The present disclosure generally relates to behavioral pairing and, more particularly, to techniques for adapting behavioral pairing to runtime conditions in a task assignment system.
A typical task assignment system algorithmically assigns tasks arriving at the task assignment center to agents available to handle those tasks. At times, the task assignment system may have agents available and waiting for assignment to tasks. At other times, the task assignment center may have tasks waiting in one or more queues for an agent to become available for assignment.
In some typical task assignment centers, tasks are assigned to agents ordered based on time of arrival, and agents receive tasks ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. For example, in an “L2” environment, multiple tasks are waiting in a queue for assignment to an agent. When an agent becomes available, the task at the head of the queue would be selected for assignment to the agent.
Some task assignment systems prioritize some types of tasks ahead of other types of tasks. For example, some tasks may be high-priority tasks, while other tasks are low-priority tasks. Under a FIFO strategy, high-priority tasks will be assigned ahead of low-priority tasks.
In other typical task assignment systems, a performance-based routing (PBR) strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using specific information about agents but without necessarily relying on specific information about tasks.
In some typical task assignment systems, a behavioral pairing (BP) model may be generated based on historical task-agent assignment data to optimize performance of the task assignment system. For example, in a contact center environment, the BP model may be calibrated to optimize revenue in a sales queue or to reduce average handle time in a sales or customer service queue.
In some task assignment systems, a goal for optimizing the task assignment system or a particular queue of the task assignment system may change at runtime (i.e., in real time) based on conditions in the task assignment system that can change at any moment.
In view of the foregoing, it may be understood that there may be a need for a task assignment system that can adapt to changing goals at runtime.
Techniques for adapting behavioral pairing to runtime conditions in a task assignment system are disclosed. In one particular embodiment, the techniques may be realized as a method for adapting behavioral pairing to runtime conditions in a task assignment system comprising: determining, by at least one computer processor communicatively coupled to and configured to operate in the task assignment system, at least two pairing models for assigning tasks in the task assignment system; monitoring, by the at least one computer processor, at least one parameter of the task assignment system; and selecting, by the at least one computer processor, one of the at least two pairing models based on a value of the at least one parameter.
In accordance with other aspects of this particular embodiment, the task assignment system may be a contact center system.
In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change of state between an agent surplus and a task surplus
In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change in size of a queue of tasks in the task assignment system.
In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a failure or a recovery in at least one of a site, a server, a switch, and a workstation of the task assignment system.
In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change in a number of agents that is assigned to tasks, available, logged in, or idle.
In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change in a time of day or an amount of elapsed time.
In accordance with other aspects of this particular embodiment, at least one of the at least two pairing models may be a diagonal behavioral pairing model.
In accordance with other aspects of this particular embodiment, at least one of the at least two pairing models may be a behavioral pairing payout matrix model.
In accordance with other aspects of this particular embodiment, a goal of one of the at least two pairing models may be one of increasing revenue, decreasing average handling time, improving customer satisfaction, increasing upgrade/cross-sell rates, and increasing customer retention rates.
In another particular embodiment, the techniques may be realized as a system for adapting behavioral pairing to runtime conditions in a task assignment system comprising at least one computer processor communicatively coupled to and configured to operate in the task assignment system, wherein the at least one computer processor is further configured to perform the steps in the above-described method.
In another particular embodiment, the techniques may be realized as an article of manufacture for adapting behavioral pairing to runtime conditions in a task assignment system comprising a non-transitory processor readable medium and instructions stored on the medium, wherein the instructions are configured to be readable from the medium by at least one computer processor communicatively coupled to and configured to operate in the task assignment system and thereby cause the at least one computer processor to operate so as to perform the steps in the above-described method.
The present disclosure will now be described in more detail with reference to particular embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to particular embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.
To facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be illustrative only.
A typical task assignment system algorithmically assigns tasks arriving at the task assignment center to agents available to handle those tasks. At times, the task assignment system may have agents available and waiting for assignment to tasks. At other times, the task assignment center may have tasks waiting in one or more queues for an agent to become available for assignment.
In some typical task assignment centers, tasks are assigned to agents ordered based on time of arrival, and agents receive tasks ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. For example, in an “L2” environment, multiple tasks are waiting in a queue for assignment to an agent. When an agent becomes available, the task at the head of the queue would be selected for assignment to the agent.
Some task assignment systems prioritize some types of tasks ahead of other types of tasks. For example, some tasks may be high-priority tasks, while other tasks are low-priority tasks. Under a FIFO strategy, high-priority tasks may be assigned ahead of low-priority tasks.
In other typical task assignment systems, a performance-based routing (PBR) strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using specific information about gents but without necessarily relying on specific information about tasks.
In some typical task assignment systems, a behavioral pairing (BP) model may be generated based on historical task-agent assignment data to optimize performance of the task assignment system. For example, in a contact center environment, the BP model may be calibrated to optimize revenue in a sales queue or to reduce average handle time in a sales or customer service queue.
In some task assignment systems, a goal for optimizing the task assignment system or a particular queue of the task assignment system may change at runtime (i.e., in real time) based on conditions in the task assignment system that can change at any moment.
In view of the foregoing, it may be understood that there may be a need for a task assignment system that can adapt to changing goals at runtime, as described below.
The description herein describes network elements, computers, and/or components of a system and method for benchmarking pairing strategies in a task assignment system that may include one or more modules. As used herein, the term “module” may be understood to refer to computing software, firmware, hardware, and/or various combinations thereof. Modules, however, are not to be interpreted as software which is not implemented on hardware, firmware, or recorded on a non-transitory processor readable recordable storage medium (i.e., modules are not software per se). It is noted that the modules are exemplary. The modules may be combined, integrated, separated, and/or duplicated to support various applications. Also, a function described herein as being performed at a particular module may be performed at one or more other modules and/or by one or more other devices instead of or in addition to the function performed at the particular module. Further, the modules may be implemented across multiple devices and/or other components local or remote to one another. Additionally, the modules may be moved from one device and added to another device, and/or may be included in both devices.
The task assignment module 110 may receive incoming tasks. In the example of
In some embodiments, a task assignment strategy module 140 may be communicatively coupled to and/or configured to operate in the task assignment system 100. The task assignment strategy module 140 may implement one or more task assignment strategies (or “pairing strategies”) or one more models of a task assignment strategy for assigning individual tasks to individual agents (e.g., pairing contacts with contact center agents). For a given task queue (e.g., a sales queue in a contact center system, a truck roll or field agent dispatch queue in a dispatch queue center, etc.), the task assignment strategy module 140 may implement more than one model for more than one condition or goal. For example, in a sales queue, one goal may be to increase overall revenue generated by agents processing tasks in the sales queue (e.g., talking to callers in a call center interested in buying services from the company of the agents). A second goal may be to reduce average handle time (AHT) for tasks (e.g., complete a sales call relatively quickly). Historical task-agent pairing data may be available (e.g., from historical assignment module 150, which is described below) that includes both revenue and duration information, and two different models or sets of models may be generated that are calibrated to their respective goals of increasing revenue or decreasing average handle time.
A variety of different task assignment strategies may be devised and implemented by the task assignment strategy module 140, and made available to the task assignment module 110 at runtime. In some embodiments, a FIFO strategy may be implemented in which, for example, the longest-waiting agent receives the next available task (in L1 environments) or the longest-waiting task is assigned to the next available task (in L2 environments). Other FIFO and FIFO-like strategies may make assignments without relying on information specific to individual tasks or individual agents.
In other embodiments, a PBR strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using information about specific agents but without necessarily relying on information about specific tasks or agents.
In yet other embodiments, a BP strategy may be used for optimally assigning tasks to agents using information about both specific tasks and specific agents. Various models of the BP strategy may be used, such as a diagonal model BP strategy, a payout matrix BP strategy, or a network flow BP strategy. These task assignment strategies and others are described in detail for the contact center context in, e.g., U.S. Pat. Nos. 9,300,802 and 9,930,180, which are hereby incorporated by reference herein. BP strategies may be applied in an “L1” environment (agent surplus, one task; select among multiple available/idle agents), an “L2” environment (task surplus, one available/idle agent; select among multiple tasks in queue), and an “L3” environment (multiple agents and multiple tasks; select among pairing permutations).
In some embodiments, the task assignment strategy module 140 may be configured to switch from one task assignment strategy to another task assignment strategy, or from one model of a task assignment strategy to another model of the task assignment strategy, in real time. A goal for optimizing the task assignment system 100 or a particular queue of the task assignment system 100 may change at runtime (i.e., in real time) based on conditions or parameters in the task assignment system 100 that can change at any moment. For example, a condition may be based on the size of the task queue. When the task assignment system 100 is operating in L1 (i.e., agent surplus), or the size of the task queue in L2 is less than (or equal to) a certain size (e.g., 5, 10, 20 tasks, etc.), the task assignment system 100 may operate with the goal of increasing revenue and the task assignment strategy module 140 may select a model or a set of models corresponding to that goal. When the task assignment system 100 detects that the size of the task queue in L2 is greater than (or equal to) a threshold size, the task assignment strategy module 140 may switch to operate with the goal of decreasing average handle time and switch to a model or set of models corresponding to the new goal. Examples of other goals may include improving customer satisfaction (e.g., customer satisfaction (CSAT) scores or Net Promoter Scores), increasing upgrade/cross-sell rates, increasing customer retention rates, decreasing AHT, etc. Example of other conditions or parameters may include switching between L1 and L2 (i.e., switching between agent surplus and task surplus conditions), unexpected reduction in capacity (e.g., sites/queues/agents workstations/server/switch failure or recovery), number of agents assigned to the task queue (or number of agents available/logged in/idle), schedule-based/cycling changes to the goals and models (which can be benchmarked similarly to benchmarking ON/OFF cycles between two pairing strategies, as described below), time of the day or amount of elapsed time (for schedule-based cycling of models and benchmarking), etc.
In some embodiments, an operator or manager of the task assignment system 100 may select or switch goals or models manually. In response to the operator's selection, the task assignment strategy module 140 may switch models in real time. In other embodiments, the task assignment strategy module 140 may monitor the task assignment system 100 for certain conditions or parameters and, in response to detecting particular changes in these conditions or parameters, may select or switch goals and models automatically. In yet other embodiments, the conditions that trigger switching the goals or models may be determined automatically as part of a super- or meta-model from analyzing historical task-agent assignment data (available from historical assignment module 150, which is described below).
In some embodiments, a historical assignment module 150 may be communicatively coupled to and/or configured to operate in the task assignment system 100 via other modules such as the task assignment module 110 and/or the task assignment strategy module 140. The historical assignment module 150 may be responsible for various functions such as monitoring, storing, retrieving, and/or outputting information about agent task assignments that have already been made. For example, the historical assignment module 150 may monitor the task assignment module 110 to collect information about task assignments in a given period. Each record of a historical task assignment may include information such as an agent identifier, a task or task type identifier, outcome information, or a pairing strategy identifier (i.e., an identifier indicating whether a task assignment was made using a BP pairing strategy or some other pairing strategy such as a FIFO or PBR pairing strategy).
In some embodiments and for some contexts, additional information may be stored. For example, in a call center context, the historical assignment module 150 may also store information about the time a call started, the time a call ended, the phone number dialed, and the caller's phone number. For another example, in a dispatch center (e.g., “truck roll”) context, the historical assignment module 150 may also store information about the time a driver (i.e., field agent) departs from the dispatch center, the route recommended, the route taken, the estimated travel time, the actual travel time, the amount of time spent at the customer site handling the customer's task, etc.
In some embodiments, the historical assignment module 150 may generate a pairing model or similar computer processor-generate model based on a set of historical assignments for a period of time (e.g., the past week, the past month, the past year, etc.), which may be used by the task assignment strategy module 140 to make task assignment recommendations or instructions to the task assignment module 110. In other embodiments, the historical assignment module 150 may send historical assignment information to another module such as the task assignment strategy module 140 or the benchmarking module 160.
In some embodiments, a benchmarking module 160 may be communicatively coupled to and/or configured to operate in the task assignment system 100 via other modules such as the task assignment module 110 and/or the historical assignment module 150. The benchmarking module 160 may benchmark the relative performance of two or more pairing strategies (e.g., FIFO, PBR, BP, etc.) using historical assignment information, which may be received from, for example, the historical assignment module 150. In some embodiments, the benchmarking module 160 may perform other functions, such as establishing a benchmarking schedule for cycling among various pairing strategies, tracking cohorts (e.g., base and measurement groups of historical assignments), etc. Benchmarking is described in detail for the contact center context in, e.g., U.S. Pat. No. 9,712,676, which is hereby incorporated by reference herein.
In some embodiments, the benchmarking module 160 may output or otherwise report or use the relative performance measurements. The relative performance measurements may be used to assess the quality of the task assignment strategy to determine, for example, whether a different task assignment strategy (or a different pairing model) should be used, or to measure the overall performance (or performance gain) that was achieved within the task assignment system 100 while it was optimized or otherwise configured to use one task assignment strategy instead of another.
The central switch 210 may not be necessary if there is only one contact center, or if there is only one PBX/ACD routing component, in the contact center system 200. If more than one contact center is part of the contact center system 200, each contact center may include at least one contact center switch (e.g., contact center switches 220A and 220B). The contact center switches 220A and 220B may be communicatively coupled to the central switch 210. Each contact center switch for each contact center may be communicatively coupled to a plurality (or “pool”) of agents. Each contact center switch may support a certain number of agents (or “seats”) to be logged in at one time. At any given time, a logged-in agent may be available and waiting to be connected to a contact, or the logged-in agent may be unavailable for any of a number of reasons, such as being connected to another contact, performing certain post-call functions such as logging information about the call, or taking a break.
In the example of
The contact center system 200 may also be communicatively coupled to an integrated service from, for example, a third-party vendor. In the example of
Behavioral pairing module 240 may receive information from a switch (e.g., contact center switch 220A) about agents logged into the switch (e.g., agents 230A and 230B) and about incoming contacts via another switch (e.g., central switch 210) or, in some embodiments, from a network (e.g., the Internet or a telecommunications network) (not shown).
The behavioral pairing module 240 may process this information and to determine which contacts should be paired (e.g., matched, assigned, distributed, routed) with which agents. For example, multiple agents are available and waiting for connection to a contact (L1 state), and a contact arrives at the contact center via a network or central switch. As explained above, without the behavioral pairing module 240, a contact center switch will typically automatically distribute the new contact to whichever available agent has been waiting the longest amount of time for an agent under a “fair” FIFO strategy, or whichever available agent has been determined to be the highest-performing agent under a PBR strategy.
With a behavioral pairing module 240, contacts and agents may be given scores (e.g., percentiles or percentile ranges/bandwidths) according to a pairing model or other artificial intelligence data model, so that a contact may be matched, paired, or otherwise connected to a preferred agent.
In an L2 state, multiple contacts are available and waiting for connection to an agent, and an agent becomes available. These contacts may be queued in a contact center switch such as a PBX or ACD device (“PBX/ACD”). Without the behavioral pairing module 240, a contact center switch will typically connect the newly available agent to whichever contact has been waiting on hold in the queue for the longest amount of time as in a “fair” FIFO strategy or a PBR strategy when agent choice is not available. In some contact centers, priority queuing may also be incorporated, as previously explained.
With a behavioral pairing module 240 in an L2 scenario, as in the L1 state described above, contacts and agents may be given percentiles (or percentile ranges/bandwidths, etc.) according to, for example, a model, such as an artificial intelligence model, so that an agent coming available may be matched, paired, or otherwise connected to a preferred contact.
Task assignment method 300 may begin at block 310. At block 310, at least two pairing models for assigning tasks in a task assignment system may be determined. For example, in a sales queue, one pairing model may be to increase overall revenue generated by agents processing tasks in the sales queue (e.g., talking to callers in a call center interested in buying services from the company of the agents). A second pairing model may be to reduce AHT for tasks (e.g., complete a sales call relatively quickly).
Task assignment method 300 may proceed to block 320. At block 320, at least one parameter of the task assignment system may be monitored. For example, a parameter may be the size of the task queue. Example of other parameters may include a switch between L1 and L2 (i.e., a switch between agent surplus and task surplus conditions), unexpected reduction in capacity (e.g., sites/queues/agents workstations/server/switch failure or recovery), number of agents assigned to the task queue (or number of agents available/logged in/idle), schedule-based/cycling changes to the goals and models, time of the day or amount of elapsed time, etc.
Task assignment method 300 may proceed to block 330. At block 330, one of the at least two pairing models (determined at block 310) may be selected based on a value of the at least one parameter (monitored at block 320). For example, when the parameter is the size of the task queue in the task assignment system and the task assignment system is operating in L1 (i.e., agent surplus), or the size of the task queue in L2 is less than (or equal to) a certain size (e.g., 5, 10, 20 tasks, etc.), a pairing model that increases revenue may be selected. When the task assignment system detects that the size of the task queue in L2 is greater than (or equal to) a threshold size, a pairing model that decreases average handle time may be selected.
After selecting one of the at least two pairing models, the task assignment method 300 may end.
At this point it should be noted that adapting behavioral pairing to runtime conditions in a task assignment system in accordance with the present disclosure as described above may involve the processing of input data and the generation of output data to some extent. This input data processing and output data generation may be implemented in hardware or software. For example, specific electronic components may be employed in a behavioral pairing module or similar or related circuitry for implementing the functions associated with adapting behavioral pairing to runtime conditions in a task assignment system in accordance with the present disclosure as described above. Alternatively, one or more processors operating in accordance with instructions may implement the functions associated with adapting behavioral pairing to runtime conditions in a task assignment system in accordance with the present disclosure as described above. If such is the case, it is within the scope of the present disclosure that such instructions may be stored on one or more non-transitory processor readable storage media (e.g., a magnetic disk or other storage medium), or transmitted to one or more processors via one or more signals embodied in one or more carrier waves.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of at least one particular implementation in at least one particular environment for at least one particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
This application is a continuation of U.S. patent application Ser. No. 16/146,783, filed Sep. 28, 2018 (now U.S. Pat. No. 10,496,438), which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5155763 | Bigus et al. | Oct 1992 | A |
5206903 | Kohler et al. | Apr 1993 | A |
5327490 | Cave | Jul 1994 | A |
5537470 | Lee | Jul 1996 | A |
5702253 | Bryce et al. | Dec 1997 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5903641 | Tonisson | May 1999 | A |
5907601 | David et al. | May 1999 | A |
5926538 | Deryugin et al. | Jul 1999 | A |
6049603 | Schwartz et al. | Apr 2000 | A |
6052460 | Fisher et al. | Apr 2000 | A |
6064731 | Flockhart et al. | May 2000 | A |
6088444 | Walker et al. | Jul 2000 | A |
6163607 | Bogart et al. | Dec 2000 | A |
6222919 | Hollatz et al. | Apr 2001 | B1 |
6292555 | Okamoto | Sep 2001 | B1 |
6324282 | McIllwaine et al. | Nov 2001 | B1 |
6333979 | Bondi et al. | Dec 2001 | B1 |
6389132 | Price | May 2002 | B1 |
6389400 | Bushey et al. | May 2002 | B1 |
6408066 | Andruska et al. | Jun 2002 | B1 |
6411687 | Bohacek et al. | Jun 2002 | B1 |
6424709 | Doyle et al. | Jul 2002 | B1 |
6434230 | Gabriel | Aug 2002 | B1 |
6496580 | Chack | Dec 2002 | B1 |
6504920 | Okon et al. | Jan 2003 | B1 |
6519335 | Bushnell | Feb 2003 | B1 |
6535600 | Fisher et al. | Mar 2003 | B1 |
6535601 | Flockhart et al. | Mar 2003 | B1 |
6570980 | Baruch | May 2003 | B1 |
6587556 | Judkins et al. | Jul 2003 | B1 |
6603854 | Judkins et al. | Aug 2003 | B1 |
6639976 | Shellum et al. | Oct 2003 | B1 |
6661889 | Flockhart et al. | Dec 2003 | B1 |
6704410 | McFarlane et al. | Mar 2004 | B1 |
6707904 | Judkins et al. | Mar 2004 | B1 |
6714643 | Gargeya et al. | Mar 2004 | B1 |
6763104 | Judkins et al. | Jul 2004 | B1 |
6774932 | Ewing et al. | Aug 2004 | B1 |
6775378 | Villena et al. | Aug 2004 | B1 |
6798876 | Bala | Sep 2004 | B1 |
6829348 | Schroeder et al. | Dec 2004 | B1 |
6832203 | Villena et al. | Dec 2004 | B1 |
6859529 | Duncan et al. | Feb 2005 | B2 |
6922466 | Peterson et al. | Jul 2005 | B1 |
6937715 | Delaney | Aug 2005 | B2 |
6956941 | Duncan et al. | Oct 2005 | B1 |
6970821 | Shambaugh et al. | Nov 2005 | B1 |
6978006 | Polcyn | Dec 2005 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039166 | Peterson et al. | May 2006 | B1 |
7050566 | Becerra et al. | May 2006 | B2 |
7050567 | Jensen | May 2006 | B1 |
7062031 | Becerra et al. | Jun 2006 | B2 |
7068775 | Lee | Jun 2006 | B1 |
7092509 | Mears et al. | Aug 2006 | B1 |
7103172 | Brown et al. | Sep 2006 | B2 |
7158628 | McConnell et al. | Jan 2007 | B2 |
7184540 | Dezonno et al. | Feb 2007 | B2 |
7209549 | Reynolds et al. | Apr 2007 | B2 |
7231032 | Nevman et al. | Jun 2007 | B2 |
7231034 | Rikhy et al. | Jun 2007 | B1 |
7236584 | Torba | Jun 2007 | B2 |
7245716 | Brown et al. | Jul 2007 | B2 |
7245719 | Kawada et al. | Jul 2007 | B2 |
7266251 | Rowe | Sep 2007 | B2 |
7269253 | Wu et al. | Sep 2007 | B1 |
7353388 | Gilman et al. | Apr 2008 | B1 |
7398224 | Cooper | Jul 2008 | B2 |
7593521 | Becerra et al. | Sep 2009 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7725339 | Aykin | May 2010 | B1 |
7734032 | Kiefhaber et al. | Jun 2010 | B1 |
7798876 | Mix | Sep 2010 | B2 |
7826597 | Berner et al. | Nov 2010 | B2 |
7864944 | Khouri et al. | Jan 2011 | B2 |
7899177 | Bruening et al. | Mar 2011 | B1 |
7916858 | Heller et al. | Mar 2011 | B1 |
7940917 | Lauridsen et al. | May 2011 | B2 |
7961866 | Boutcher et al. | Jun 2011 | B1 |
7995717 | Conway et al. | Aug 2011 | B2 |
8000989 | Kiefhaber et al. | Aug 2011 | B1 |
8010607 | McCormack et al. | Aug 2011 | B2 |
8094790 | Conway et al. | Jan 2012 | B2 |
8126133 | Everingham et al. | Feb 2012 | B1 |
8140441 | Cases et al. | Mar 2012 | B2 |
8175253 | Knott et al. | May 2012 | B2 |
8229102 | Knott et al. | Jul 2012 | B2 |
8249245 | Jay et al. | Aug 2012 | B2 |
8295471 | Spottiswoode et al. | Oct 2012 | B2 |
8300798 | Wu et al. | Oct 2012 | B1 |
8359219 | Chishti et al. | Jan 2013 | B2 |
8433597 | Chishti et al. | Apr 2013 | B2 |
8472611 | Chishti | Jun 2013 | B2 |
8565410 | Chishti et al. | Oct 2013 | B2 |
8634542 | Spottiswoode et al. | Jan 2014 | B2 |
8644490 | Stewart | Feb 2014 | B2 |
8670548 | Xie et al. | Mar 2014 | B2 |
8699694 | Chishti et al. | Apr 2014 | B2 |
8712821 | Spottiswoode | Apr 2014 | B2 |
8718271 | Spottiswoode | May 2014 | B2 |
8724797 | Chishti et al. | May 2014 | B2 |
8731178 | Chishti et al. | May 2014 | B2 |
8737595 | Chishti et al. | May 2014 | B2 |
8750488 | Spottiswoode et al. | Jun 2014 | B2 |
8761380 | Kohler et al. | Jun 2014 | B2 |
8781100 | Spottiswoode et al. | Jul 2014 | B2 |
8781106 | Afzal | Jul 2014 | B2 |
8792630 | Chishti et al. | Jul 2014 | B2 |
8824658 | Chishti | Sep 2014 | B2 |
8831207 | Agarwal | Sep 2014 | B1 |
8879715 | Spottiswoode et al. | Nov 2014 | B2 |
8903079 | Xie et al. | Dec 2014 | B2 |
8913736 | Kohler et al. | Dec 2014 | B2 |
8929537 | Chishti et al. | Jan 2015 | B2 |
8995647 | Li et al. | Mar 2015 | B2 |
9020137 | Chishti et al. | Apr 2015 | B2 |
9025757 | Spottiswoode et al. | May 2015 | B2 |
9215323 | Chishti | Dec 2015 | B2 |
9277055 | Spottiswoode et al. | Mar 2016 | B2 |
9300802 | Chishti | Mar 2016 | B1 |
9313332 | Kumar et al. | Apr 2016 | B1 |
9426296 | Chishti et al. | Aug 2016 | B2 |
9712676 | Chishti | Jul 2017 | B1 |
9712679 | Chishti et al. | Jul 2017 | B2 |
9888121 | Chishti | Feb 2018 | B1 |
9930180 | Kan et al. | Mar 2018 | B1 |
9942405 | Kan et al. | Apr 2018 | B1 |
20010032120 | Stuart et al. | Oct 2001 | A1 |
20020018554 | Jensen et al. | Feb 2002 | A1 |
20020046030 | Haritsa et al. | Apr 2002 | A1 |
20020059164 | Shtivelman | May 2002 | A1 |
20020082736 | Lech et al. | Jun 2002 | A1 |
20020110234 | Walker et al. | Aug 2002 | A1 |
20020111172 | DeWolf et al. | Aug 2002 | A1 |
20020131399 | Philonenko | Sep 2002 | A1 |
20020138285 | DeCotiis et al. | Sep 2002 | A1 |
20020143599 | Nourbakhsh et al. | Oct 2002 | A1 |
20020161765 | Kundrot et al. | Oct 2002 | A1 |
20020184069 | Kosiba et al. | Dec 2002 | A1 |
20020196845 | Richards et al. | Dec 2002 | A1 |
20030002653 | Uckun | Jan 2003 | A1 |
20030081757 | Mengshoel et al. | May 2003 | A1 |
20030095652 | Mengshoel et al. | May 2003 | A1 |
20030169870 | Stanford | Sep 2003 | A1 |
20030174830 | Boyer et al. | Sep 2003 | A1 |
20030217016 | Pericle | Nov 2003 | A1 |
20040028211 | Culp et al. | Feb 2004 | A1 |
20040057416 | McCormack | Mar 2004 | A1 |
20040096050 | Das et al. | May 2004 | A1 |
20040098274 | Dezonno et al. | May 2004 | A1 |
20040101127 | Dezonno et al. | May 2004 | A1 |
20040109555 | Williams | Jun 2004 | A1 |
20040133434 | Szlam et al. | Jul 2004 | A1 |
20040210475 | Starnes et al. | Oct 2004 | A1 |
20040230438 | Pasquale et al. | Nov 2004 | A1 |
20040267816 | Russek | Dec 2004 | A1 |
20050013428 | Walters | Jan 2005 | A1 |
20050043986 | McConnell et al. | Feb 2005 | A1 |
20050047581 | Shaffer et al. | Mar 2005 | A1 |
20050047582 | Shaffer et al. | Mar 2005 | A1 |
20050071223 | Jain et al. | Mar 2005 | A1 |
20050129212 | Parker | Jun 2005 | A1 |
20050135593 | Becerra et al. | Jun 2005 | A1 |
20050135596 | Zhao | Jun 2005 | A1 |
20050187802 | Koeppel | Aug 2005 | A1 |
20050195960 | Shaffer et al. | Sep 2005 | A1 |
20050286709 | Horton et al. | Dec 2005 | A1 |
20060098803 | Bushey et al. | May 2006 | A1 |
20060110052 | Finlayson | May 2006 | A1 |
20060124113 | Roberts | Jun 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060222164 | Contractor et al. | Oct 2006 | A1 |
20060233346 | McIlwaine et al. | Oct 2006 | A1 |
20060262918 | Karnalkar et al. | Nov 2006 | A1 |
20060262922 | Margulies et al. | Nov 2006 | A1 |
20070036323 | Travis | Feb 2007 | A1 |
20070071222 | Flockhart et al. | Mar 2007 | A1 |
20070121602 | Sin et al. | May 2007 | A1 |
20070121829 | Tal et al. | May 2007 | A1 |
20070136342 | Singhai et al. | Jun 2007 | A1 |
20070153996 | Hansen | Jul 2007 | A1 |
20070154007 | Bernhard | Jul 2007 | A1 |
20070174111 | Anderson et al. | Jul 2007 | A1 |
20070198322 | Bourne et al. | Aug 2007 | A1 |
20070219816 | Van Luchene et al. | Sep 2007 | A1 |
20070274502 | Brown | Nov 2007 | A1 |
20080002823 | Fama et al. | Jan 2008 | A1 |
20080008309 | Dezonno et al. | Jan 2008 | A1 |
20080046386 | Pieraccinii et al. | Feb 2008 | A1 |
20080065476 | Klein et al. | Mar 2008 | A1 |
20080118052 | Houmaidi et al. | May 2008 | A1 |
20080152122 | Idan et al. | Jun 2008 | A1 |
20080181389 | Bourne et al. | Jul 2008 | A1 |
20080199000 | Su et al. | Aug 2008 | A1 |
20080205611 | Jordan et al. | Aug 2008 | A1 |
20080267386 | Cooper | Oct 2008 | A1 |
20080273687 | Knott et al. | Nov 2008 | A1 |
20090043670 | Johansson et al. | Feb 2009 | A1 |
20090086933 | Patel et al. | Apr 2009 | A1 |
20090190740 | Chishti et al. | Jul 2009 | A1 |
20090190743 | Spottiswoode | Jul 2009 | A1 |
20090190744 | Xie et al. | Jul 2009 | A1 |
20090190745 | Xie et al. | Jul 2009 | A1 |
20090190746 | Chishti et al. | Jul 2009 | A1 |
20090190747 | Spottiswoode | Jul 2009 | A1 |
20090190748 | Chishti et al. | Jul 2009 | A1 |
20090190749 | Xie et al. | Jul 2009 | A1 |
20090190750 | Xie et al. | Jul 2009 | A1 |
20090232294 | Xie et al. | Sep 2009 | A1 |
20090234710 | Belgaied Hassine et al. | Sep 2009 | A1 |
20090245493 | Chen et al. | Oct 2009 | A1 |
20090304172 | Becerra et al. | Dec 2009 | A1 |
20090318111 | Desai et al. | Dec 2009 | A1 |
20090323921 | Spottiswoode et al. | Dec 2009 | A1 |
20100020959 | Spottiswoode | Jan 2010 | A1 |
20100020961 | Spottiswoode | Jan 2010 | A1 |
20100054431 | Jaiswal et al. | Mar 2010 | A1 |
20100054452 | Afzal | Mar 2010 | A1 |
20100054453 | Stewart | Mar 2010 | A1 |
20100086120 | Brussat et al. | Apr 2010 | A1 |
20100111285 | Chishti | May 2010 | A1 |
20100111286 | Chishti | May 2010 | A1 |
20100111287 | Xie et al. | May 2010 | A1 |
20100111288 | Afzal et al. | May 2010 | A1 |
20100142698 | Spottiswoode et al. | Jun 2010 | A1 |
20100158238 | Saushkin | Jun 2010 | A1 |
20100183138 | Spottiswoode et al. | Jul 2010 | A1 |
20110022357 | Vock et al. | Jan 2011 | A1 |
20110031112 | Birang et al. | Feb 2011 | A1 |
20110069821 | Korolev et al. | Mar 2011 | A1 |
20110125048 | Causevic et al. | May 2011 | A1 |
20110310773 | Iyengar et al. | Dec 2011 | A1 |
20120051536 | Chishti et al. | Mar 2012 | A1 |
20120051537 | Chishti et al. | Mar 2012 | A1 |
20120224680 | Spottiswoode et al. | Sep 2012 | A1 |
20120278136 | Flockhart et al. | Nov 2012 | A1 |
20130003959 | Nishikawa et al. | Jan 2013 | A1 |
20130022195 | Nimmagadda | Jan 2013 | A1 |
20130251137 | Chishti et al. | Sep 2013 | A1 |
20130287202 | Flockhart et al. | Oct 2013 | A1 |
20140044246 | Klemm et al. | Feb 2014 | A1 |
20140079210 | Kohler et al. | Mar 2014 | A1 |
20140119531 | Tuchman et al. | May 2014 | A1 |
20140119533 | Spottiswoode et al. | May 2014 | A1 |
20140341370 | Li et al. | Nov 2014 | A1 |
20150055772 | Klemm et al. | Feb 2015 | A1 |
20150281448 | Putra et al. | Oct 2015 | A1 |
20160080573 | Chishti | Mar 2016 | A1 |
20170064080 | Chishti et al. | Mar 2017 | A1 |
20170064081 | Chishti et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2008349500 | May 2014 | AU |
2009209317 | May 2014 | AU |
2009311534 | Aug 2014 | AU |
2015203175 | Jul 2015 | AU |
2015243001 | Nov 2015 | AU |
101093590 | Dec 2007 | CN |
102164073 | Aug 2011 | CN |
102390184 | Mar 2012 | CN |
102555536 | Jul 2012 | CN |
202965525 | Jun 2013 | CN |
203311505 | Nov 2013 | CN |
102301688 | May 2014 | CN |
102017591 | Nov 2014 | CN |
0493292 | Jul 1992 | EP |
0863651 | Sep 1998 | EP |
0949793 | Oct 1999 | EP |
1011974 | Jun 2000 | EP |
1032188 | Aug 2000 | EP |
1107557 | Jun 2001 | EP |
1335572 | Aug 2003 | EP |
2339643 | Feb 2000 | GB |
11-098252 | Apr 1999 | JP |
2000-069168 | Mar 2000 | JP |
2000-078291 | Mar 2000 | JP |
2000-078292 | Mar 2000 | JP |
2000-092213 | Mar 2000 | JP |
2000-507420 | Jun 2000 | JP |
2000-236393 | Aug 2000 | JP |
2000-253154 | Sep 2000 | JP |
2001-292236 | Oct 2001 | JP |
2001-518753 | Oct 2001 | JP |
2002-069168 | Mar 2002 | JP |
2002-297900 | Oct 2002 | JP |
3366565 | Jan 2003 | JP |
2003-187061 | Jul 2003 | JP |
2004-056517 | Feb 2004 | JP |
2004-227228 | Aug 2004 | JP |
2006-345132 | Dec 2006 | JP |
2007-324708 | Dec 2007 | JP |
2009-081627 | Apr 2009 | JP |
2011-511533 | Apr 2011 | JP |
2011-511536 | Apr 2011 | JP |
2012-075146 | Apr 2012 | JP |
5421928 | Feb 2014 | JP |
5631326 | Nov 2014 | JP |
5649575 | Jan 2015 | JP |
2015-514371 | May 2015 | JP |
316118 | Dec 2013 | MX |
322251 | Jul 2014 | MX |
587100 | Oct 2013 | NZ |
587101 | Oct 2013 | NZ |
591486 | Jan 2014 | NZ |
592781 | Mar 2014 | NZ |
1-2010-501704 | Feb 2014 | PH |
1-2010-501705 | Feb 2015 | PH |
1-2011-500868 | Jun 2015 | PH |
WO-9917517 | Apr 1999 | WO |
WO-0070849 | Nov 2000 | WO |
WO-2001063894 | Aug 2001 | WO |
WO-2006124113 | Nov 2006 | WO |
WO-2008124113 | Oct 2008 | WO |
WO-2009097018 | Aug 2009 | WO |
WO-2009097210 | Aug 2009 | WO |
WO-2010053701 | May 2010 | WO |
WO-2011081514 | Jul 2011 | WO |
WO-2013148453 | Oct 2013 | WO |
WO-2016048290 | Mar 2016 | WO |
Entry |
---|
Anonymous. (2006) “Performance Based Routing in Profit Call Centers,” The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jun. 2002 (3 pages). |
Cleveland, William S., “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association, vol. 74, No. 368, Dec. 1979, pp. 829-836 (8 pages). |
Cormen, T. H., et al., “Introduction to Algorithms,” 3rd Edition, Chapter 26 Maximum Flow, pp. 708-766 and Chapter 29 Linear Programming, pp. 843-897 (2009). |
Gans, N. et al., “Telephone Call Centers: Tutorial, Review and Research Prospects,” Manufacturing & Service Operations Management, vol. 5, No. 2, 2003, pp. 79-141, (84 pages). |
Koole, G. (2004). “Performance Analysis and Optimization in Customer Contact Centers,” Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004 (4 pages). |
Koole, G. et al., “An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers,” Manuscript, Mar. 6, 2006, (42 pages). |
Nocedal, J. and Wright, S. J., “Numerical Optimization,” Chapter 16 Quadratic Programming, pp. 448-496 (2006) 50 pages. |
Ntzoufras, “Bayesian Modeling Using Winbugs”. Wiley Interscience, Chapter 5, Normal Regression Models, Oct. 18, 2007, Redacted version, pp. 155-220 (67 pages). |
Press, W. H. and Rybicki, G. B., “Fast Algorithm for Spectral Analysis of Unevenly Sampled Data,” The Astrophysical Journal, vol. 338, Mar. 1, 1989, pp. 277-280 (4 pages). |
Riedmiller, M. et al. (1993). “A Direct Adaptive Method for Faster Back Propagation Learning: The RPROP Algorithm,” 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591 (8 pages). |
Stanley et al., “Improving Call Center Operations Using Performance-Based Routing Strategies,” California Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html (9 pages). |
Number | Date | Country | |
---|---|---|---|
20200104168 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16146783 | Sep 2018 | US |
Child | 16701388 | US |