receive the protruding connecting ears 13 when the flow restrictor 26 and housing 16 are rotated relative to the female connector 12, as set forth above. As also indicated above, the rotation of the housing 16 in the predetermined one direction will cause the rotational movement of the flow restrictor 26 through interaction of the two drive segments 34 and 36 of the drive assembly 32. Such rotation of the flow restrictor 26 will cause a threaded engagement of the connecting ears 13 of the female connector 12 and the internally threaded surface or portion 31 of the flow restrictor 26 and a resulting axial movement between the flow restrictor 26 and the female connector 12. Moreover, threaded interaction of the ears 13 and the threaded portion 31 during concurrent rotation of the housing 16 and the flow restrictor 26 will facilitate the axial placement of the male plug 27 into an inserted, fluid sealing relation within the interior port 14 of the female connector 12.


As set forth above, attachment of the closure assembly 10 in a closed, fluid sealing engagement with the female connector 12 is facilitated by the operative and structural features of the drive assembly 32. As utilized, the drive assembly 32 may be more specifically described as a one-way drive assembly and includes the first drive segment 34 integrally or otherwise fixedly connected to an interior portion the closed end portion 20. The drive assembly 32 also includes a second drive segment 36 integrally or otherwise fixedly secured to an end or other appropriate portion of the flow restrictor 26 so as to be disposed in engaging, interactive relation to the first drive segment 34. Each of the first and second drive segments 34 and 36 are cooperatively structured to define the aforementioned one-way drive assembly by including the aforementioned “ramp and cliff” drive structure. More specifically, the ramp and cliff drive structures of each of the first and second drive segments 34 and 36 may comprise mirror image patterns, in relief of one another, as they are mounted on corresponding, confronting surfaces of the closed end portion 20 and flow restrictor 26, respectively. As described, the closed end portion 20 is fixedly secured to the remainder of the housing 16 and rotates therewith, while the flow restrictor 26 is movable within the housing 16. When assembled, the first drive segment 34, movable with the closed end portion 20, is disposed in confronting relation with the second drive segment 36, which is movable with the flow restrictor 26.


Therefore, a rotation of the housing 16 in a predetermined, single direction will cause a driving engagement of the first drive segment 34 with the second drive segment 36 and a forced, concurrent rotation of the flow restrictor 26 and male plug 27, with the housing 16. Continued rotation of the housing 16 and the flow restrictor 26 in the same, predetermined direction will result in a rotational and axial movement of the male plug 27 into an inserted, fluid flow restricting engagement within the interior port 14 of the female connector 12, as well as a threaded or other stable type connection of the flow restrictor 26 to the female connector 12. However, due to the structuring and relative orientations of the ramp and cliff structures of both the first and second drive segments 34 and 36, rotation of the housing 16 in a direction opposite to the one, predetermined preferred direction, will result in a slippage or sliding of the first and second drive segments 34 and 36 relative to one another. Therefore, rotation of the housing in this opposite direction will not accomplish removal of the male plug 27 from the inserted, fluid flow restricting engagement within the interior access port 14 of the female connector 12 or removal of the housing 16 from the female connector 12.


As a result of the above, access to the interior port 14 of the female connector 12 and accordingly the contents of a reservoir with which the female connector 12 may be associated is primarily, if not exclusively, accomplished by a pulling, substantially axially directed, force being applied to the housing 16. The degree of axial force applied to the housing 16, which allows it to be removed from the female connector 12 will be sufficient to cause a rupturing or breakage of the one or more frangible members 30. In turn, the indicator member 28 will be detached from the interior of the housing 16 and remain in surrounding relation to the exterior of the flow restrictor 26 which will still be threaded or otherwise connected to the female connector. Detachment of the housing 16 from the female connector 12 and the indicator member 28 will expose both the indicator member 28 and the still connected flow restrictor 26 resulting in a clear indication of tampering or attempted access to the female connector 12 and contents of the fluid reservoir with which it is associated. Further visual enhancement of attempted tampering may be accomplished by a color coding of the indicated member 28 thereby providing a clear visual indication with minimal observation that tampering or attempted access to the female luer connector 12 has occurred.


The structural advantages and operational versatility of the closure assembly 10 are more completely demonstrated in FIGS. 7 and 8. More specifically, FIG. 6 represents the closure assembly 10 connected to a generally “Y” shaped female connector 12′ of the type that may be associated with an IV container, IV bag or other medical equipment and which incorporates the use of a female connector specifically, but not exclusively, including a female luer connector. It should be further noted that the female connector 12′ may more accurately represent a connector of the type which is in use and/or commercially available as versus the schematic representation of the female connector 12 as disclosed in FIGS. 1 and 2. As such, the female connector 12′ may also include a supplementary access post 15 and an exterior cover 17 disposed in surrounding or enclosing relation to the access port 14, with the latter having been shown in FIG. 1.


Accordingly, once the closure assembly 10 is in the connected position of FIG. 7, the flow restrictor 26′ will serve to close and/or seal the access port 14 of the female connector 12, due to the access port 14 interacting with the male plug 27 and thereby, being closed. Also, as set forth above, when in the operative, protective position of FIG. 7, the indicator member 28 will still be attached in a non-observable position within the interior 18 of the housing or sleeve 16. In contrast, and with primary reference to FIG. 8, when authorized or unauthorized access to the female connector is 12′ is attempted, a directional force will be exerted on the housing 16 resulting in its removal from its normal, covering relation to the flow restrictor 26′. As set forth above, the indicator 28 will also be detached from the housing 116, due to the applied directional force on the housing, and will become visually exposed by virtue of it remaining attached in surrounding relation the female connector 12′ and immediately adjacent the flow restrictor 26. As a result, the closure assembly 10 of the present invention will provide a clear indication of tampering or attempted access to the female connector 12′.


Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.


Now that the invention has been described,

Claims
  • 1. A closure assembly for a female connector structured to indicate attempted access to the female connector, said closure assembly comprising: a housing including an at least partially hollow interior and a closed end portion,a flow restrictor movably disposed within said housing and structured for connection to the female connector,said flow restrictor including a casing having an exterior surface comprising a plurality of curved segments and a plurality of flat segments,said flow restrictor including a male plug member dimensioned and configured for insertion and flow restricting engagement within an interior port of the female connector,said casing disposed in surrounding at least partially spaced relation to said plug member; said casing cooperatively structured with the female connector to establish said connected relation therewith, andsaid flow restrictor and said housing cooperatively structured for concurrent rotational and axial movement of said male plug into said inserted, flow restricting engagement with the female connector.
  • 2. The closure assembly as recited in claim 1 wherein at least two of said plurality of flat segments are oppositely disposed to one another along said exterior surface of said flow restrictor.
  • 3. The closure assembly as recited in claim 1 wherein each of said plurality of flat segments is disposed between an adjacent two of said plurality of curved segments.
  • 4. The closure assembly as recited in claim 1 wherein said plurality of flat segments and said plurality of curved segments collectively surround at least a portion of a remainder of said flow restrictor.
  • 5. The closure assembly as recited in claim 1 further comprising an indicator member fixedly and removably connected within said housing and detachable therefrom upon removal of said housing from said flow restrictor.
  • 6. The closure assembly as recited in claim 5 wherein said indicator member comprises an annular configuration disposed in surrounding relation to at least a portion of said flow restrictor on an interior of said housing.
  • 7. The closure assembly as recited in claim 6 further comprising at least one frangible connector disposed in removable, interconnecting relation between an interior surface of said housing and an exterior surface of said indicator member.
  • 8. The closure assembly as recited in claim 5 wherein said indicator member is retained in surrounding relation to an exterior of said flow restrictor upon removal of said housing from said flow restrictor and connection of said flow restrictor to the female connector.
  • 9. The closure assembly as recited in claim 1 further comprising a drive assembly disposed on both said closed end portion and said flow restrictor and cooperatively structured therewith to facilitate rotation of said flow restrictor in only one direction upon predetermined rotation of said housing relative to the female connector.
  • 10. The closure assembly as recited in claim 1 wherein said casing includes a threaded portion disposed on an interior surface thereof, said threaded portion disposed and configured to define a threaded engagement of said flow restrictor upon rotation of said male plug relative to the female connector.
  • 11. The closure assembly as recited in claim 10 wherein said male plug is disposed within and extends outwardly from said casing in a centrally disposed, substantially coaxial relation thereto.
  • 12. The closure assembly as recited in claim 1 wherein said male plug is disposed within and extends outwardly from said casing in a centrally disposed, substantially coaxial relation thereto.
  • 13. The closure assembly as recited in claim 12 wherein said male plug is dimensioned and configured to define a fluid seal within the interior port of the female connector when disposed in said inserted, flow restricting engagement within the interior port of the female connector.
  • 14. A closure assembly for a female connector structured indicate attempted access to the female connector, said closure assembly comprising: a housing including an at least partially hollow interior and a closed end portion,a flow restrictor movably disposed within said housing and structured for connection to the female connector,said flow restrictor including a male plug member dimensioned and configured for insertion in flow restricting engagement within an interior port of the female connector,said flow restrictor including a casing having an exterior surface comprising a plurality of curved segments and a plurality of flat segments,said casing further including an interior surface disposed in surrounding, spaced relation to said plug member,said interior surface of said casing cooperatively structured with an exterior of the female connector to establish a connection therebetween,said male plug member disposed within and extending outwardly from said casing in a centrally disposed coaxial relation to said interior surface, andsaid flow restrictor and housing cooperatively structured for concurrent rotational and axial movement of said male plug member into said inserted, flow restricting engagement with the female connector.
  • 15. The closure assembly as recited in claim 14 wherein each of said plurality of flat segments is disposed between and adjacent two of said plurality of curved that segments.
  • 16. The closure assembly as recited in claim 14 wherein at least two of said plurality of flat segments are oppositely disposed relative to one another along said exterior surface of said flow restrictor.
  • 17. The closure assembly as recited in claim 14 wherein said plurality of flat segments and said plurality of curved segments collectively surround at least a portion of a remainder of said flow restrictor.
  • 18. The closure assembly as recited in claim 14 wherein said drive assembly comprises a first drive segment mounted on said closed end portion and a second drive segment mounted on a portion of said flow restrictor disposed in confronting relation with said closed end portion.
  • 19. The closure assembly as recited in claim 18 wherein said first and second drive segments are cooperatively structured to rotate said flow restrictor and said plug in only one direction upon said rotation of said housing.
  • 20. The closure assembly as recited in claim 14 wherein said casing includes a threaded portion disposed on said interior surface thereof, said threaded portion disposed and configured to define a threaded engagement of the flow restrictor with the female connector upon said concurrent rotation and axial movement of said plug.
  • 21. A closure assembly for a female luer connector structured to indicate attempted access to the female luer connector, said closure assembly comprising: a housing including an at least partially hollow interior and a closed end portion and an open end disposed in communicating relation with said hollow interior,an indicator member fixedly and removably connected within said housing and detachable therefrom,a flow restrictor movably retained within said housing between said closed end portion and said indicator member,said flow restrictor including a male luer connector comprising a plug, said plug disposed and structured for inserted, flow restricting engagement within an interior port of the female luer connector,said flow restrictor further including a casing having an interior surface disposed in surrounding, spaced relation to said plug; said casing further including an exterior surface comprising a plurality of curved segments and a plurality of flat segments,said interior surface of said casing cooperatively structured with an exterior of the female luer connector to establish a connection therebetween,said plug disposed within and extending outwardly from said casing in a centrally disposed coaxial relation to said interior surface,a drive assembly disposed on both said closed end portion and said flow restrictor and cooperatively structured therewith to facilitate rotation of said flow restrictor in only one direction upon a predetermined rotation of said housing relative to the female connector, andsaid housing and said flow restrictor cooperatively structured for concurrent rotational and axial movement of said plug into said inserted flow restricting engagement within the interior port of the female connector, upon said predetermined rotation of said housing.
  • 22. The closure assembly as recited in claim 21 wherein each of said plurality of flat segments is disposed between and adjacent two of said plurality of curved segments.
  • 23. The closure assembly as recited in claim 22 wherein at least two of said plurality of flat segments are oppositely disposed relative to one another along said exterior surface of said flow restrictor.
  • 24. A closure assembly structured to indicate attempted access, said closure assembly comprising: a female connector associated with an apparatus for administering intravenous fluids to a patient and including an interior port,a housing including an at least partially hollow interior and a closed end portion,a flow restrictor movably disposed within said housing and structured for connection to said female connector,said flow restrictor including a casing having an exterior surface comprising a plurality of curved segments and a plurality of flat segments,said flow restrictor further including a male plug member dimensioned and configured for insertion in flow restricting engagement within said interior port of said female connector,said casing having an interior surface disposed in surrounding, spaced relation to said plug member;said interior surface cooperatively structured with an exterior of said female connector to establish a connection therebetween, andsaid flow restrictor and housing cooperatively structured for concurrent rotational and axial movement of said male plug into said inserted, flow restricting engagement with said female connector.
  • 25. The closure assembly as recited in claim 24 wherein each of said plurality of flat segments is disposed between and adjacent two of said plurality of curved that segments.
  • 26. The closure assembly as recited in claim 25 wherein at least two of said plurality of flat segments are oppositely disposed relative to one another along said exterior surface of said flow restrictor.
  • 27. The closure assembly as recited in claim 26 wherein said plurality of flat segments and said plurality of curved segments collectively surround at least a portion of a remainder of said flow restrictor.
CLAIM OF PRIORITY

The present application is a “divisional” patent application of and a claim of priority is made to an earlier filed application having Ser. No. 13/310,445 and a filing date of Dec. 2, 2011, which has matured into U.S. Pat. No. 8,864,708 on Oct. 21, 2014, which in turn, claimed priority to an earlier filed Provisional patent application having Ser. No. 61/419,508 filed on Dec. 3, 2010, as well as to another prior filed Provisional application, namely, that having Ser. No. 61/462,097 filed on Jan. 28, 2011, with the contents of all of these prior filed patent applications being incorporated herein by reference in their entireties.

US Referenced Citations (263)
Number Name Date Kind
732662 Smith Jun 1903 A
1678991 Marschalek Jul 1928 A
1970631 Sherman Aug 1934 A
2477598 Hain Aug 1949 A
2739590 Yochem Mar 1956 A
2823674 Yochem Feb 1958 A
2834346 Adams May 1958 A
2875761 Helmer et al. Mar 1959 A
2888015 Hunt May 1959 A
2952255 Hein, Jr. Sep 1960 A
3122280 Goda Feb 1964 A
3245567 Knight Apr 1966 A
3323798 Miller Jun 1967 A
3364890 Andersen Jan 1968 A
3598120 Mass Aug 1971 A
3610241 LeMarie Oct 1971 A
3700215 Hardman et al. Oct 1972 A
3706307 Hasson Dec 1972 A
3712749 Roberts Jan 1973 A
3747751 Miller et al. Apr 1973 A
3872867 Killinger Mar 1975 A
3905375 Toyama Sep 1975 A
3937211 Merten Feb 1976 A
4043334 Brown et al. Aug 1977 A
4046145 Choksi et al. Sep 1977 A
4216585 Hatter Aug 1980 A
4216872 Bean Aug 1980 A
4244366 Raines Jan 1981 A
4252122 Halvorsen Feb 1981 A
4286591 Raines Sep 1981 A
4313539 Raines Feb 1982 A
4420085 Wilson et al. Dec 1983 A
4430077 Mittleman et al. Feb 1984 A
4457445 Hanks et al. Jul 1984 A
4521237 Logothetis Jun 1985 A
4530697 Kuhlemann et al. Jul 1985 A
4571242 Klein et al. Feb 1986 A
4589171 McGill May 1986 A
4667837 Vitello et al. May 1987 A
4693707 Dye Sep 1987 A
4726483 Drozd Feb 1988 A
4743229 Chu May 1988 A
4743231 Kay et al. May 1988 A
4760847 Vaillancourt Aug 1988 A
4832695 Rosenberg et al. May 1989 A
4834706 Beck et al. May 1989 A
4842592 Caggiani et al. Jun 1989 A
4844906 Hermelin et al. Jul 1989 A
4906231 Young Mar 1990 A
4919285 Roof et al. Apr 1990 A
5009323 Montgomery et al. Apr 1991 A
5049129 Zdeb et al. Sep 1991 A
5057093 Clegg et al. Oct 1991 A
5135496 Vetter et al. Aug 1992 A
5165560 Ennis, III et al. Nov 1992 A
5230429 Etheredge, III Jul 1993 A
5267983 Oilschlager et al. Dec 1993 A
5292308 Ryan Mar 1994 A
5295599 Smith Mar 1994 A
5328466 Denmark Jul 1994 A
5328474 Raines Jul 1994 A
5356380 Hoekwater et al. Oct 1994 A
5380295 Vacca Jan 1995 A
5405339 Kohnen et al. Apr 1995 A
5458580 Hajishoreh Oct 1995 A
5468224 Souryal Nov 1995 A
5531695 Swisher Jul 1996 A
5540666 Barta et al. Jul 1996 A
5549571 Sak Aug 1996 A
5558648 Shields Sep 1996 A
5584817 Van Den Haak Dec 1996 A
5588239 Anderson Dec 1996 A
5624402 Imbert Apr 1997 A
5674209 Yarger Oct 1997 A
5700247 Grimard et al. Dec 1997 A
5702374 Johnson Dec 1997 A
5776124 Wald Jul 1998 A
5785691 Vetter et al. Jul 1998 A
5797885 Rubin Aug 1998 A
5807343 Tucker et al. Sep 1998 A
5883806 Meador et al. Mar 1999 A
5884457 Ortiz et al. Mar 1999 A
5902269 Jentzen May 1999 A
5951522 Rosato et al. Sep 1999 A
5951525 Thorne et al. Sep 1999 A
5954657 Rados Sep 1999 A
5957166 Safabash Sep 1999 A
5989227 Vetter et al. Nov 1999 A
6000548 Tsals Dec 1999 A
6021824 Larsen et al. Feb 2000 A
6027482 Imbert Feb 2000 A
6068614 Kimber et al. May 2000 A
6126640 Tucker et al. Oct 2000 A
6190364 Imbert Feb 2001 B1
6193688 Balestracci et al. Feb 2001 B1
6196593 Petrick et al. Mar 2001 B1
6196998 Jansen et al. Mar 2001 B1
6235376 Miyazaki et al. May 2001 B1
6280418 Reinhard et al. Aug 2001 B1
6287671 Bright et al. Sep 2001 B1
6322543 Singh et al. Nov 2001 B1
6338200 Baxa et al. Jan 2002 B1
6375640 Teraoka Apr 2002 B1
6394983 Mayoral et al. May 2002 B1
6485460 Eakins et al. Nov 2002 B2
6500155 Sasso Dec 2002 B2
6520935 Jansen et al. Feb 2003 B1
6540697 Chen Apr 2003 B2
6565529 Kimber et al. May 2003 B1
6581792 Limanjaya Jun 2003 B1
6585691 Vitello Jul 2003 B1
6592251 Edwards et al. Jul 2003 B2
6682798 Kiraly Jan 2004 B1
6726652 Eakins et al. Apr 2004 B2
6726672 Hanley et al. Apr 2004 B1
6755220 Castellano et al. Jun 2004 B2
6764469 Broselow Jul 2004 B2
6821268 Balestracci Nov 2004 B2
6921383 Vitello Jul 2005 B2
6942643 Eakins et al. Sep 2005 B2
7055273 Roshkoff Jun 2006 B2
7141286 Kessler et al. Nov 2006 B1
7182256 Andreasson et al. Feb 2007 B2
7240926 Dalle et al. Jul 2007 B2
7374555 Heinz et al. May 2008 B2
7404500 Marteau et al. Jul 2008 B2
7410803 Nollert et al. Aug 2008 B2
7425208 Vitello Sep 2008 B1
7437972 Yeager Oct 2008 B2
7482166 Nollert et al. Jan 2009 B2
7588563 Guala Sep 2009 B2
7594681 DeCarlo Sep 2009 B2
7632244 Buehler et al. Dec 2009 B2
7641636 Moesli et al. Jan 2010 B2
7735664 Peters et al. Jun 2010 B1
7748892 McCoy Jul 2010 B2
7762988 Vitello Jul 2010 B1
7766919 Delmotte Aug 2010 B2
7802313 Czajka Sep 2010 B2
7918830 Langan et al. Apr 2011 B2
8079518 Turner et al. Dec 2011 B2
8091727 Domkowski Jan 2012 B2
8137324 Bobst Mar 2012 B2
8140349 Hanson et al. Mar 2012 B2
8257286 Meyer et al. Sep 2012 B2
8328082 Bochenko et al. Dec 2012 B1
8348895 Vitello Jan 2013 B1
8353869 Ranalletta et al. Jan 2013 B2
8443999 Reinders May 2013 B1
D684057 Kwon Jun 2013 S
8512277 Del Vecchio Aug 2013 B2
8556074 Turner et al. Oct 2013 B2
8579116 Pether et al. Nov 2013 B2
8591462 Vitello Nov 2013 B1
8597255 Emmott et al. Dec 2013 B2
8597271 Langan et al. Dec 2013 B2
8616413 Koyama Dec 2013 B2
D701304 Lair et al. Mar 2014 S
8672902 Ruan et al. Mar 2014 B2
8702674 Bochenko Apr 2014 B2
8777930 Swisher et al. Jul 2014 B2
8852561 Wagner et al. Oct 2014 B2
8864021 Vitello Oct 2014 B1
8864707 Vitello Oct 2014 B1
8864708 Vitello Oct 2014 B1
8945082 Geiger et al. Feb 2015 B2
9101534 Bochenko Aug 2015 B2
9199042 Farrar et al. Dec 2015 B2
9199749 Vitello Dec 2015 B1
9220486 Schweiss et al. Dec 2015 B2
9220577 Jessop et al. Dec 2015 B2
9272099 Limaye et al. Mar 2016 B2
9311592 Vitello Apr 2016 B1
D756777 Berge et al. May 2016 S
9336669 Bowden et al. May 2016 B2
D759486 Ingram et al. Jun 2016 S
9402967 Vitello Aug 2016 B1
9427715 Palazzolo et al. Aug 2016 B2
9433768 Tekeste et al. Sep 2016 B2
9463310 Vitello Oct 2016 B1
D773043 Insgram et al. Nov 2016 S
D789529 Davis et al. Jun 2017 S
9687249 Hanlon et al. Jun 2017 B2
D797928 Davis et al. Sep 2017 S
D797929 Davis et al. Sep 2017 S
9855191 Vitello Jan 2018 B1
D815945 Fischer Apr 2018 S
D825746 Davis et al. Aug 2018 S
20010034506 Hirschman et al. Oct 2001 A1
20010056258 Evans Dec 2001 A1
20020023409 Py Feb 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020101656 Blumenthal et al. Aug 2002 A1
20020133119 Eakins et al. Sep 2002 A1
20030146617 Franko, Sr. Aug 2003 A1
20030183547 Heyman Oct 2003 A1
20040064095 Vitello Apr 2004 A1
20040116858 Heinz et al. Jun 2004 A1
20040186437 Frenette et al. Sep 2004 A1
20040225258 Balestracci Nov 2004 A1
20050146081 MacLean et al. Jul 2005 A1
20050148941 Farrar et al. Jul 2005 A1
20050209555 Middleton et al. Sep 2005 A1
20060084925 Ramsahoye Apr 2006 A1
20060089601 Dionigi Apr 2006 A1
20060173415 Cummins Aug 2006 A1
20060189933 Alheidt et al. Aug 2006 A1
20070060898 Shaughnessy et al. Mar 2007 A1
20070106234 Klein May 2007 A1
20070142786 Lampropoulos et al. Jun 2007 A1
20070191690 Hasse et al. Aug 2007 A1
20070219503 Loop et al. Sep 2007 A1
20070257111 Ortenzi Nov 2007 A1
20080068178 Meyer Mar 2008 A1
20080097310 Buehler et al. Apr 2008 A1
20080106388 Knight May 2008 A1
20080243088 Evans Oct 2008 A1
20080306443 Neer Dec 2008 A1
20090099552 Levy et al. Apr 2009 A1
20090149815 Kiel et al. Jun 2009 A1
20090326481 Swisher et al. Dec 2009 A1
20100084403 Popish et al. Apr 2010 A1
20100126894 Koukol et al. May 2010 A1
20100179822 Reppas Jul 2010 A1
20100228226 Nielsen Sep 2010 A1
20100252564 Martinez et al. Oct 2010 A1
20100283238 Deighan et al. Nov 2010 A1
20110044850 Solomon et al. Feb 2011 A1
20110046550 Schiller et al. Feb 2011 A1
20110046603 Felsovalyi et al. Feb 2011 A1
20120064515 Knapp et al. Mar 2012 A2
20120096957 Ochman Apr 2012 A1
20120110950 Schraudolph May 2012 A1
20130018356 Prince et al. Jan 2013 A1
20130088354 Thomas Apr 2013 A1
20130237949 Miller Sep 2013 A1
20140000781 Franko, Jr. Jan 2014 A1
20140034536 Reinhardt et al. Feb 2014 A1
20140069829 Evans Mar 2014 A1
20140135738 Panian May 2014 A1
20140155868 Nelson et al. Jun 2014 A1
20140257843 Adler et al. Sep 2014 A1
20140326727 Jouin et al. Nov 2014 A1
20140353196 Key Dec 2014 A1
20150191633 De Boer et al. Jul 2015 A1
20150305982 Bochenko Oct 2015 A1
20150310771 Atkinson et al. Oct 2015 A1
20160067422 Davis et al. Mar 2016 A1
20160090456 Ishimaru et al. Mar 2016 A1
20160144119 Limaye et al. May 2016 A1
20160158110 Swisher et al. Jun 2016 A1
20160158449 Limaye et al. Jun 2016 A1
20160176550 Vitello et al. Jun 2016 A1
20160328586 Bowden et al. Nov 2016 A1
20160361235 Swisher Dec 2016 A1
20160367439 Davis et al. Dec 2016 A1
20170014310 Hyun et al. Jan 2017 A1
20170124289 Hasan et al. May 2017 A1
20170173321 Davis et al. Jun 2017 A1
20170203086 Davis Jul 2017 A1
20170319438 Davis et al. Nov 2017 A1
20180001540 Byun Jan 2018 A1
20180089593 Patel et al. Mar 2018 A1
Foreign Referenced Citations (2)
Number Date Country
0148116 Jul 1985 EP
WO 2017086607 May 2015 WO
Provisional Applications (1)
Number Date Country
61419508 Dec 2010 US
Divisions (1)
Number Date Country
Parent 13310445 Dec 2011 US
Child 14519833 US