The present invention relates to thread tapping devices and a method of using a thread tapping device.
A tap is used to cut a thread on the inside surface of a hole. The process of cutting threads using a tap is called tapping. Typically manually operated hand taps have been used to created threaded bores.
To use a tap, the tap is placed in a predrilled hole and rotated. As the tap rotates, it cuts threads into the inside of the hole. As it rotates, it cuts away small particles of metal called chips. The tap is provided with several flutes that allow the cutaway chips to escape from the hole. If the flutes become clogged with chips, the tap will bind and can break. It is necessary to periodically reverse rotation to break the chip formed during the cutting process to prevent the clogging or “crowding” that can cause breakage.
As a result, considerable skill is needed when using hand taps to avoid breaking them. This is especially so in the case of the smaller sizes. If a tap breaks off in a hole, it can be very difficult or even impossible to remove the broken piece.
Furthermore, conventional hand driven taps are rotated around a hole at irregular speeds which can cause the tap to break.
As a result, the use of conventional hand taps is time consuming and requires a skilled technique.
Powered tap devices are known such as that taught by U.S. Pat. No. 7,565,935, however they are specialized and expensive. It is also known to use a drill press or vertical mill however those methods are also expensive, not easily transportable, and can be cumbersome to use on certain projects.
What is required is a tapping device and method which will work with any variety of drive tools such as wrenches, ratchet sockets and impact drivers to greatly increase the speed of the tapping process.
There is provided a tapping device which has an elongate body with a first end and a second end. A thread cutting portion is provided toward the first end and an end section for fitting to a drive tool is provided at the second end. A shank portion is deposed between the cutting portion and the end section. The thread cutting portion includes helical thread cutting edges. Relief flutes are provided along the thread cutting portion. The end section is a hexagonal head adapted to receive a drive tool.
A stop is provided on the shank toward the end section. The flared stop extends radially beyond a diameter of the end section
Another aspect of the invention provides a method of using a tapping device which includes the steps of providing a tapping device as described above and providing a drive tool that has a socket dimensioned to fit over the hexagonal head of the tapping device. A further step includes placing the hexagonal head within the socket of the drive tool such that upon activating the drive tool, the socket imparts a torsional force on the tapping device. Another step includes placing the first end of the tapping device in a bore hole, and activating the drive tool such the socket imparts a torsional force on the tapping device so that the cutting portion cuts threads on the interior surface of the bore hole.
A further aspect of the invention involves a combination of the tapping device described above and a drive tool having a socket dimensioned to fit over the hexagonal head of the tapping device so as to impart a torsional force on the tapping device.
These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:
A thread tapping device generally identified by reference numeral 10, will now be described with reference to
Referring to
Referring to
Referring again to
Referring to
Referring to
The use and operation of the tapping device 10 will now be described with reference to
Referring to
Referring to
The tapping device 10 can be manufactured in a number of sizes such that the hexagonal head 30 corresponds in size and dimension with the hexagonal heads of standard sized bolts. Examples of standard sizes could include ¼″ 5/16″ ⅜″ and ½″ sizes. As a result, users can select the tapping device 10 which has the hexagonal head 30 that matches the size and dimension of a hexagonal head of a bolt (not illustrated) that will subsequently threaded into the bore hole 40. The result is that the same driver 22 can used for both the tapping device 10 and the bolt so that user operator is able to maintain the driver 22 in their hands and simply swap out the tapping device 10 for the bolt and continue with installation of the bolt in the bore hole 40. This eliminates the inconvenience of the step of swapping tools and increases efficiency.
The tapping device 10 illustrated in
Tapping device 10 can also be used with drive tools 22 that are manually operated such as such as standard wrenches, ratchet sockets or other tools which are adapted to receive the hexagonal head 30 of the tapping device 10. This allows the tapping device 10 to be used in situations where a powered drive tool cannot be used or is not desirable. For example, in smaller or awkward spaces, it may be preferable to use a manual tool. Again there can be a time saving, in that the same driver 22 can used for both the tapping device 10 and the bolt so that user operator is able to maintain the driver 22 in their hands and simply swap out the tapping device 10 for the bolt and continue with installation of the bolt in the bore hole 40. This eliminates the inconvenience of the step of swapping tools particularly in small or awkward spaces.
It will be appreciated that the tapping device 10 can be made out of numerous materials including but not limited to HSS, steel, cobalt and other hardened metals. It will also be appreciated that the diameter and length of the elongate body 12 and shank portion 24 can vary as desired. A full sized shank portion 24 maximizes strength as well as in the ease of reversal of tap device 10 from a work piece.
It will also be appreciated that while the tapping device 10 is illustrated as being used with a power tool 22, it can also be used with use any standard wrenches, ratchet sockets or other tools which are adapted to receive the hexagonal head 30 of the tapping device 10.
The thread cutting edges 26 of the cutting portion 18 of the tapping device 10 illustrated in
Referring to
The end section 20 for fitting to a drive tool 22 as illustrated in
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
The following claims are to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, and what can be obviously substituted. Those skilled in the art will appreciate that various adaptations and modifications of the described embodiments can be configured without departing from the scope of the claims. The illustrated embodiments have been set forth only as examples and should not be taken as limiting the invention. It is to be understood that, within the scope of the following claims, the invention may be practiced other than as specifically illustrated and described.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2013/050156 | 3/1/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61616358 | Mar 2012 | US |