This application claims priority of European Patent Application No. 06018445.4, filed Sep. 4, 2006, the disclosure of which is hereby incorporated by reference in its entirety.
The invention relates to a tank for water treatment, consisting of at least two open tank parts made from plastic material by injection moulding or injection moulding and embossing, the tank parts having opening edge structures which fit on each other and which are joined to each other in a joining plain and of at least one separately produced separation wall which extends in the tank crosswise to the joining plane, the separation wall being supported at the edge at walls of the tank parts such that at least some peripheral regions are watertight, wherein the separation wall is made from two, preferably, identical separation wall parts, which are joined to each other in the joining plane.
The tank known from EP 0 870 877 B1 is joined from the outer side by clamp-shaped quick connectors from two identical cup-shaped plastic material injection moulded parts having opening edge structures which fit on each other. A sealing is inserted between the opening edge structures. The tank e.g. can be used without a separation wall as a rain water tank. This tank is known under the trade name “Herkules”, according to leaflet K26, edition 2006 “Kleinklaranlagen und Fäkalien-Sammelgruben” (Minor Sewage Plant and Cesspool/Septic Tank Collection) of the company Otto Graf GmbH, Kunststofferzeugnisse, D-79331 Teningen, pages 22, 23, and may also be used for collection basins. In this case and provided that several chambers are needed, several of these tanks are installed and are connected via piping for communication.
The leaflet K26, starting on page 4 also discloses minor sewage plants “System Aqua-Simplex” which are based on a cylindrical tank having round end caps. The tank is installed lying horizontally and is monolithically produced by rotation moulding. A separation wall is integrated by rotation moulding in the middle part of the tank. The tank can be used as a single tank sewage plant for treating water in two chambers. The separation wall either separates the chambers totally or allows a communication via an elevated spillover. The leaflet also describes embodiments of the rotation moulded tank in which the separation wall integrated by the rotation moulding process seals at the edge in watertight fashion but has a central throughhole. These embodiments can be used as collection basins or anaerobic digesters. The rotation moulding process is expensive and not very rational, requires large tools and machines, costly material and long cycle times. The separation wall formed by the rotation moulding process is situated in a fixed position. To transport that rotation moulded tank may cause significant transport problems and high transport costs, in particular in the case of a large tank volume. Manipulating the tank in most cases needs the use of a hoisting gear.
In tanks known from U.S. Pat. Nos. 4,325,823 A and 6,280,614 B which are joined from at least two differently shaped parts separation walls are installed which substantially fill the inner cross-section of the tank and which are anchored at their edges. Manufacturing and mounting each separation wall which is produced with the full or almost full cross-section of the tank is complicated, in particular in the case that a portion of the separation wall mounted in one tank part protrudes into the other tank part.
It is an object of the invention to provide a plastic material tank for water treatments which can easily be assembled, which is joined from at least two separately produced tank parts, and which can be used in a universal fashion for water treatment in several chambers without the necessity of providing a number of tanks corresponding to the number chambers.
Embodiments of the invention will be explained with the help of the drawings. In the drawings is:
Since the tank is joined from tank parts which are produced separately by injection moulding or injection moulding and embossing, and since prior to joining the tank parts upon demand at least one separation wall or several separation walls is or are mounted at a selectable position or at selectable positions, the costs of the tank are lower than in the case of rotation moulding. Furthermore, tank parts can be used which also may be used for producing tanks without a separation wall. For these reasons the same tank parts which stem from a single production tool can be used universally for different types of tanks and application cases (e.g. for using rainwater, for segregation purposes, for sewage purposes for anaerobic digesters, and similar water treatment methods) hence higher piece numbers can be achieved for lower costs. Furthermore, and in the case that the tank first is assembled on site, the transport is facilitated because the tank parts can be stacked in each other. By injection moulding or injection moulding and embossing the tank parts and, expediently, as well the separation wall, allows shorter cycle times and the use of more fair cost material. The processes can be carried out very economically and assure high form precision and good form stability. In other words, based on tank parts and separation walls which are produced in series, in a modular fashion a large variety of different tanks for water treatment can be created. In this case the separation wall is made from two, preferably identical, separation wall parts which are joined in the joining plane. A single tool can be used for producing the separation wall parts. The mounting process is simple as, so to speak, each tank part can be pre-assembled with the respective separation wall part, while the separation wall parts are joined to each other prior to or while joining the tank parts.
In this case it is important that the tank parts are formed with several, preferably identical, separation wall mounting regions, preferably alternating ribs and grooves, respectively defining selectable separation wall positions. These mounting regions of the tank parts also increase the stability when a tank is used without separation walls. In tanks having at least one separation wall a selectable but predetermined and stable mounting position is given for the separation wall at which the separation wall can be inserted upon demand, such that e.g. chambers of equal or different sizes can be created in one and the same tank.
In one embodiment of the tank which is made monolithically from the tank parts by welding the opening edge structures together, expediently, each separation wall part is welded at the edge into one tank part. When welding the opening edge structures also the joining gap between the separation wall parts is welded.
In an alternative embodiment a separable tank is made from the tank parts by joining the opening edge structures with sealings and fixation elements and also by joining the separation gap of the separation wall parts. Also in this case a divided separation wall is inserted. The separation wall is supported by the respectively selected form-fit mounting region of the tank.
In an application case needing a communication between the chambers separated by a separation wall the separation wall or a separation wall part may have at least one communication cut-out located at the edge and/or inside the edge. This cut-out may be pre-shaped or may be cut out first on site.
Expediently, the separation wall parts are produced by injection moulding or injection moulding and embossing from plastic material. Polyethylene or polypropylene or other plastic materials are particularly useful. The plastic material can be provided without reinforcements or may contain a fibre or mineral reinforcement.
In order to achieve sufficient form stability of the separation wall which also has to stiffen the tank, the separation wall expediently has a stiffening waffle structure.
For a simple mounting of the respective separation wall part welding flanges or sealing flanges are provided at the edge and/or at the joint gap.
In a preferred embodiment the tank is made from two identical tank parts, substantially cylindrical and having outwardly rounded end caps. The tank parts are joined in a joining plane containing the cylinder axis. The joining plane, expediently, is situated substantially horizontally when the tank is in use. The ribs and grooves for positioning the eventually mounted separation wall are oriented in the tank parts perpendicularly to the joining plane and are aligned in the joining plane to each other. A round dome boss having a flat covering disc is integrated by moulding into each tank part. The covering disc easily can be removed in the case that a tank dome has to be installed there. The ribs and the grooves, expediently, are interrupted along the covering disc such that the covering disc forms a flat portion of the cylinder. In order to allow the use of only a single type of a separation wall part and to mount this separation wall part at each selectable position, it is expedient when the flat portion in the tank is extended in one embodiment between ribs into several adjacent grooves such that flat separation wall mounting surfaces are defined which have equal lengths. In this case the separation wall substantially is a circular disc having two flat regions in the circumference corresponding to the flat mounting surfaces of the tank parts. The separation wall, for this reason, fits precisely into the cross-section of the tank. In another embodiment the tank is made from two identical, cup-shaped tank parts which are produced in a single tool. The joining plane expediently is situated horizontally when the tank is in use. The ribs and grooves continue over the joining plane and cross the joining plane such that a respective separation wall can be mounted at any selectable position of several positions. However, the same tank consisting of equal tank parts also may be used without a separation wall.
Finally, it is expedient, if a profile is formed along the bottom of at least some grooves, preferably a U-profile, which allows to selectively position a sealing or to weld the separation wall thereto. This profile also extends along at least some of the mounting surfaces, i.e., crosswise over the covering disc of the dome boss.
A tank B for water treatment is, according to
The tank parts 1, 2 have at there open sides identical opening edge structures R which are joined in a joining plane E. In this case the tank B can be joined according two different joining methods, namely either by welding the opening edge structures R together (
The opening edge structures R are joined in the joining plane E which e.g. is situated substantially horizontally when the tank is in use. In this embodiment the tank B has a substantially cylindrical shape and outwardly rounded end caps 7 and round dome bosses 3 at the upper and lower sides. The dome bosses 3, at least first, are closed by round and flat cover discs 4. In the shown embodiment the cover discs 4 are situated parallel with respect to the joining plane E which also contains the cylinder axis X. In the substantially cylindrical portion of the tank B alternatingly formed grooves and ribs 5, 6 are provided which extend crosswise to the joining plane, preferably perpendicular to the joining plane E. The grooves and ribs 5, 6 define several separation wall positions P within the cylindrical part each of which can be selected for mounting a separation wall T. More precisely, the selectable positions P are defined by the grooves 6, which are open towards the interior of the tank B. A single separation wall T is mounted in the tank B at a selected position P, which separation wall T is made from two separation wall parts T1, T2. Expediently, the separation wall parts T1, T2 are identical form parts made from plastic material by injection moulding or by injection moulding and embossing.
In the shown embodiment the single separation wall T subdivides the tank B into two chambers K1, K2 of equal size. However, even other subdivisions (not shown) e.g. 1:3, 1:4 can be selected as well.
The ribs 5 are formed in
Basically, flanges with skewbacks 15 might be formed in the tank parts 1, 2 at the outer side of the outer fitting surface 9 which may serve for joining by clamping according to
A sealing 16 is inserted into the sealing channel 8 in
In the welded version of the tank B, expediently, the separation wall parts T1, T2 are welded to each other at the flanges 21 in watertight fashion (welding 26 in
The separation wall T in
The separation wall T even may be glued into the tank and could then be sealed by using an extruded gluing bead or sealing bead. For welding along the edge of the separation wall T, and also in the joining gap, a wire substrate could be imbedded into plastic material which then serves as a resistance element when being supplied with current to generate the necessary temperature for softening and welding the plastic material. In the case of the version of the tank B which is joined by the quick connectors (
If desired, the tank parts 1, 2 as well could be used producing a tank without a separation wall. Also in this case, the tank parts 1, 2 could be joined either according to
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
06018445 | Sep 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3426903 | Olecko | Feb 1969 | A |
3741393 | Estes et al. | Jun 1973 | A |
4325823 | Graham | Apr 1982 | A |
4517231 | May et al. | May 1985 | A |
4789487 | Wallace | Dec 1988 | A |
4961670 | McKenzie et al. | Oct 1990 | A |
5361930 | Perry | Nov 1994 | A |
5878907 | Graf | Mar 1999 | A |
6227396 | Small | May 2001 | B1 |
6280614 | Berg | Aug 2001 | B1 |
6328890 | Thibault | Dec 2001 | B1 |
20040129622 | Pattee | Jul 2004 | A1 |
20050178721 | Lombardi, II | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
0 870 877 | Jul 2000 | EP |
1 533 252 | May 2005 | EP |
2065736 | Jul 1981 | GB |
Number | Date | Country | |
---|---|---|---|
20080053885 A1 | Mar 2008 | US |