Techniques for adapting behavioral pairing to runtime conditions in a task assignment system

Information

  • Patent Grant
  • 10496438
  • Patent Number
    10,496,438
  • Date Filed
    Friday, September 28, 2018
    6 years ago
  • Date Issued
    Tuesday, December 3, 2019
    5 years ago
Abstract
Techniques for adapting behavioral pairing to runtime conditions in a task assignment system are disclosed. In one particular embodiment, the techniques may be realized as a method for adapting behavioral pairing to runtime conditions in a task assignment system comprising: determining, by at least one computer processor communicatively coupled to and configured to operate in the task assignment system, at least two pairing models for assigning tasks in the task assignment system; monitoring, by the at least one computer processor, at least one parameter of the task assignment system; and selecting, by the at least one computer processor, one of the at least two pairing models based on a value of the at least one parameter.
Description
FIELD OF THE DISCLOSURE

The present disclosure generally relates to behavioral pairing and, more particularly, to techniques for adapting behavioral pairing to runtime conditions in a task assignment system.


BACKGROUND OF THE DISCLOSURE

A typical task assignment system algorithmically assigns tasks arriving at the task assignment center to agents available to handle those tasks. At times, the task assignment system may have agents available and waiting for assignment to tasks. At other times, the task assignment center may have tasks waiting in one or more queues for an agent to become available for assignment.


In some typical task assignment centers, tasks are assigned to agents ordered based on time of arrival, and agents receive tasks ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. For example, in an “L2” environment, multiple tasks are waiting in a queue for assignment to an agent. When an agent becomes available, the task at the head of the queue would be selected for assignment to the agent.


Some task assignment systems prioritize some types of tasks ahead of other types of tasks. For example, some tasks may be high-priority tasks, while other tasks are low-priority tasks. Under a FIFO strategy, high-priority tasks will be assigned ahead of low-priority tasks.


In other typical task assignment systems, a performance-based routing (PBR) strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using specific information about agents but without necessarily relying on specific information about tasks.


In some typical task assignment systems, a behavioral pairing (BP) model may be generated based on historical task-agent assignment data to optimize performance of the task assignment system. For example, in a contact center environment, the BP model may be calibrated to optimize revenue in a sales queue or to reduce average handle time in a sales or customer service queue.


In some task assignment systems, a goal for optimizing the task assignment system or a particular queue of the task assignment system may change at runtime (i.e., in real time) based on conditions in the task assignment system that can change at any moment.


In view of the foregoing, it may be understood that there may be a need for a task assignment system that can adapt to changing goals at runtime.


SUMMARY OF THE DISCLOSURE

Techniques for adapting behavioral pairing to runtime conditions in a task assignment system are disclosed. In one particular embodiment, the techniques may be realized as a method for adapting behavioral pairing to runtime conditions in a task assignment system comprising: determining, by at least one computer processor communicatively coupled to and configured to operate in the task assignment system, at least two pairing models for assigning tasks in the task assignment system; monitoring, by the at least one computer processor, at least one parameter of the task assignment system; and selecting, by the at least one computer processor, one of the at least two pairing models based on a value of the at least one parameter.


In accordance with other aspects of this particular embodiment, the task assignment system may be a contact center system.


In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change of state between an agent surplus and a task surplus


In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change in size of a queue of tasks in the task assignment system.


In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a failure or a recovery in at least one of a site, a server, a switch, and a workstation of the task assignment system.


In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change in a number of agents that is assigned to tasks, available, logged in, or idle.


In accordance with other aspects of this particular embodiment, monitoring the at least one parameter may comprise detecting a change in a time of day or an amount of elapsed time.


In accordance with other aspects of this particular embodiment, at least one of the at least two pairing models may be a diagonal behavioral pairing model.


In accordance with other aspects of this particular embodiment, at least one of the at least two pairing models may be a behavioral pairing payout matrix model.


In accordance with other aspects of this particular embodiment, a goal of one of the at least two pairing models may be one of increasing revenue, decreasing average handling time, improving customer satisfaction, increasing upgrade/cross-sell rates, and increasing customer retention rates.


In another particular embodiment, the techniques may be realized as a system for adapting behavioral pairing to runtime conditions in a task assignment system comprising at least one computer processor communicatively coupled to and configured to operate in the task assignment system, wherein the at least one computer processor is further configured to perform the steps in the above-described method.


In another particular embodiment, the techniques may be realized as an article of manufacture for adapting behavioral pairing to runtime conditions in a task assignment system comprising a non-transitory processor readable medium and instructions stored on the medium, wherein the instructions are configured to be readable from the medium by at least one computer processor communicatively coupled to and configured to operate in the task assignment system and thereby cause the at least one computer processor to operate so as to perform the steps in the above-described method.


The present disclosure will now be described in more detail with reference to particular embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to particular embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.





BRIEF DESCRIPTION OF THE DRAWINGS

To facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be illustrative only.



FIG. 1 shows a block diagram of a task assignment system according to embodiments of the present disclosure.



FIG. 2 shows a block diagram of a contact center system according to embodiments of the present disclosure.



FIG. 3 shows a flow diagram of a task assignment method according to embodiments of the present disclosure.





DETAILED DESCRIPTION

A typical task assignment system algorithmically assigns tasks arriving at the task assignment center to agents available to handle those tasks. At times, the task assignment system may have agents available and waiting for assignment to tasks. At other times, the task assignment center may have tasks waiting in one or more queues for an agent to become available for assignment.


In some typical task assignment centers, tasks are assigned to agents ordered based on time of arrival, and agents receive tasks ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. For example, in an “L2” environment, multiple tasks are waiting in a queue for assignment to an agent. When an agent becomes available, the task at the head of the queue would be selected for assignment to the agent.


Some task assignment systems prioritize some types of tasks ahead of other types of tasks. For example, some tasks may be high-priority tasks, while other tasks are low-priority tasks. Under a FIFO strategy, high-priority tasks may be assigned ahead of low-priority tasks.


In other typical task assignment systems, a performance-based routing (PBR) strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using specific information about agents but without necessarily relying on specific information about tasks.


In some typical task assignment systems, a behavioral pairing (BP) model may be generated based on historical task-agent assignment data to optimize performance of the task assignment system. For example, in a contact center environment, the BP model may be calibrated to optimize revenue in a sales queue or to reduce average handle time in a sales or customer service queue.


In some task assignment systems, a goal for optimizing the task assignment system or a particular queue of the task assignment system may change at runtime (i.e., in real time) based on conditions in the task assignment system that can change at any moment.


In view of the foregoing, it may be understood that there may be a need for a task assignment system that can adapt to changing goals at runtime, as described below.


The description herein describes network elements, computers, and/or components of a system and method for benchmarking pairing strategies in a task assignment system that may include one or more modules. As used herein, the term “module” may be understood to refer to computing software, firmware, hardware, and/or various combinations thereof. Modules, however, are not to be interpreted as software which is not implemented on hardware, firmware, or recorded on a non-transitory processor readable recordable storage medium (i.e., modules are not software per se). It is noted that the modules are exemplary. The modules may be combined, integrated, separated, and/or duplicated to support various applications. Also, a function described herein as being performed at a particular module may be performed at one or more other modules and/or by one or more other devices instead of or in addition to the function performed at the particular module. Further, the modules may be implemented across multiple devices and/or other components local or remote to one another. Additionally, the modules may be moved from one device and added to another device, and/or may be included in both devices.



FIG. 1 shows a block diagram of a task assignment system 100 according to embodiments of the present disclosure. The task assignment system 100 may include a task assignment module 110. The task assignment system 100 may include a switch or other type of routing hardware and software for helping to assign tasks among various agents, including queuing or switching components or other Internet-, cloud-, or network-based hardware or software solutions.


The task assignment module 110 may receive incoming tasks. In the example of FIG. 1, the task assignment system 100 receives m tasks over a given period, tasks 130A-130m. Each of the m tasks may be assigned to an agent of the task assignment system 100 for servicing or other types of task processing. In the example of FIG. 1, n agents are available during the given period, agents 120A-120n. m and n may be arbitrarily large finite integers greater than or equal to one. In a real-world task assignment system, such as a contact center, there may be dozens, hundreds, etc. of agents logged into the contact center to interact with contacts during a shift, and the contact center may receive dozens, hundreds, thousands, etc. of contacts (e.g., calls) during the shift.


In some embodiments, a task assignment strategy module 140 may be communicatively coupled to and/or configured to operate in the task assignment system 100. The task assignment strategy module 140 may implement one or more task assignment strategies (or “pairing strategies”) or one more models of a task assignment strategy for assigning individual tasks to individual agents (e.g., pairing contacts with contact center agents). For a given task queue (e.g., a sales queue in a contact center system, a truck roll or field agent dispatch queue in a dispatch queue center, etc.), the task assignment strategy module 140 may implement more than one model for more than one condition or goal. For example, in a sales queue, one goal may be to increase overall revenue generated by agents processing tasks in the sales queue (e.g., talking to callers in a call center interested in buying services from the company of the agents). A second goal may be to reduce average handle time (AHT) for tasks (e.g., complete a sales call relatively quickly). Historical task-agent pairing data may be available (e.g., from historical assignment module 150, which is described below) that includes both revenue and duration information, and two different models or sets of models may be generated that are calibrated to their respective goals of increasing revenue or decreasing average handle time.


A variety of different task assignment strategies may be devised and implemented by the task assignment strategy module 140, and made available to the task assignment module 110 at runtime. In some embodiments, a FIFO strategy may be implemented in which, for example, the longest-waiting agent receives the next available task (in L1 environments) or the longest-waiting task is assigned to the next available task (in L2 environments). Other FIFO and FIFO-like strategies may make assignments without relying on information specific to individual tasks or individual agents.


In other embodiments, a PBR strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using information about specific agents but without necessarily relying on information about specific tasks or agents.


In yet other embodiments, a BP strategy may be used for optimally assigning tasks to agents using information about both specific tasks and specific agents. Various models of the BP strategy may be used, such as a diagonal model BP strategy, a payout matrix BP strategy, or a network flow BP strategy. These task assignment strategies and others are described in detail for the contact center context in, e.g., U.S. Pat. Nos. 9,300,802 and 9,930,180, which are hereby incorporated by reference herein. BP strategies may be applied in an “L1” environment (agent surplus, one task; select among multiple available/idle agents), an “L2” environment (task surplus, one available/idle agent; select among multiple tasks in queue), and an “L3” environment (multiple agents and multiple tasks; select among pairing permutations).


In some embodiments, the task assignment strategy module 140 may be configured to switch from one task assignment strategy to another task assignment strategy, or from one model of a task assignment strategy to another model of the task assignment strategy, in real time. A goal for optimizing the task assignment system 100 or a particular queue of the task assignment system 100 may change at runtime (i.e., in real time) based on conditions or parameters in the task assignment system 100 that can change at any moment. For example, a condition may be based on the size of the task queue. When the task assignment system 100 is operating in L1 (i.e., agent surplus), or the size of the task queue in L2 is less than (or equal to) a certain size (e.g., 5, 10, 20 tasks, etc.), the task assignment system 100 may operate with the goal of increasing revenue and the task assignment strategy module 140 may select a model or a set of models corresponding to that goal. When the task assignment system 100 detects that the size of the task queue in L2 is greater than (or equal to) a threshold size, the task assignment strategy module 140 may switch to operate with the goal of decreasing average handle time and switch to a model or set of models corresponding to the new goal. Examples of other goals may include improving customer satisfaction (e.g., customer satisfaction (CSAT) scores or Net Promoter Scores), increasing upgrade/cross-sell rates, increasing customer retention rates, decreasing AHT, etc. Example of other conditions or parameters may include switching between L1 and L2 (i.e., switching between agent surplus and task surplus conditions), unexpected reduction in capacity (e.g., sites/queues/agents workstations/server/switch failure or recovery), number of agents assigned to the task queue (or number of agents available/logged in/idle), schedule-based/cycling changes to the goals and models (which can be benchmarked similarly to benchmarking ON/OFF cycles between two pairing strategies, as described below), time of the day or amount of elapsed time (for schedule-based cycling of models and benchmarking), etc.


In some embodiments, an operator or manager of the task assignment system 100 may select or switch goals or models manually. In response to the operator's selection, the task assignment strategy module 140 may switch models in real time. In other embodiments, the task assignment strategy module 140 may monitor the task assignment system 100 for certain conditions or parameters and, in response to detecting particular changes in these conditions or parameters, may select or switch goals and models automatically. In yet other embodiments, the conditions that trigger switching the goals or models may be determined automatically as part of a super- or meta-model from analyzing historical task-agent assignment data (available from historical assignment module 150, which is described below).


In some embodiments, a historical assignment module 150 may be communicatively coupled to and/or configured to operate in the task assignment system 100 via other modules such as the task assignment module 110 and/or the task assignment strategy module 140. The historical assignment module 150 may be responsible for various functions such as monitoring, storing, retrieving, and/or outputting information about agent task assignments that have already been made. For example, the historical assignment module 150 may monitor the task assignment module 110 to collect information about task assignments in a given period. Each record of a historical task assignment may include information such as an agent identifier, a task or task type identifier, outcome information, or a pairing strategy identifier (i.e., an identifier indicating whether a task assignment was made using a BP pairing strategy or some other pairing strategy such as a FIFO or PBR pairing strategy).


In some embodiments and for some contexts, additional information may be stored. For example, in a call center context, the historical assignment module 150 may also store information about the time a call started, the time a call ended, the phone number dialed, and the caller's phone number. For another example, in a dispatch center (e.g., “truck roll”) context, the historical assignment module 150 may also store information about the time a driver (i.e., field agent) departs from the dispatch center, the route recommended, the route taken, the estimated travel time, the actual travel time, the amount of time spent at the customer site handling the customer's task, etc.


In some embodiments, the historical assignment module 150 may generate a pairing model or similar computer processor-generate model based on a set of historical assignments for a period of time (e.g., the past week, the past month, the past year, etc.), which may be used by the task assignment strategy module 140 to make task assignment recommendations or instructions to the task assignment module 110. In other embodiments, the historical assignment module 150 may send historical assignment information to another module such as the task assignment strategy module 140 or the benchmarking module 160.


In some embodiments, a benchmarking module 160 may be communicatively coupled to and/or configured to operate in the task assignment system 100 via other modules such as the task assignment module 110 and/or the historical assignment module 150. The benchmarking module 160 may benchmark the relative performance of two or more pairing strategies (e.g., to FIFO, PBR, BP, etc.) using historical assignment information, which may be received from, for example, the historical assignment module 150. In some embodiments, the benchmarking module 160 may perform other functions, such as establishing a benchmarking schedule for cycling among various pairing strategies, tracking cohorts (e.g., base and measurement groups of historical assignments), etc. Benchmarking is described in detail for the contact center context in, e.g., U.S. Pat. No. 9,712,676, which is hereby incorporated by reference herein.


In some embodiments, the benchmarking module 160 may output or otherwise report or use the relative performance measurements. The relative performance measurements may be used to assess the quality of the task assignment strategy to determine, for example, whether a different task assignment strategy (or a different pairing model) should be used, or to measure the overall performance (or performance gain) that was achieved within the task assignment system 100 while it was optimized or otherwise configured to use one task assignment strategy instead of another.



FIG. 2 shows a block diagram of a contact center system 200 according to embodiments of the present disclosure. As shown in FIG. 2, the contact center system may include a central switch 210. The central switch 210 may receive incoming contacts (e.g., callers) or support outbound connections to contacts via a dialer, a telecommunications network, or other modules (not shown). The central switch 210 may include contact routing hardware and software for helping to route contacts among one or more contact centers, or to one or more PBX/ACDs or other queuing or switching components within a contact center.


The central switch 210 may not be necessary if there is only one contact center, or if there is only one PBX/ACD routing component, in the contact center system 200. If more than one contact center is part of the contact center system 200, each contact center may include at least one contact center switch (e.g., contact center switches 220A and 220B). The contact center switches 220A and 220B may be communicatively coupled to the central switch 210.


Each contact center switch for each contact center may be communicatively coupled to a plurality (or “pool”) of agents. Each contact center switch may support a certain number of agents (or “seats”) to be logged in at one time. At any given time, a logged-in agent may be available and waiting to be connected to a contact, or the logged-in agent may be unavailable for any of a number of reasons, such as being connected to another contact, performing certain post-call functions such as logging information about the call, or taking a break.


In the example of FIG. 2, the central switch 210 routes contacts to one of two contact centers via contact center switch 220A and contact center switch 220B, respectively. Each of the contact center switches 220A and 220B are shown with two agents each. Agents 230A and 230B may be logged into contact center switch 220A, and agents 230C and 230D may be logged into contact center switch 220B.


The contact center system 200 may also be communicatively coupled to an integrated service from, for example, a third-party vendor. In the example of FIG. 2, behavioral pairing module 240 may be communicatively coupled to one or more switches in the switch system of the contact center system 200, such as central switch 210, contact center switch 220A, or contact center switch 220B. In some embodiments, switches of the contact center system 200 may be communicatively coupled to multiple behavioral pairing modules. In some embodiments, behavioral pairing module 240 may be embedded within a component of a contact center system (e.g., embedded in or otherwise integrated with a switch).


Behavioral pairing module 240 may receive information from a switch (e.g., contact center switch 220A) about agents logged into the switch (e.g., agents 230A and 230B) and about incoming contacts via another switch (e.g., central switch 210) or, in some embodiments, from a network (e.g., the Internet or a telecommunications network) (not shown).


The behavioral pairing module 240 may process this information and to determine which contacts should be paired (e.g., matched, assigned, distributed, routed) with which agents. For example, multiple agents are available and waiting for connection to a contact (L1 state), and a contact arrives at the contact center via a network or central switch. As explained above, without the behavioral pairing module 240, a contact center switch will typically automatically distribute the new contact to whichever available agent has been waiting the longest amount of time for an agent under a “fair” FIFO strategy, or whichever available agent has been determined to be the highest-performing agent under a PBR strategy.


With a behavioral pairing module 240, contacts and agents may be given scores (e.g., percentiles or percentile ranges/bandwidths) according to a pairing model or other artificial intelligence data model, so that a contact may be matched, paired, or otherwise connected to a preferred agent.


In an L2 state, multiple contacts are available and waiting for connection to an agent, and an agent becomes available. These contacts may be queued in a contact center switch such as a PBX or ACD device (“PBX/ACD”). Without the behavioral pairing module 240, a contact center switch will typically connect the newly available agent to whichever contact has been waiting on hold in the queue for the longest amount of time as in a “fair” FIFO strategy or a PBR strategy when agent choice is not available. In some contact centers, priority queuing may also be incorporated, as previously explained.


With a behavioral pairing module 240 in an L2 scenario, as in the L1 state described above, contacts and agents may be given percentiles (or percentile ranges/bandwidths, etc.) according to, for example, a model, such as an artificial intelligence model, so that an agent coming available may be matched, paired, or otherwise connected to a preferred contact.



FIG. 3 shows a task assignment method 300 according to embodiments of the present disclosure.


Task assignment method 300 may begin at block 310. At block 310, at least two pairing models for assigning tasks in a task assignment system may be determined. For example, in a sales queue, one pairing model may be to increase overall revenue generated by agents processing tasks in the sales queue (e.g., talking to callers in a call center interested in buying services from the company of the agents). A second pairing model may be to reduce AHT for tasks (e.g., complete a sales call relatively quickly).


Task assignment method 300 may proceed to block 320. At block 320, at least one parameter of the task assignment system may be monitored. For example, a parameter may be the size of the task queue. Example of other parameters may include a switch between L1 and L2 (i.e., a switch between agent surplus and task surplus conditions), unexpected reduction in capacity (e.g., sites/queues/agents workstations/server/switch failure or recovery), number of agents assigned to the task queue (or number of agents available/logged in/idle), schedule-based/cycling changes to the goals and models, time of the day or amount of elapsed time, etc.


Task assignment method 300 may proceed to block 330. At block 330, one of the at least two pairing models (determined at block 310) may be selected based on a value of the at least one parameter (monitored at block 320). For example, when the parameter is the size of the task queue in the task assignment system and the task assignment system is operating in L1 (i.e., agent surplus), or the size of the task queue in L2 is less than (or equal to) a certain size (e.g., 5, 10, 20 tasks, etc.), a pairing model that increases revenue may be selected. When the task assignment system detects that the size of the task queue in L2 is greater than (or equal to) a threshold size, a pairing model that decreases average handle time may be selected.


After selecting one of the at least two pairing models, the task assignment method 300 may end.


At this point it should be noted that adapting behavioral pairing to runtime conditions in a task assignment system in accordance with the present disclosure as described above may involve the processing of input data and the generation of output data to some extent. This input data processing and output data generation may be implemented in hardware or software. For example, specific electronic components may be employed in a behavioral pairing module or similar or related circuitry for implementing the functions associated with adapting behavioral pairing to runtime conditions in a task assignment system in accordance with the present disclosure as described above. Alternatively, one or more processors operating in accordance with instructions may implement the functions associated with adapting behavioral pairing to runtime conditions in a task assignment system in accordance with the present disclosure as described above. If such is the case, it is within the scope of the present disclosure that such instructions may be stored on one or more non-transitory processor readable storage media (e.g., a magnetic disk or other storage medium), or transmitted to one or more processors via one or more signals embodied in one or more carrier waves.


The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of at least one particular implementation in at least one particular environment for at least one particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.

Claims
  • 1. A method for adapting behavioral pairing to runtime conditions in a task assignment system comprising: determining, by at least one computer processor communicatively coupled to and configured to perform behavioral pairing operations in the task assignment system, at least two behavioral pairing models adapted for different runtime conditions for assigning tasks in the task assignment system;monitoring, by the at least one computer processor, at least one runtime condition of the task assignment system;selecting, by the at least one computer processor, one of the at least two behavioral pairing models based on the at least one runtime condition; andestablishing, in a switch of the task assignment system, a connection between a task and an agent based upon the selected behavioral pairing model.
  • 2. The method of claim 1, wherein the task assignment system is a contact center system.
  • 3. The method of claim 1, wherein monitoring the at least one runtime condition comprises detecting a change of state between an agent surplus and a task surplus.
  • 4. The method of claim 1, wherein monitoring the at least one runtime condition comprises detecting a change in size of a queue of tasks in the task assignment system.
  • 5. The method of claim 1, wherein monitoring the at least one runtime condition comprises detecting a failure or a recovery in at least one of a site, a server, a switch, and a workstation of the task assignment system.
  • 6. The method of claim 1, wherein monitoring the at least one runtime condition comprises detecting a change in a number of agents that is assigned to tasks, available, logged in, or idle.
  • 7. The method of claim 1, wherein monitoring the at least one runtime condition comprises detecting a change in a time of day or an amount of elapsed time.
  • 8. The method of claim 1, wherein at least one of the at least two behavioral pairing models is a diagonal behavioral pairing model.
  • 9. The method of claim 1, wherein at least one of the at least two behavioral pairing models is a behavioral pairing payout matrix model.
  • 10. The method of claim 1, wherein a goal of one of the at least two behavioral pairing models is one of increasing revenue, decreasing average handling time, improving customer satisfaction, increasing upgrade/cross-sell rates, and increasing customer retention rates.
  • 11. A system for adapting behavioral pairing to runtime conditions in a task assignment system comprising: at least one computer processor communicatively coupled to and configured to perform behavioral pairing operations in the task assignment system, wherein the at least one computer processor is further configured to: determine at least two behavioral pairing models adapted for different runtime conditions for assigning tasks in the task assignment system;monitor at least one runtime condition of the task assignment system; andselect one of the at least two behavioral pairing models based on the at least one runtime condition; andestablish, in a switch of the task assignment system, a connection between a task and an agent based upon the selected behavioral pairing model.
  • 12. The system of claim 11, wherein the task assignment system is a contact center system.
  • 13. The system of claim 11, wherein the at least one computer processor is configured to monitor the at least one runtime condition by detecting a change of state between an agent surplus and a task surplus.
  • 14. The system of claim 11, wherein the at least one computer processor is configured to monitor the at least one runtime condition by detecting a change in size of a queue of tasks in the task assignment system.
  • 15. The system of claim 11, wherein the at least one computer processor is configured to monitor the at least one runtime condition by detecting a failure or a recovery in at least one of a site, a server, a switch, and a workstation of the task assignment system.
  • 16. The system of claim 11, wherein the at least one computer processor is configured to monitor the at least one runtime condition by detecting a change in a number of agents that is assigned to tasks, available, logged in, or idle.
  • 17. The system of claim 11, wherein the at least one computer processor is configured to monitor the at least one runtime condition by detecting a change in a time of day or an amount of elapsed time.
  • 18. The system of claim 11, wherein at least one of the at least two behavioral pairing models is a diagonal behavioral pairing model.
  • 19. The system of claim 11, wherein at least one of the at least two behavioral pairing models is a behavioral pairing payout matrix model.
  • 20. The system of claim 11, wherein a goal of one of the at least two behavioral pairing models is one of increasing revenue, decreasing average handling time, improving customer satisfaction, increasing upgrade/cross-sell rates, and increasing customer retention rates.
  • 21. An article of manufacture for adapting behavioral pairing to runtime conditions in a task assignment system comprising: a non-transitory processor readable medium; andinstructions stored on the medium;wherein the instructions are configured to be readable from the medium by at least one computer processor communicatively coupled to and configured to perform behavioral pairing operations in the task assignment system and thereby cause the at least one computer processor to operate so as to: determine at least two behavioral pairing models adapted for different runtime conditions for assigning tasks in the task assignment system;monitor at least one runtime condition of the task assignment system;select one of the at least two behavioral pairing models based on the at least one runtime condition; andestablish, in a switch of the task assignment system, a connection between a task and an agent based upon the selected behavioral pairing model.
  • 22. The article of manufacture of claim 21, wherein the task assignment system is a contact center system.
  • 23. The article of manufacture of claim 21, wherein the instructions are configured to cause the at least one computer processor to operate so as to monitor the at least one runtime condition by detecting a change of state between an agent surplus and a task surplus.
  • 24. The article of manufacture of claim 21, wherein the instructions are configured to cause the at least one computer processor to operate so as to monitor the at least one runtime condition by detecting a change in size of a queue of tasks in the task assignment system.
  • 25. The article of manufacture of claim 21, wherein the instructions are configured to cause the at least one computer processor to operate so as to monitor the at least one runtime condition by detecting a failure or a recovery in at least one of a site, a server, a switch, and a workstation of the task assignment system.
  • 26. The article of manufacture of claim 21, wherein the instructions are configured to cause the at least one computer processor to operate so as to monitor the at least one runtime condition by detecting a change in a number of agents that is assigned to tasks, available, logged in, or idle.
  • 27. The article of manufacture of claim 21, wherein the instructions are configured to cause the at least one computer processor to operate so as to monitor the at least one runtime condition by detecting a change in a time of day or an amount of elapsed time.
  • 28. The article of manufacture of claim 21, wherein at least one of the at least two behavioral pairing models is a diagonal behavioral pairing model.
  • 29. The article of manufacture of claim 21, wherein at least one of the at least two behavioral pairing models is a behavioral pairing payout matrix model.
  • 30. The article of manufacture of claim 21, wherein a goal of one of the at least two behavioral pairing models is one of increasing revenue, decreasing average handling time, improving customer satisfaction, increasing upgrade/cross-sell rates, and increasing customer retention rates.
US Referenced Citations (265)
Number Name Date Kind
5155763 Bigus et al. Oct 1992 A
5206903 Kohler et al. Apr 1993 A
5327490 Cave Jul 1994 A
5537470 Lee Jul 1996 A
5702253 Bryce et al. Dec 1997 A
5825869 Brooks et al. Oct 1998 A
5903641 Tonisson May 1999 A
5907601 David et al. May 1999 A
5926538 Deryugin et al. Jul 1999 A
6049603 Schwartz et al. Apr 2000 A
6052460 Fisher et al. Apr 2000 A
6064731 Flockhart et al. May 2000 A
6088444 Walker et al. Jul 2000 A
6163607 Bogart et al. Dec 2000 A
6222919 Hollatz et al. Apr 2001 B1
6292555 Okamoto Sep 2001 B1
6324282 McIllwaine et al. Nov 2001 B1
6333979 Bondi et al. Dec 2001 B1
6389132 Price May 2002 B1
6389400 Bushey et al. May 2002 B1
6408066 Andruska et al. Jun 2002 B1
6411687 Bohacek et al. Jun 2002 B1
6424709 Doyle et al. Jul 2002 B1
6434230 Gabriel Aug 2002 B1
6496580 Chack Dec 2002 B1
6504920 Okon et al. Jan 2003 B1
6519335 Bushnell Feb 2003 B1
6535600 Fisher et al. Mar 2003 B1
6535601 Flockhart et al. Mar 2003 B1
6570980 Baruch May 2003 B1
6587556 Judkins et al. Jul 2003 B1
6603854 Judkins et al. Aug 2003 B1
6639976 Shellum et al. Oct 2003 B1
6661889 Flockhart et al. Dec 2003 B1
6704410 McFarlane et al. Mar 2004 B1
6707904 Judkins et al. Mar 2004 B1
6714643 Gargeya et al. Mar 2004 B1
6744878 Komissarchik et al. Jun 2004 B1
6763104 Judkins et al. Jul 2004 B1
6774932 Ewing et al. Aug 2004 B1
6775378 Villena et al. Aug 2004 B1
6798876 Bala Sep 2004 B1
6829348 Schroeder et al. Dec 2004 B1
6832203 Villena et al. Dec 2004 B1
6859529 Duncan et al. Feb 2005 B2
6922466 Peterson et al. Jul 2005 B1
6937715 Delaney Aug 2005 B2
6956941 Duncan et al. Oct 2005 B1
6970821 Shambaugh et al. Nov 2005 B1
6978006 Polcyn Dec 2005 B1
7023979 Wu et al. Apr 2006 B1
7039166 Peterson et al. May 2006 B1
7050566 Becerra et al. May 2006 B2
7050567 Jensen May 2006 B1
7062031 Becerra et al. Jun 2006 B2
7068775 Lee Jun 2006 B1
7092509 Mears et al. Aug 2006 B1
7103172 Brown et al. Sep 2006 B2
7158628 McConnell et al. Jan 2007 B2
7184540 Dezonno et al. Feb 2007 B2
7209549 Reynolds et al. Apr 2007 B2
7231032 Nevman et al. Jun 2007 B2
7231034 Rikhy et al. Jun 2007 B1
7236584 Torba Jun 2007 B2
7245716 Brown et al. Jul 2007 B2
7245719 Kawada et al. Jul 2007 B2
7266251 Rowe Sep 2007 B2
7269253 Wu et al. Sep 2007 B1
7353388 Gilman et al. Apr 2008 B1
7372952 Wu et al. May 2008 B1
7398224 Cooper Jul 2008 B2
7593521 Becerra et al. Sep 2009 B2
7676034 Wu et al. Mar 2010 B1
7725339 Aykin May 2010 B1
7734032 Kiefhaber et al. Jun 2010 B1
7798876 Mix Sep 2010 B2
7826597 Berner et al. Nov 2010 B2
7864944 Khouri et al. Jan 2011 B2
7899177 Bruening et al. Mar 2011 B1
7916858 Heller et al. Mar 2011 B1
7940917 Lauridsen et al. May 2011 B2
7961866 Boutcher et al. Jun 2011 B1
7995717 Conway et al. Aug 2011 B2
8000989 Kiefhaber et al. Aug 2011 B1
8010607 McCormack et al. Aug 2011 B2
8094790 Conway et al. Jan 2012 B2
8126133 Everingham et al. Feb 2012 B1
8140441 Cases et al. Mar 2012 B2
8175253 Knott et al. May 2012 B2
8229102 Knott et al. Jul 2012 B2
8249245 Jay et al. Aug 2012 B2
8295471 Spottiswoode et al. Oct 2012 B2
8300798 Wu et al. Oct 2012 B1
8306212 Arora Nov 2012 B2
8359219 Chishti et al. Jan 2013 B2
8433597 Chishti et al. Apr 2013 B2
8472611 Chishti Jun 2013 B2
8565410 Chishti et al. Oct 2013 B2
8634542 Spottiswoode et al. Jan 2014 B2
8644490 Stewart Feb 2014 B2
8670548 Xie et al. Mar 2014 B2
8699694 Chishti et al. Apr 2014 B2
8712821 Spottiswoode Apr 2014 B2
8718271 Spottiswoode May 2014 B2
8724797 Chishti et al. May 2014 B2
8731178 Chishti et al. May 2014 B2
8737595 Chishti et al. May 2014 B2
8750488 Spottiswoode et al. Jun 2014 B2
8761380 Kohler et al. Jun 2014 B2
8781100 Spottiswoode et al. Jul 2014 B2
8781106 Afzal Jul 2014 B2
8792630 Chishti et al. Jul 2014 B2
8824658 Chishti Sep 2014 B2
8831207 Agarwal Sep 2014 B1
8879715 Spottiswoode et al. Nov 2014 B2
8903079 Xie et al. Dec 2014 B2
8913736 Kohler et al. Dec 2014 B2
8929537 Chishti et al. Jan 2015 B2
8938063 Hackbarth et al. Jan 2015 B1
8995647 Li et al. Mar 2015 B2
9020137 Chishti et al. Apr 2015 B2
9025757 Spottiswoode et al. May 2015 B2
9215323 Chishti Dec 2015 B2
9277055 Spottiswoode et al. Mar 2016 B2
9288325 Chishti et al. Mar 2016 B2
9300802 Chishti Mar 2016 B1
9313332 Kumar Apr 2016 B1
9426296 Chishti et al. Aug 2016 B2
9712676 Chishti Jul 2017 B1
9712679 Chishti et al. Jul 2017 B2
9888121 Chishti Feb 2018 B1
9930180 Kan et al. Mar 2018 B1
9942405 Kan et al. Apr 2018 B1
10135987 Chishti et al. Nov 2018 B1
20010032120 Stuart et al. Oct 2001 A1
20020018554 Jensen et al. Feb 2002 A1
20020046030 Haritsa et al. Apr 2002 A1
20020059164 Shtivelman May 2002 A1
20020082736 Lech et al. Jun 2002 A1
20020110234 Walker et al. Aug 2002 A1
20020111172 DeWolf et al. Aug 2002 A1
20020131399 Philonenko Sep 2002 A1
20020138285 DeCotiis et al. Sep 2002 A1
20020143599 Nourbakhsh et al. Oct 2002 A1
20020161765 Kundrot et al. Oct 2002 A1
20020184069 Kosiba et al. Dec 2002 A1
20020196845 Richards et al. Dec 2002 A1
20030002653 Uckun Jan 2003 A1
20030081757 Mengshoel et al. May 2003 A1
20030095652 Mengshoel et al. May 2003 A1
20030169870 Stanford Sep 2003 A1
20030174830 Boyer et al. Sep 2003 A1
20030217016 Pericle Nov 2003 A1
20040015973 Skovira Jan 2004 A1
20040028211 Culp et al. Feb 2004 A1
20040057416 McCormack Mar 2004 A1
20040096050 Das et al. May 2004 A1
20040098274 Dezonno et al. May 2004 A1
20040101127 Dezonno et al. May 2004 A1
20040109555 Williams Jun 2004 A1
20040133434 Szlam et al. Jul 2004 A1
20040210475 Starnes et al. Oct 2004 A1
20040230438 Pasquale et al. Nov 2004 A1
20040267816 Russek Dec 2004 A1
20050013428 Walters Jan 2005 A1
20050043986 McConnell et al. Feb 2005 A1
20050047581 Shaffer et al. Mar 2005 A1
20050047582 Shaffer et al. Mar 2005 A1
20050071223 Jain et al. Mar 2005 A1
20050129212 Parker Jun 2005 A1
20050135593 Becerra et al. Jun 2005 A1
20050135596 Zhao Jun 2005 A1
20050187802 Koeppel Aug 2005 A1
20050195960 Shaffer et al. Sep 2005 A1
20050286709 Horton et al. Dec 2005 A1
20060098803 Bushey et al. May 2006 A1
20060110052 Finlayson May 2006 A1
20060124113 Roberts Jun 2006 A1
20060184040 Keller et al. Aug 2006 A1
20060222164 Contractor et al. Oct 2006 A1
20060233346 McIlwaine et al. Oct 2006 A1
20060262918 Karnalkar et al. Nov 2006 A1
20060262922 Margulies et al. Nov 2006 A1
20070036323 Travis Feb 2007 A1
20070071222 Flockhart et al. Mar 2007 A1
20070121602 Sin et al. May 2007 A1
20070121829 Tal et al. May 2007 A1
20070136342 Singhai et al. Jun 2007 A1
20070153996 Hansen Jul 2007 A1
20070154007 Bernhard Jul 2007 A1
20070174111 Anderson et al. Jul 2007 A1
20070198322 Bourne et al. Aug 2007 A1
20070219816 Van Luchene et al. Sep 2007 A1
20070274502 Brown Nov 2007 A1
20080002823 Fama et al. Jan 2008 A1
20080008309 Dezonno et al. Jan 2008 A1
20080046386 Pieraccinii et al. Feb 2008 A1
20080065476 Klein et al. Mar 2008 A1
20080109797 Khetarpal et al. May 2008 A1
20080118052 Houmaidi et al. May 2008 A1
20080144803 Jaiswal et al. Jun 2008 A1
20080152122 Idan et al. Jun 2008 A1
20080181389 Bourne et al. Jul 2008 A1
20080199000 Su et al. Aug 2008 A1
20080205611 Jordan et al. Aug 2008 A1
20080267386 Cooper Oct 2008 A1
20080273687 Knott et al. Nov 2008 A1
20090043670 Johansson et al. Feb 2009 A1
20090086933 Patel et al. Apr 2009 A1
20090190740 Chishti et al. Jul 2009 A1
20090190743 Spottiswoode Jul 2009 A1
20090190744 Xie et al. Jul 2009 A1
20090190745 Xie et al. Jul 2009 A1
20090190746 Chishti et al. Jul 2009 A1
20090190747 Spottiswoode Jul 2009 A1
20090190748 Chishti et al. Jul 2009 A1
20090190749 Xie et al. Jul 2009 A1
20090190750 Xie et al. Jul 2009 A1
20090232294 Xie et al. Sep 2009 A1
20090234710 Belgaied Hassine et al. Sep 2009 A1
20090245493 Chen et al. Oct 2009 A1
20090304172 Becerra et al. Dec 2009 A1
20090305172 Tanaka et al. Dec 2009 A1
20090318111 Desai et al. Dec 2009 A1
20090323921 Spottiswoode et al. Dec 2009 A1
20100020959 Spottiswoode Jan 2010 A1
20100020961 Spottiswoode Jan 2010 A1
20100054431 Jaiswal et al. Mar 2010 A1
20100054452 Afzal Mar 2010 A1
20100054453 Stewart Mar 2010 A1
20100086120 Brussat et al. Apr 2010 A1
20100111285 Chishti May 2010 A1
20100111286 Chishti May 2010 A1
20100111287 Xie et al. May 2010 A1
20100111288 Afzal et al. May 2010 A1
20100142689 Hansen Jun 2010 A1
20100142698 Spottiswoode et al. Jun 2010 A1
20100158238 Saushkin Jun 2010 A1
20100183138 Spottiswoode et al. Jul 2010 A1
20110022357 Vock et al. Jan 2011 A1
20110031112 Birang et al. Feb 2011 A1
20110069821 Korolev et al. Mar 2011 A1
20110125048 Causevic et al. May 2011 A1
20110310773 Iyengar Dec 2011 A1
20120051536 Chishti et al. Mar 2012 A1
20120051537 Chishti et al. Mar 2012 A1
20120224680 Spottiswoode et al. Sep 2012 A1
20120278136 Flockhart et al. Nov 2012 A1
20130003959 Nishikawa et al. Jan 2013 A1
20130022195 Nimmagadda Jan 2013 A1
20130251137 Chishti et al. Sep 2013 A1
20130287202 Flockhart et al. Oct 2013 A1
20140044246 Klemm et al. Feb 2014 A1
20140079210 Kohler et al. Mar 2014 A1
20140119531 Tuchman et al. May 2014 A1
20140119533 Spottiswoode et al. May 2014 A1
20140341370 Li et al. Nov 2014 A1
20150055772 Klemm et al. Feb 2015 A1
20150281448 Putra et al. Oct 2015 A1
20160080573 Chishti Mar 2016 A1
20170064080 Chishti et al. Mar 2017 A1
20170064081 Chishti et al. Mar 2017 A1
20170316438 Konig et al. Nov 2017 A1
20180054525 Mezhibovsky et al. Feb 2018 A1
20180191902 Chishti Jul 2018 A1
Foreign Referenced Citations (66)
Number Date Country
2008349500 May 2014 AU
2009209317 May 2014 AU
2009311534 Aug 2014 AU
2015203175 Jul 2015 AU
2015243001 Nov 2015 AU
101093590 Dec 2007 CN
102164073 Aug 2011 CN
102390184 Mar 2012 CN
102555536 Jul 2012 CN
202965525 Jun 2013 CN
203311505 Nov 2013 CN
102301688 May 2014 CN
102017591 Nov 2014 CN
0 493 292 Jul 1992 EP
0863651 Sep 1998 EP
0 949 793 Oct 1999 EP
1011974 Jun 2000 EP
1 032 188 Aug 2000 EP
1107557 Jun 2001 EP
1335572 Aug 2003 EP
2339643 Feb 2000 GB
11-098252 Apr 1999 JP
2000-069168 Mar 2000 JP
2000-078291 Mar 2000 JP
2000-078292 Mar 2000 JP
2000-092213 Mar 2000 JP
2000-507420 Jun 2000 JP
2000-236393 Aug 2000 JP
2000-253154 Sep 2000 JP
2001-292236 Oct 2001 JP
2001-518753 Oct 2001 JP
2002-069168 Mar 2002 JP
2002-297900 Oct 2002 JP
3366565 Jan 2003 JP
2003-187061 Jul 2003 JP
2004-056517 Feb 2004 JP
2004-227228 Aug 2004 JP
2006-345132 Dec 2006 JP
2007-324708 Dec 2007 JP
2009-081627 Apr 2009 JP
2011-511533 Apr 2011 JP
2011-511536 Apr 2011 JP
2012-075146 Apr 2012 JP
5421928 Feb 2014 JP
5631326 Nov 2014 JP
5649575 Jan 2015 JP
2015-514371 May 2015 JP
316118 Dec 2013 MX
322251 Jul 2014 MX
587100 Oct 2013 NZ
587101 Oct 2013 NZ
591486 Jan 2014 NZ
592781 Mar 2014 NZ
1-2010-501704 Feb 2014 PH
1-2010-501705 Feb 2015 PH
WO-1999017517 Apr 1999 WO
WO-00070849 Nov 2000 WO
WO-2001063894 Aug 2001 WO
WO-2006124113 Nov 2006 WO
WO-2008124113 Oct 2008 WO
WO-2009097018 Aug 2009 WO
WO-2009097210 Aug 2009 WO
WO-2010053701 May 2010 WO
WO-2011081514 Jul 2011 WO
WO-2013148453 Oct 2013 WO
WO-2016048290 Mar 2016 WO
Non-Patent Literature Citations (11)
Entry
Anonymous. (2006) “Performance Based Routing in Profit Call Centers,” The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jun. 2002 (3 pages).
Cleveland, William S., “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association, vol. 74, No. 368, pp. 829-836 (Dec. 1979) (8 pages).
Cormen, T. H., et al., “Introduction to Algorithms,” 3rd Edition, Chapter 26 Maximum Flow, pp. 708-766 and Chapter 29 Linear Programming, pp. 843-897 (2009) (116 pages).
Gans, N. et al. (2003), “Telephone Call Centers: Tutorial, Review and Research Prospects,” Manufacturing & Service Operations Management, vol. 5, No. 2, pp. 79-141, (84 pages).
Koole, G. (2004). “Performance Analysis and Optimization in Customer Contact Centers,” Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004 (4 pages).
Koole, G. et al. (Mar. 6, 2006). “An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers,” Manuscript, (42 pages).
Nocedal, J. and Wright, S. J., “Numerical Optimization,” Chapter 16 Quadratic Programming, pp. 448-496 (2006) (50 pages).
Ntzoufras, “Bayesian Modeling Using Winbugs”. Wiley Interscience, Chapter 5, Normal Regression Models, Oct. 18, 2007, pp. 155-220 (67 pages).
Press, W. H. and Rybicki, G. B., “Fast Algorithm for Spectral Analysis of Unevenly Sampled Data,” The Astrophysical Journal, vol. 338, pp. 277-280 (Mar. 1, 1989) (4 pages).
Riedmiller, M. et al. (1993). “A Direct Adaptive Method for Faster Back Propagation Learning: The RPROP Algorithm,” 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591 (8 pages).
Stanley et al., “Improving call center operations using performance-based routing strategies,” Calif. Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html (9 pages).