For the purposes of clarification and to avoid any possible confusion, the HIV Tat as used in the tolerogen compositions of the present invention will be designated as either “Tat” for conventional immunosuppressive Tat protein and “Tat*” or “ox-Tat*” for Tat that is genetically or chemically derivatized so that it is stimulatory. Additional abbreviations for Tat used in this disclosure include sTat (soluble Tat) and C-Tat (conventional native immunosuppressive Tat from HIV).
The present invention provides tolerogen compositions for induction of tolerance to foreign antigens. The present invention further provides methods for preventing and treating undesirable and inappropriate immune responses to foreign and endogenous antigens and autoimmune diseases with these tolerogen compositions. The tolerogen compositions of the present invention are based upon the Human Immunodeficiency Virus (HIV) trans-activator of transcription (Tat).
The tolerogen compositions of the present invention are constructed from Tat, or Tat fragments, conjugated to immunogenic antigens, or antigen fragments. The tolerogen compositions of the present invention can be constructed though a variety of means known to persons skilled in the art including, but not limited to, protein conjugation, avidin-biotin conjugation, specific cross-linking methods, creation of recombinant molecules and the like.
The present inventor has unexpectedly demonstrated that HIV-1 Tat mediates two independent activities, a receptor-mediated triggering event at the cellular surface and an intracellular trans-activation activity that controls antigen-presenting cell (APC) differentiation. The receptor-mediated triggering event mediated by Tat is specific to APC, committing them for activation and differentiation into highly immunosuppressive antigen presenting cell regulatory macrophages (AReg) or into dendritic cells (DC) that stimulate specific cytotoxic T lymphocytes.
Antigen-presenting cells, macrophages and dendritic cells are critical in the pathogenesis or response to a variety of diseases, disorders and undesired immune responses. Tat triggers monocytes to differentiate into antigen-presenting macrophages expressing molecules that specifically suppress the immune response to the presented antigen(s). Treatment for human diseases may introduce foreign antigens (biologicals, including but not limited to, monoclonal antibodies, insulin, and erythropoietin) or tissues (including organ transplants and stents) where an immune response to the foreign agent is not desired. In autoimmune diseases, certain of the body's own endogenous molecules are incorrectly recognized as foreign, resulting in extensive inflammation and tissue damage. In one example, degradation of collagen type II into immunogenic peptides can trigger rheumatoid arthritis (RA) in animals and has been associated with human rheumatoid arthritis. Considerable research has centered on reducing the immune response to these proteins. It is the non-binding theory of the present inventor that the antigen-specific macrophage-induced suppression attributed to Tat can be applied to the reduction of the undesired immune response to certain foreign and endogenous molecules using the tolerogen compositions of the present invention.
The tolerogen compositions of the present invention can be produced with antigens implicated in a variety of autoimmune diseases. Autoimmune diseases which are within the scope of treatment with the tolerogen compositions of the present invention include, rheumatoid arthritis, diabetes, systemic lupus erythematosis, multiple sclerosis, inflammatory bowel diseases, psoriasis, scleroderma and autoimmune thyroid diseases
Additionally the tolerogen compositions of the resent invention have the potential to treat other immune mediator diseases such as inflammation including, but not limited to, ocular inflammation and cardiac inflammation.
Unlike the current immunosuppressive therapies, the tolerogen compositions of the present invention have the potential to suppress antigen-specific immune responses without immunocompromising the patient. This is particularly important when chronic immunosuppressive therapy is needed, such as following organ transplantation or during autoimmune disease. This antigen-specific immune suppression requires a high specific activity tolerogen, which can be produced according to the teachings of the present invention. In the absence of a thorough understanding of the structure of the Tat molecule and the mechanism of Tat suppression, it has not been possible to rationally design and test tolerogens that maintain the specificity and activity of Tat. The present invention provides immunosuppressive, antigen-specific tolerogen compositions, based on the Tat molecule, that have been designed and constructed using the recent findings on the Tat molecule by the present inventor. The tolerogen compositions of the present invention provide immune tolerance to a specific antigen exclusively while the remainder of the immune system remains intact and fully responsive.
The tolerogen compositions of the present invention can be stably produced as recombinant molecules or as direct conjugates of Tat protein, or fragments, to antigens. In one embodiment of the present invention, the DNA sequence of an antigen, to which tolerance or specific immunosuppression is desired, is inserted into a tolerogen expression cassette and the antigen-tolerogen construct is produced by growing the tolerogen expression cassette in the appropriate cell system such that a secreted protein composition is produced. An antigen which elicits an immune response in a mammal can be incorporated into the tolerogen composition of the present invention. Suitable antigens include, but are not limited to, endogenous molecules such as those that illicit inappropriate immune responses in autoimmune diseases and foreign antigens. Non-limiting examples of foreign antigens that commonly elicit immune responses that limit their therapeutic potential include, but are not limited to, monoclonal antibodies (Mabs), carbohydrates, insulin, blood clotting factors, growth factors and hormones, enzymes and other diagnostic, therapeutic or prophylactic proteins. Carbohydrate antigens suitable for use in the tolerogen composition of the present invention include, but are not limited to, sialic acids. Monoclonal antibodies suitable for use in the tolerogen compositions of the present invention include, but are not limited to, murine Mabs, human Mabs and humanized Mabs or Mabs produced from any mammal. Blood clotting factors suitable for use in the tolerogen compositions of the present invention include, but are not limited to, Factor VIII, Factor VII (rVIIa), Factor IX, Factor II, Factor VII, Factor IX, Factor X, von Willebrand Factor and Anti-inhibitor Coagulation Factor. Enzymes suitable for use in the tolerogen compositions of the present invention include, but are not limited to, asparaginase, collagenase, glutaminase, hyaluronidase, lysozyme, rhodanase, ribonuclease, β-lactamase, streptokinase, trypsin, uricase, urokinase, adenine deaminase, superoxide dismutase. Growth factors and hormones suitable for use in the tolerogen compositions of the present invention include, but are not limited to, human growth hormone, erythropoietin, granulocyte or macrophage stimulating factors, keratinocyte growth factor, interferons and interleukins.
In one embodiment of the present invention, tolerogen compositions are produced which induce antigen-specific tolerance to foreign molecules in stem cell transplants. In exemplary embodiment, tolerogen compositions comprising the Neu5Gc immunogenic non-human sialic acid (Martin M J et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228-32, 2005) are made through physically linking the sialic acid to immunosuppressive Tat, or a fragment thereof, and administered to the patient prior to transplantation of cells bearing this antigen. In another embodiment of the present invention, if alloantigens are not fully defined, a class of immunosuppressive macrophages are generated ex vivo by co-culturing a patient's monocytes with tolerogen compositions and donor stem cells as a source of alloantigens. Seventy-two hours later (at a time when the macrophages first become suppressive) the transplant containing donor stem cells and the tolerogen composition is administered intravenously into the patient.
In another embodiment of the present invention, a tolerogen cassette includes the immunoglobulin variable heavy (VH) and/or variable light (VL) region genes from any Mab useful in the diagnosis, prophylaxis or treatment of disease. The tolerogen composition of the present invention is administered prior to and/or concurrently with the immunogenic biological agent in order to ensure an antigen-specific tolerized state in the patient.
In one embodiment of the present invention, Tat protein, or a fragment thereof, is chemically coupled to a desired tolerogenic antigen to produce a tolerogen composition. In a non-limiting example, these conjugates are simply linked using a widely known biotin-avidin system. Biotin, a vitamin, and avidin, a lectin, have a high affinity to one another such that proteins conjugated to biotin bind in a stable manner to proteins conjugated to avidin. Tat is biotinylated using methods well known to a person of ordinary skill in the art. Similarly, the antigen of interest is conjugated to avidin according to standardized methodology. When biotinylated Tat and avidin-Ag are combined under concentration and temperature conditions necessary for such a reaction, a Tat-Ag conjugate is formed. It is within the scope of the present invention to conjugate antigens and Tat by other methods known to those skilled in the art of protein chemistry.
The present inventor has surprisingly determined that Tat stimulates APCs, as opposed to T cells and other cell types, at picomolar concentrations that are physiologic for in vivo activity. In vitro, APCs are approximately 1000 times more sensitive to Tat than T4 lymphocytes. Due to this discovery, one barrier to the successful use of Tat as an immunotherapeutic, namely achieving concentrations attainable in vivo, has been overcome.
The immunosuppressive effects of Tat are mediated by macrophages. When stimulated by Tat, either by natural HIV-1 infection or by Tat uptake, macrophages induce the Fas ligand (FasL), which in turn induce the programmed cell death (apoptosis) of antigen-reacting, Fas-expressing helper T cells (Example 2). Tat enhances the viability of cultured murine macrophages as long as the macrophages were first activated in vivo compared with no prior activation and stimulated with relatively high concentrations of Tat. By comparison, LPS promotes the viability of murine macrophages independently from in vivo stimulation, and at the same concentration effective for human macrophages. The Tat tolerogen of the present invention produces a stable suppression of mouse lymphocyte proliferation and may also serve to suppress an antigen-specific immune response to a variety of foreign antigens.
The macrophages responsible for these responses have been identified as antigen presenting cell regulatory macrophages (ARegs). ARegs are also known as “alternatively activated” macrophages (Tzachenis D et al., Blockade of B7/CD28 in mixed lymphocyte reaction cultures results in the generation of alternatively activated macrophages, which suppress T-cell responses, Blood 99:1465-73, 2002). ARegs are stable macrophages expressing FasL and secreting the cytokines IL-10 and IL-6 (Novak N et al., Engagement of FcεRI on human monocytes induces the production of IL-10 and prevents their differentiation in dendritic cells, J Immunol 167:797-804, 2001; Zhang H et al., Induction of specific T cell tolerance by Fas ligand-expressing antigen-presenting cells, J Immunol 162:1423-30, 1999). AReg are stable and respond in an autocrine and paracrine manner to these two cytokines, as well as in a paracrine manner to IL-4. These cytokines accumulate and switch the immune response from TH1 (based on helper T lymphocytes) to TH2 (based on suppressive T lymphocytes). As these cytokines build up they overwhelm and suppress the immune response and explain why immune responses are normally self-limiting in an antigen-specific manner.
An unexpected observation is that 1,000 fold lower concentrations of Tat (500 pM) trigger this effect on the macrophages, as compared with the concentration required to initiate direct apoptosis of CD4+ T cells (approximately 500 nM). Therefore, at concentrations of Tat achievable as a systemically administered immunomodulator, the macrophage effect will preferentially occur over the T cell effect.
The Tat-mediated antigen-specific suppression of the present invention is mediated through trans- (intracellular) activation of a CD14+ FasL+ macrophage. Example 3 of the present invention demonstrates that, in human cells, Tat-activated macrophages are immunosuppressive ARegs. At low concentrations of Tat (50 nM), Tat-induced immunosuppression was not only fully reversed by the addition of soluble Fas, but under these conditions, Tat actually became slightly stimulatory (relative to antigen treatment alone). Antibodies to FasL reversed Tat immunosuppression of tetanus responses and enhanced the Candida response relative to Tat treatment alone. Suppression could be fully reversed (>95% of control) with the further addition of anti-IL-10 and anti-IL-6 antibodies to the cultures, both cytokines deriving from macrophages under these culture conditions. The non-binding theory of the present inventor is that a portion of Tat-induced immunosuppression is contributed by induction of FasL, although other Tat-induced factors also could participate in suppressing T cell proliferative responses, especially at higher concentrations of Tat.
Additionally, a humoral immune response to HIV-1 p24 can be inhibited by including a p24-specific tolerogen made according to the teachings of the present invention (
When Tat-activated macrophages present more than one antigen, by uptake of soluble antigens, immune responses directed to these other antigens would be suppressed as well. This process will blunt T-cell dependent, cellular and humoral immune responses and can be harnessed to induce suppression of these responses in an antigen-specific manner by the administration of Tat-tolerogenic antigen complexes.
Previous obstacles to the use of Tat as an immunotherapeutic agent include the reported instability of the molecule and the disparity between Tat's activities in vitro and in vivo. The unexpected discovery of an activity and a preferred means to deliver mulitmerized Tat (to the APC) provides unique opportunities for drug development based upon increased specific activity. Although Tat is known to stably polymerize in vitro and in vivo, only the Tat monomer intracytoplasmically trans-activates gene expression (Tosi G et al., Highly stable oligomerization forms of HIV-1 Tat detected by monoclonal antibodies and requirement of monomeric forms for the transactivating function on the HIV-1 LTR, Eur J Immunol 30:1120-6, 2000).
Tat contains three distinct regions of interest (Kuppuswamy M et al., Multiple function domains of Tat, the trans-activator of HIV-1, defined by mutational analysis, Nucleic Acids Res 17:3551-61, 1989). The first region of interest is the transduction domain at the amino terminus of Tat (amino acids 3-19). A second region of interest is a cysteine-rich ligand binding domain (amino acids 22-37, SEQ ID NO. 7) which contains seven conserved cysteines. A third region of interest is the membrane translocation domain (MTS) which encompasses amino acids 47-57. The complete amino acid sequence of HIV-1 Tat encoded by exons 1 and 2 of the Tat gene is depicted in SEQ ID NO. 1.
A proline rich stretch near the amino terminus (amino acids 3-19) of HIV-1 and HIV-2 Tat (SEQ ID NO. 3) within the transduction domain, has been described as a new SH3 binding domain having significant homology to the SH3-binding domain of the mouse hairless gene (hr) (SEQ ID NO. 4). Unexpectedly, mice expressing the hr gene mutation develop an AIDS-like syndrome characterized by poor CTL function, a shift in helper T lymphocytes from those regulating cell-mediated immunity (TH1) to those regulating antibody-mediated immunity (TH2) and increased susceptibility to chemical and ultraviolet light-induced skin cancers. Additionally, variants of Tat are found in lentiviruses that infect monkey species that do not develop immunodeficiency and that do not have epidemic infection. However, these variant Tat do not have the SH3 binding domain and instead substitute a different sequence, also set off by prolines at either end of the sequence, into the transduction domain. Therefore, this SH3 binding domain is central to the immunosuppressive activity of Tat. Genetic data indicates this SH3 binding domain regulates monocyte differentiation into ARegs. In Tat proteins which do not contain this SH3 domain or is mutated, monocyte differentiation is directed into DCs which stimulate CTL responses.
It is also known that Tat contains a membrane translocation domain (MTS). After gaining access to the endosome following receptor binding, the MTS permits Tat to freely traffic across the endosomal membrane into the cytoplasm, where it transactivates gene expression, including but not restricted to genes of HIV-1 (Schwarze S R et al., In vivo protein transduction: delivery of a biologically active protein into the mouse, Science 285:1569-72, 1999). The MTS has been wrongly assumed to facilitate Tat entrance into the cell, which it can only accomplish at high concentrations that have been impossible to attain in vivo.
In an embodiment of the present invention, genetic derivatives of Tat, generated through modulating the signal transduction motif defined by the SH3 binding domain, are predicted to drive differentiation predominantly to dendritic cells or immunosuppressive AReg. AReg are also critical contributors to invasion of gastric, pancreas, and ductal infiltrating breast tumors, as well as components of tolerance in organ transplantation. It is a non-binding hypothesis of the present inventor that it is necessary to maintain the two external prolines at positions 3 and 18 flanking the SH3 domain in order to facilitate the proper structure for SH3 binding. In addition, the transduction domain from a non-immunosuppressive human variant Tat, or the domain from the hr mutation, can replace amino acids 3-19 of Tat, although the hr sequence (SEQ ID NO 4) is predicted to increase suppression. In addition, the stimulatory simian form of Tat (SEQ ID NO. 5), or its human equivalent sequence (SEQ ID NO. 6), can be substituted at this domain. Additional chemical modifications, such as ox-Tat, can be used for stimulation of dendritic/CTL responses and synthetic chemical moieties (NICE, new immunomodulatory chemical entities) can be constructed to generate an equivalent response.
Variations of Tat for the purpose of inducing tolerance or immune suppression are proposed in where Tat is conjugated to antigen in one of several proposed configurations and further illustrated in
Variations and derivitizations of Tat for the purpose of stimulating an immune response in a vaccine composition are proposed in which Tat is conjugated to antigen in one of several proposed configurations and further illustrated in
In one embodiment of the present invention, constructs for expression of tolerogen compositions are depicted in
The nucleotide sequences representing the components of the constructs in
In yet another embodiment of the present invention, tolerogen compositions which are determined to preferentially direct monocyte differentiation into ARegs will be evaluated for their ability to induce tolerance after being administered along with the desired immunogenic antigen. The tolerogen compositions of the present invention will be evaluated for their ability to induce tolerance in normal mice. Mice are injected with the tolerogen composition via a route including, but not limited to, intraperitoneal, subcutaneous, intradermal, oral, intranasal, cutaneous and intravenous administration. From four hours to one week after receiving a tolerizing agent, the mice are challenged with the corresponding immunogenic antigen alone. This test assay will be performed with an antigen which is known to induce an immune response in normal mice, such as a human protein. After an appropriate amount of time, ranging from 72 hours to 2 weeks, the mice are sacrificed and both T and B lymphocyte responses to the immunogenic antigen are determined using assays well known to those skilled in the art. The immune response in these mice will be validated by challenging the mice with an unrelated antigen which is known to induce an immune response (such as Candida) and with antigen that is not expected to induce an immune response (such as a normal mouse protein). Only if the mice react appropriately to these controls will the tolerogen composition be considered effective. In variations of the above experiment, additional mice will be administered multiple doses of tolerogen composition before challenging with corresponding immunogenic antigen. It is anticipated that repeated administration of the tolerogen composition will be necessary to induce and maintain tolerance to certain antigens and this schedule of dosing is optimized for each antigen.
An pharmaceutical method to influence the SH3 control of dendritic cells involves activating RNA interference (RNAi), which results in sequence-specific degradation of the targeted double strand RNA (Fire A, RNA-triggered gene splicing, Trends Genet 15:358-63, 1999; Zamore P D, RNA interference: listening to the sound of silence, Nat Struct Biol 8:746-50, 2001). Small interfering RNAs (siRNA) are RNA duplexes of 21-23 nucleotides which activate the RNAi pathway through their antisense strand and silence a gene through targeted degradation of its transcript. siRNAs are being widely developed as prophylactic and therapeutic agents to suppress selected RNA transcripts. Proposed targets include oncoproteins in cancer and infectious agents. The specificity and sensitivity of the target, an opening on the transcript free from secondary structure or complexed proteins that allows duplexed siRNA to form, and the actual delivery of the siRNA drug inside the cell are three critical factors governing the outcome of treatment. The sequence of the SH3 binding domain predisposing AReg/DC outcome is a potential RNAi target. Because the Tat's activity occurs at a balance point between stimulation (DC) and suppression (ARegs), small perturbations can be extremely efficacious.
An embodiment of the current invention is to create tolerogen compositions for organ transplantation using the genetic sequences discovered from analysis of Tat to control DC vs. AReg outcome. Duplexed siRNAs are easily constructed from the sense strand of Tat and Tat variants using methods standard to those skilled in the art (Elbashir S M et al., RNA Interference is mediated by 21- and 22-nucleotide RNAs. Genes Devel 15:188-200, 2001). One of the obstacles associated with the successful therapeutic use of siRNAs is the difficulty targeting the siRNA to the target cell. The signal transduction domain and the MTS of Tat are proposed as targeting agents for siRNA. The DNA sequences disclosed in Example 6 and in SEQ ID NOs. 8, 9 and 10 are exemplary Tat targeting sequences.
One of skill in the art will recognize that the efficacy, or toxicity, of the tolerogen compositions of the present invention, either alone or in combination with other pharmaceuticals, will influence the dose administered to a patient. Those of skill in the art may optimize dosage for maximum benefits with minimal toxicity in a patient without undue experimentation using any suitable method. Additionally, the tolerogen compositions of the present invention can be administered in vivo according to any of the methods known to those skilled in the art including, but not limited to, injection, inhalation, infusion and orally or any of the methods described in exemplary texts, such as “Remington's Pharmaceutical Sciences (8th and 15th Editions), the “Physicians' Desk Reference” and the “Merck Index.”
The tolerogen compositions can be formulated with any pharmaceutically acceptable excipient as determined to be appropriate by persons skilled in the art. Non-limiting examples of formulations considered with in the scope of the present invention include injectable solutions, lipid emulsions, depots and dry powders. Any suitable carrier can be used in the tolerogen composition, which will depend, in part, on the particular means or route of administration, as well as other practical considerations. The pharmaceutically acceptable carriers described herein, for example, vehicles, excipients, adjuvants or diluents, are well known to those who are skilled in the art and are readily available to the public. Accordingly, there are a wide variety of suitable formulations of the tolerogen composition of the present invention. The following formulations are exemplary and not intended to suggest that other formulations are not suitable.
Formulations that are injectable are among the preferred formulations. The requirements for effective pharmaceutical carriers for injectable compositions are well known to those of ordinary skill in the art (See Pharmaceutical and Pharmacy Practice, J.B. Lippincott Company, Philadelphia, Pa., Banker & Chalmers, Eds., pp. 238-50, 1982; ASHP Handbook on Injectable Drugs, Toissel, 4th Ed., pp. 622-30, 1986). Such injectable compositions can be administered intravenously or locally, i.e., at or near the site of a disease, or other condition in need of treatment.
Topical formulations are well known to those of skill in the art and are suitable in the context of the present invention. Such formulations are typically applied to skin or other body surfaces.
The tolerogen compositions of the present invention, alone or in combination with other suitable components can be made into aerosol formulations to be administered via inhalation. These aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen and the like. The tolerogen compositions of the present invention can also be formulated for dry powder inhalers. They also may be formulated for non-pressured preparations, such as in a nebulizer or an atomizer. Such spray formulations are particularly suitable for spray application to mucosa.
Additionally, transplanted organs can be treated with the tolerogen composition of the present invention by implantation of a reservoir of tolerogen composition in close proximity to the transplanted organ such that the tolerogen composition is provided locally to the transplanted organ for an extended period of time such as days, weeks or months.
In addition to the above-described pharmaceutical compositions, the tolerogen compositions of the present invention can be formulated as inclusion complexes, such as cyclodextrin inclusion complexes, or in liposomes (including modified liposomes such as pegylated and/or targeted liposomes).
It is within the scope of the present invention to provide tolerogen compositions to a patient in need thereof through a plurality of routes of administrations using a plurality of formulations.
Additionally, the tolerogen compositions of the present invention can be administered to patients in need of antigen-specific immune suppression according to dosing schedules known to persons skilled in the art, such as physicians. The scope of the present invention is considered to include administration of the tolerogen compositions of the present invention either before, concurrent or after the patient has received a treatment with an immunogenic antigen. The tolerogen compositions may be administered in a single dose or as repeated doses.
An additional embodiment of the present invention is that Tat induces monocytes committed to the dendritic cell (DC) lineage to enlarge into activated, CD86+ DC APCs (
Derivitzed Tat reduces AReg differentiation and potently enhances antigen-specific activation of CTLs (
Tat Activation of Macrophages and Suppression of the Immune Response
Recombinant Tat protein is prepared as previously described (Li, C. J. et al. (1995), “Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein,” Science 268:429-31) under mildly denaturing conditions and was renatured in the presence of 0.1 mM DTT.
Tat activation of monocytes is dose-dependent and saturatable (
Tat suppresses the antigen-specific humoral immune response to HIV-1 p24 (
Tat enhances the viability of cultured murine macrophages as long as the macrophages were first activated in vivo compared with no prior activation and stimulated with relatively high concentrations of Tat (
The Tat tolerogen of the present invention produces a stable suppression of mouse lymphocyte proliferation (
In addition, the Tat tolerogen of the present invention generates an antigen-specific immune suppression (
The Tat mediated antigen-specific suppression of the present invention is mediated through trans- (intracellular) activation of a CD14+ FasL+ macrophage (
The present invention demonstrates that, in human cells, Tat-activated macrophages are regulatory and immunosuppressive APC macrophage regulators (ARegs) (
The complete amino acid sequence of HIV-1 Tat encoded by exons 1 and 2 of the Tat gene is listed below:
The Tat of the present invention has a proline (P) rich segment near the amino terminus (amino acids 3-19):
This highly conserved region of HIV-1 Tat is a canonical SH3 binding domain (
The mouse hairless (hr) gene also has an SH3 binding motif of amino acids 176-196:
Homology exists between the human Tat SH3 binding domain (SEQ ID NO. 3) and the SH3 binding domain of the mouse hr gene (SEQ ID NO. 4):
Variants of Tat found in simian lentiviruses that do not cause immunodeficiency do not have an SH3 binding domain but instead have the following proline-flanked sequence:
The human equivalent of the simian sequence above (SEQ ID NO. 5) is:
Another region of interest is a cysteine-rich proposed ligand binding domain (amino acids 22-37) which contains seven cysteines (
Additionally, it is known that Tat contains a membrane translocation domain (MTS) (
The in vitro ultra-sensitive monocyte Tat bioassay of the present invention is used to assess the immunosuppressant or immunostimulatory activity of the Tat proteins used in tolerogen compositions of the present invention. This assay utilizes fresh monocyte cells substantially purified from human peripheral blood using standard density gradient enrichment procedures or other cell isolation protocols known in the art. The substantially purified monocytes are washed and then cultured in RPMI-1640 supplemented with 10% FBS at 37° C.
The in vitro ultra-sensitive monocyte Tat bioassay is performed using a positive control (FasL, inducing compound) and a negative control (no active compound is added to the culture). Suitable positive controls include, but are not limited to, lipopolysaccharide (LPS) and or tissue necrosing factor (TNF-α) at a final concentration of 100 ng/mL and 50 ng/mL, respectively. Test samples (Tat preparations) are run at final concentrations from 50 pM to 50 nM and include Tat, ox-Tat, NICE and other Tat derivatives and mutants.
The test samples and controls are individually mixed with the substantially pure monocytes seeded at a density of 106 cells/mL in round bottom tubes containing RPMI-1640 with 10% FBS (herein referred to collectively as assay cultures). The assay cultures are then incubated for a suitable period of time, preferably from five to six days, at 37° C., in a 5% CO2 environment.
At the end of the incubation period, cells are removed from each assay culture and the presence of any induced FasL expression (for measurement of differentiation into ARegs) or CD86 expression (for differentiation in dendritic cells) is detected by staining with an anti-FasL or anti-CD86 antibodies and appropriate fluorescent detection agents. After the substantially pure macrophages have been stained, the fluorescence is detected using a fluorescence activated cell sorter (FACS) system. Control staining is performed using the fluorescent detection system alone and subtracted from the specific anti-FasL or anti-CD86 staining seen in the assay cultures. The greater the percentage of FasL positive cells in a given assay culture, the more immunosuppressant the test sample in the assay culture is. Conversely, if the assay culture contains a predominance of CD86 positive cells, the test sample is identified to be immunostimulatory. Negative controls should always remain non-reactive with the antibodies and the positive control should fall within predetermined ranges.
Human Tat SH3 targeting domain:
Mouse hairless SH3 targeting domain:
Targeting domain from the human equivalent of the simian non-immunosuppressive Tat:
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a” and “an” and “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above cited references and printed publications are herein individually incorporated by reference in their entirety.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/553,733 filed Mar. 16, 2004, to U.S. Provisional Patent Application Ser. No. 60/649,021 filed Jan. 31, 2005 and to U.S. patent application Ser. No. 10/456,865 filed Jun. 6, 2003 which is a divisional of U.S. patent application Ser. No. 09/636,057 filed Aug. 8, 2000, now U.S. Pat. No. 6,667,151.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/08634 | 3/16/2005 | WO | 00 | 9/15/2006 |
Number | Date | Country | |
---|---|---|---|
60553733 | Mar 2004 | US | |
60649021 | Jan 2005 | US |