Tantalum sputtering target with fine grains and uniform texture and method of manufacture

Abstract
A method for producing a tantalum sputtering component includes a minimum of three stages each of which include a deformation step followed by an inert atmosphere high-temperature anneal. Temperatures of each of the anneal steps can be different from one another. A tantalum sputtering component includes a mean grain size of less than about 100 microns and a uniform texture throughout the component thickness. The uniform texture can be predominately {111}.
Description


FIELD OF THE INVENTION

[0001] This invention relates to the processing of high-purity tantalum to produce a sputtering target with a microstructure that is desirable for uniform sputtering. In particular, the invention relates to the manufacture of high-purity tantalum with a mean grain size of less than 100 μm and a uniform, predominately (111)<uvw> crystallographic texture throughout the target thickness.



BACKGROUND OF THE INVENTION

[0002] Tantalum is currently used extensively in the electronics industry, which employs tantalum in the manufacture of highly effective electronic capacitors. Its use is mainly attributed to the strong and stable dielectric properties of the oxide film on the anodized metal. Both wrought thin foils and powders are used to manufacture bulk capacitors. In addition, thin film capacitors for microcircuit applications are formed by anodization of tantalum films, which are normally produced by sputtering. Tantalum is also sputtered in an Ar—N2 ambient to form an ultra thin TaN layer which is used as a diffusion barrier between a Cu layer and a silicon substrate in new generation chips to ensure that the cross section of the interconnects can make use of the high conductivity properties of Cu. It is reported that the microstructure and stoichiometry of the TaN film are, unlike TiN, relatively insensitive to the deposition conditions. Therefore, TaN is considered a much better diffusion barrier than TiN for chip manufacture using copper as metallization material. For these thin film applications in the microelectronics industry, high-purity tantalum sputtering targets are needed.


[0003] The typical tantalum target manufacturing process includes electron-beam (EB) melting ingot, forging/rolling ingot into billet, surface machining billet, cutting billet into pieces, forging and rolling the pieces into blanks, annealing blanks, final finishing and bonding to backing plates. The texture in tantalum plate is very dependent on processing mechanisms and temperatures. According to Clark et al. in the publication entitled “Effect of Processing Variables on Texture and Texture Gradients in Tantalum” (Metallurgical Transactions A, September 1991), the texture expected to develop in cold-rolled and annealed bcc metals and alloys consists of orientations centered about the ideal orientations, {001}<110>, {112}<110>, {111}<110>, and {111}<112>. Generally conventionally processed tantalum is forged or rolled from ingot to final thickness, with only one (1) or no intermediate annealing stages. A final anneal is usually applied to the plate simply to recrystallize the material. The direction of the deformation influences the strengths of resulting annealed textures but generally little attention is given to the resulting distribution of textures. In conventionally processed tantalum, significant texture variation exists in the cross-section of the plate, as described by Clark et al. (August 1992), Raabe et al. (1994), Michaluk (1996). Typically the above mentioned textures exist in stratified bands through the thickness of the rolled plate, or form a gradient of one texture on the surface usually {100}<uvw>, with a gradual transition to a different texture at the centerline of the plate, usually {111}<uvw>, Wright et al. (1994). Another cause of texture variation through the target thickness is the non-uniformity of the deformation processes used to form the plate. Texture non-uniformity results in variable sputter deposition rates and sputter surface irregularities, which in turn is believed to be a source of micro-arcing. Micro-arcing is believed to believed to be the principle cause of particle generation and is thus undesirable in the semiconductor industry. FIG. 1 shows the sputter surface of a mixed-texture tantalum target made by conventional processing methods. The sputter surface reveals regions of two different crystallographic textures; dark areas are {100}<uvw>, lighter areas {111}<uvw>. The type of pattern illustrated in FIG. 1 is believed to contribute to sputter film nonuniformities because of the different sputter rates associated with each texture.


[0004]
FIG. 2 shows severe textural banding in the cross-section of a sputtered tantalum target manufactured according to conventional processes. ‘Textural banding’, refers to a localized concentration of one texture in the cross section strung out over several grains in a matrix of another texture. In tantalum, it is typically {100}<uvw> textures in a matrix of the more prominent {111}<uvw> textures. For example, a series of grains with the same {100}<uvw> texture in a matrix of {111}<uvw> are aligned in an elongated manner over several grains is considered a banded textural feature. Using Electron Backscatter Diffraction, EBSD, imaging the texture in small, localized areas can be determined accurately.


[0005] In FIG. 2, it can be clearly seen that areas of {100}<uvw> type textures sputter at a greater rate than {111}<uvw> type textures. Thus, any textural non-uniformity at the target surface will produce surface ‘ridges’, which have an increased likelihood of causing micro-arcing.



SUMMARY OF THE INVENTION

[0006] In accordance with the present invention there is provided a processing route for producing high purity tantalum sputtering targets with a mean fine grain size of less than 100 microns and uniform crystallographic texture throughout the target thickness.


[0007] The method comprises forging, rolling and annealing high-purity, vacuum-melted tantalum ingots in such a way as to eliminate remnant as-cast grain structure, and produce a homogeneous fine-grain size (mean <100 μm) microstructure with a uniform, predominately {111}<uvw> texture throughout the thickness of the target. Significant sputtering problems have been reported when the texture of the target is not uniform throughout the target thickness. Sputtering rates and film deposition rates change as a function of target crystallographic texture. This variable sputter rate across a target surface causes film thickness uniformity problems and also produces unwanted surface topography in the form of ‘ridging’, which in turn is believed to cause micro-arcing.


[0008] This invention uses a series of deformation techniques, with a minimum of three (3) intermediate, high-temperature inert-atmosphere anneals, preferably vacuum, to produce a combination of fine-grain size (mean <100 μm) tantalum targets with a uniform, predominately {111}<uvw> texture throughout the target thickness, until now unseen in the industry today. ‘Uniform texture throughout the target thickness’ refers to a homogeneous distribution of textural components with no visible banding at a resolution of 20× from the target surface to at least mid-thickness. ‘Inert’ refers to an atmosphere that is non-reactive with the tantalum-comprising mass.


[0009] Experiments associated with this invention also revealed that by controlling the annealing temperature the most desirable texture for collimated sputtering, the (111) texture, can be generated. The (111) texture is the only texture that has one of the close-packed directions aligned normal to the target surface. This direction is a dominant emission direction and is, therefore, the texture required for collimated sputtering.


[0010] The high-purity tantalum material of the present invention is preferably 3N5 (99.95%) pure and comprises less than 500 ppm total metallic impurities, excluding gases. The methods of chemical analysis used to derive the chemical descriptions set forth herein are the methods known as glow discharge mass spectroscopy (GDMS) for metallic elements and LECO gas analyzer for non metallic elements.


[0011] For the purposes of this invention, the term “sputtering target” covers not only sputtering targets in the traditional sense, but also any other component within the sputtering chamber that is likely to sputter.







BRIEF DESCRIPTION OF THE DRAWINGS

[0012]
FIG. 1 is a photograph of a used high purity tantalum sputtering target with a non-uniform texture throughout the target thickness.


[0013]
FIG. 2 is a cross-sectional EBSD image of a conventionally processed, severely banded sputtered tantalum target.


[0014]
FIG. 3 is a schematic of the process of the present invention.


[0015]
FIG. 4 is a cross-sectional EBSD image of a conventionally processed (Process 2), severely banded high-purity tantalum sputter target.


[0016]
FIG. 5 is a cross-sectional EBSD image of a conventionally processed (Process 3), high-purity tantalum sputtering target.


[0017]
FIG. 6 is a cross-sectional EBSD image of a high-purity tantalum sputter target manufactured by Process 4.


[0018]
FIG. 7 is a cross-sectional EBSD image of a high-purity tantalum sputter target manufactured by Process 7.


[0019]
FIG. 8 is a cross-sectional EBSD image of a high-purity tantalum sputter target manufactured by the process of the present invention (Process 12).


[0020]
FIG. 9(a) is a photograph of the experimental sputtering targets manufactured by the conventional method (Process 4).


[0021]
FIG. 9(b) is a photograph of an experimental sputtering target manufactured by the process of the present invention (Process 12).







DETAILED DESCRIPTION

[0022] Electron beam (EB), Vacuum Arc Melted (VAR) or other vacuum melted tantalum ingots are deformed perpendicular to the ingot centerline to break up the as-cast grain microstructure. This deformation can be forging, rolling or extrusion whereby significant cross-sectional area or thickness reduction takes place. The reduction in cross-sectional area should be greater than a reduction ratio of 3:1 (cross-sectional area of ingot to cross-sectional area of the forged billet), or equivalent to no less than about 40% strain reduction from starting thickness to final thickness. The forged billet should then be annealed in an inert atmosphere, preferably vacuum, at a high temperature (1500 F.-2800 F.), preferably between 2200 F. and 2400 F., in order to achieve a recrystallized microstructure. The resulting billet/plate is then deformed no less than an additional 35%, preferably 45-65%, of its thickness and subjected to a second high-temperature inert atmosphere anneal between 1500 F. and 2800 F., preferably between 2200 F. and 2400 F. The process of the present invention comprises an additional deformation step with a strain >60% followed by a final inert-atmosphere anneal (1500 F.-2800 F.) to recrystallize the microstructure to the desired fine grain size. FIG. 3 is a schematic of the invented process. The deformation directions to achieving the desired results. The process of this invention preferably utilizes no less than three deformation steps and no less than three inert-atmosphere anneal steps from ingot to final target plate thickness in order to achieve the desired results. Three or more deformation and intermediate inert-atmosphere, high-temperature annealing stages are more likely to eliminate grain size and textural banding while maintaining a mean grain size of less than 100 microns than would less than 3 deformation and annealing stages.



EXAMPLE 1

[0023] Twelve high-purity tantalum ingots were processed according to conventional methods or the process of this invention. The parameters for each experiment and the corresponding grain size and texture results are summarized in Table 1. Texture uniformity was measured by cutting samples from the target and analyzing them using an EBSD system on a scanning electron microscope (SEM). The mapped area was 7 mm×7 mm and was measured from the target surface to at least the plate mid-thickness. The lighter areas depict {111}<uvw> textures and the darker areas depict {100}<uvw> textures.


[0024] The ingots processed by conventional methods (Processes 1 through 7) exhibited a banded microstructure in both grain size and texture. FIGS. 4, 5, 6 and 7 illustrate the extent of this banding. The ingots manufactured by the invented process (Processes 8 through 12) have a strong {111}<uvw> textures with a random distribution of {100}<uvw> textures. FIG. 8, which represents product of the present invention, shows a high degree of textural uniformity throughout the target cross-section, with no banding.


[0025] Although the experimental data shows the grain size results to be less than about 50 μm it is expected that a grain size of less than 100 μm will produce similar sputtering results, so long as the texture is uniform throughout the target thickness.
1TABLE 1Process 1Process 2Process 3Process 4Process 5Process 6ConvenConvenConvenConvenConvenConvenIngot Melting ProcessVARE-BeamE-BeamE-BeamE-BeamE-BeamPurity4N4N3N53N54N3N8Ingot break-up (Stage 1NoneNone>40%>40%None>40%deformation)High-temperature, inert-NoNoNoYesNoYesatmosphere anneal?Stage 2 deformation>40%>40%>40%>40%>40%>40%High-temperature, inert-YesYesYesYesYesNoatmosphere anneal?Stage 3 deformation>60%>60%High-temperature, inert-YesYesatmosphere anneal?Number of anneals111222Mean grain size (μm)BandedHeavy35 μm55 μmBanded30 μm50-250 μmBanding50-200 μm100-250 μmTexture DescriptionMixedMixed (111)Mixed (111)(111) withMixed (111)Mixed (111)(111) && (100),& (100),banded (100)& (100),& (100),(100),bandedbandedbandedExtremebandedbandedTexture uniformityVery PoorVery PoorPoorPoorPoorVery Poorthrough thicknessProcess 7Process 8Process 9Process 10Process 11Process 12ConvenInventionInventionInventionInventionInventionIngot Melting ProcessE-BeamE-BeamE-BeamE-BeamE-BeamE-BeamPurity3N83N83N84N3N83N8Ingot break-up (Stage 1>40%>40%>40%>40%>40%>40%deformation)High-temperature, inert-YesYesYesYesYesYesatmosphere anneal?Stage 2 deformation>40%>40%>40%>40%>40%>40%High-temperature, inert-NoYesYesYesYesYesatmosphere anneal?Stage 3 deformation>60%>60%>60%>60%>60%>60%High-temperature, inert-YesYesYesYesYesYesatmosphere anneal?Number of anneals233333Mean grain size (μm)37 μm35 μm51 μm45 μm39 μm22 μmTexture Description(100) atStrong (111)Strong (111)Strong (111)Strong (111)Strong (111)surface andwith randomwith randomwith randomwith randomwith random(111) atdistributiondistributiondistributiondistributiondistributioncenterlineof (100)of (100)of (100)of (100)of (100)Texture uniformityPoorGoodExcellentExcellentExcellentExcellentthrough thickness



EXAMPLE 2

[0026] Sputter trials were conducted on a conventional high-purity tantalum target and a target processed according to this invention in order to compare the sputtering characteristics. FIG. 9(a) and FIG. 9(b) are photographs of the used conventional and invented targets, respectively. The conventional target exhibits extensive surface roughness which is associated with non-uniform sputtering. This surface ‘ridging’ in turn increases the likelihood of micro-arcing and sputter film non-uniformity. In contrast, the target processed according to this invention exhibits a smooth evenly-sputtered surface.


[0027] In FIG. 2, it can be clearly seen that areas of {100}<uvw> type textures sputter at a greater rate than {111}<uvw> type textures. Thus, any textural non-uniformity at the target surface will produce surface ‘ridges’, which have an increased likelihood of causing micro-arcing.



SUMMARY OF THE INVENTION

[0028] In accordance with the present invention there is provided a processing route for producing high purity tantalum sputtering targets with a mean fine grain size of less than 100 microns and uniform crystallographic texture throughout the target thickness.


[0029] The method comprises forging, rolling and annealing high-purity, vacuum-melted tantalum ingots in such a way as to eliminate remnant as-cast grain structure, and produce a homogeneous fine-grain size (mean <100 μm) microstructure with a uniform, predominately {111}<uvw> texture throughout the thickness of the target. Significant sputtering problems have been reported when the texture of the target is not uniform throughout the target thickness. Sputtering rates and film deposition rates change as a function of target crystallographic texture. This variable sputter rate across a target surface causes film thickness uniformity problems and also produces unwanted surface topography in the form of ‘ridging’, which in turn is believed to cause micro-arcing.


[0030] This invention uses a series of deformation techniques, with a minimum of three (3) intermediate, high-temperature inert-atmosphere anneals, preferably vacuum, to produce a combination of fine-grain size (mean <100 μm) tantalum targets with a uniform, predominately {111}<uvw> texture throughout the target thickness, until now unseen in the industry today. ‘Uniform texture throughout the target thickness’ refers to a homogeneous distribution of textural components with no visible banding at a resolution of 20× from the target surface to at least mid-thickness. ‘Inert’ refers to an atmosphere that is non-reactive with the tantalum-comprising mass.


[0031] Experiments associated with this invention also revealed that by controlling the annealing temperature the most desirable texture for collimated sputtering, the (111) texture, can be generated. The (111) texture is the only texture that has one of the close-packed directions aligned normal to the target surface. This direction is a dominant emission direction and is, therefore, the texture required for collimated sputtering.


Claims
  • 1. A method for producing a tantalum sputtering target comprising a minimum of three stages each of which comprise a deformation step followed by an inert atmosphere high-temperature anneal.
  • 2. A method for producing a tantalum sputtering target, comprising: providing an initial tantalum-comprising mass; first deforming the initial tantalum-comprising mass to form a first deformed mass, the first deforming comprising reducing a thickness of the mass; annealing the first deformed mass at a first temperature of at least about 1500° F.; second deforming the tantalum-comprising mass to form a second deformed mass, the second deforming comprising reducing a thickness of the first deformed mass; annealing the second deformed mass at a second temperature of at least about 1500° F.; third deforming the second deformed tantalum-comprising mass to form a third deformed mass, the third deforming comprising reducing a thickness of the second deformed mass; annealing the third deformed mass at a third temperature of at least about 1500° F.
  • 3. The method of claim 2 wherein the first, second and third temperatures are different from one another.
  • 4. The method of claim 2 wherein the first deforming comprises reducing the thickness of the mass by at least about 40%.
  • 5. The method of claim 2 wherein the second deforming comprises reducing the thickness of the first deformed mass by at least about 35%.
  • 6. The method of claim 2 wherein the third deforming comprises reducing a thickness of the second deformed mass by at least about 60%.
  • 7. The method of claim 2 wherein the initial tantalum-comprising mass is in the form of an ingot and wherein the third deformed mass has a thickness corresponding to a plate thickness of the tantalum sputtering target formed from the ingot.
  • 8. A method of claim 2 wherein said deformation of said tantalum ingot is carried out by forging, rolling or extrusion.
  • 9. A method for producing a tantalum sputtering target, comprising: providing a tantalum-comprising mass having a first thickness; reducing the thickness of the tantalum-comprising mass from the first thickness to a second thickness; and after reducing the thickness of the tantalum-comprising mass to the second thickness, first annealing the mass at a first temperature of at least about 1500° F.; reducing the thickness of the tantalum-comprising mass from the second thickness to a third thickness; and after reducing the thickness of the tantalum-comprising mass to the third thickness, second annealing the mass at a second temperature of at least about 1500° F.; and reducing the thickness of the tantalum-comprising mass from the third thickness to a fourth thickness; and after reducing the thickness of the tantalum-comprising mass to the fourth thickness, third annealing the mass at a third temperature of at least about 1500° F.
  • 10. The method of claim 9 wherein the mass is exposed to a first ambient during the first annealing, is exposed to a second ambient during the second annealing, and is exposed to a third ambient during the third annealing; the first, second and third ambients consisting of components which are inert relative to reaction with the tantalum-comprising mass.
  • 11. A tantalum sputtering target comprising a mean grain size of less than about 100 microns and a uniform texture throughout the target thickness.
  • 12. A tantalum sputtering target comprising a mean grain size of less than about 50 microns and a uniform texture throughout the target thickness.
  • 13. A tantalum sputtering target according to claim 2 wherein said texture is predominately {111}<uvw>.
  • 14. A sputtering target according to claim 9 wherein the tantalum purity is at least 99.95%, excluding gases.
  • 15. A thin film of tantalum produced by a sputtering target according to claim 2.
Provisional Applications (2)
Number Date Country
60236091 Sep 2000 US
60236110 Sep 2000 US
Divisions (1)
Number Date Country
Parent 09497079 Feb 2000 US
Child 09999095 Oct 2001 US