The present disclosure relates generally to communication systems, and more particularly, to techniques for determining network topologies of communication networks such as a data center network.
Increasingly, consumers and businesses alike turn to cloud-based services over local computing environments. Such cloud-based computing services advantageously provide access to customizable and scalable computing resources over a network (e.g., the Internet). Typically, cloud-based service providers house such computing resources in one or more data centers that may include hundreds or even thousands of devices such as servers, switches, processors, memory, and other corresponding hardware and software components. The sheer number of data center devices or nodes as well as the number of possible configurations often results in complex networks within each data center. Moreover, the devices forming such complex networks may dynamically change depending on customer needs. Accordingly, it is often difficult to identify node topologies, data path flow, and/or path characteristics for devices and/or networks within data center networks.
The embodiments herein may be better understood by referring to the following description in conjunction with the accompanying drawings in which like reference numerals indicate identical or functionally similar elements. Understanding that these drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Overview
According to one or more embodiments of the disclosure, a monitoring device (or module) monitors messages exchanged between nodes in a communication network. The monitoring device further determines, based on time stamp data associated with each message, one or more latency distributions of paired response times between the nodes, and determines a node topology consistent with each of the one or more latency distributions of paired response times between the nodes. In some embodiments, the monitoring device also generates a graph of the node topology showing one or more communication links between the nodes, and annotates each communication link of the one or more communication links with at least one of a mean response time or a median response time based on at least one of the latency distributions.
Description
Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the disclosure.
A communication network is a geographically distributed collection of nodes interconnected by communication links and segments for transporting data between end nodes, such as computers, workstations, servers, and the like. Many types of networks are available, ranging from local area networks (LANs) to wide area networks (WANs). LANs typically connect the nodes over dedicated private communications links located in the same general physical location, such as a building or campus. WANs, on the other hand, typically connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical lightpaths, synchronous optical networks (SONET), synchronous digital hierarchy (SDH) links, or Powerline Communications (PLC) such as IEEE 61334, IEEE P1901.2, and others. In addition, a Mobile Ad-Hoc Network (MANET) is a kind of wireless ad-hoc network, which is generally considered a self-configuring network of mobile routes (and associated hosts) connected by wireless links, the union of which forms an arbitrary topology. Data centers, as mentioned above, can include complex networks of computing resources (e.g., mainframe computers, servers, application software, file and printer servers executing various operating systems, storage subsystems, network infrastructure, and the like) and provide network-based access to such computer resources.
As shown, the various networks include nodes/devices that route requests and facilitate access to computing resources from data center network 105. For example, the nodes/devices shown in
Data packets 150 (e.g., traffic and/or messages) may be exchanged among the nodes/devices 200 in communication network 100 using predefined network communication protocols such as certain known wired protocols (e.g., Interior Gateway Protocol (IGP), Exterior Border Gateway Protocol (E-BGP), TCP/IP, etc.), wireless protocols (e.g., IEEE Std. 802.15.4, WiFi, Bluetooth®, etc.), PLC protocols, or other shared-media protocols where appropriate. In this context, a protocol consists of a set of rules defining how the nodes interact with each other.
Those skilled in the art will understand that any number of nodes, devices, communication links, and the like may be used, and that the view shown herein is for simplicity. Also, those skilled in the art will further understand that while communication network 100 (including networks 105, 110, and 115) is shown in a certain orientation, such orientation is merely an example for purposes of illustration, not limitation.
Network interface(s) 210 contain the mechanical, electrical, and signaling circuitry for communicating data over communication links 106 coupled to communication network 100. Network interfaces 210 may be configured to transmit and/or receive data using a variety of different communication protocols. Note, further, that one or more nodes/devices may include two different types of network interfaces 210, e.g., wireless and wired/physical connections, and that the view herein is merely for illustration.
Memory 240 comprises a plurality of storage locations that are addressable by the processor 220 and network interfaces 210 for storing software programs and data structures associated with the embodiments described herein. Note that certain devices may have limited memory or no memory (e.g., no memory for storage other than for programs/processes operating on the device and associated caches). Processor 220 may comprise hardware elements or hardware logic adapted to execute the software programs and manipulate the data structures 245. An operating system 242, portions of which may resident in memory 240 and executed by processor 220, functionally organizes the device by, inter alia, invoking operations in support of software processes and/or services executing on the device. These software processes and/or services may comprise monitoring process/services 244, and an illustrative network topology process 248, as described herein. Note that while processes/services 244 and 248 are shown in centralized memory 240, alternative embodiments provide for the process to be operated within network interfaces 210 (e.g., as a component of a MAC layer, etc.).
It will be apparent to those skilled in the art that other processor and memory types, including various computer-readable media, may be used to store and execute program instructions pertaining to the techniques described herein. Also, while the description illustrates various processes, it is expressly contemplated that various processes may be embodied as modules configured to operate in accordance with the techniques herein (e.g., according to the functionality of a similar process). Further, while the processes have been shown separately, those skilled in the art will appreciate that processes may be routines or modules within other processes.
As noted above, data centers present unique challenges for understanding node topologies, data path flow, and/or path characteristics for devices and/or networks therein. Furthermore, providing customers on-demand cloud-based services creates a dynamic and ever changing environment, including possible frequent instantiations and de-instantiations of devices. Conventional approaches for determining network topologies often use round trip response times between nodes/devices to determine relative positions in a network topology. Notably, round trip time generally refers a total amount of time for a message or a packet to travel from a first node to a second node and then back to the first node. However, such round trip time may be inaccurate and affected by various factors such as network fluctuations, packet types, and the like. Accordingly, the techniques disclosed herein improve network mapping and generate network topologies based on, for example, statistical latency distributions (e.g., response times) for messages exchanged between nodes/devices in the network.
Notably, as used herein, the term “latency” or “latency value” generally refers to a response time for messages exchanged between nodes in a communication network; the term “packet” generally refers to messages or data exchanged between the nodes in a communication network; and the terms “paired” or “pair-wise” generally refers to a two-way exchange—e.g., one exchange representing packets sent from a first node and received by a second node, and another exchange representing packets sent from the second node and received by the first node.
According to the network monitoring and/or the network mapping technique disclosed herein, a monitoring device (or module) such as a switch, router, edge device, or other network device, determines communication latency or paired response times between nodes in a communication network from statistical latency distributions for all messages or packets exchanged between the nodes. More specifically, in some embodiments, the monitoring device determines communication latency for paired response times between nodes (e.g., from time stamp data associated with each message or packet exchanged between nodes). In certain embodiments, the monitoring device may be part of a distributed monitoring system, including a number of remote monitoring devices/nodes (e.g., located at edge switches in a network). These remote monitoring devices/nodes may be configured to time stamp messages or packets exchanged between the nodes in the network (e.g., on receipt, on transmission, etc.). Based on the time stamp data for each message, the monitoring device can determine latency distributions between pairs of nodes, and further determine representative latency values—e.g., mean latency, median latency, and the like. In some embodiments, outlier latency values or “bad” packet response times in a latency distribution may be eliminated or removed so as to avoid skewing the representative latency values (e.g., for initial network topology mapping). However, in other embodiments, these outlier latency values may be used to identify and troubleshoot network issues—e.g., according policies of the communication network and/or according to thresholds and/or deviations in a latency distribution. The network monitoring device further determines a node topology for the nodes in the communication network, consistent with the representative latency values, and generates a graph showing the node topology, including communication links annotated with corresponding representative latency values.
Illustratively, these techniques may be performed by hardware, software, and/or firmware, such as in accordance with the “monitoring” process 244 and/or “network topology” process 248, which may contain computer executable instructions executed by the processor 220 (or independent processor of interfaces 210) to perform certain functions.
As shown in
Operatively, monitoring modules 310 and 311 in respective node A and node B time stamp “TS” packets on transmission and on reception. For example, in diagram 301, monitoring module 310 time stamps a packet 305 at 0t when node A sends packet 305 to node B. Similarly, monitoring module 311 time stamps packet 305 on reception by node B at 10t. With respect to tracking the time stamps and time stamp data for an exchange between nodes—here, TS=0t and TS=10t—monitoring modules 310 and/or 311 operably associate and/or assign respective time stamps with/to packet 305 based on one or more unique message identifiers. For example, unique message identifiers can include a sequence number (SEQ: 1) (shown in
In some embodiments, monitoring modules 310 and/or 311 (or a remote monitoring device) employ statistical algorithms to classify each packet according to a particular attribute (e.g., a packet type) and determine attribute specific latency values. In this manner, latency and latency distributions between nodes can be determined with granularity (e.g., specific to packet attributes, etc.)
In diagram 302, monitoring module 311 time stamps packet 306 at 3t, and sends packet 306 to node A. Monitoring module 310 time stamps packet 306 on reception by node A at 12t. As shown in diagram 302, monitoring modules 310 and 311 associate or assign respective time stamps for packet 306 with a sequence number—SEQ: 2. As with diagram 301 (discussed above), a latency value or response time for packet 306 may be determined by a comparing respective time stamps associated with packet 306—e.g., a time difference between 3t and 12t yields a total latency value of 9t.
Packets 305 and 306 are tracked by monitoring modules 310 and 311 and associated with a paired latency value or paired response time for communications between node A and node B. Specifically, time stamps associated with each packet are analyzed to determine paired latency values. Further, these paired latency values may be analyzed according to a latency distribution graph. For example, one or more statistical algorithms may be employed to generate a latency distribution, and representative latency values may be derived from such latency distribution. For example, some representative latency values include an average or median latency or response time between node A and node B. Further, as mentioned, an average or median latency can be determined from all packets exchanged between pairs of nodes, and/or according to certain packet attributes.
Although
In addition, as mentioned above, the latency distribution shown in graph 402 may also indicate one or more outlier latency values, which can be determined according to policies of the communication network and/or according to pre-determined thresholds. For example, certain outlier latency values may result from dropped packets, internal device buffering, or other network conditions not relevant to an initial network topology mapping. Accordingly, in some embodiments, these outlier latency values may be eliminated from an initial latency analysis or calculation since the outlier latency values may improperly skew representative latency value determinations. Notably, however, these outlier latency values may be important for subsequent network analysis and/or network troubleshooting. For example, these outlier latency values may indicate communications issues amongst nodes—e.g., when a measured response time is (statistically) greater than a median response time, a mean response time, and the like. Moreover, the latency distribution shown in graph 402, including the representative latency value (μ), may be used to annotate paired latency values for communication links between nodes, as shown in
In particular,
Next to each latency chart, potential network topologies are shown. The potential network topologies represent possible network configurations, with certain communication links marked with an “x” to represent an inconsistency with the paired latency values shown in latency charts 501, 502, and 503 and/or an inconsistency with a threshold tolerance. For example, a network topology conforming to latency chart 501 includes a communication link or connection between node 510 and node 515, having an annotated latency value of 10t. However, multiple network topologies potentially conform to paired latency chart 502 (and remain consistent with latency chart 501). Here, one potential network topology includes a direct communication link or connection between node 510 and node 520 (with an annotated latency value of 20t), and another potential network topology includes node 515 disposed between node 510 and node 520, including corresponding communication links. Notably, the potential network topology including node 515 disposed between node 510 and node 520 includes an unknown latency value (marked as “??”) for the communication link between node 515 and node 520. Further latency information from latency chart 503 resolves the unknown latency value. Alternatively, or in addition, latency distribution information may also resolve ambiguity between multiple potential network topologies. For example, referring to the topology shown next to latency chart 503, assume a latency of 20t for direct communications between node 510 and node 520 represents an outlier latency value and/or a latency value outside a threshold tolerance. In this example, the direct communication link between node 510 and node 520 is marked with an X since the latency value of 20t is an outlier/outside tolerance. Further, the remaining latency value shown in latency chart 503 provides the previously unknown latency value as 10t, which validates the network topology having node 515 disposed between node 510 and node 520. Thus, the network topology consistent with the latency charts 501, 502, and 503, and latency distribution information (e.g., excluding outliers and/or response times outside of thresholds, etc.), includes node 515 disposed between nodes 510 and 520, with communication links there-between.
As shown, a network topology conforming to latency chart 701 includes a communication link between node 710 and node 715, having an annotated latency value of 10t. Multiple network topologies are possible consistent with latency chart 702 (and consistent with latency chart 701). As shown, one potential network topology includes a direct link or direct connection between node 710 and node 720, having an annotated latency value of 18t, and another potential network topology includes node 715 disposed between node 710 and node 720, having an unknown latency value “??” for the communication link connecting node 715 and node 720.
Additional latency distribution information and/or additional latency values (e.g., latency chart 703) may resolve ambiguity between the potential network topologies. Specifically, latency chart 703 indicates a latency value for communications between nodes 715 and 720 at 10t, which invalidates the network topology having node 715 disposed between nodes 710 and 720. Put differently, the node topology having node 715 disposed between nodes 710 and 720 results in a total latency value of 20t from an aggregation of (10t) between 710-715 and (10t) between 715 and 720, while the latency value between nodes 710 and 720 is only 18t. In this fashion, the network topology, showing node 715 disposed between node 710 and 720, is in consistent with the latency values shown in latency chart 703. Thus, the network topology consistent with the latency charts 701, 702, and 703, includes a direct communication link between node 710 and node 720, a direct communication link between node 720 and node 715, and a direct communication link between node 715 and node 710. Notably, in this example, the additional latency distribution information such as indications of outlier response times, thresholds, and the like, was not employed to determine the appropriate network topology.
Procedure 900 begins at step 905 and continues to step 910, where, as described in greater detail above, the monitoring device (or node) monitors messages or packets exchanged between nodes in a communication network (e.g., a data center network). For purposes of discussion, the monitoring device particularly monitors messages exchanged between, for example, a first node, a second node, and a third node.
Procedure 900 continues to step 915, where the monitoring device determines one or more latency distributions for paired response times corresponding to the messages exchanged between the nodes. For example, the one or more latency distributions can include a first latency distribution corresponding to response times between the first node and the second node, a second latency distribution corresponding to response times between the first node and the third node, and a third latency distribution corresponding to response times between the second node and the third node.
The monitoring device also determines, at step 920, a node topology consistent with the one or more latency distributions—here, the first latency distribution, the second latency distribution, and the third latency distribution—and generates, at step 925, a graph of a node topology showing one or more communication links between the nodes.
With respect to determining the node topology, in some embodiments, the monitoring device may compare, aggregate, or otherwise analyze the latency distributions to determine relative positions for each node in the communication network. Further, as discussed above, the latency distributions may be refined according to tolerances and/or thresholds to eliminate certain response times (e.g., outliers, outside thresholds, etc.), which certain response times may improperly skew initial node topology mapping (e.g., skew median/mean lines in the corresponding latency distributions).
Preferably, the monitoring device annotates, at step 930, each communication link with a representative response time or latency value. For example, the representative response time may include a mean response time, a median response time, or other measures of a response time from the corresponding latency distribution.
It should be noted that while certain steps within procedure 900 may be optional, and further, the steps shown in
The techniques described herein, therefore, provide for monitoring and mapping network topologies in a communication network (e.g., a data center network) based on statistical analysis of response times or latency between pairs of nodes. The techniques described herein provide simple solutions to determine latency based on time stamped values, which can be assigned by network devices such as an edge switch, router, and the like.
While there have been shown and described illustrative embodiments to determine latency distributions amongst pairs of network nodes, network topology mapping, and the like, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the embodiments herein. For example, the embodiments have been shown and described herein using response times in factors of a generic time (t), however it is appreciated that latency or response times may be measured in specific fractions, or portions of seconds (e.g., milliseconds, microseconds, etc.) or other appropriate measures of time.
The foregoing description has been directed to specific embodiments. It will be apparent; however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. For instance, it is expressly contemplated that the components and/or elements described herein can be implemented as software being stored on a tangible (non-transitory) computer-readable medium, devices, and memories (e.g., disks/CDs/RAM/EEPROM/etc.) having program instructions executing on a computer, hardware, firmware, or a combination thereof. Further, methods describing the various functions and techniques described herein can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on. In addition, devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example. Instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures. Accordingly this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/171,899, filed on Jun. 5, 2015, the content of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5742829 | Davis et al. | Apr 1998 | A |
5903545 | Sabourin | May 1999 | A |
6012096 | Link et al. | Jan 2000 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6247058 | Miller et al. | Jun 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6525658 | Streetman et al. | Feb 2003 | B2 |
6597663 | Rekhter | Jul 2003 | B1 |
6611896 | Mason, Jr. et al. | Aug 2003 | B1 |
6728779 | Griffin | Apr 2004 | B1 |
6801878 | Hintz et al. | Oct 2004 | B1 |
6847993 | Novaes et al. | Jan 2005 | B1 |
6925490 | Novaes et al. | Aug 2005 | B1 |
6958998 | Shorey | Oct 2005 | B2 |
6983323 | Cantrell et al. | Jan 2006 | B2 |
6996817 | Birum et al. | Feb 2006 | B2 |
7002464 | Bruemmer et al. | Feb 2006 | B2 |
7120934 | Ishikawa | Oct 2006 | B2 |
7181769 | Keanini et al. | Feb 2007 | B1 |
7185103 | Jain | Feb 2007 | B1 |
7337206 | Wen et al. | Feb 2008 | B1 |
7353511 | Ziese | Apr 2008 | B1 |
7370092 | Aderton et al. | May 2008 | B2 |
7395195 | Suenbuel et al. | Jul 2008 | B2 |
7444404 | Wetherall et al. | Oct 2008 | B2 |
7466681 | Ashwood-Smith et al. | Dec 2008 | B2 |
7467205 | Dempster et al. | Dec 2008 | B1 |
7496040 | Seo | Feb 2009 | B2 |
7496575 | Buccella et al. | Feb 2009 | B2 |
7530105 | Gilbert et al. | May 2009 | B2 |
7610330 | Quinn et al. | Oct 2009 | B1 |
7633942 | Bearden et al. | Dec 2009 | B2 |
7676570 | Levy et al. | Mar 2010 | B2 |
7681131 | Quarterman et al. | Mar 2010 | B1 |
7693947 | Judge et al. | Apr 2010 | B2 |
7752307 | Takara | Jul 2010 | B2 |
7783457 | Cunningham | Aug 2010 | B2 |
7844696 | Labovitz | Nov 2010 | B2 |
7844744 | Abercrombie et al. | Nov 2010 | B2 |
7864707 | Dimitropoulos et al. | Jan 2011 | B2 |
7873025 | Patel et al. | Jan 2011 | B2 |
7874001 | Beck et al. | Jan 2011 | B2 |
7885197 | Metzler | Feb 2011 | B2 |
7895649 | Brook et al. | Feb 2011 | B1 |
7904420 | Ianni | Mar 2011 | B2 |
7930752 | Hertzog et al. | Apr 2011 | B2 |
7934248 | Yehuda et al. | Apr 2011 | B1 |
7957934 | Greifeneder | Jun 2011 | B2 |
7961637 | McBeath | Jun 2011 | B2 |
7970946 | Djabarov et al. | Jun 2011 | B1 |
7975035 | Popescu et al. | Jul 2011 | B2 |
8005935 | Pradhan et al. | Aug 2011 | B2 |
8040232 | Oh et al. | Oct 2011 | B2 |
8040822 | Proulx et al. | Oct 2011 | B2 |
8135657 | Kapoor et al. | Mar 2012 | B2 |
8156430 | Newman | Apr 2012 | B2 |
8185824 | Mitchell et al. | May 2012 | B1 |
8250657 | Nachenberg et al. | Aug 2012 | B1 |
8255972 | Azagury et al. | Aug 2012 | B2 |
8266697 | Coffman | Sep 2012 | B2 |
8281397 | Vaidyanathan et al. | Oct 2012 | B2 |
8291495 | Burns et al. | Oct 2012 | B1 |
8296847 | Mendonca et al. | Oct 2012 | B2 |
8370407 | Devarajan et al. | Feb 2013 | B1 |
8381289 | Pereira et al. | Feb 2013 | B1 |
8391270 | Van Der Stok et al. | Mar 2013 | B2 |
8407164 | Malik et al. | Mar 2013 | B2 |
8442073 | Skubacz et al. | May 2013 | B2 |
8451731 | Lee et al. | May 2013 | B1 |
8462212 | Kundu et al. | Jun 2013 | B1 |
8489765 | Vasseur et al. | Jul 2013 | B2 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8527977 | Cheng et al. | Sep 2013 | B1 |
8570861 | Brandwine et al. | Oct 2013 | B1 |
8572600 | Chung et al. | Oct 2013 | B2 |
8572734 | McConnell et al. | Oct 2013 | B2 |
8572735 | Ghosh et al. | Oct 2013 | B2 |
8588081 | Salam et al. | Nov 2013 | B2 |
8600726 | Varshney et al. | Dec 2013 | B1 |
8630316 | Haba | Jan 2014 | B2 |
8640086 | Bonev et al. | Jan 2014 | B2 |
8661544 | Yen et al. | Feb 2014 | B2 |
8677487 | Balupari et al. | Mar 2014 | B2 |
8683389 | Bar-Yam et al. | Mar 2014 | B1 |
8706914 | Duchesneau | Apr 2014 | B2 |
8719452 | Ding et al. | May 2014 | B1 |
8719835 | Kanso et al. | May 2014 | B2 |
8752042 | Ratica | Jun 2014 | B2 |
8755396 | Sindhu et al. | Jun 2014 | B2 |
8762951 | Kosche et al. | Jun 2014 | B1 |
8769084 | Westerfeld et al. | Jul 2014 | B2 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8812725 | Kulkarni | Aug 2014 | B2 |
8813236 | Saha et al. | Aug 2014 | B1 |
8825848 | Dotan et al. | Sep 2014 | B1 |
8832013 | Adams et al. | Sep 2014 | B1 |
8832461 | Saroiu et al. | Sep 2014 | B2 |
8849926 | Marzencki et al. | Sep 2014 | B2 |
8881258 | Paul et al. | Nov 2014 | B2 |
8887238 | Howard et al. | Nov 2014 | B2 |
8904520 | Nachenberg et al. | Dec 2014 | B1 |
8931043 | Cooper et al. | Jan 2015 | B2 |
8954610 | Berke et al. | Feb 2015 | B2 |
8973147 | Pearcy et al. | Mar 2015 | B2 |
8990386 | He et al. | Mar 2015 | B2 |
8996695 | Anderson et al. | Mar 2015 | B2 |
8997227 | Mhatre et al. | Mar 2015 | B1 |
9015716 | Fletcher et al. | Apr 2015 | B2 |
9071575 | Lemaster et al. | Jun 2015 | B2 |
9088598 | Zhang et al. | Jul 2015 | B1 |
9110905 | Polley et al. | Aug 2015 | B2 |
9160764 | Stiansen et al. | Oct 2015 | B2 |
9178906 | Chen et al. | Nov 2015 | B1 |
9197654 | Ben-Shalom et al. | Nov 2015 | B2 |
9225793 | Dutta et al. | Dec 2015 | B2 |
9237111 | Banavalikar et al. | Jan 2016 | B2 |
9246773 | Degioanni | Jan 2016 | B2 |
9258217 | Duffield et al. | Feb 2016 | B2 |
9281940 | Matsuda et al. | Mar 2016 | B2 |
9317574 | Brisebois et al. | Apr 2016 | B1 |
9319384 | Yan et al. | Apr 2016 | B2 |
9405903 | Xie et al. | Aug 2016 | B1 |
9418222 | Rivera et al. | Aug 2016 | B1 |
9454324 | Madhavapeddi | Sep 2016 | B1 |
9501744 | Brisebois et al. | Nov 2016 | B1 |
9634915 | Bley | Apr 2017 | B2 |
9645892 | Patwardhan | May 2017 | B1 |
9733973 | Prasad et al. | Aug 2017 | B2 |
20020053033 | Cooper et al. | May 2002 | A1 |
20020103793 | Koller et al. | Aug 2002 | A1 |
20020141343 | Bays | Oct 2002 | A1 |
20020184393 | Leddy | Dec 2002 | A1 |
20030097439 | Strayer et al. | May 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030154399 | Zuk et al. | Aug 2003 | A1 |
20040030776 | Cantrell et al. | Feb 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050039104 | Shah et al. | Feb 2005 | A1 |
20050166066 | Ahuja et al. | Jul 2005 | A1 |
20050207376 | Ashwood-Smith et al. | Sep 2005 | A1 |
20050257244 | Joly et al. | Nov 2005 | A1 |
20050289244 | Sahu et al. | Dec 2005 | A1 |
20060048218 | Lingafelt et al. | Mar 2006 | A1 |
20060080733 | Khosmood et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060156408 | Himberger et al. | Jul 2006 | A1 |
20060195448 | Newport | Aug 2006 | A1 |
20060272018 | Fouant | Nov 2006 | A1 |
20060274659 | Ouderkirk | Dec 2006 | A1 |
20060294219 | Ogawa et al. | Dec 2006 | A1 |
20070044147 | Choi et al. | Feb 2007 | A1 |
20070097976 | Wood et al. | May 2007 | A1 |
20070169179 | Narad | Jul 2007 | A1 |
20070195729 | Li et al. | Aug 2007 | A1 |
20070195797 | Patel et al. | Aug 2007 | A1 |
20070211637 | Mitchell | Sep 2007 | A1 |
20070300061 | Kim et al. | Dec 2007 | A1 |
20080022385 | Crowell et al. | Jan 2008 | A1 |
20080082662 | Danliker et al. | Apr 2008 | A1 |
20080101234 | Nakil et al. | May 2008 | A1 |
20080126534 | Mueller et al. | May 2008 | A1 |
20080250122 | Zsigmond et al. | Oct 2008 | A1 |
20080270199 | Chess et al. | Oct 2008 | A1 |
20080301765 | Nicol et al. | Dec 2008 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090241170 | Kumar et al. | Sep 2009 | A1 |
20090307753 | Dupont et al. | Dec 2009 | A1 |
20090313373 | Hanna et al. | Dec 2009 | A1 |
20090313698 | Wahl | Dec 2009 | A1 |
20090328219 | Narayanaswamy | Dec 2009 | A1 |
20100005288 | Rao et al. | Jan 2010 | A1 |
20100077445 | Schneider et al. | Mar 2010 | A1 |
20100095293 | O'Neill et al. | Apr 2010 | A1 |
20100095367 | Narayanaswamy | Apr 2010 | A1 |
20100138810 | Komatsu et al. | Jun 2010 | A1 |
20100148940 | Gelvin et al. | Jun 2010 | A1 |
20100153316 | Duffield et al. | Jun 2010 | A1 |
20100153696 | Beachem et al. | Jun 2010 | A1 |
20100220584 | DeHaan et al. | Sep 2010 | A1 |
20100235514 | Beachem | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100303240 | Beachem | Dec 2010 | A1 |
20100319060 | Aiken et al. | Dec 2010 | A1 |
20110010585 | Bugenhagen et al. | Jan 2011 | A1 |
20110055381 | Narasimhan et al. | Mar 2011 | A1 |
20110055388 | Yumerefendi et al. | Mar 2011 | A1 |
20110066719 | Miryanov et al. | Mar 2011 | A1 |
20110069685 | Tofighbakhsh | Mar 2011 | A1 |
20110083125 | Komatsu et al. | Apr 2011 | A1 |
20110126275 | Anderson et al. | May 2011 | A1 |
20110145885 | Rivers et al. | Jun 2011 | A1 |
20110170860 | Smith | Jul 2011 | A1 |
20110173490 | Narayanaswamy et al. | Jul 2011 | A1 |
20110185423 | Sallam | Jul 2011 | A1 |
20110196957 | Ayachitula et al. | Aug 2011 | A1 |
20110202655 | Sharma et al. | Aug 2011 | A1 |
20110225207 | Subramanian et al. | Sep 2011 | A1 |
20110228696 | Agarwal et al. | Sep 2011 | A1 |
20110302652 | Westerfeld | Dec 2011 | A1 |
20110314148 | Petersen et al. | Dec 2011 | A1 |
20120005542 | Petersen et al. | Jan 2012 | A1 |
20120079592 | Pandrangi | Mar 2012 | A1 |
20120102361 | Sass et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120117226 | Tanaka et al. | May 2012 | A1 |
20120136996 | Seo et al. | May 2012 | A1 |
20120137278 | Draper et al. | May 2012 | A1 |
20120140626 | Anand et al. | Jun 2012 | A1 |
20120197856 | Banka et al. | Aug 2012 | A1 |
20120198541 | Reeves | Aug 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120233473 | Vasseur et al. | Sep 2012 | A1 |
20120240232 | Azuma | Sep 2012 | A1 |
20120246303 | Petersen et al. | Sep 2012 | A1 |
20120278021 | Lin et al. | Nov 2012 | A1 |
20130003538 | Greenburg et al. | Jan 2013 | A1 |
20130006935 | Grisby | Jan 2013 | A1 |
20130038358 | Cook et al. | Feb 2013 | A1 |
20130086272 | Chen et al. | Apr 2013 | A1 |
20130103827 | Dunlap et al. | Apr 2013 | A1 |
20130145099 | Liu et al. | Jun 2013 | A1 |
20130159999 | Chiueh et al. | Jun 2013 | A1 |
20130179487 | Lubetzky et al. | Jul 2013 | A1 |
20130179879 | Zhang et al. | Jul 2013 | A1 |
20130198839 | Wei et al. | Aug 2013 | A1 |
20130246925 | Ahuja et al. | Sep 2013 | A1 |
20130247201 | Alperovitch et al. | Sep 2013 | A1 |
20130254879 | Chesla et al. | Sep 2013 | A1 |
20130268994 | Cooper et al. | Oct 2013 | A1 |
20130275579 | Hernandez et al. | Oct 2013 | A1 |
20130283374 | Zisapel et al. | Oct 2013 | A1 |
20130290521 | Labovitz | Oct 2013 | A1 |
20130297771 | Osterloh et al. | Nov 2013 | A1 |
20130304900 | Trabelsi et al. | Nov 2013 | A1 |
20130305369 | Karta et al. | Nov 2013 | A1 |
20130318357 | Abraham et al. | Nov 2013 | A1 |
20130326623 | Kruglick | Dec 2013 | A1 |
20130333029 | Chesla et al. | Dec 2013 | A1 |
20130347103 | Veteikis et al. | Dec 2013 | A1 |
20140006610 | Formby et al. | Jan 2014 | A1 |
20140006871 | Lakshmanan et al. | Jan 2014 | A1 |
20140012814 | Bercovici et al. | Jan 2014 | A1 |
20140033193 | Palaniappan | Jan 2014 | A1 |
20140047185 | Peterson et al. | Feb 2014 | A1 |
20140047372 | Gnezdov et al. | Feb 2014 | A1 |
20140059200 | Nguyen et al. | Feb 2014 | A1 |
20140089494 | Dasari et al. | Mar 2014 | A1 |
20140096058 | Molesky et al. | Apr 2014 | A1 |
20140115219 | Ajanovic et al. | Apr 2014 | A1 |
20140143825 | Behrendt et al. | May 2014 | A1 |
20140149490 | Luxenberg et al. | May 2014 | A1 |
20140156814 | Barabash et al. | Jun 2014 | A1 |
20140164607 | Bai et al. | Jun 2014 | A1 |
20140173623 | Chang et al. | Jun 2014 | A1 |
20140192639 | Smirnov | Jul 2014 | A1 |
20140201717 | Mascaro et al. | Jul 2014 | A1 |
20140215573 | Cepuran | Jul 2014 | A1 |
20140215621 | Xaypanya et al. | Jul 2014 | A1 |
20140281030 | Cui et al. | Sep 2014 | A1 |
20140289854 | Mahvi | Sep 2014 | A1 |
20140298461 | Hohndel et al. | Oct 2014 | A1 |
20140317737 | Shin et al. | Oct 2014 | A1 |
20140331276 | Frascadore et al. | Nov 2014 | A1 |
20140331280 | Porras et al. | Nov 2014 | A1 |
20140331304 | Wong | Nov 2014 | A1 |
20140351203 | Kunnatur et al. | Nov 2014 | A1 |
20140351415 | Harrigan et al. | Nov 2014 | A1 |
20140359695 | Chari et al. | Dec 2014 | A1 |
20150009840 | Pruthi et al. | Jan 2015 | A1 |
20150033305 | Shear et al. | Jan 2015 | A1 |
20150036533 | Sodhi et al. | Feb 2015 | A1 |
20150039751 | Harrigan et al. | Feb 2015 | A1 |
20150046882 | Menyhart et al. | Feb 2015 | A1 |
20150058976 | Carney et al. | Feb 2015 | A1 |
20150067143 | Babakhan et al. | Mar 2015 | A1 |
20150082151 | Liang et al. | Mar 2015 | A1 |
20150085665 | Kompella et al. | Mar 2015 | A1 |
20150095332 | Beisiegel et al. | Apr 2015 | A1 |
20150112933 | Satapathy | Apr 2015 | A1 |
20150113133 | Srinivas et al. | Apr 2015 | A1 |
20150124608 | Agarwal et al. | May 2015 | A1 |
20150138993 | Forster et al. | May 2015 | A1 |
20150142962 | Srinivas et al. | May 2015 | A1 |
20150195291 | Zuk et al. | Jul 2015 | A1 |
20150249622 | Phillips et al. | Sep 2015 | A1 |
20150256555 | Choi et al. | Sep 2015 | A1 |
20150261842 | Huang et al. | Sep 2015 | A1 |
20150261886 | Wu et al. | Sep 2015 | A1 |
20150271255 | Mackay et al. | Sep 2015 | A1 |
20150295945 | Canzanese, Jr. et al. | Oct 2015 | A1 |
20150347554 | Vasantham et al. | Dec 2015 | A1 |
20150358352 | Chasin et al. | Dec 2015 | A1 |
20160006753 | McDaid et al. | Jan 2016 | A1 |
20160021131 | Heilig | Jan 2016 | A1 |
20160026552 | Holden | Jan 2016 | A1 |
20160036837 | Jain et al. | Feb 2016 | A1 |
20160050132 | Zhang et al. | Feb 2016 | A1 |
20160072815 | Rieke et al. | Mar 2016 | A1 |
20160103692 | Guntaka et al. | Apr 2016 | A1 |
20160105350 | Greifeneder et al. | Apr 2016 | A1 |
20160119234 | Valencia Lopez et al. | Apr 2016 | A1 |
20160127395 | Underwood et al. | May 2016 | A1 |
20160147585 | Konig et al. | May 2016 | A1 |
20160162308 | Chen et al. | Jun 2016 | A1 |
20160162312 | Doherty et al. | Jun 2016 | A1 |
20160205002 | Rieke et al. | Jul 2016 | A1 |
20160216994 | Sefidcon et al. | Jul 2016 | A1 |
20160294691 | Joshi | Oct 2016 | A1 |
20160308908 | Kirby et al. | Oct 2016 | A1 |
20160357424 | Pang et al. | Dec 2016 | A1 |
20160357546 | Chang et al. | Dec 2016 | A1 |
20160357587 | Yadav et al. | Dec 2016 | A1 |
20160357957 | Deen et al. | Dec 2016 | A1 |
20160359592 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359628 | Singh et al. | Dec 2016 | A1 |
20160359658 | Yadav et al. | Dec 2016 | A1 |
20160359673 | Gupta et al. | Dec 2016 | A1 |
20160359678 | Madani et al. | Dec 2016 | A1 |
20160359679 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359680 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359686 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359696 | Yadav et al. | Dec 2016 | A1 |
20160359697 | Scheib et al. | Dec 2016 | A1 |
20160359698 | Deen et al. | Dec 2016 | A1 |
20160359699 | Gandham et al. | Dec 2016 | A1 |
20160359700 | Pang et al. | Dec 2016 | A1 |
20160359701 | Pang et al. | Dec 2016 | A1 |
20160359703 | Gandham et al. | Dec 2016 | A1 |
20160359704 | Gandham et al. | Dec 2016 | A1 |
20160359705 | Parasdehgheibi et al. | Dec 2016 | A1 |
20160359708 | Gandham et al. | Dec 2016 | A1 |
20160359709 | Deen et al. | Dec 2016 | A1 |
20160359711 | Deen et al. | Dec 2016 | A1 |
20160359712 | Alizadeh Attar et al. | Dec 2016 | A1 |
20160359740 | Parandehgheibi et al. | Dec 2016 | A1 |
20160359759 | Singh et al. | Dec 2016 | A1 |
20160359872 | Yadav et al. | Dec 2016 | A1 |
20160359877 | Kulshreshtha et al. | Dec 2016 | A1 |
20160359878 | Prasad et al. | Dec 2016 | A1 |
20160359879 | Deen et al. | Dec 2016 | A1 |
20160359880 | Pang et al. | Dec 2016 | A1 |
20160359881 | Yadav et al. | Dec 2016 | A1 |
20160359888 | Gupta et al. | Dec 2016 | A1 |
20160359889 | Yadav et al. | Dec 2016 | A1 |
20160359890 | Deen et al. | Dec 2016 | A1 |
20160359891 | Pang et al. | Dec 2016 | A1 |
20160359897 | Yadav et al. | Dec 2016 | A1 |
20160359912 | Gupta et al. | Dec 2016 | A1 |
20160359913 | Gupta et al. | Dec 2016 | A1 |
20160359914 | Deen et al. | Dec 2016 | A1 |
20160359915 | Gupta et al. | Dec 2016 | A1 |
20160359917 | Rao et al. | Dec 2016 | A1 |
20160373481 | Sultan et al. | Dec 2016 | A1 |
20170034018 | Parasdehgheibi et al. | Feb 2017 | A1 |
20180006911 | Dickey | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
101093452 | Dec 2007 | CN |
101770551 | Jul 2010 | CN |
102521537 | Jun 2012 | CN |
103023970 | Apr 2013 | CN |
103716137 | Apr 2014 | CN |
104065518 | Sep 2014 | CN |
0811942 | Dec 1997 | EP |
1383261 | Jan 2004 | EP |
1450511 | Aug 2004 | EP |
2045974 | Apr 2008 | EP |
2887595 | Jun 2015 | EP |
2009-016906 | Jan 2009 | JP |
1394338 | May 2014 | KR |
WO 2007014314 | Feb 2007 | WO |
WO 2007070711 | Jun 2007 | WO |
WO 2008069439 | Jun 2008 | WO |
WO 2013030830 | Mar 2013 | WO |
WO 2015042171 | Mar 2015 | WO |
WO 2016004075 | Jan 2016 | WO |
WO 2016019523 | Feb 2016 | WO |
Entry |
---|
InternetPerils, Inc., “Control Your Internet Business Risk,” 2003-2015, https://www.internetperils.com/. |
Bosch, Greg, “Virtualization,” 2010, 33 pages. |
Breen, Christopher, “MAC 911, How to dismiss Mac App Store Notifications,” Macworld.com, Mar. 24, 2014, 3 pages. |
Chou, C.W., et al., “Optical Clocks and Relativity,” Science vol. 329, Sep. 24, 2010, pp. 1630-1633. |
Huang, Hing-Jie, et al., “Clock Skew Based Node Identification in Wireless Sensor Networks,” IEEE, 2008, 5 pages. |
Ives, Herbert, E., et al., “An Experimental Study of the Rate of a Moving Atomic Clock,” Journal of the Optical Society of America, vol. 28, No. 7, Jul. 1938, pp. 215-226. |
Witze, Alexandra, “Special relativity aces time trial, ‘Time dilation’ predicted by Einstein confirmed by lithium ion experiment,” Nature, Sep. 19, 2014, 3 pages. |
Zatrochova, Zuzana, “Analysis and Testing of Distributed NoSQL Datastore Riak,” Spring, 2015, 76 pages. |
Australian Government Department of Defence, Intelligence and Security, “Top 4 Strategies to Mitigate Targeted Cyber Intrusions,” Cyber Security Operations Centre Jul. 2013, http://www.asd.gov.au/infosec/top-mitigations/top-4-strategies-explained.htm. |
Author Unknown, “Blacklists & Dynamic Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” www.dambaia.com, 9 pages, Dambala, Atlanta, GA, USA. |
Aydin, Galip, et al., “Architecture and Implementation of a Scalable Sensor Data Storage and Analysis Using Cloud Computing and Big Data Technologies,” Journal of Sensors, vol. 2015, Article ID 834217, Feb. 2015, 11 pages. |
Backes, Michael, et al., “Data Lineage in Malicious Environments,” IEEE 2015, pp. 1-13. |
Bayati, Mohsen, et al., “Message-Passing Algorithms for Sparse Network Alignment,” Mar. 2013, 31 pages. |
Berezinski, Przemyslaw, et al., “An Entropy-Based Network Anomaly Detection Method,” Entropy, 2015, vol. 17, www.mdpi.com/journal/entropy, pp. 2367-2408. |
Berthier, Robin, et al. “Nfsight: Netflow-based Network Awareness Tool,” 2010, 16 pages. |
Bhuyan, Dhiraj, “Fighting Bots and Botnets,” 2006, pp. 23-28. |
Blair, Dana, et al., U.S. Appl. No. 62/106,006, tiled Jan. 21, 2015, entitled “Monitoring Network Policy Compliance.” |
Chandran, Midhun, et al., “Monitoring in a Virtualized Environment,” GSTF International Journal on Computing, vol. 1, No. 1, Aug. 2010. |
Chari, Suresh, et al., “Ensuring continuous compliance through reconciling policy with usage,” Proceedings of the 18th ACM symposium on Access control models and technologies (SACMAT '13). ACM, New York, NY, USA, 49-60. |
Chen, Xu, et al., “Automating network application dependency discovery: experiences, limitations, and new solutions,” 8th USENIX conference on Operating systems design and implementation (OSDI'08), USENIX Association, Berkeley, CA, USA, 117-130. |
Cisco Systems, “Cisco Network Analysis Modules (NAM) Tutorial,” Cisco Systems, Inc., Version 3.5. |
Cisco Systems, Inc., “Addressing Compliance from One Infrastructure: Cisco Unified Compliance Solution Framework,” 2014. |
Cisco Systems, Inc., “Cisco Application Dependency Mapping Service,” 2009. |
Cisco Systems, Inc., “White Paper—New Cisco Technologies Help Customers Achieve Regulatory Compliance,” 1992-2008. |
Cisco Systems, Inc., “A Cisco Guide to Defending Against Distributed Denial of Service Attacks,” May 3, 2016, 34 pages. |
Cisco Technology, Inc., “Cisco Lock-and-Key:Dynamic Access Lists,” http://www/cisco.com/c/en/us/support/docs/security-vpn/lock-key/7604-13.html; Updated Jul. 12, 2006, 16 pages. |
Di Lorenzo, Guisy, et al., “EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories,” Mobile Data Management (MDM), pp. 323-330, Jun. 3-6, 2013. |
Feinstein, Laura, et al., “Statistical Approaches to DDoS Attack Detection and Response,” Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX '03), Apr. 2003, 12 pages. |
George, Ashley, et al., “NetPal: A Dynamic Network Administration Knowledge Base,” 2008, pp. 1-14. |
Goldsteen, Abigail, et al., “A Tool for Monitoring and Maintaining System Trustworthiness at Run Time,” REFSQ (2015), pp. 142-147. |
Hamadi, S., et al., “Fast Path Acceleration for Open vSwitch in Overlay Networks,” Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, pp. 1-5, Sep. 15-19, 2014. |
Hewlett-Packard, “Effective use of reputation intelligence in a security operations center,” Jul. 2013, 6 pages. |
Hideshima, Yusuke, et al., “STARMINE: A Visualization System for Cyber Attacks,” http://www.researchgate.net/publication/221536306, Feb. 2006, 9 pages. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 1 of 2, 350 pages. |
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 2 of 2, 588 pages. |
Kerrison, Adam, et al., “Four Steps to Faster, Better Application Dependency Mapping—Laying the Foundation for Effective Business Service Models,” BMCSoftware, 2011. |
Kraemer, Brian, “Get to know your data center with CMDB,” TechTarget, Apr. 5, 2006, http://searchdatacenter.techtarget.com/news/118820/Get-to-know-your-data-center-with-CMDB. |
Lab SKU, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301_html_en/ (part 1 of 2). |
Lab SKU, “VMware Hands-on Labs—HOL-SDC-1301” Version: 20140321-160709, 2013; http://docs.hol.vmware.com/HOL-2013/holsdc-1301_html_en/ (part 2 of 2). |
Lachance, Michael, “Dirty Little Secrets of Application Dependency Mapping,” Dec. 26, 2007. |
Landman, Yoav, et al., “Dependency Analyzer,” Feb. 14, 2008, http://frog.com/confluence/display/DA/Home. |
Lee, Sihyung, “Reducing Complexity of Large-Scale Network Configuration Management,” Ph.D. Dissertation, Carniege Mellon University, 2010. |
Li, Ang, et al., “Fast Anomaly Detection for Large Data Centers,” Global Telecommunications Conference (GLOBECOM 2010, Dec. 2010, 6 pages. |
Li, Bingbong, et al, “A Supervised Machine Learning Approach to Classify Host Roles on Line Using sFlow,” in Proceedings of the first edition workshop on High performance and programmable networking, 2013, ACM, New York, NY, USA, 53-60. |
Liu, Ting, et al., “Impala: A Middleware System for Managing Autonomic, Parallel Sensor Systems,” In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming(PPoPP '03), ACM, New York, NY, USA, Jun. 11-13, 2003, pp. 107-118. |
Lu, Zhonghai, et al., “Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip,” Design and Diagnostics of Electronic Circuits and Systems, pp. 1, 6, 16-18, Apr. 2008. |
Matteson, Ryan, “Depmap: Dependency Mapping of Applications Using Operating System Events: a Thesis,” Master's Thesis, California Polytechnic State University, Dec. 2010. |
Natarajan, Arun, et al., “NSDMiner: Automated Discovery of Network Service Dependencies,” Institute of Electrical and Electronics Engineers INFOCOM, Feb. 2012, 9 pages. |
Navaz, A.S. Syed, et al., “Entropy based Anomaly Detection System to Prevent DDoS Attacks in Cloud,” International Journal of computer Applications (0975-8887), vol. 62, No. 15, Jan. 2013, pp. 42-47. |
Neverfail, “Neverfail IT Continuity Architect,” 2015, https://web.archive.org/web/20150908090456/http://www.neverfallgroup.com/products/it-continuity-architect. |
Nilsson, Dennis K., et al., “Key Management and Secure Software Updates in Wireless Process Control Environments,” In Proceedings of the First ACM Conference on Wireless Network Security (WiSec '08), ACM, New York, NY, USA, Mar. 31-Apr. 2, 2008, pp. 100-108. |
Nunnally, Troy, et al., “P3D: A Parallel 3D Coordinate Visualization for Advanced Network Scans,” IEEE 2013, Jun. 9-13, 2013, 6 pages. |
O'Donnell, Glenn, et al., “The CMDB Imperative: How to Realize the Dream and Avoid the Nightmares,” Prentice Hall, Feb. 19, 2009. |
Ohta, Kohei, et al., “Detection, Defense, and Tracking of Internet-Wide Illegal Access in a Distributed Manner,” 2000, pp. 1-16. |
Pathway Systems International Inc., “How Blueprints does Integration,” Apr. 15, 2014, 9 pages, http://pathwaysystems.com/company.blog/. |
Pathway Systems International Inc., “What is Blueprints?” 2010-2016, http://pathwaysystems.com/blueprints-about/. |
Popa, Lucian, et al., “Macroscope: End-Point Approach to Networked Application Dependency Discovery,” CoNEXT'09, Dec. 1-4, 2009, Rome, Italy, 12 pages. |
Prasad, K. Munivara, et al., “An Efficient Detection of Flooding Attacks to Internet Threat Monitors (ITM) using Entropy Variations under Low Traffic,” Computing Communication & Networking Technologies (ICCCNT '12), Jul. 26-28, 2012, 11 pages. |
Sachan, Mrinmaya, et al., “Solving Electrical Networks to incorporate Supervision in Random Walks,” May 13-17, 2013, pp. 109-110. |
Sammarco, Matteo, et al., “Trace Selection for Improved WLAN Monitoring,” Aug. 16, 2013, pp. 9-14. |
Shneiderman, Ben, et al., “Network Visualization by Semantic Substrates,” Visualization and Computer Graphics, vol. 12, No. 5, pp. 733,740, Sep.-Oct. 2006. |
Wang, Ru, et al., “Learning directed acyclic graphs via bootstarp aggregating,” 2014, 47 pages, http://arxiv.org/abs/1406.2098. |
Wang, Yongjun, et al., “A Network Gene-Based Framework for Detecting Advanced Persistent Threats,” Nov. 2014, 7 pages. |
Woodberg, Brad, “Snippet from Juniper SRX Series” Jun. 17, 2013, 1 page, O'Reilly Media, Inc. |
Zhang, Yue, et al., “CANTINA: A Content-Based Approach to Detecting Phishing Web Sites,” May 8-12, 2007, pp. 639-648. |
Bauch, Petr, “Reader's Report of Master's Thesis, Analysis and Testing of Distributed NoSQL Datastore Riak,” May 28, 2015, Brno. 2 pages. |
Heckman, Sarah, et al., “On Establishing a Benchmark for Evaluating Static Analysis Alert Prioritization and Classification Techniques,” IEEE, 2008; 10 pages. |
Kim, Myung-Sup, et al. “A Flow-based Method for Abnormal Network Traffic Detection, ” IEEE, 2004, pp. 599-612. |
Thomas, R., “Bogon Dotted Decimal List,” Version 7.0, Team Cymru NOC, Apr. 27, 2012, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20160359677 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62171899 | Jun 2015 | US |