This disclosure relates to a magnetic angle sensor, where a conical permanent magnet is attached to a rotatable shaft and a magnetic field sensor is placed on the rotation axis and ahead of the magnet. The sensor detects the rotatable magnetic field, which points in diametrical direction, and therefrom it infers the rotational position of the shaft.
Angle sensors include magnetoresistive (MR) angle sensors, which respond to magnetic field components in a plane perpendicular to a rotation axis. Several types of MRs are known: anisotropic magnetoresistance (AMR), Giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR) angle sensors. Instead of MRs, a Vertical Hall device, which also detects magnetic field components perpendicular to the rotation axis, may be used.
A disadvantage of MRs and Vertical Hall devices is that they are very sensitive to magnetic disturbances, that is, if the magnet generates a magnetic field of 45 mT at the sensor element, a magnetic disturbance of 3 mT (in a worst case direction perpendicular to the axis and orthogonal to the field of the magnet) results in an error of arctan (3/45)=3.8°, which is generally not acceptable.
The present disclosure is directed to a magnet for a magnetic angle sensing system, the magnet having a tapered geometry in parallel with a rotation axis of the magnet, and configured to be mounted to a rotatable member such that a thin end of the magnet is closer to a field sensing element located on the rotation axis than a broad end of the magnet. The magnet is stronger than known magnets, such as cylindrical magnets, and applies a magnetic field of 195 mT on the magnetic field sensing element, and decreases an error by a factor of 4.3 down to 0.9°.
The magnetic angle sensing system 100 includes a magnetic field sensing element 110, a magnet 120, and a shaft 130.
The magnetic field sensing element 110 is configured to sense a magnetic field. The magnetic field sensing element 110 may be an XMR angle sensor selected from the group of angle sensors consisting of: anisotropic magnetoresistance (AMR), Giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR) angle sensors. Alternatively, the magnetic field sensing element 110 may be a Vertical Hall device.
The sensing element 110 may be located on a die with dimensions of approximately Lx×Ly×Lz being 1.5 mm×1.5 mm×0.2 mm size. The sensing element 110 is located on the rotation axis in an axial distance of approximately 2 mm from the surface of the magnet 120.
The magnetic field sensing element 110 is configured to sense a direction of a magnetic field, but not necessarily a strength of the magnetic field. However, when combining magnetic field sensing elements 110, which are sensitive to a magnetic field strength, as orthogonal Hall plates, the magnetic field sensing elements 110 will sense both magnetic field strength and also magnetic field direction.
The magnet 120 is rotatable around a rotation axis 126 and with respect to the magnetic field sensing element 110. The magnet 120 is conical in shape in that it has a tapered geometry in parallel with the rotation axis 126 with a thin end 122 located closer to the magnetic field sensing element 110 than a broad end 124.
The magnet 120, like the known magnets, is homogeneously magnetized in diametrical direction (i.e., the y-direction). The magnet 120 may have an outer diameter of approximately 20 mm. The magnet 120 may have a half-aperture angle of approximately 30°. The magnet 120 may be comprised of a strongest possible material, for example, anisotropic NdFeB with 1.2 T remanence. The magnet may be a sintered type or a pressed type or an injection molded type, whereby the sintered type has the largest magnetization. The magnet may be isotropic or anisotropic, and in the latter case, the magnet may be pressed in a dry or wet condition, whereby anisotropic magnets are stronger than isotropic ones. The magnet 120 applies a maximum magnetic field to a magnetoresistance angle sensor on a plain surface perpendicular to the rotation axis.
The conical angle can be optimized to maximize the magnetic field on the sensing element 110. An angle of 30° results in a maximum magnetic field. The ratio of magnetic field over magnet volume has another maximum near 45°.
The shaft 130 is rotatable. The broad end 124 of the magnet 120 is affixed to an end of the rotatable shaft 130. The shaft 130 is assumed to be comprised of a non-magnetic material with a diameter of more than 8 mm. However, the shaft 130 may alternatively be comprised of a ferrous material and have a different diameter.
For axial distances of less than 3 mm between the sensing element 110 and the top surface 122 of the magnet 120, the conical magnet 120 has a larger magnetic field, whereas for larger distances the magnet 120 has a smaller magnetic field. Both properties are advantageous for practical applications, because a larger magnetic field on the sensing element 110 is desirable, whereas a smaller magnetic field for larger distances, because of rotating field of the magnet 120 usually disturbs other nearby equipment and magnetizes ferrous nearby objects, whose secondary magnetic field then disturbs the angle sensor. In the z=0.012 m, the conical magnet 120 has a 14% larger magnetic field than a cylindrical magnet. This may seem to be only a small improvement in magnetic field strength, however, it is significant, related to the mass or volume of the magnet 120.
At the sensing location this ratio is roughly 2 (1.2E5 T/m3 over 0.6E5 T/m2) and the mass of the conical magnet 120 is only 53% of the mass of the cylindrical magnet. This means a significant reduction in cost. Moreover it may be advantageous for various practical angle sensing systems to have a light-weight magnet with a smaller inertia moment, particularly if the shaft 130 is driven by a weak motor and/or the shaft 130 needs to be highly dynamic.
The production of the conical magnet 120 is not much different than that of the cylindrical magnet. In both cases the raw material powder, such as of a rare-earth material or anisotropic permanent magnetic material, may be filled in a cavity and optionally pressed in the presence of a magnetic field; and then the magnet 120 is sintered and magnetized. Alternatively, the magnet may be simply pressed or injection molded, although such magnets are generally weaker than sintered ones. These production methods are merely examples and not meant to be limited.
The conical magnet 120 is advantageous in that it can be mounted (e.g., glued) to the flat end of a shaft 130 via its wide end 124, which leads to more accurate mounting, that is, less assembly tolerances like eccentricities and tilt angles, than if the magnet 120 were mounted to the shaft 130 via its narrow end 122.
The magnet 120 is ideally magnetized homogeneously, that is, its magnetization points in a same direction and it has the very same strength throughout the body of the magnet 120. Of course, in reality there are some unavoidable deviations from this idealized case, that is, the direction of the magnetization slightly deviates from the diametrical direction near the perimeter and edges of the geometry. There is in reality a flower-state, deviating in all directions around the ideal one. The homogenous magnetization is preferred because it is easier to produce it instead of inhomogeneous types of magnetization. Regardless of the homogeneity of the magnet, magnetic dipole moment 128 may be defined as the volume average of the magnetization times the volume of the magnet. In a strict mathematical sense the dipole moment 128 is obtained by integrating the magnetization vector over the total magnet volume. This dipole moment 128 may be measured by state of the art techniques (e.g., by vector vibrating sample magnetometers or Faraday balances). The magnet 120 should have a dipole moment 128 in the diametrical direction (i.e., in a single direction perpendicular to the rotation axis), which is stronger than the dipole moment 128 in the axial direction, which should preferably vanish. However, the magnetization may alternatively have an axial direction in one half of the geometry (0° . . . 180°) and an opposite direction in the other half of the geometry (180° . . . 360°). This magnetization pattern has no net dipole moment 128—it is a pure quadrupole. It is also possible to mix both types of magnetization (i.e., to mix dipole and quadrupole), such that the magnetization has My>0, Mz>0 in the half 0° . . . 180° and My>0, Mz<0 in the other half 180° . . . 360°.
The magnetic angle sensing system 300 includes a magnetic field sensing element 310, a magnet 320, and a shaft 330. The magnetic angle sensing system 300 is similar to the magnetic field sensing system 100 of
The magnet 320 is rotatable around a rotation axis 326 and with respect to the magnetic field sensing element 310. The magnet 120 is wedged-shaped in that it has a tapered geometry with a thin end 322 located closer to the magnetic field sensing element 110 than a broad end 324.
The wedge-shaped magnet 320 has an aperture angle, which is defined between two slanted surfaces of the wedge shape, of approximately 60°. Also, the wedge-shaped magnet 320 has a dipole moment 328 that is perpendicular to the wedge-shaped magnet 320 and not parallel to the magnet 320's flat faces.
The magnetic angle sensing system 400 includes a magnetic field sensing element 410, a magnet 420, and a shaft 430. The magnetic angle sensing system 400 is similar to the magnetic field sensing system 300 of
The magnetic angle sensing system 500 includes a magnetic field sensing element 510, a magnet 520, and a shaft 530. The magnetic angle sensing system 500 is similar to the magnetic field sensing system 300 of
The quadratic cross-section depends on the magnet 520's height, that is, where the wedge-shape is cut. If the wedge-shaped magnet 520 is cut it near its tip, the rectangular cross-section is slim. On the other hand, if the wedge-shaped magnet 520 is cut far from its tip, that is, near its base plane, then the rectangular cross-section is more stout, and may be quadratic. A square uses less space during rotation, while a slim rectangle uses more space.
While the foregoing has been described in conjunction with exemplary embodiment, it is understood that the term “exemplary” is merely meant as an example, rather than the best or optimal. Accordingly, the disclosure is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the disclosure.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. This disclosure is intended to cover any adaptations or variations of the specific embodiments discussed herein.
Number | Name | Date | Kind |
---|---|---|---|
20020021124 | Schott | Feb 2002 | A1 |
20030094941 | Mizutani | May 2003 | A1 |
20040000902 | Tokunaga | Jan 2004 | A1 |
20060042405 | Ishihara | Mar 2006 | A1 |
20090045807 | Nishida | Feb 2009 | A1 |
20090309590 | Kataoka | Dec 2009 | A1 |
20100315074 | Abe | Dec 2010 | A1 |
20110234037 | Petro | Sep 2011 | A1 |
20140266158 | Zwijze | Sep 2014 | A1 |
20150022191 | Ausserlechner | Jan 2015 | A1 |
20150022192 | Ausserlechner | Jan 2015 | A1 |
20150184704 | Aschoff | Jul 2015 | A1 |
20150354984 | Albrecht | Dec 2015 | A1 |
20150362565 | Sanfilippo | Dec 2015 | A1 |
20160011010 | Muthers | Jan 2016 | A1 |
20160209241 | Mitsuhashi | Jul 2016 | A1 |
20160265940 | Burgdorf | Sep 2016 | A1 |
20160275744 | Ueyama | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
101421635 | Apr 2009 | CN |
105258633 | Jan 2016 | CN |
19637077 | Mar 1998 | DE |
10133542 | Feb 2002 | DE |
10328616 | Feb 2004 | DE |
60028472 | Jan 2007 | DE |
102006020700 | Nov 2007 | DE |
102008040360 | Jan 2010 | DE |
102014200365 | May 2015 | DE |
102014109693 | Jan 2016 | DE |
H11261131 | Sep 1999 | JP |
2000349363 | Dec 2000 | JP |
2012005260 | Jan 2012 | JP |
Entry |
---|
Office Action dated Feb. 2, 2019 for Chinese Patent Application No. 201710086104.2. |
Office Action dated Sep. 17, 2019 for Chinese Patent Application No. 201710086104.2. |
Office Action dated Aug. 12, 2020 for German Patent Application No. 102017103181.2. |
Office Action dated Apr. 13, 2021 issued for German Patent Application No. 102017103181.2. |
Number | Date | Country | |
---|---|---|---|
20170234700 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15045888 | Feb 2016 | US |
Child | 15369070 | US |