1. Field of Invention
The present invention relates to a physical vapor deposition (PVD) target. In particular, it relates to a target that is shaped like a truncated cone, a dome, or a Fresnel lens.
2. Discussion of Prior Art
Sputter deposition is a physical vapor deposition (PVD) method of depositing thin films by ejecting or “sputtering” material from a target onto a substrate, such as a silicon wafer.
Sputter coating apparatuses are generally known. In a typical apparatus, an energy discharge is used to excite atoms of an inert gas, e.g. argon, to form an ionized gas or plasma. Charged particles (electrons) from the plasma are accelerated toward the surface of a sputter target by application of a magnetic field. The sputter target typically is provided in the form of a rectangular slab, sheet, or plate. The plasma bombards the surface of the target, thus eroding that surface and liberating target material. The liberated target material then can be deposited onto a substrate, such as metal, plastic, glass, or a silicon wafer, to provide a thin-film coating of the target material on the substrate.
Sputtering sources can be magnetrons that utilize strong electric and magnetic fields to trap electrons close to the magnetron surface or target. These magnetic fields can be generated by an array of permanent magnets arranged behind the target, thus establishing a magnetic tunnel above the target surface. The electrons are forced to follow helical paths caused by the electric and magnetic fields and undergo more ionizing collisions with gaseous neutrals near the target surface than would otherwise occur. This results in a closed plasma loop during operation of the magnetron. At the location of the plasma loop on the surface of the target, a “racetrack” groove is formed, which is the area of preferred erosion of material. In order to increase material utilization, it is known in the prior art to use movable magnetic arrangements to sweep the plasma loop over larger areas of the target.
In order to decrease the racetrack groove formation and achieve more efficient utilization of the target, non-flat targets are known in the prior art. In general, it is a well known practice to increase the target thickness in the regions of main erosion. For example, U.S. Pat. No. 4,842,703 to Class et al. and U.S. Pat. No. 5,688,381 to Grünenfelder et al. disclose targets with a concave surface.
Several PVD applications require using a long distance between the target and the substrate. This is known as long target-to-substance distance (TSD) sputtering. Long TSD sputtering narrows the angular profile of the material sputtered from the target, making the sputtered material easier to direct. Long TSD sputtering is required in order to produce layers of film with low sidewall coverage, such as to enable lift-off processing or to avoid unwanted fencing of sidewall material when a photo resist is removed.
A disadvantage of a long target-to-substrate distance (TSD) is the resulting poor uniformity of the deposited material on the substrate. This effect can typically only be compensated by increasing the diameter of the target. However, increasing the diameter of the target can be burdensome and impractical. For example, if the substrate is a 300 mm wafer, a very big and uneconomic target size would be required.
Another disadvantage of long TSD sputtering is a dramatically reduced sputtering rate. In addition, because gas is scattering over an increased distance, the effect of narrowing the angular distribution is alleviated. In fact, the effect of directional sputtering almost disappears at realistic pressures of 1-2 mTorr, even at target-to-substrate distances as low as 150 mm.
For the erosion profile of
In
It should be appreciated that these calculations have been done for very low pressures of 0.1 mTorr. When the pressure is increased, which may be necessary to sustain stable plasma, the uniformity gets much worse.
Thus, there is need for improvements in sputtering targets in order to more evenly erode the target while having positive uniformity and efficiency characteristics.
The following summary presents a simplified summary in order to provide a basic understanding of some aspects of the systems and/or methods discussed herein. This summary is not an extensive overview of the systems and/or methods discussed herein. It is not intended to identify key/critical elements or to delineate the scope of such systems and/or methods. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
In accordance with one aspect, the present invention provides a target for a physical vapor deposition system. The target includes a base with a center and a rim, an inner ring extending from the base, and an outer ring extending from the base.
In accordance with another aspect, the present invention provides a sputter chamber. The sputter chamber includes an enclosure, a substrate support member, a sputter target that faces the substrate support member within the enclosure, and a magnetron. The sputter target has a base, an inner ring extending from the base, and an outer ring extending from the base.
In accordance with still another aspect, the present invention provides a target for a physical vapor deposition system. The target includes a top, a bottom, and a sloped edge connecting the top and the bottom. The sloped edge has a first portion extending from the top a first vertical distance. The first portion and the top define a first obtuse angle. The sloped edge also has a second portion extending from the first portion a second vertical distance. The second portion and the top define a second obtuse angle. The first vertical distance is greater than the second vertical distance.
The foregoing and other aspects of the invention will become apparent to those skilled in the art to which the invention relates upon reading the following description with reference to the accompanying drawings, in which:
a is a prospective view of a target according to one aspect of the present invention;
b is a cross section of the target in
c is an enlarged view of the target in
d is a table of the specific dimensions of the target in
a is cross sections of targets with different sloped profiles;
b is a uniformity profile for the targets in
c is an erosion profile of the target of
a is a cross section of a target according to still another aspect of the present invention;
b is an enlarged view of the right half of this cross-section of
a is an erosion track for the target in
b is an erosion profile of the target in
a is a cross section of a target according to yet another aspect of the present invention; and
b is an enlarged view of the cross section of
Example embodiments that incorporate one or more aspects are not intended to be overall limitations on the invention. For example, one or more aspects of the invention can be utilized in other embodiments and even other types of devices. Moreover, certain terminology is used herein for convenience only and is not to be taken as a limitation on the invention. Still further, in the drawings, the same reference numerals are employed for designating the same elements.
a illustrates a simplified perspective view of target 60 according to a first embodiment of the present invention. It should be appreciated that the target in this view (and subsequent views except
b is a cross section of target 60. In
In
The specific dimensions of the target are indicated in the table of
The basis for the target shape will now be described.
The uniformities resulting from the targets of
c depicts the erosion profile of target 60. The Y-variable is erosion of the target center area in mm, and the X-variable is target radius at a point on the target in mm. As in
The operation of the target of the present invention will now be described with reference to
f(θ)=cosn θ
where the exponent n describes the directionality of the emission. Values of n from 0.5 to 1.0 are often reported for experimental emission characteristics. The emission characteristics are sketched as an ellipse in
For a flat target, emissions from the target can reach anywhere on the substrate. Emissions near the target edge will largely deposit on the nearest substrate locations across from the edge. However, at a reduced rated, the edge emissions will deposit near the center of the substrate. Some edge emissions may deposit at distal edge locations of the substrate, but the rate is extremely reduced due to quadratic decrease with distance, combined with high angles of emission and incidence.
These deposition properties change with a sloped target edge. As with a flat target, emission from the target edge contributes to deposition across from the edge. However, deposition on the opposite side of the wafer is zero due to shadowing. Even deposition to the central locations of the wafer is reduced, due to high emission angles. Detailed calculations show that decrease of the deposition rate in central locations of the substrate may be more pronounced than on the substrate edge, resulting in improved film uniformity.
The dome-shaped target of
a illustrates a third embodiment of a target according to the present invention.
The first ring 200 has a first side 201 sloped at an angle C from the bottom of groove 220. The first ring 200 also has a second side 202 sloped at an angle D from the bottom of groove 230. Angle D is slightly larger than angle E.
Similarly, the second ring 210 has a first side 211 sloped at an angle E from the bottom of groove 220. The second ring 210 also has a second side 212 sloped at an angle F from rim 240. Angle F is larger than angles C, D, and E. Accordingly, angle E is smaller than angles C and D. Angles C-F are all 90 degrees or greater.
a depicts an example erosion track design for the Fresnel lens target embodiment of
b depicts an erosion profile for the Fresnel lens target of
a illustrates a fourth embodiment of a target according to the present invention.
The first ring 300 has a first side 301 sloped at an angle G from the bottom of groove 350. The first ring 300 also has a second side 302 sloped at an angle H from the bottom of groove 360. Angle H is larger than angle G.
The second ring 310 has a first side 311 sloped at an angle I from the bottom of groove 360. The second ring 310 also has a second side 312 sloped at an angle J from groove 370. Angle J is larger than angle I.
The third ring 320 has a first side 321 sloped at an angle K from the bottom of groove 370. The third ring 320 also has a second side 322 sloped at an angle L from groove 380. Angle L is larger than angle K.
The fourth ring 330 has a first side 331 sloped at an angle M from the bottom of groove 380. The fourth ring 330 also has a second side 332 sloped at an angle N from groove 390. Angle N is larger than angle M.
The fifth ring 340 has a first side 341 sloped at an angle O from the bottom of groove 390. The fifth ring 340 also has a second side 342 sloped at an angle P from rim 400. Angle P is larger than angle O.
Overall, angle O is the smallest and angle P is the largest. The angles on the center-facing side of each ring decrease from the center of the target, i.e. angle G of first ring 300, toward the rim of the target, i.e. angle O of fifth ring 340. As such, angle G is larger than angle I, angle I is larger than angle K, angle K is larger than angle M, and angle M is larger than angle O. Similarly, the angles on the rim-facing side of each ring increase from the center of the target, i.e. angle H of first ring 300, toward the rim of the target, i.e. angle P of fifth ring 340. As such, angle H is smaller than angle J, angle J is smaller than angle L, angle L is smaller than angle N, and angle N is smaller than angle P. Angles G-P are all 90 degrees or greater.
For the embodiment depicted in
This application claims the benefit of U.S. provisional patent application Ser. No. 61/307,077 filed Feb. 23, 2010, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61307077 | Feb 2010 | US |