Tape-shaped label printing device

Information

  • Patent Grant
  • 6709179
  • Patent Number
    6,709,179
  • Date Filed
    Wednesday, September 26, 2001
    23 years ago
  • Date Issued
    Tuesday, March 23, 2004
    20 years ago
Abstract
A tape cassette is used in a printing device with a drive shaft. The tape cassette includes a cassette casing which houses a printing tape and defines a feed path through which the tape moves in a feeding direction. The cassette casing includes a head recess adapted to receive a print head of the printing device. The cassette casing forms a generally rectangular shape that is bounded by four corners, but also includes a recess for receiving the drive shaft adjacent a first corner of the four corner of the cassette casing downstream of, and spaced from, the head recess in the feed direction. The cassette casing defines a first positioning hole adjacent the drive shaft and a second positioning hole spaced from the drive shaft, the first and second positioning holes each communicating with a corresponding pin of the printing device to ensure a proper positioning of the cassette casing within the printing device. A detector surface is located on the cassette casing and is adapted to interact with an array of sensors on the printing device to identify at least one characteristic of the tape cassette. The detector surface is positioned at a second corner of the four corners of the cassette casing most distant from the first corner.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a tape-shaped label printing device, and more particularly, to a tape-shaped label printing device capable of setting accurate print start position so as to perform several times of printings on an identical region of a tape printing medium by rewinding the tape and repeatedly performing printing.




One conventional tape-shaped label printing device is described in a commonly assigned U.S. Pat. No. 5,232,297 in which characters and marks such as alphabetic characters and symbols are printed on a tape printing medium and a resultant printed tape is suitable for making labels to adhere to file tabs. This tape-shaped label printing device includes a keyboard, a display, and a printing mechanism of the thermal printing type, and is configured to print characters, marks, and the like in a variety of font styles and sizes on a printing tape medium of widths such as 6, 9, 12, 18, and 24 mm.




Further, in the conventional label printing device, a tape cutting mechanisms is provided at a position downstream a thermal head in a tape feeding direction. Further, a length of a front margin and a rear margin can be set. After starting printing operation while feeding the tape in the tape feeding direction, if a distance between a tape cutting position of the tape cutting mechanism and a print start position becomes equal to a length of the front margin, the tape feeding is temporarily stopped and the tape is cut, and thereafter, the subsequent printing operation is performed.




Attempt was made on a conventional tape-shaped label printing device so as to be able not only to feed the printing tape, but also to rewind the printing tape. For example, after printing characters, symbols, and the like on the printing tape, the tape can be rewound to the print start position or a print start point of origin, and a second array of characters, symbols, and the like can be printed over the first printing area. In this way, a synthesized characters, or characters decorated with designs can be produced in the tape-shaped label.




Further, the tape-shaped labels printed with character arrays are not limited to use on file tabs. These labels are also appropriate for sticking on cassettes and their cases, or video tapes and their cases, for example. In such a case, multiple colored character arrays may be intended in accordance with recorded data and kind by repeatedly performing tape rewinding and tape printing process.




The inventors of the present application conceived the idea to provide a plurality of ribbon cassettes, separate from the tape cassette, with ink ribbons of not only black, but a plurality of colors such as red, green, and blue. Each of the ribbon cassettes is detachably mounted to the tape cassette, and the printing is made by the desired colors. A color range setting process is performed with respect to the input text data so as to make correspondence with the selected character array of the input text data with the color which has been set. The ribbon cassettes having the same ribbon color as the set printing colors are exchanged in sequence during the printing process.




During first printing operation with first ribbon cassette for printing an image with the first color, the tape is cut to obtain the predetermined amount of front margin. In the second and subsequent time of printing, the printing tape is rewound by a length corresponding to the feeding length of the tape in the preceding printing. In this way, can be produced a label printed with a synthesized characters, characters with colorful designs and characters with multiple colors.




In order to produce a label printed with the synthesized characters, patterns or characters with multiple colors, the identical region of the tape is repeatedly subjected to printing. Further, in the first printing operation, tape cutting is performed to obtain a preset front margin length. Therefore, in the second and subsequent time of printing operation, the printing tape must be rewound at high speed by a length corresponding to the tape feed amount in the precedent first printing operation. During rewinding operation, accurate rewinding amount may not be obtained due to the slippage between a platen roller and the printing tape. Further, the printing operation begins immediately after completion of the rewinding operation. As a result, print start position may not be accurate due to the backlash of a plurality of gears which constitutes the tape transfer mechanism.




SUMMARY OF THE INVENTION




It is therefore, an object of the present invention to provide a tape-shaped label printing device capable of accurately setting a print start point of origin in each printing in case the printing tape must be rewound at every printing so as to perform repeated printing by several times with respect to an identical region of the printing tape, and also capable of providing an accurate front margin length.




Another object of the present invention is to provide such device in which the printing tape can be cut while providing a present front margin length in a case where repeated printing are performed at the identical area of the printing tape.




These and other objects of the present invention will be attained by providing a tape-shaped label printing device for printing an image on a tape printing medium comprising a tape transfer mechanism, printing means, control means, tape detection means, and setting means. The tape transfer mechanism is adapted for alternatively transferring the tape printing medium in a tape feeding direction or a tape rewinding direction. The tape transfer mechanism provides a tape transfer passage having a downstream end. The printing means has a print head and is disposed at the tape transfer passage for printing the image onto the tape printing medium. The control means is adapted for controlling a printing process. The tape detection means is adapted for detecting the tape at a position nearby the downstream end of the tape transfer passage. The setting means is adapted for setting a particular tape portion as a point of origin for starting a printing operation thereat. The particular tape portion is a portion in confrontation with the print head when a predetermines position of the tape is detected by the tape detection means.




In another aspect of the present invention, there is provided a tape-shaped label printing device for printing an image on a tape printing medium comprising a tape transfer mechanism, printing means, a tape cutting mechanism, setting means, and control means. The tape transfer mechanism is adapted for alternatively transferring the tape printing medium in a tape feeding direction or a tape rewinding direction. The tape transfer mechanism provides a tape transfer passage having a downstream end portion. The printing means has a print head defining a printing position. The printing means is disposed at the tape transfer passage for printing the image onto the tape printing medium. The tape cutting mechanism is adapted for cutting the tape printing medium at a position nearby the downstream end of the tape transfer passage. The setting means is adapted for setting a cut position of the tape printing medium at a position downstream of the printing position. The cut position becomes a leading end of a front margin. The control means is adapted for controlling the tape transfer mechanism at an initial tape feeding period of a final time printing of a plurality of times of printing on an identical portion of the tape printing medium, so that a transfer of the tape printing medium in the feeding direction is stopped when the cut position imparted on the tape printing medium by the setting means reaches the tape cutting mechanism.











BRIEF DESCRIPTION OF THE DRAWINGS




In the drawings;





FIG. 1

is a plan view of a tape-shaped label printing device;





FIG. 2

is a plan view of a thermal printing mechanism in the printing state;





FIG. 3

is a plan view of the thermal printing mechanism in the tape rewinding state;





FIG. 4

is a plan view of a tape cassette mounted with a ribbon cassette;





FIG. 5

is a plan view of the tape cassette;





FIG. 6

is a plan view showing an internal arrangement of the ribbon cassette:





FIG. 7

is a rear perspective view of the ribbon cassette and tape cassette;





FIG. 8

is a perspective view of the ribbon cassette;





FIG. 9

is a plan view of a drive system of the thermal printing mechanism in the printing state;





FIG. 10

is a vertical cross-sectional front view of an essential portions of

FIG. 9

showing gear engaging relation;





FIG. 11

is a plan view of the drive system in the tape rewinding state of the thermal printing mechanism;





FIG. 12

is a vertical cross-sectional side view of an essential portion when the cassette cover is closed;





FIG. 13

is a vertical cross-sectional side view of the essential portions when the cassette cover is open;





FIG. 14

is a side view of a thermal printing mechanism, showing the tape cutting mechanism;





FIG. 15

is a plan view of the drive system of the thermal printing mechanism in the tape cutting permission state;





FIG. 16

is a block diagram of a control system of the tape-shaped label printing device;





FIG. 17

is a general flow chart of the multi-color printing control routine;





FIG. 18

is a flow chart of the process control for setting the printing color sequence routine;





FIG. 19

is a flow chart of the process control for setting the printing target range routine for each color;





FIG. 20

is a flow chart of the process control for setting the final printing color with respect to the remaining character array;





FIG. 21

is a flow chart of the print start process control routine;





FIG. 22

is a flow chart of the process for setting the color routine;





FIG. 23

is a flow chart of the printing tape rewinding process control routine;





FIG. 24

is a flow chart of the print start position alignment process control routine;





FIG. 25

is a flow chart of the final color printing process and cutting process control routine;





FIG. 26

is an explanatory diagram showing the positioning relationship between the printing position (P position), the tape cutting position (C position), and the tape detection position (S position);





FIG. 27

is an explanatory diagram showing the data configuration of the text memory;




FIG.


28


(


a


) is an explanatory diagram of the print start point of origin on the tape;




FIG.


28


(


b


) is an explanatory diagram showing the point at which the tape has been supplied by the length of the front margin;




FIG.


26


(


c


) is an explanatory diagram showing the point at which the tape has been further supplied by the distance of the idle feeding;





FIG. 29

is a plan view of the tape-shaped label printed in the three colors red, green, and black; and





FIG. 30

is a plan view similar to

FIG. 2

showing a modified embodiment in which a tape detection sensor is positioned upstream of the tape cutting mechanism in a tape feeding direction.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A tape-shaped label printing device according to one embodiment of the present invention will be described with reference to

FIGS. 1 through 29

. The device is particularly available for printing characters, symbols, and the like in a plurality of colors on a printing tape which is a printing medium by exchanging a plurality of ribbon cassettes each with a different ribbon color.




As shown in

FIG. 1

, a keyboard


4


is arranged on the front portion of the main cover


2


of a tape-shaped label printing device


1


. The keyboard


4


is provided with various function keys and includes keys such as character keys, symbol keys, and numeric keys. Immediately behind the keyboard


4


, a liquid crystal display


5


capable of displaying the input characters, symbols, and the like is provided. A thermal printing mechanism


10


containing a thermal head


12


is provided within the main cover


2


. The thermal head


12


is provided at a position corresponding to a cassette cover


3


, which is opened and closed to allow exchanging of ribbon cassettes


30


. A slide knob


6


is provided slidably for opening the cassette cover


3


. A cutting knob


85


is also provided, which is pressed down for manually cutting a printing tape


22


which has been printed on.




Next, a tape cassette


20


will be described with reference to

FIGS. 2 through 7

. The tape cassette


20


is detachably mounted on the thermal printing mechanism


10


which will be described later with reference to

FIGS. 2 through 8

.




A tape spool


23


is rotatably provided on the inside of a tape case


21


of the tape cassette


20


. A printing tape


22


formed of a thin film is wound around the tape spool


23


. The printing tape


22


supplied from the tape spool


23


is moved in the tape feeding direction by a tape feeding roller


24


while being guided in a curved passage by a plurality of guides, passing directly in front of the thermal head


12


, and discharged out of the tape cassette


20


.




As shown in

FIG. 7

, a pair of guide shafts


21




a


and


21




b


are provided at positions spaced away from each other for supporting a ribbon cassette


30


. Each lower end portion of the guide shaft


21




a


,


21




b


is provided integrally with an outer peripheral wall of the tape cassette


20


. The ribbon cassette


30


is slidably movable in a vertical direction along the guide shafts


21




a


,


21




b


and is supported thereby for exchanging the ribbon cassette


30


with a new ribbon cassette. Further, a pair of lower end walls


21




c


and


21




d


(

FIG. 5

) are formed on the tape case


21


for supporting the lower-surface of the ribbon cassette


30


. A notch


21




e


is formed at a corner portion of the tape case


21


.




Next, the ribbon cassette


30


, which is removably mounted on the tape cassette


20


, will be described with reference to

FIGS. 2 through 8

. The ribbon cassette


30


includes a ribbon case


31


which is integrally provided with an upper wall


31




a


extending horizontally and adapted to contact with the top wall of the tape case


21


. A pair of engaging feet


31




b


and


31




c


, each having a through-hole running through its entire length, extend integrally from the lower surface of the upper wall


31




a


and at edge portions thereof to fit around the pair of guide shafts


21




a


and


21




b


of the tape case


21


. A vertical wall


31




d


is integrally suspended from the upper wall


31




a


. The vertical wall


31




d


is in contact with the notch


21




e


of the tape case


21


. A head accommodating portion


37


(

FIG. 6

) is formed on the ribbon cassette


30


to accommodate the thermal head


12


, which is inserted from below and-passed through the tape cassette


20


when the tape cassette is mounted on the printing device


1


.




In addition, the inner portion of the ribbon case


31


is rotatably provided with a ribbon spool


33


around which the ink ribbon


32


is wound, and a take-up spool


34


for taking up the ink ribbon


32


. Through an ink ribbon passage provided in; the ribbon cartridge


30


, the ink ribbon


32


winding over the ribbon spool


33


extends in parallel with and in the vicinity of the printing tape


22


when the ink ribbon


32


is placed against the thermal head


12


, and the ink ribbon is bent in an approximate acute angle at a separation portion


35




a


of a separation member


35


provided integrally with the ribbon case


31


. Thus the ink ribbon


32


is separated from the printing tape


22


and taken up by the ribbon take-up spool


34


. The separation member


35


of the ribbon case


31


is positioned on the downstream side of the thermal head


12


in the tape feeding direction. A lid


31




e


is provided on the ribbon case


31


to support the ribbon spool


33


, the take-up spool


34


, and the separation member


35


, etc.




A ribbon cassette accommodating portion


21




f


for accommodating the ribbon cassette


30


is formed in the tape case


21


as shown in FIG.


7


. Tabs


31




f


and


31




g


are provided on the upper surface of the lid


31




e


and upper wall


31




a


of the ribbon case


31


, respectively. When printing, the tape case


21


is first mounted in a recessed portion (not shown) formed in the main cover


2


, and then, the ribbon cassette


30


having the desired color of ink ribbon


32


can be mounted in the ribbon cassette accommodating portion


21




f


of the tape case


21


. In mounting the ribbon cassette


30


in the ribbon cassette accommodating portion


21




f


, while grasping each of the tabs


31




f


and


31




g


with two fingers, the engaging legs


31




b


and


31




c


are fitted around their corresponding guide shafts


21




a


and


21




b


via the holes running through the engaging legs


31




b


and


31




c


, and the ribbon cassette


30


is moved downward so that it is received in the ribbon cassette accommodating portion


21




f


. At this time, the upper wall


31




a


of the ribbon case


31


is resting on the top surface of the tape cassette


20


, while the-lower end of the ribbon cassette


30


is brought into abutment with the pair of lower end walls


21




c


and


21




d


of the tape case


21


from above, and the ribbon cassette


30


is held in a desirable position relative to the tape case


21


.




With colors such as red, green, yellow, and black and ribbon widths such as 12, 18, 24, and 32 mm, a plurality of varieties of ink ribbons


32


have been prepared for the ribbon cassette


30


. A group of detection holes


36


made up of a maximum of six detection holes


36




a


(the ribbon cassette of

FIG. 6

only shows one detection hole


36




a


for simplicity) are formed on a lower horizontal end portion of the vertical wall


31




d


on the ribbon case


31


for allowing detection of any one of these plurality of varieties of ribbon cassettes


30


.




Next, a tape/ribbon transfer mechanism


40


will be described with reference to FIG.


9


. The tape/ribbon transfer mechanism


40


can move the printing tape


22


and the ink ribbon


32


in the feeding direction, i.e., the printing direction, and in the rewinding direction, i.e., the direction-opposite to the printing direction.




Supported rotatably on the main frame


11


are a tape take-up cam


41


engageable with the center portion of the tape spool


23


, a ribbon take-up can


42


engageable with the center portion of the ribbon take-up spool


34


, and a tape drive cam


43


engageable with the center portion of the tape feed roller


24


. The main frame


11


is provided with the thermal head


12


, and also with a group of ribbon detection switches


103


, including detection switches No. 1 through No. 6, for detecting the existence of the six detection holes


36




a


in the previously mentioned group of detection holes


36


. A ribbon detection signal RS is adapted to be output according to the combination of switch signals from these six detection switches. The cassette detection means is thus constructed by the group of ribbon detection switches


103


and the group of detection holes


36


.




Further, a tape drive motor


44


such as a stepper motor is installed on the right front end portion of the main frame


11


. Gears


46


through


53


, each rotatably supported on the main frame


11


are interlocked sequentially with a drive gear


45


of the tape drive motor


44


. A gear


55


and a tape drive gear


54


coupled to the tape drive cam


43


are meshedly engaged with the gear


53


. Among these gears, gears


48


and


49


are provided integrally and are fixed to the lower end-portion of the ribbon take-up cam


42


. Gears


50


and


51


are provided integrally. Additionally, tape take-up gear


52


is fixed to the lower end portion of the tape take-up cam


41


. Thus, the rotation of the tape drive motor


44


is transmitted to the tape drive cam


43


fixed to the tape drive gear


54


via the gears


45


through


54


. Accordingly, the printing tape


22


is fed in the feeding direction by the rotation of the tape feed roller


24


.




A swing lever


56


is provided. The swing lever


56


has a base portion supported in a space between the gears


50


and


51


integral therewith., An appropriate amount of frictional resistance is provided between the swing lever


56


and the two gears. The swing lever


56


is rotatably provided with a planet gear


57


continuously engaged with the gear


51


.




The gear


53


has a rotation shaft


58


to which-a base end portion of a cut-restricting lever


84


is urgedly supported. That is, the cut-restricting lever


84


supports thereon a torsion spring


59


, and one end of the torsion spring and the base end of the lever


84


interpose therebetween the shaft


58


, so that the base end of the cut-restricting lever


84


is urgedly pressed against the shaft


58


by the biasing force of the torsion spring


59


.




As shown in

FIG. 9

, when the tape drive motor


44


is driven in a clockwise direction for normal printing operation, the gear


50


rotates in a clockwise direction. In this case, the swing lever


56


is pivoted in a clockwise direction about an axis of the gear


51


because of the frictional force in association with the gears


50


and


51


. Consequently, the planet gear


57


is disengaged from the tape take-up gear


52


to render the tape take-up cam


41


free. Accordingly, the printing tape


22


wound over the tape spool


23


can be paid out (no take-up force is imparted to the take-up cam


41


). At the same time, the gear


53


is rotated in a counterclockwise direction, so that the cut restricting lever


84


is pivoted about an axis of the shaft


53


in a counterclockwise direction. Consequently, the end portion of the cut restricting lever


84


is brought into a position immediately below a cutting lever


82


described later, thus restricting cutting operations. At the same time, because of the rotation in a counterclockwise direction of the ribbon drive gear


48


, the ribbon take-up cam


42


is also rotated in the counterclockwise direction, via a clutch spring


60


. Therefore, the ink ribbon


32


is taken up by the ribbon take-up spool


34


.




A roller holder


67


for rotatably supporting a rubber platen roller


65


and a rubber tape feeding sub-roller


66


is pivotably supported on the main frame


11


by a pivot shaft


68


. A release lever


71


is provided movably in the leftward and rightward direction in interlocking relation to the opening and closing motion of the cassette cover


3


. The release lever


71


changes its position between a printing position shown in

FIG. 9 and a

release position shown in FIG.


11


. The roller holder


67


is normally biased toward its release position by a spring (not shown). A wheel roller


72


rotatably attached to the release lever


71


is in contact with an upstanding wall


11




a


of the main frame


11


. At the same time, a free end of the release lever


71


is in contact with the roller holder


67


from the rear side.




Therefore, when the release lever


71


is moved in the left direction from a release position shown in

FIG. 11

to an operating position shown in

FIG. 9

, the left end of the release lever


71


is wedged between the roller holder


67


and the upstanding wall


11




a


, so that the roller holder


67


is changed from its release position to its printing position. At this time, the platen roller


65


presses against the thermal head


12


through the printing tape


22


and the ink ribbon


32


, and the tape feeding sub-roller


66


presses against the tape feeding roller


24


through the printing tape


22


as also shown in FIG.


2


.




When the roller holder


67


is changed to the printing position, a platen gear (not shown) fixed to the lower end portion of the platen roller


65


is brought into meshing engagement with the gear


55


, and a sub-roller gear (also not-shown) fixed to the lower end portion of the tape feeding sub-roller


66


is brought into meshing engagement with the tape drive gear


54


.




Next, a head release mechanism


70


will be described with reference to FIG.


9


and

FIGS. 11 through 13

. The head release mechanism is adapted to move the platen roller


65


and the sub-roller


66


away from the thermal head


12


and the tape feed roller


24


so as to allow reversal or rewinding movement of the tape


22


. To this effect the head release mechanism moves the roller holder


67


to its release position with respect to the thermal head


12


by moving the release lever


71


rightwardly in accordance with the opening movement of the cassette cover


3


.




As shown in

FIGS. 12 and 13

, the rear portion of the cassette cover


3


is supported in a plurality of places by the pivotal pin


7


attached on the main cover


2


, so that the cassette cover


3


can open and close. A curved, grooved cam


3




b


is formed on the right side wall


3




a


of the cassette cover


3


. An operation plate


74


is positioned on the right, underside of the main frame


11


, and an engaging pin


75


engageable with the grooved cam


3




b


is fixed to the rear end portion of the operation plate


74


. The right end portion of the release lever


71


is pivotally supported on one arm of a forked lever


76


. The forked lever


76


has the other arm connected to the operation plate


74


via a pin


77


fixed to the front end portion of the operation plate


74


. A cover open and close detection switch


102


is provided at a position in confrontation with the operation plate


74


.




In a state where the cassette cover


3


is closed as shown in

FIG. 12

, in other words, in a state where the roller holder


67


is in the printing position shown in

FIG. 9

, if the cassette cover


3


is then opened as shown in FIG.


13


, the engaging pin


75


engaged with the grooved cam


3




b


is moved rearwardly by the movement of this grooved cam


3




b


. Therefore, the operation plate


74


is moved rearwardly, and the forked lever


76


is pivoted in the counterclockwise direction. As a result, the roller holder


67


is moved rightwardly so that the roller holder


67


is changed to the release position. When the operation plate


74


is moved rearwardly, a cover open and close signal VS of “H” level is output from the cover open and close detection switch


102


.




Further, when the cassette cover


3


is in the open position shown in

FIG. 13

, in other words, when the roller holder


67


is in the release position shown in

FIG. 11

, and the cassette cover


3


is then closed, as shown in

FIG. 12

, the engaging pin


75


is moved frontwardly by the movement of the grooved cam


3




b


. Therefore, the operation plate


74


is moved frontwardly, and the forked lever


76


is pivoted in the clockwise direction from the position shown in FIG.


11


. Thus, the roller holder


67


is changed to the printing position, or non-release condition, in response to the movement of the release lever


71


in the leftward direction.




As shown in

FIGS. 2 and 9

, for performing printing operation, the tape cassette


20


is first mounted on the thermal printing mechanism


10


. Then, the ribbon cassette


30


is mounted on the tape cassette


20


. When the cassette cover


3


is closed, the roller holder


67


is shifted to the printing position. From this position, when the tape drive motor


44


is driven in its normal printing direction, i.e., in clockwise direction, each of the gears


45


through


55


is driven to rotate in its prescribed direction. The platen roller


65


and the tape feeding sub-roller


66


are each rotated in the counterclockwise direction. Further, because the tape feeding sub-roller


66


and the tape feeding roller


24


are in synchronous rotation, the tape passes by a tape cutting mechanism


80


and a tape detection unit


90


, those described later, and is discharged outside, while the printing tape


22


is being printed on by the thermal head


12


. During this time, the tape take-up cam


41


is free, and, therefore, the printing tape wound over the tape spool


23


is continually supplied in the tape feeding direction with no resistance. At the same time, and at the same pace as the printing tape


22


, the ink ribbon


32


is supplied from the ribbon spool


33


by the rotating motion of the platen roller


65


. The ink ribbon


32


is then taken up by the ribbon take-up spool


34


engaged with the ribbon take-up cam


42


which is rotated by the ribbon take-up gear


48


.




After the-printing with the first color is completed and the second color is to be printed, the cassette cover


3


is released. In a state where the ribbon cassette


30


is removed from the tape cassette


20


, the roller holder


67


is changed to the release position by the head release mechanism


70


. Then, when the tape drive motor


44


is driven to rotate in the counterclockwise direction, (the tape rewinding direction), each of the gears


45


through


55


is driven to rotate in its prescribed direction, as shown in

FIGS. 3 and 11

. As a result of the gear


50


rotating in the counterclockwise direction, the swinging lever


56


is also pivoted in the counterclockwise direction to bring the planet gear


57


into meshing engagement with the tape take-up gear


52


. Accordingly, the tape take-up cam


41


is rotated in the counterclockwise direction. Thus, the printing tape


22


that has been printed once is taken up by the tape spool


23


. At this phase, the ribbon take-up gear


48


is driven in the clockwise direction. However, the ribbon cassette


30


has already been removed, and therefore, inadvertent reverse feeding of the ink ribbon


32


does not occur.




Next, a tape cutting mechanism


80


for cutting the printing tape


22


that has been printed will be described with reference to

FIG. 9

, FIG.


14


and FIG.


15


.




The main frame


11


has a left end wall


11




b


which is provided by partially bending downwardly the left end portion of the frame


11


, and a lower end of a fixed blade


81


is fixed to the left end wall


11




b


. A cutting lever


82


, which, from the side view, looks like an abbreviated L shape, has a base end portion pivotally supported by a screw


83


to the left end wall


11




b


. A movable blade


82




a


is formed on the cutting lever


82


. As shown in

FIG. 9

, during the printing process, gear


53


rotates in the counterclockwise direction, moving the end portion of the cut restricting lever


84


to the under side of the cutting lever


82


and, thus, restricting the cutting operation.




However, when printing is completed and the tape drive motor


44


is rotated only slightly in the rewinding direction, gear


53


is rotated slightly in the clockwise direction as shown in

FIG. 15

, displacing the end portion of the cut restricting lever


84


from underneath the cutting lever


82


to allow cutting operations. When the cutting button


85


on the end portion of the cutting lever


82


is pushed downward as shown in

FIG. 14

, the movable blade


82




a


is pivoted to the cutting position indicated by a two dotted chain line. The printing tape


22


positioned between the fixed blade


81


and the movable blade


82




a


is cut through the force of these two blades. A cutting detection switch


101


installed on the main frame


11


is operated by an operation member


86


installed on the cutting lever


82


and outputs a cutting detection signal CS. After releasing pressure on the cutting lever


82


, the cutting lever


82


is pivoted back to its original prescribed position indicated by the solid line, by urging force of a spring (not shown).




Next, the tape detection unit


90


will be described with reference to FIG.


2


. The tape detection unit


90


is provided on the outer side of the tape cutting mechanism


80


for detecting the existence of the printing tape


22


.




Guiding members


94


and


95


are provided integrally with main cover


2


at a position outside the tape cutting mechanism


90


. The guiding members


94


and


95


are designed to form a tightly sealed pair of sensor accommodating chambers


96


and


97


. A light emitting element


92


is installed in the sensor accommodating chamber


96


, while a light receiving element


93


is installed in the sensor accommodating chamber


97


. A slit


98


is formed between the pair of guiding members


94


and


95


to allow the printing tape


22


to pass therethrough. Light transmitting holes


94




a


and


95




b


having a small diameter are formed in the guide members


94


,


95


in alignment with each other. The slanted guides


99


are also formed at the confronting portions between the guide members


94


,


95


. The slanted guide portions


99


are positioned at upstream side of the guide members


94


,


95


. The slanted guides


94


defines gradually narrowing passage so that the leading end of the tape


22


can easily be introduced into the slit


98


. Therefore, the tape passing through the cutting mechanism


80


will reliably pass through this slit


98


, so that the printing tape


22


can be accurately detected.




At this point, the-light emitted from the light emitting element


92


passes through the light transmitting holes


94




a


and


94




b


formed in the sensor accommodating chambers


96


and


97


, and is received on the light receiving element


93


. Therefore, when the printing tape


22


proceeds into the tape detection sensor


91


, and the printing tape


22


is positioned between the light emitting element


92


and the light receiving element


93


, the light is interrupted by the printing tape. Thus, the tape detection sensor


91


outputs an “L” level tape detection signal TS.




The control system of the tape-shaped label printing device


1


is configured as shown in the block diagram of FIG.


16


. Connected to an input/output interface


113


of a control device CD are the keyboard


4


, the tape detection sensor


91


, the cutting detection switch


101


, the cover open and close detection switch


102


, the group of ribbon detection switches


103


, a display controller (LCDC) containing a video RAM for outputting display data to the liquid crystal display (LCD)


5


, a driver circuit


106


for a warning buzzer


105


, a driver circuit


107


for driving the thermal head


12


, and a driver circuit


108


for the tape drive motor


44


.




The control device CD includes a CPU


110


, the input/output interface


113


connected to the CPU


110


via buses


114


including a data bus, a font ROM


111


, a ROM


112


, and a RAM


120


. The font ROM


111


is adapted for storing dot pattern data for display, concerning all of the numerous characters, such as the alphabetic characters and symbols, and dot pattern data for printing in a plurality of printing character sizes.




The ROM


112


stores therein a display drive control program, a printing control program, a printing drive control program, and a control program. The display drive control program is adapted for controlling the display controller


104


to respond to the code data of alphabetic characters, symbols, numbers, and other characters those input from the keyboard


4


. The printing control program is adapted to create dot pattern data, for printing, of the characters, symbols, and the like stored in a text memory


121


. The printing drive control program is adapted for outputting the created dot pattern data for each row of dots in sequence to the thermal head


12


, the tape drive motor


44


, and the like for printing. The control program described later is adapted for controlling printing of multiple colors, which is a characteristic of this invention.




Incidentally, the ROM


112


stores a ribbon cassette detection table for detecting the color and width of the ink ribbon


32


, based on the ribbon detection signal RS output from the group of ribbon detection switches


103


, including detection switches Nos. 1 through 6.




The text memory


121


of the RAM


120


stores therein text data, such as alphabetic characters and symbols, input from the keyboard


4


, in correspondence to the data for the printing color selected. A color number memory


122


stores therein data of the number of printing colors inputted. A printing color sequence memory


123


stores therein data of the printing color sequence selected. A margin memory


124


stores therein data of the size of the margin selected, where the front or top margin and rear or bottom margin are identical to each other. A printing-data buffer


125


stores the developed dot pattern data corresponding to the character codes stored in the text memory


121


. Further, the RAM


120


is provided with a memory for temporarily storing such data as the results of computation by the CPU


110


.




Next, multi-color printing control routines carried out in the control device CD of the tape-shaped label printing device


1


will be described with reference to flow charts of

FIGS. 17 through 25

. Incidentally, the symbols Si (i=10, 11, 12 . . . ) in the flow charts indicate steps.




Before entering into a substantive description as to the multi-color printing control, an explanation will be given based on

FIG. 26

, which shows the tape detecting position by the tape detection sensor


91


, the tape cutting position by the tape cutting mechanism


80


, and the printing position by the thermal head


12


. Using the feeding direction T of the printing tape


22


and beginning on the upstream side with respect to the tape feeding direction, the positioning order is then the printing position (P position), the tape cutting position (C position), and the tape detection position (S position). The distance Dcp between the printing position P and the tape cutting position C is about 25 mm. The distance Dsc between the tape cutting position C and the tape detection position S is about 15 mm. Further, the separation position (B position), according to the separation portion


35




a


of the separation member


35


, is about 6 mm downstream from the printing position P in the feeding direction T.




In

FIG. 17

, when electrical power is supplied into the tape-shaped label printing device


1


, first an initialization process is performed in step S


10


to initialize the thermal printing mechanism


10


and the control device CD. Then, the text input screen is displayed on the display


5


. After setting printing styles, processes such as the input process for inputting text data and the display process for displaying the-input text are carried out. The input text data is stored in the text memory


121


in step S


11


. For example, as shown in

FIG. 27

input text data of “AB” “CDE” and “FG” are stored in the text memory


121


with a space “SP” between the neighboring character arrays.




After the step S


11


the routine goes into step S


12


where a process for setting the printing color sequence is executed as best shown in FIG.


18


. When this control begins, the message “Number of colors?” is displayed on the display


5


, and the process for setting the number of colors is executed to set the number N of colors by using the numeric keys. The number N of colors set is stored in the color number memory


122


in step S


30


. Next, the names of a plurality of colors are displayed in the display


5


, and the process for setting the color sequence is executed to set the order of the color sequence to be supplied in printing. The set color sequence data is stored in the printing color sequence memory


123


in step S


31


. In the illustrated embodiment, the number N is “3” and the color sequence is in order “red”, “green” and “black”. Control is then returned to the multi-color printing control (S


13


).




Next in the multi-color printing control, the process control for setting the printing range of each color is executed in step S


13


as shown in FIG.


19


.




When this control begins, the color number N is set in a color number counter as a count value I (S


33


). Then, subtraction of “I” from the color number count value I is executed and if the answer is not zero, that is, if the character array is not the final target character array in connection with the final color (S


34


: No), then the process for setting the printing target character array is executed in S


35


so as to make correspondence of the character array with the first color among the remaining colors based on the color sequence data. This setting is performed by indicating the characters, symbols and the like constituting the target character array, with cursor, in connection with the color.




That is, during this process for setting the printing target character array, the text data is displayed in the display


5


. Therefore, by operating the four cursor movement keys provided on the right side of the keyboard


4


, each characters, symbols and the like-in the printing target array is indicated with the cursor with respect to the printing color but except for the last printing color. Each time the character-color setting is made by the cursor, a color set key is pressed. After completing setting of the printing target character arrays, a set key is pressed. By pressing this set key, the set color data is appended to the character data of the characters indicated by operating the cursor movement keys and pressing the color set key, and this date is stored in the text memory


121


.




Then, the color number count value I is decremented by 1 (S


36


), and steps S


34


through S


36


are repeated until (I−1) equals zero. When (I−1) equals zero, that is, when the setting of the printing target character array with respect to all of the printing colors except the last color have been completed (S


34


: Yes), a process for setting a final color to the character array is executed in Step S


37


in order to make correspondence of the remaining characters and symbols in the text data that have not already been set with the last printing color.




Next, the process for setting the final color to the remaining character array will be described in detail with reference to FIG.


20


. First, the character data stored in the text memory


121


is retrieved from the top of the memory (S


371


). The data is checked to sea if color data is appended or not (S


372


). If color data is appended to the character data read (S


372


: Yes) and that character data is not the last of the character data (S


373


: No), then the next data is retrieved (S


374


), and the process is repeated from S


372


. However, if color data-is not appended to the retrieved character data (S


372


: No), color data corresponding to the final printing color is appended to that character data and stored in memory (S


375


), and the process at S


373


is executed. All of the above-mentioned processes are repeated until the end of the character data stored in the text memory


121


. When the data is found at S


373


to be the last of the character data (S


373


: Yes), then control is returned to S


38


of FIG.


19


.




Provided that the character data “AS CDE “FG” is stored in the text memory


121


, the color number N is set to “3,” and the color sequence is set to “red,” “green,” and “black”. During the process for setting the printing target character array in S


35


, first, the character array “AB” is set for the printing color red by operating the cursor keys and the color set key. As shown in

FIG. 27

, the color data “red” is appended to the character data “A” and “B” of the text memory


121


, and each combination of character data and color data is stored in the memory


121


. Next, the character array “CDE” is set for the printing color “green,” and the color data “green” is appended to the character data “C,” “D” “E” of the text memory


121


, and stored.




When setting of the printing color “green” is completed, the color number count value I is such that (I−1) is zero. Therefore, in the process for setting the character array with respect to the final color in S


37


, the character data of the text memory


121


is read in order, beginning from the top of the memory


121


. The character array “FG” of the text data, which has not been set to a printing color, is automatically set to the final printing color, “black,” and the printing date “black” is then saved in the text memory


121


, appended to the character data “F” and “G”.




Next, the message “Margin for the printing tape?” is displayed in the display


5


. The margins are set to the desirable size by operating the number keys, and the margin set is stored in the margin memory


124


in step S


38


. Control is then returned to S


14


for continuing the multicolor printing control.




When the printing key is pressed in the multi-color printing control (S


14


: Yes, S


15


: Yes), the printing start process control (S


16


) is executed, as shown in FIG.


21


.




When this process begins, first, the ribbon color R of the ribbon cassette


30


mounted in the tape cassette


20


is read (S


40


), based on ribbon detection signals RS from the group of ribbon detection switches


103


. Then, the leading printing color C in the printing color sequence is read (S


41


). If the ribbon color R does not match the leading printing color C (S


42


: No), then an error message is displayed in the display


5


(S


43


) indicating that the ribbon color does not match the printing color.




After the cassette cover


3


is opened, the ribbon cassette


30


is replaced by another ribbon cassette


30


having am intended ribbon color R, and the cassette cover


3


is closed again. Through the cover opening movement, the cover open and close signal VS is transmitted from the cover open and close detection switch


102


, so that the steps S


40


and S


41


are repeated. Then, if the ribbon color R matches the leading printing color C (S


42


: Yes), the stored character array appended with data of the leading printing color C is retrieved from the text memory


121


. Further, the dot pattern data of that character array is developed in the printing data buffer


125


(S


45


).




Then, the tape detection signal TS is read from the tape detection sensor


91


. If the tape detection signal TS is “L” level, meaning that the printing tape


22


is positioned in confrontation with the tape detection sensor


91


(S


46


: Yes), then a message prompting that the printing tape be cut is displayed in the display


5


(S


47


).




Next, the cutting button


85


is pressed for cutting the printing tape


22


, and the cut detection signal CS from the cut detection switch


101


becomes “H” level (S


48


: Yes). Then, the tape detection signal TS becomes “H” level, meaning the tape cutting was detected (S


46


: No), and the tape drive motor


44


is driven by one step only in the clockwise direction, and the printing tape


22


is moved a very small distance in the feeding direction T so as to allow the leading edge of the tape to reach the tape detection point to be detected by the-tape sensor


91


(S


49


). As far as the tape detection signal TS maintains “H” level, steps S


49


and S


50


are repeated.




When the tape detection signal TS becomes “L” level, signifying that the leading edge of the printing tape


22


has reached the tape detection sensor


91


(S


50


: Yes) as shown in FIG.


28


(


a


), control is returned to S


17


of the multi-color printing control. At this time, that is, when the leading edge of the printing tape


22


reaches the tape detection point S, a printing position of the printing tape


22


confronting the thermal head


12


is set as a print start point of origin.




Here, during step by step movement of the printing tape


22


in the feeding direction T, the leading edge of the printing tape can be reliably guided through the slit


98


by means of the slanting guides


99


formed on the pair of guide members


94


and


95


, so that the leading edge of the tape can reach the tape detecting position S, even if the leading edge portion of the printing tape


22


is curled.




It should be noted that the cutting process in step S


48


is necessary so as to define the positional relationship between the printing tape


22


and the thermal head


12


in order to obtain the print start point of origin. In FIG.


28


(


a


), the leading edge of the tape is provided by cutting the tape at the cutting position C and then, the tape is fed by the distance Dsc, so that the front cut end reaches the position S.




Next, in the multi-color printing control, when the color number N is not “1”, that is, when the printing process is not on the last color (S


17


: No), the process for setting the color (S


18


) is executed to print the selected printing color, as shown in FIG.


22


.




When this control begins, first, the tape drive motor


44


is driven in the clockwise direction to move the printing tape by the initial margin L corresponding to the set front margin L (S


60


).




If the printing start position of characters to be printed-in the current printing color is still positioned upstream of the print start point of origin in the feeding direction T, even after the feeding of the printing tape by the length of the front margin L, (S


61


: Yes), for example, as shown in FIG.


28


(


c


), if idle feeding (or feeding of the tape without printing) is required such that the characters “CDE” with the printing color “green” is to be printed, the tape drive motor


44


is driven in the clockwise direction, so as to move the printing tape


22


in the feeding direction T only the amount of the idle feeding (S


62


). However, if no idle feeding of the tape is required (S


62


: No) after feeding of the printing tape by the length of the front margin L, for example in case of printing of “AB”, the routine is skipped into the step S


63


without executing the step S


62


. The dot pattern data developed in the printing data buffer


125


is retrieved, and the printing process is executed by driving the thermal head


12


, the tape drive motor


44


, and the like for printing (S


63


). Control is then returned to S


19


of the multi-color printing control.




Next, in the multi-color printing control, the printing tape rewinding process control (S


19


) is executed as shown in FIG.


23


.




When this control is begun, first, the tape driving motor


44


is driven in the clockwise direction for moving both the printing tape


22


and the ink ribbon


32


in the feeding direction T by only the separation feeding distance Dbp corresponding to the distance Dbp between the printing position (P position) and the separation position (B position) (S


70


). This feeding is required because the ink of the ink ribbon


32


is fused or melted to the printing tape


22


by the thermal head


12


at the final printing position. However, because the printing tape


22


and the ink ribbon


32


are moved by only the separation feeding distance Dbp, the ink ribbon


32


is forcibly pulled away from the printing tape by the separation portion


35




a


. Thus, the printing tape


22


and the ink ribbon


32


are separated with certainty.




Next, in order to replace the ribbon cassette


30


with one that has an ink ribbon


32


of the same color as the next printing color, a message prompting for the ribbon cassette


30


to be removed is displayed in the display


5


(S


71


). Then, the cassette cover


3


is opened, moving the operation plate


74


in the rearward direction, and an “H” level cover open and close signal VS is output from the cover open and close detection switch


102


(S


72


: Yes). In addition, all six of the detection switch signals become “H” level signals, as the ribbon detection signal RS from the group of ribbon detection switches


103


. When the ribbon cassette


30


has been removed (S


73


: Yes), a message prompting the user not to insert another ribbon cassette


30


is displayed in the display


5


(S


74


).




Next, to rewind the printing tape


22


, the tape drive motor


44


is driven one step only in the counterclockwise direction, moving the printing tape


22


a very slight distance in the rewinding direction (S


75


). During this rewinding operation, if the tape detection signal TS is “L” level (S


76


: No), steps S


74


through S


76


are repeated. Then, if the leading edge of the printing tape


22


is rewound until it is slightly on the upstream side of the tape detection sensor


91


, the counterclockwise rotation of the tape drive motor


44


is stopped (S


77


). Control is then returned to S


20


of the multi-color printing control.




Next, in the multi-color printing control, the printing start position alignment process control (S


20


) is executed, as shown in FIG.


24


.




When this control is begun, first, an error message prompting the user to insert a ribbon cassette


30


having an ink ribbon


32


of the same color an the next printing color is displayed in the display


5


(S


80


). Then, if all of the six switch signals making up the ribbon detection signal RS are not the “H” level, signifying that the ribbon cassette


30


is mounted (S


81


: Yes), then the ribbon color R of the mounted ribbon cassette


30


is read based on the ribbon detection signals RS (S


82


). Then, the next printing color C of the printing color sequence is read (S


83


). If the ribbon color R does not match the next printing color C (S


84


: No), then steps S


80


through S


84


are repeated.




When the ribbon color R matches the next printing color C (S


84


: Yes), the stored character array appended with the data for the next printing color C is read from the text memory


121


. Further, dot pattern data for that character array is developed in the printing data buffer


125


(S


85


). When the cassette cover


3


is not closed (S


86


: No), a message prompting for the cassette cover


3


to be closed is displayed in the display


5


(S


89


). When the cassette cover


3


has been closed (S


86


: Yes), the tape drive motor


44


is driven one step only in the clockwise direction, until the leading edge of the printing tape


22


corresponds to the tape detection sensor


91


(S


67


and S


88


: No). If the tape detection signal TS becomes “L” level when the leading edge of the printing tape


22


corresponds to the tape detection sensor


91


, the print start point of origin for the printing tape


22


corresponds to the print position of the thermal head


12


(S


88


: Yes). For example, the positional relationship shown in FIG.


28


(


a


) is again provided. Control is then returned to S


21


of the multi-color printing control.




Next, in the multi-color printing control, the color number N is decremented by one (S


21


). If the color number is not “1,” or not the final printing (S


17


: No), steps S


18


through S


21


are repeated. If the color number N becomes “1,” or the final printing (S


17


: Yes), the final color printing process and cutting process control (S


22


) will be executed, as shown in FIG.


25


.




This control is classified into four cases. In case 1, the front margin L is greater than the distance Dcp between cutting and printing positions. In case 2, the front margin L is smaller than the Dcp, and no idle feeding is provided. In case 3, the front margin L is smaller than the Dcp, and idle feeding is provided, and further, the total length of the front margin L and the idle feeding is equal to or greater than the distance Dcp between the printing position and the cutting position. In case 4, the front margin L is smaller than the Dcp, and idle feeding is provided, and further, the total length of the front margin L and the idle feeding is smaller than the distance Dcp between the printing position and the cutting position.




First, case 1 will be described. If the front margin L is greater than the Dcp (S


90


: Yes), the printing tape


22


is moved only the distance Dcp in the feeding direction T by the tape drive motor


44


being driven in the clockwise direction (S


91


). Then, the drive of the tape drive motor


44


is stopped, stopping the tape movement (S


92


). Next, the tape drive motor


44


is rotated a little in the rewinding direction. When the end portion of the cut prevention lever


84


is removed from beneath the cutting lever


82


, making the cutting operation possible, as shown in

FIG. 15

, a message prompting the user to cut the printing tape


22


is displayed in the display


5


(S


93


). Then, when the printing tape


22


is cut and the cutting detection signal CS becomes the “H” level, signifying the tape cutting has been detected (S


94


: Yes), the printing tape


22


is moved in the feeding direction T by the remaining distance of the front margin L (front margin L−Dcp) (S


95


).




If the print start position of the last printing color is upstream from the print start point of origin in the feeding direction T, and there exists an idle feeding (S


96


: Yes), the tape drive motor


44


is driven in the clockwise direction, moving the printing tape


22


in the feeding direction T by the length of the idle feeding (S


97


). Then, the characters, symbols, and the like, based on the dot image data read similar to S


63


described earlier, are printed in the final printing color (S


98


).




Next, in order to provide the rear margin L behind the printed character array, the tape drive motor


44


is driven in the clockwise direction, moving the printing tape


22


in the feeding direction T only by the distance Dcp plus the rear margin L (S


99


). Then, the tape drive motor


44


is rotated slightly in the rewinding direction. When the end portion of the cut prevention lever


84


is removed from beneath the cutting lever


82


, making the cutting operation possible, a message prompting the user to cut the printing tape


22


is displayed in the display


5


(S


100


). Then, when the printing tape


22


is cut and the cutting detection signal CS becomes the “H” level, signifying the tape cutting has been detected (S


101


: Yes), control is returned to S


10


of the multi-color printing control.




Next, case 2 will be described. When the front margin L is less than the distance Dcp and no idle feeding exists (S


90


and S


102


: NO), the tape drive motor


44


is driven in the clockwise direction for moving the printing tape


22


in the feeding direction T by the distance of the front margin L (S


103


). Then, the final printing process and cutting of the printing tape


22


is performed according to the steps beginning at S


104


.




More specifically, one row of the dot pattern data is read from the printing data buffer


125


and printing is performed with the one row of the dot pattern (S


104


). The tape drive motor


44


is driven in the clockwise direction, moving the printing tape


22


only by the short distance corresponding to the one row of dots (S


105


). If the amount of tape movement after the final printing has begun is less than a distance given by subtracting the front margin L from the distance Dcp, that is, if the top position of the front margin has not yet reached the cutting position (C position) (S


106


: No), then steps S


104


through S


106


are repeated.




When the top position of the front margin L has reached the cutting position (S


106


: Yes), the printing and tape movement are stopped (S


107


). Then, the tape drive motor


44


is rotated slightly in the rewinding direction. When the end portion of the cut prevention lever


84


is removed from beneath the cutting-lever


82


, making the cutting operation possible, a message prompting the user to cut the printing tape


22


is displayed in the display


5


(S


108


). Then, when the cutting button


85


is pressed, the printing tape


22


is cut, and the cutting detection signal CS becomes the “H” level, signifying the tape cutting has been detected (S


109


: Yes). Thereafter, printing of the remaining dot pattern data to be printed is carried out (S


110


). The rear margin L is provided according to the above described steps S


99


through S


101


, and the tape is cut, and control is returned to S


10


.




Next, case 3 will be described. When the front margin L is smaller than the distance Dcp between the printing position P and the cutting position C, and an idle feeding exists and the total length of this idle feeding and to the front margin L is greater than the distance ocp (S


90


: No; S


102


and S


111


: Yes), the tape is moved as in the previously described steps S


91


through S


94


, and the tape is cut (S


112


through S


115


). Further, the printing tape


22


is moved in the feeding direction T by a distance (front margin L+idle feeding−Dcp) (S


116


). Then, the steps beginning from S


98


are executed, so that printing in the final color is performed (S


98


), and the rear margin L is provided (S


99


), and the tape is cut (S


101


). Control is then returned to S


10


.




Finally, case 4 will be described. When the front margin L is smaller than the distance Dcp, and an idle feeding exists, and the total length of the idle feeding and the front margin L is less than the distance Dcp (S


90


: No; S


102


: Yes; S


111


: No), the printing tape


22


is moved in the feeding direction T by the distance of the total length of the front margin L and the idle feeding (S


117


). Then one row of the dot pattern data is read from the printing data buffer


125


and printing is performed (S


118


). The tape drive motor


44


is driven in the clockwise direction, moving the printing tape


22


only by the short distance corresponding to the one row of dots (S


119


).




When the amount of tape movement after the final printing has begun is less than the difference between the distance Dcp and the total length of the front margin L and the idle feeding length, that is, the top position of the front margin L has not yet reached the cutting position, (S


120


: No), then steps S


118


through S


120


are repeated.




When the top position of the front margin L has reached the cutting position (S


120


: Yes), the steps beginning from S


107


are executed. In this way, the front margin L is provided in S


109


, and the rear margin L is provided in S


101


. Control is then returned to S


10


.




As in the example of the input text “AS CDE FG” shown in

FIG. 29

, a label was obtained with the front and rear margins L, the character array “AB” printed in the color red, the character array “CDE” printed in the color green, and the character array “FG” printed in the color black.




In the illustrated embodiment, after the text is input, the process for setting the printing color sequence in executed to set the color number N and the color sequence of the printing colors. Then, a process to set the printing object range for each of the colors among a plurality of colors to be printed is executed. In this process, a front margin which is a distance between the front end of the tape and the print start position is also set.




Thereafter, prior to the printing process, print start process is executed. In the print start process, the printing tape


22


is fed in the feeding direction T after cutting the print tape


22


. This cutting process is conducted to provide the front end of the tape. The printing position of the thermal head


12


with respect to the printing tape


22


when the leading edge of the tape is detected by the tape detection sensor


91


is set as the print start point of origin. Each time the printing process is executed with the set color, the tape rewinding process is executed and, the print start position adjustment process is executed. In the print start position adjustment process, after the ribbon cassette


30


is exchanged with a new ribbon cassette, the printing tape


22


is fed in the feeding direction T, and each printing process with the set color is executed from the print start point of origin on the tape when the leading edge of the printing tape is detected by the tape detection sensor


91


.




In this way, in the printing with the first color, the printing tape


22


is fed in the tape feeding direction, and the position of the thermal head


12


with respect to the tape


22


is set as the print start point of origin in response to the detection signal TS which is transmitted when the leading edge of the tape is detected by the tape detection sensor


91


. After each printing is executed with the subsequent order of colors, the printing tape


22


is rewound and, each time the leading edge of the tape is detected by the tape detection sensor


91


, the print start point of origin is set and printing process is executed from the point of origin. Accordingly, even if error is appearing in the tape rewinding amount due to the slippage of the printing tape


22


with respect to the platen roller


65


and backlash of the plurality of gears provided in the tape/ribbon transfer mechanism


40


when the printing tape


22


undergoes rewinding, the print start point of origin can be set accurately in each printing operation for plural times of printing because the pint start point of origin is not dependent on the tape rewinding amount of the printing tape.




In the print start process and the print start position adjustment process, a distance between the tape detecting position of the tape detection sensor


91


and the printing position of the thermal head


12


is always constant, that is, the distance is the sum of the print-cutting distance Dcp (about 25 mm) and the cutting-detection distance Dsc (about 15 mm) as shown in FIG.


26


. Therefore, print start position can be easily set since the printing can be started when the tape detection signal TS is transmitted from the tape detection sensor


91


. Further, the print start position in the first to last printing operation is set at a position spaced away from the front end of the tape by a predetermined length. Accordingly, precise print start position can be provided which is not dependent on the accuracy of the tape winding mechanism.




Further, as shown in

FIGS. 2 and 26

, the tape detection sensor


91


is positioned downstream of the tape cutting position (C position) of the tape cutting mechanism


80


in the tape feeding direction, and further, a pair of guide members


94


and


95


provided with the guide portions are provided at the position adjacent to the upstream end or tape rewinding side of the tape detection sensor


91


. Therefore, when the printing tape is rewound until the leading edge of the printing tape


22


is detected after each printing operation, the leading edge portion of the tape


22


is always positioned downstream of the tape cutting position. Thus, even if the tape


22


has a curling nature, the leading edge portion of the tape


22


can be introduced without fail into the slit


98


by way of the guiding portions of the pair of guide members


94


,


95


. Consequently, the leading end portion of the tape


22


is not jammed at the stationary blade


81


and the movable blade


82




a


, to thereby provide smooth transfer of the tape


22


.




Further, in the final printing operation, the final color printing process and cutting process-is performed. If a distance between the cutting position of the cutting mechanism


80


and the print start position becomes equal to the preset front margin length L, feeding of the printing tape


22


is suspended. Consequently, printing tape can be cut by manipulating the cutting knob


85


, so that the preset front margin length can be provided. The cutting prohibiting lever


84


is displaced from the lower portion of the cutting lever


82


only when the feeding of the printing tape is suspended. Therefore, accurate and timely cutting can be made.




In the last printing process and after the repeated printing and rewinding of the tape, when the distance from the tape cutting position of the tape cutting mechanism


80


to the print start position becomes equal to the front margin length L, the tape feeding is stopped, and the tape can be cut for providing the front margin L. Further, in every printing operation, the print start position is always constant at a position downstream of the front end of the tapes Therefore, the accurate print start position cart be provided irrespective of the accuracy of the tape transferring mechanism.




Further, in the tape cutting mechanism


80


, manual cutting is achievable by manipulating the cutting knob


85


, which is only manipulatable when the tape feeding is suspended. Accordingly, particular driving mechanism for driving the tape cutting mechanism is not required, and accordingly a compact and economical device can be provided. Moreover, erroneous tape cutting such as tape cutting operation during tape feeding or tape printing can be prevented. Furthermore, when the tape feeding is stopped, a message prompting the tape cutting is displayed on the display


5


. Therefore, necessity of tape cutting can be easily recognized.





FIG. 30

shows a tape-shaped label printing device


1


A according to another embodiment in which a tape detection mechanism


90


A provided with a tape detection sensor


91


A including a light emitting element


92


and a light receiving element


93


is positioned upstream of the tape cutting position of the tape cutting mechanism


80


A in the tape feeding direction. The printing tape


22


A printed by the thermal head


12


A is fed past the tape cutting mechanism


80


A after the tape has passed through the tape detection sensor


91


A, and the tape is discharged outside.




In this case, the tape detection sensor


91


A can be positioned close to the printing position of the thermal head


12


in comparison with the foregoing embodiment where the tape detection sensor


91


A is disposed downstream of the tape cutting position in the tape feeding direction. Therefore, distance between the tape detecting position and tape cutting position can be reduced. That is, the distance between the front end of the printing tape


22


and the print start point of origin can be reduced. Consequently, a length of the tape


22


A cut by the tape cutting mechanism


80


A can be shortened after the final printing operation, for minimizing waste of the printing tape at every cutting operation.




While the invention has been described in detail with reference to the specific embodiments thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention.




For example, in the illustrated embodiments when the removal of the ribbon cassette


30


is detected, a message prompting the user not to insert another ribbon cassette


30


is displayed in the display


5


, and then, rewinding of the printing tape


22


is automatically begun. However, alternative process may be conceivable. For example, rewinding of the printing tape


22


is not begun immediately in spite of the detection of the removal of the ribbon cassette


30


. Instead, automatic tape rewinding operation can be started after elapse of predetermined period during which the removal of the ribbon cassette


30


has been completed. Another alternative may be such that a message such as “Press the some key” is displayed in the display


5


along with the message prompting the user not to insert another ribbon cassette


30


. Then, when some key is pushed on the keyboard


4


, rewinding of the printing tape


22


is begun. In this way, by starting the tape rewinding operation after the prescribed amount of time has passed, or at the moment of a key being pressed, it is possible to avoid tape jamming which otherwise may be caused by starting the rewinding operation of the printing tape


22


during the removal operation of the ribbon cassette


30


and the printing tape is brought into contact with the ink ribbon, harming the printing surface of the printing tape


22


and preventing rewinding operation of the printing tape


22


.




Further, the leading end of the tape can be detected when the printing tape


22


is being rewound based on the tape detection signal TS which is switched from “tape exist” to “tape non-exist”. Furthermore, a group of ribbon detection switches


103


can be provided by various sensors, such as proximity switches and photo-interrupters.




Further, it is possible to provide a manipulation member instead of the cassette cover for performing head releasing operation of the head releasing mechanism


70


. Furthermore, photo-interrupter can be used as a cover open/close detection switch


102


.




Further, the tape cutting mechanism


80


,


80


A can be provided by using a pair of movable blades movable toward each other for cutting. A tape detection sensor


91


,


91


A can be provided by using various detection switch.




Further, in the illustrated embodiment, the particular tape portion in confrontation with the print head is set as the point of origin for starting printing operation thereat when the tape detection unit


90


detects the leading edge of the tape. However, the tape detection unit can be adapted to detect another predetermined position of the tape instead of the leading edge thereof so as to set the point of origin.




Further, it goes without saying that the tape-shaped label printing device according to the present, invention can be applied to various device such that the a print data in the form of a text is transmitted from an external equipment such as a on-line connected computer, and multicolor printing operations are successively performed by sequentially exchanging a ribbon cassette with a new cassette having a color different from that of the precedent ribbon cassette.



Claims
  • 1. A tape cassette for use with a printing device that includes a tape drive, pins, a print head, an array of sensors, and a drive shaft, the tape cassette comprising:printing tape; and a cassette casing housing the printing tape and defining four corners and a feed path through which the printing tape moves in a feeding direction, the cassette casing defining a head recess adapted to receive the print head of the printing device, the cassette casing further defining a recess to receive the drive shaft adjacent a first corner of the four corners of the cassette casing downstream of, and spaced from, the head recess in the feeding direction and adapted to engage the tape drive of the printing device to feed the printing tape in the feeding direction, the cassette casing defining a first positioning hole adjacent the drive shaft and a second positioning hole spaced from the drive shaft, the first and second positioning holes communicating with the pins of the printing device to ensure a proper positioning of the cassette casing within the printing device, the cassette casing defining a detector surface adapted to interact with the array of sensors of the printing device to identify at least one characteristic of the tape cassette, the detector surface positioned absolutely at a second corner of the four corners, the second corner positioned diagonally opposite the first corner, the detector surface defining multiple sensor holes that interact with the array of sensors of the printing device.
  • 2. A tape cassette for a printing device that includes a printing head support, a tape drive, pins, and an array of sensors, the tape cassette comprising:tape; and a cassette casing housing the tape and defining a feed path through which the tape moves in a feeding direction, the cassette casing defining a head recess adapted to accommodate the printing head support of the printing device, the cassette casing defining a tape exit portion proximate the head recess where the tape exits the cassette casing after being printed, the cassette casing further including a drive roller disposed downstream of, and spaced from, the head recess in the feeding direction and adapted to engage the tape drive of the printing device to feed the tape in the feeding direction, the cassette casing defining a first positioning hole adjacent the drive roller and a second positioning hole spaced from the drive roller, the first and second positioning holes communicating with pins of the printing device to ensure proper positioning of the cassette casing within the printing device, the cassette casing including a sensor portion having a surface adapted to interact with the array of sensors of the printing device to identify at least one characteristic of the tape cassette, the sensor portion being located absolutely at a corner position of the cassette casing most distant from the tape exit portion, the surface of the sensor portion defining multiple sensor holes that interact with the array of sensors of the printing device.
  • 3. A tape cassette for a printing device that includes a printing head support, a tape drive, pins, and an array of sensors, the tape cassette comprising:tape; and a generally rectangular cassette casing that is bounded by four corners, the cassette casing housing the tape and defining a feed path through which the tape moves in a feeding direction, the cassette casing defining a head recess adapted to accommodate the printing head support of the printing device, the cassette casing defining a tape exit portion proximate the head recess and adjacent a first corner of the four corners, the cassette casing further including a drive roller disposed downstream of, and spaced from, the head recess in the feeding direction and adapted to engage the tape drive of the printing device to feed the tape in the feeding direction, the cassette casing defining a first positioning hole adjacent the drive roller and a second positioning hole spaced from the drive roller, the first and second positioning holes communicating with pins of the printing device to ensure proper positioning of the cassette casing within the printing device, the cassette casing including a sensor portion having a surface adapted to interact with the array of sensors of the printing device to identify at least one characteristic of the tape cassette, the sensor portion being located absolutely at a second corner of the four corners positioned diagonally from the first corner, the surface of the sensor portion defining multiple sensor holes that interact with the array of sensors of the printing device.
  • 4. A tape cassette for a printing device that includes a print head, a tape drive, pins, and an array of sensors, the tape cassette comprising:printing tape; and a cassette casing defining upper and lower surfaces and a lateral surface extending between the upper and lower surfaces, the cassette casing housing the printing tape and defining a feed path through which the printing tape moves in a feeding direction, the cassette casing defining a head recess adapted to receive the print head of the printing device, the cassette casing forming a generally rectangular shape that is bounded by four corners, the cassette casing further including a drive roller adjacent a first corner of the four corners of the cassette casing downstream of, and spaced from, the head recess in the feeding direction and adapted to engage the tape drive of the printing device to feed the tape in the feeding direction, the cassette casing defining a first positioning hole adjacent the drive roller and a second positioning hole spaced from the drive roller, the first and second positioning holes communicating with pins of the printing device to ensure proper positioning of the cassette casing within the printing device, the cassette casing including a flanged portion extending outwardly from the cassette casing substantially perpendicular to the lateral surface and adapted to interact with the array of sensors on the printing device to identify at least one characteristic of the tape cassette, the flanged portion defining an outer edge and multiple sensor holes spaced from the outer edge that interact with the array of sensors of the printing device to facilitate identification of the at least one characteristic, the flanged portion being positioned absolutely at a second corner of the four corners of the cassette casing most distant from the first corner.
  • 5. A printing system, comprising:a tape cassette; tape; and a printing device that includes a thermal head, a tape cassette mounting area having a first surface, a printing head support extending from the first surface and supporting the thermal head, a tape exit area proximate the thermal head to allow the tape to exit the tape cassette mounting area, a step portion elevated relative to the first surface, a plurality of sensors arranged on the step portion, the plurality of sensors constituting a complete set of sensors to identify a size of the tape cassette attached in the tape cassette mounting area, a tape drive and positioning pins; the tape cassette being adapted to be mounted in the tape cassette mounting area, the tape cassette housing the tape and defining a feed path through which the tape moves in a feeding direction, the tape cassette having a head recess formed therein to accommodate the printing head support and a bottom surface facing toward the first surface of the tape cassette mounting area when the tape cassette is mounted in the tape cassette mounting area, the tape cassette further including a detection area elevated relative to the bottom surface, the detection area defining a detector surface facing the plurality of sensors when the tape cassette is mounted in the tape cassette mounting area, the detector surface defining multiple sensor holes and being configured to interact with selected ones of the plurality of sensors to identify the size of the tape cassette, detector surface being located absolutely at a corner position diagonally opposite the tape exit area, the tape cassette further including a drive roller disposed downstream of, and spaced from, the head recess in the feeding direction and adapted to engage the tape drive of the printing device to feed the tape in the feeding direction, the tape cassette defining a first positioning hole adjacent the drive roller and a second positioning hole spaced from the drive roller, the first and second positioning holes communicating with the positioning pins of the printing device to ensure proper positioning of the tape cassette within the printing device.
Priority Claims (2)
Number Date Country Kind
6-136328 May 1994 JP
7-100061 Mar 1995 JP
Parent Case Info

This application is a division of Ser. No. 09/737,551 file date Dec. 18, 2000 now U.S. Pat. No. 6,334,724, which is a division of Ser. No. 09/302,955 file date Apr. 30, 1999 now U.S. Pat. No. 6,190,069, which is a CIP of Ser. No. 08/450,356 file date May 25, 1995 now U.S. Pat. No. 5,653,542 and a division of Ser. No. 08/621,835 file date Mar. 26, 1996 now U.S. Pat. No. 5,964,539.

US Referenced Citations (49)
Number Name Date Kind
4380032 Pfost Apr 1983 A
4402619 Paque et al. Sep 1983 A
4496955 Maeyama Jan 1985 A
4557617 Richardson et al. Dec 1985 A
4776714 Sugiura et al. Oct 1988 A
4815871 McGourty et al. Mar 1989 A
4815875 Richardson et al. Mar 1989 A
4927278 Kuzuya et al. May 1990 A
4930913 Basile Jun 1990 A
4966476 Kuzuya et al. Oct 1990 A
5009531 Koike Apr 1991 A
D317172 Miyamoto et al. May 1991 S
5017942 Asakura et al. May 1991 A
5022771 Paque Jun 1991 A
5056940 Basile Oct 1991 A
5078523 McGourty et al. Jan 1992 A
5120147 Ozaki Jun 1992 A
5165806 Collins Nov 1992 A
5188469 Nagao et al. Feb 1993 A
5195835 Collins Mar 1993 A
5232297 Kitazawa Aug 1993 A
D342275 Cooper Dec 1993 S
5277503 Nagao Jan 1994 A
5302034 Kitazawa Apr 1994 A
5336003 Nagashima Aug 1994 A
5348406 Yoshiaki et al. Sep 1994 A
5350243 Ichinomiya et al. Sep 1994 A
5374132 Kimura Dec 1994 A
5411339 Bahrabadi et al. May 1995 A
5419643 Matsuura May 1995 A
5419648 Nagao et al. May 1995 A
D361342 Hattori et al. Aug 1995 S
5443319 Sugiura et al. Aug 1995 A
5447378 Otsuka et al. Sep 1995 A
5454650 Yamaguchi Oct 1995 A
5480237 Tanahashi Jan 1996 A
5500669 Yamashita et al. Mar 1996 A
5533818 Bahrabadi Jul 1996 A
5536092 Yamaguchi Jul 1996 A
5538352 Sugiura Jul 1996 A
5595447 Takayama et al. Jan 1997 A
5618119 Misu et al. Apr 1997 A
5620268 Yamaguchi et al. Apr 1997 A
5636926 Yamaguchi Jun 1997 A
5653542 Sugimoto et al. Aug 1997 A
5727888 Sugimoto et al. Mar 1998 A
5771803 Takami Jun 1998 A
5964539 Yamaguchi et al. Oct 1999 A
6042280 Yamaguchi et al. Mar 2000 A
Foreign Referenced Citations (23)
Number Date Country
24609-01 Feb 1994 BX
121073 Feb 1994 CH
4023784 Feb 1991 DE
M 9401507.4 Feb 1994 DE
43 30 742 Mar 1994 DE
0 322 918 Jul 1989 EP
0 327 076 Aug 1989 EP
0 386 937 Sep 1990 EP
0 457 309 Nov 1991 EP
A-475767 Mar 1992 EP
0 487 312 May 1992 EP
0 555 954 Sep 1993 EP
0 588 333 Sep 1993 EP
A-580438 Jan 1994 EP
A-652110 May 1995 EP
0 769 385 Oct 1995 EP
940681 Feb 1994 FR
2037151 Aug 1994 GB
62-189187 Aug 1987 JP
63-222883 Sep 1988 JP
1-101180 Apr 1989 JP
2-106555 Apr 1990 JP
5-84994 Jun 1993 JP
Continuation in Parts (1)
Number Date Country
Parent 08/450356 May 1995 US
Child 09/302955 US