Tank module interface for fluid reservoirs

Information

  • Patent Grant
  • 9879829
  • Patent Number
    9,879,829
  • Date Filed
    Wednesday, June 15, 2011
    12 years ago
  • Date Issued
    Tuesday, January 30, 2018
    6 years ago
Abstract
The combination of a reservoir having an interface defining an aperture, the interface including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses thereon: a head unit having an exterior shape complementary to the shape of the aperture, the head unit being positioned within the aperture; the head unit having an inwardly extending rim corresponding to the aperture circular wall, the head unit including a lug, the head unit lug engaging one of recesses, the head unit having a seal ring about an outer periphery of the head unit inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim.
Description

The present invention relates generally to tanks and reservoirs used in vehicles. More specifically, the present application relates to a mounting interface for attaching fluid or electrical connections to such a tank or reservoir.


BACKGROUND OF THE INVENTION

Diesel Exhaust Fluid reservoirs will become standard on diesel powered ground vehicles beginning in 2011 in the United States of America. These reservoirs generally hold aqueous urea solutions for use with pollution abatement systems. These reservoirs will have multiple connections to other systems on the vehicles. Because of the multiple connections, multiple liquid tight seals are required for each connection. Ordinarily, these connections are attached by threaded fasteners and rely on these fasteners to form and maintain a liquid or vapor tight seal. Consequently, these connections suffer the disadvantage that if the fasteners loosen or are not properly torqued, an effective seal will not be maintained.


BRIEF SUMMARY

The present invention includes a mounting interface that does not depend on the compression of a fastening system to ensure a liquid tight seal. The present invention may further include a multi-function head that has multiple connectors such that multiple connections may be attached to the head and simultaneously attached via the head at the mounting interface. One embodiment includes a mounting interface adapted to receive the multi-function head formed in a Diesel Exhaust fluid (DEF) reservoir. However, the mounting interface can be used with other fluid reservoirs.


In one embodiment, the invention comprises the combination of a reservoir having an aperture therein; a head unit having an exterior shape complementary to the shape of the aperture, the head unit being positioned within the aperture; a seal ring about an outer periphery of the head unit, the seal ring engaging an interior circumferential surface of the aperture; and a head unit securement retainingly attaching the head unit to the reservoir.


In a further embodiment, the invention comprises the combination of a reservoir having an aperture therein, the aperture including a cylindrical wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses thereon; a head unit having an exterior shape complementary to the shape of the aperture, the head unit being positioned within the aperture; the head unit having an inwardly extending rim corresponding to the cylindrical wall, the head unit including a lug, the head unit lug engaging one of recesses, the head unit having a seal ring about an outer periphery of the head unit downwardly extending rim, the seal ring engaging the cylindrical wall and the head unit downwardly extending rim; and a head unit securement retainingly attaching the head unit to the reservoir.


In a further embodiment, the invention includes a head unit comprising a head unit; a plurality of fluid connections extending from an upper side of the head unit to a lower side of the head unit; a temperature sensor attached to the lower side of the head unit; a level sensor attached to the head unit; a heater tube attached to the lower side of the head unit; two of the fluid connections extending into the interior of the heater tube, one of said two fluid connections extending to a lower end of the heater tube, the other of said two fluid connections terminating proximate the lower side of the head unit; a suction tube connected to a further one of the fluid connections, the suction tube extending outside of the heater tube; a further one of the fluid connections terminating proximate the lower side of the head unit outside of the heater tube.





BRIEF SUMMARY OF THE DRAWINGS


FIG. 1 is a perspective view of a reservoir and multifunction head unit according to the present invention;



FIG. 2 is a cross-section of the reservoir and multifunction head unit shown in FIG. 1;



FIG. 3 is a perspective of the multifunction head unit shown in FIG. 1;



FIG. 4 is an exploded perspective view of the multifunction head unit shown in FIG. 3; and



FIG. 5 is a bottom view of the multifunction head unit shown in FIG. 2 with the in reservoir components removed for clarity.



FIG. 6 is a partially cut away view similar to FIG. 1 showing an alternative embodiment of the present invention.



FIG. 7 is a perspective view of a reservoir and multifunction head unit according to another aspect the present invention.



FIG. 8 is a bottom view of a multifunction head unit for use with the reservoir of FIG. 7 with the in reservoir components removed for clarity.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

A reservoir or tank according to the concepts of the present invention is generally indicated by the number 10 in the drawings. The terms tank and reservoir will be used interchangeably throughout the following description to refer to any container used to at least temporarily store liquid or vapor. In general, the tank 10 is used in a vehicle (not shown). In the example shown, the tank 10 is used to hold diesel emissions fluid (DEF) and is adapted for use with an emissions control system in a diesel vehicle. It will be appreciated that the tank 10 may used in other similar applications.


In the example shown in FIG. 1, tank 10 is a molded tank formed by rotomolding or blow-molding. However, other fabrication techniques may be used. Tank 10 includes an interface 11 that is adapted to receive a mounting head or other connection described in more detail below. The interface 11 includes an aperture defined by a wall 12 that extends into the interior of the tank 10. Wall 12 may have any shape including the cylindrical shape shown. Interface 11 may be formed separately and affixed within tank 10, or as depicted in the drawings, tank 10 and interface 11 may be formed integrally as a monolithic part.


Interface 11 may include a shelf portion generally indicated by the number 15 extending radially outward from wall 12. Shelf portion 15 may be recessed relative to the outer surface of tank 10 to form a rabbet 16. Rabbet 16 may receive a flange or fastening ring used in connection with an individual component or a multi-function head, described below, that fits into interface 11. A channel 19 may be formed about wall 12 and include a base portion 18 spaced inwardly from shelf portion 15. Fastener inserts 22 (FIG. 2) may be supported on base portion within channel 19.


Interface 11 may be shaped to conform to a connector, such as a fluid, gas, or electrical connection, used with the tank 10. Alternatively, in accordance with another aspect of the present invention, interface 11 may be shaped to receive a multi-function head unit or head module, generally indicated by the number 30 in the drawings. Head unit 30 generally includes an inwardly extending rim 31 that is receivable within the opening defined by wall 12 of interface 11. Inwardly extending rim 31 may have any shape including the cylindrical shape shown. In general, rim 31 conforms to wall 12 to facilitate sealing engagement between inwardly extending rim 31 and wall 12, as described more completely below. A flange 32 may extend radially outward from an outer end 33 of inwardly extending rim 31 to engage tank 10 and prevent over insertion of head unit 30. Flange 32 may be sized to seat within rabbet 16 causing the outer surface 34 of rim 32 to lie flush with the surface of tank 10.


A seal 36 is located between inwardly extending rim 31 and wall 12 to form a seal between the head unit 30 and interface 11. In this way, the seal is maintained as long as the head unit 30 resides within the aperture formed by interface 11 and is thus not dependent on the use of fasteners to maintain a surface seal as is common in the art.


In the example shown, seal 36 is mounted on inwardly extending rim 31 and extends radially outward therefrom to sealingly engage wall 12. It will be appreciated that seal 36 may be provided on wall 12 and extend inward to engage inwardly extending rim 31 to the same effect. Seal 36 may be constructed of any suitable seal material including, for example, elastomeric materials. In the example shown, seal 36 is a rubber O-ring. Inwardly extending rim 31 may define a groove 36a to locate and retain the seal 36 in a desired position. In the example shown, seal 36 is located approximately half-way between flange 32 and the end 32a of inwardly extending rim 31. It will be appreciated that other seals may be used. As a further alternative, inwardly extending rim 31 or wall 12 may be coated with a suitable sealing material to effect a seal upon insertion of the head unit 30 within interface 11.


Once head unit 30 is installed in interface 11, a seal is created. In the example shown, the seal is liquid tight. It will be appreciated that a vapor or gas tight seal may also be created with this configuration. Since a seal is created upon insertion of head unit 30 within interface 11, the seal is not dependent upon adequately secured fasteners as is common in the art. As shown, a mounting ring 70 and fasteners 72 may be used to retain the head unit 30 relative to tank 10 if desired. However, the torque on the fasteners (if threaded fasteners are used) is not critical to the effectiveness of the seal. In the example shown, fasteners 72 may be driven through ring 70 and into fastener inserts 22.


Referring to FIG. 1, head unit 30 may include one or more connectors, generally indicated by the number 40. To facilitate connecting the tank 10 to multiple components within a vehicle through a single interface 11, head unit 30 may include multiple connectors. For example as best shown in FIG. 3, head unit 30 includes a plurality of fluid connectors 41 and electrical connectors 42 in a single unit. Advantageously, connectors 40 may be molded into the head unit 30 (FIG. 2).


The fluid connectors 41 are used for DEF fluid supply to the vehicle and DEF fluid return to tank 10. Also, in one embodiment shown in the figures, coolant supply and coolant return connections are also provided to convey heated fluid from the vehicle radiator the DEF tank 10 and return this fluid to the vehicle radiator. In other embodiments, an electrical heater may be used in place of the fluid heater. The electrical connections 42 may include a temperature sensor and a fluid sensor. In one embodiment, a single electrical connector 42 is provided to connect the temperature and level sensors to a DEF control system. For example, as shown in FIG. 2, electrical connector 42 includes a 5 position connector 54. Three of the positions connectors are used for an ultrasonic level sensor 50 and two connectors are used for temperature sensor 44. In an alternate embodiment, only the level sensor is connected using the 5 position connector 54 and a separate connector or connectors are used for the temperature sensor. The ultrasonic level sensor 50 may be connected to a level sensor tube (not shown) that extends to near the bottom of tank 10. The level sensor 50 measures the fluid level of DEF in tank 10. As best shown in FIG. 4, head unit 30 may be provided with an internally threaded bore 52 for receipt of a threaded end 53 of level sensor 50.


With respect to fluid connector(s) 41, in the example shown in FIG. 3, there are two DEF fluid connectors 41, DEF suction or supply 64 and DEF return 61. Two coolant connections are also provided, coolant supply 62 and coolant return 63. As better seen in FIGS. 3 and 5, a variety of connection configurations may be used depending on the particular application. Consequently, the connections shown should not be considered limiting. For example, for the DEF application, Society of Automotive Engineer (SAE) connections are incorporated into head unit 30 to facilitate use of the head unit 30 with the fluid, gas, and other conduits found in the vehicle. In the particular example shown, coolant supply and coolant return connections 62, 63 include barbed fittings and DEF suction or supply 64 and DEF return 61 include SAE J2044 fittings.


Referring now to FIGS. 3 and 4, a heater tube 38 attaches to the underside of the head unit 30. The two coolant connections 62, 63 communicate with the interior of the heater tube 38. An O-ring 37 is used to isolate the heater tube from the interior of tank 10. The coolant supply 62 is connected to a coolant bubbler tube 46, which conveys heated coolant to the lower end of the heater tube to prevent short circuiting of the heated coolant through the heater tube 38. The coolant return 63 takes suction from the top of the heater tube 38.


The DEF suction 64 is connected to a suction line 48, which has a suction strainer 60 at its lower end that extends to near the bottom of tank 10. The DEF return 61 extends just through the head unit 30 and returns DEF at the top of tank 10.


In accordance with another aspect of the invention, head unit 30 may be rotationally clocked to selected rotational positions to accommodate the location of tank 10 and orientation of connectors 40 for various vehicles. To that end, interface 11 may include at least one facet 82 adapted to engage a corresponding facet 80 on the head unit 30 to prevent relative rotation between interface 11 and head unit 30. It will be appreciated that multiple facets may be used to define multiple rotational positions in which head unit 30 may be seated within interface 11. For example, a polygonal interface 11 and correspondingly shaped head unit 30 (FIG. 6) may be used to define rotational positions by the geometry of the polygon. For example, a regular hexagonal shape may be used to define six equally spaced rotational positions. Alternatively, recesses and lugs may be formed on either of the tank 10 or head unit 30 to engage corresponding recesses or lugs on the opposite component. For example, as shown in FIGS. 1 and 5, rim 31 fits within a recessed circular rabbet or groove 16 circumscribing interface 11 in the upper surface of tank 10. A plurality of recesses 74 are formed in groove 16. The underside of head unit flange 32 has at least on lug 76 (FIG. 5) extending inwardly therefrom, which engages one of the recesses 74. This engagement of lug 76 with a recess 74 prevents the head unit 30 from rotating after being installed in tank 10. The plurality of recesses 74 formed about groove 16 allows the head unit 30 to be installed in different orientations as required by the particular vehicle the unit is installed in. In a preferred embodiment shown in the figures, eight recesses are provided. Other quantities of recesses may be used to create a desired number of positions for head unit 30. In another example, as shown in FIGS. 7 and 8, the recesses 74 and lugs 76 are formed on the opposite components, i.e., a plurality of lugs 76 are foinied in groove 16 (FIG. 7) and the underside of head unit flange 32 (FIG. 8) has a plurality of recesses 74 which engage the lugs 76.


The foregoing disclosure is illustrative of the present invention and is not to be construed as limiting thereof. Although one or more embodiments of the invention have been described, persons of ordinary skill in the art will readily appreciate that numerous modifications could be made without departing from the scope and spirit of the disclosed invention. As such, it should be understood that all such modifications are intended to be included within the scope of this invention. The written description and drawings illustrate the present invention and are not to be construed as limited to the specific embodiments disclosed.

Claims
  • 1. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses spaced about thereon, said reservoir and said interface being formed as a monolithic part; anda head unit having an exterior shape complementary to the shape of the interface, said head unit including at least one lug corresponding to said recesses on said interface, the head unit being positionable within the aperture in a plurality of discrete functioning angular orientations with respect to the reservoir and fastened to the reservoir; wherein all of the plurality of angular orientations create a sealed connection between the head unit and the reservoir; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim irrespective of fastening pressure, wherein said head unit includes a connector communicating with an interior of the reservoir.
  • 2. The combination of claim 1, wherein the connector of the head unit includes a plurality of fluid connections.
  • 3. The combination of claim 2, wherein the fluid connections comprise a fluid suction and a fluid return.
  • 4. The combination of claim 1, wherein said reservoir and interface are formed by rotomolding.
  • 5. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses spaced about thereon, said reservoir and said interface being formed as a monolithic part;a head unit having an exterior shape complementary to the shape of the interface, said head unit including at least one lug corresponding to said recesses on said interface, the head unit being positionable within the aperture the plurality of recesses in a plurality of discrete functioning angular orientations with respect to the reservoir and fastened to the reservoir; wherein all of the plurality of angular orientations create a sealed connection between the head unit and the reservoir; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim irrespective of fastening pressure, wherein said head unit includes a connector communicating with an interior of the reservoir; the connector includes a plurality of fluid connections; the fluid connections comprise a fluid suction and a fluid return; and the fluid connections further comprise a coolant supply and a coolant return.
  • 6. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses spaced about thereon, said reservoir and said interface being formed as a monolithic part;a head unit having an exterior shape complementary to the shape of the interface, said head unit including at least one lug corresponding to said recesses on said interface, the head unit being positionable within the aperture in a plurality of discrete functioning angular orientations with respect to the reservoir and fastened to the reservoir; wherein all of the plurality of angular orientations create a sealed connection between the head unit and the reservoir; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim irrespective of fastening pressure, wherein said head unit includes a connector communicating with an interior of the reservoir;
  • 7. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses spaced about thereon, said reservoir and said interface being formed as a monolithic part;a head unit having an exterior shape complementary to the shape of the interface, said head unit including at least one lug corresponding to said recesses on said interface, the head unit being positionable within the aperture in a plurality of discrete functioning angular orientations with respect to the reservoir and fastened to the reservoir; wherein all of the plurality of angular orientations create a sealed connection between the head unit and the reservoir; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim irrespective of fastening pressure, wherein said head unit includes a connector communicating with an interior of the reservoir; the head unit further comprises a temperature sensor; and the connector includes a plurality of fluid connections.
  • 8. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a plurality of recesses spaced about thereon, said reservoir and said interface being formed as a monolithic part; anda head unit having an exterior shape complementary to the shape of the interface, said head unit including a plurality of lugs corresponding to said plurality of recesses on said head unit being positionable within the aperture in a plurality of discrete functioning angular orientations with respect to the reservoir and fastened to the reservoir; wherein all of the plurality of angular orientations create a sealed connection between the head unit and the reservoir; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim irrespective of fastening pressure, wherein said head unit includes a connector communicating with an interior of the reservoir.
  • 9. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including at least one recess thereon; anda head unit having an exterior shape complementary to the shape of the interface, said head unit including at least one lug corresponding to said recess on said interface, the head unit being positioned within the aperture; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim, wherein said head unit includes a connector communicating with an interior of the reservoir; wherein the head unit further comprises:a plurality of fluid connections extending from an upper side of the head unit to a lower side of the head unit;a temperature sensor attached to the lower side of the head unit;a level sensor attached to the head unit;a heater tube attached to the lower side of the head unit;two of the fluid connections extending into the interior of the heater of the heater tube, one of said two fluid connections extending to a lower end of the heater tube, the other of said two fluid connections terminating proximate the lower said of the head unit;a suction tube connected to a further one of the fluid connections, the suction tube extending outside of the heater tube;a further one of the fluid connections terminating proximate the lower side of the head unit outside of the heater tube.
  • 10. A head unit comprising: an inwardly extending rim including a lug and a seal ring capable of engaging an interface with a recess thus creating a seal;a plurality of fluid connections extending from an upper side of the head unit to a lower side of the heat unit;a temperature sensor attached to the lower side of the head unit;a level sensor attached to the head unit;a heater tube attached to the lower side of the heat unit;two of the fluid connections extending into the interior of the heater tube, one of said two fluid connections extending to a lower end of the heater tube, the other of said two fluid connections terminating proximate the lower side of the head unit;a suction tube connected to a further one of the fluid connections, the suction tube extending outside of the heater tube;a further one of the fluid connections terminating proximate the lower side of the head unit outside of the heater tube.
  • 11. In combination: a reservoir having an interface defining an aperture therein, the aperture including a wall extending into the reservoir, the reservoir having a recessed groove in an upper surface about the aperture, the recessed groove including a first rotational engaging means, said reservoir and said interface being formed as a monolithic part; anda head unit having an exterior shape complementary to the shape of the interface, said head unit including second rotational engaging means complementary to the first rotational engaging means on the interface, the first rotational engaging means and second rotational engaging means allowing the head unit to be positioned within the aperture in a plurality of discrete functioning angular orientations with respect to the reservoir, the head unit fastened to the reservoir; wherein all of the plurality of angular orientations create a sealed connection between the head unit and the reservoir; the head unit having an inwardly extending rim corresponding to the aperture wall, the head unit having a seal ring mounted on said inwardly extending rim, the seal ring engaging the aperture wall and the head unit inwardly extending rim irrespective of fastening pressure, wherein the head unit includes a connector communicating with an interior of the reservoir.
  • 12. The combination of claim 11, wherein the first rotational engaging means includes a first plurality of facets and the second rotational engaging means comprises a second plurality of facets.
  • 13. The combination of claim 11, wherein the first rotational engaging means includes a plurality of recesses and the second rotational engaging means comprises at least one lug.
  • 14. The combination of claim 11, wherein the first rotational engaging means includes at least one lug and the second rotational engaging means comprises a plurality of recesses.
  • 15. The combination of claim 12, wherein the interface and head unit are polygonal shaped.
  • 16. The combination of claim 15, wherein the interface and head unit are hexagonally shaped.
RELATED PATENT APPLICATIONS

This application claims priority from U.S. Provisional Patent application Ser. No. 61/354,953, filed on Jun. 15, 2010.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/040432 6/15/2011 WO 00 10/15/2013
Publishing Document Publishing Date Country Kind
WO2011/159752 12/22/2011 WO A
US Referenced Citations (79)
Number Name Date Kind
2862354 Barnhart Sep 1954 A
2975586 Bray Jul 1959 A
2932364 Binter Apr 1960 A
4960153 Bergsma Oct 1990 A
4972875 Beer et al. Nov 1990 A
5083583 Benjey Jan 1992 A
5092304 McNelley Mar 1992 A
5329899 Sawert et al. Jul 1994 A
5423373 Ramberg Jun 1995 A
5762049 Jones et al. Jun 1998 A
6591857 Engle et al. Jul 2003 B2
6681811 Channing Jan 2004 B2
7017336 Stiermann Mar 2006 B2
7398771 Theorell et al. Jul 2008 B2
7497075 Ripper et al. Mar 2009 B2
7544328 Osaku et al. Jun 2009 B2
7665347 Sasanuma et al. Feb 2010 B2
7677631 Zischke et al. Mar 2010 B1
D619688 Gismervik Jul 2010 S
D621015 Gismervik Aug 2010 S
D622833 Gismervik Aug 2010 S
D625396 Gismervik Oct 2010 S
7836684 Starck et al. Nov 2010 B2
8069649 Matsunaga Dec 2011 B2
8087239 Bugos et al. Jan 2012 B2
8088336 Suzuki et al. Jan 2012 B2
8096112 Dalton Jan 2012 B2
8104269 Gonze et al. Jan 2012 B2
8117830 Hiranuma et al. Feb 2012 B2
8117833 Sakimoto et al. Feb 2012 B2
8117834 Toshioka et al. Feb 2012 B2
8122710 Schmale et al. Feb 2012 B2
8127538 Pollitt et al. Mar 2012 B2
8234854 Kesse et al. Aug 2012 B2
8240130 Sawada et al. Aug 2012 B2
8240136 Kurtz et al. Aug 2012 B2
8240137 Liu et al. Aug 2012 B2
8241577 Georis et al. Aug 2012 B2
8241598 Frederiksen Aug 2012 B2
8245504 Kowada Aug 2012 B2
8246922 Boorse et al. Aug 2012 B2
8250857 Driscoll et al. Aug 2012 B2
8253578 Watabe et al. Aug 2012 B2
20030094458 Beyer May 2003 A1
20050121463 Johnson et al. Jun 2005 A1
20050241845 Burke et al. Nov 2005 A1
20060213473 Theorell et al. Sep 2006 A1
20070157602 Gschwind Jul 2007 A1
20070202019 Nishina et al. Aug 2007 A1
20080143345 Boudaoud et al. Jun 2008 A1
20090028533 Starck Jan 2009 A1
20090038296 Fukuda et al. Feb 2009 A1
20090078692 Starck Mar 2009 A1
20090107116 Barber et al. Apr 2009 A1
20090127265 Magnusson et al. May 2009 A1
20090139214 Reed Jun 2009 A1
20090145903 Soltis et al. Jun 2009 A1
20090188923 Versaw et al. Jul 2009 A1
20090205320 Mokire et al. Aug 2009 A1
20090230136 Dougnier et al. Sep 2009 A1
20090282813 Kopinsky Nov 2009 A1
20100025408 Haeberer et al. Feb 2010 A1
20100028219 Goebelbecker Feb 2010 A1
20100050603 Seino et al. Mar 2010 A1
20100050606 Fulks et al. Mar 2010 A1
20100089037 Bogema et al. Apr 2010 A1
20100146940 Goulette et al. Jun 2010 A1
20100154907 Lecea et al. Jun 2010 A1
20100162690 Hosaka et al. Jul 2010 A1
20100175369 Op De Beeck et al. Jul 2010 A1
20100220984 Potier et al. Sep 2010 A1
20100224284 Kolberg et al. Sep 2010 A1
20100236243 Lolas et al. Sep 2010 A1
20100303453 Haeberer et al. Dec 2010 A1
20110083989 Whelan Apr 2011 A1
20110301868 Anderson et al. Dec 2011 A1
20120020857 Isada et al. Jan 2012 A1
20120031082 Gismervik Feb 2012 A1
20120198823 Amstutz Aug 2012 A1
Foreign Referenced Citations (9)
Number Date Country
102004036508 Mar 2006 DE
1561626 Aug 2005 EP
1582732 Oct 2005 EP
1662103 May 2006 EP
2409007 Sep 2010 EP
2003025857 Jan 2003 JP
2008267682 Nov 2008 JP
2009138551 Jun 2009 JP
20100156284 Jul 2010 JP
Related Publications (1)
Number Date Country
20140026990 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61354953 Jun 2010 US