This disclosure relates generally to the field of managing consumption of a metered utility, and more specifically relates to adjusting electrical consumption based on a determined demand for electricity.
In some instances, electric utility providers meter customer usage based upon the electricity demand of individual customers over defined time intervals (also referred to as “demand intervals”). Often the utility providers bill such customers for their electricity demand using the peak demand value that occurred within a billing period. For example, a residential utility customer whose electricity demand during one 15-minute demand interval was 20 kilowatts (kW), while the demand for each of the remaining demand intervals for the monthly billing period was 5 kW, would be billed for the month using their peak demand level of 20 kW. As a result, it may be advantageous for such customers to manage their electricity demand in order to avoid reaching an unnecessarily large peak demand level.
However, managing demand can be particularly challenging for customers who, in addition to the utility-provided electric power, have additional sources of electric power for their premises, such as photovoltaic solar cells, wind turbine generators, batteries, etc. Unlike the electric power provided by the electric utility, such additional power sources may vary in the amount of electric power that is provided, such as can occur with solar cells on a cloudy day or with a wind turbine during periods with little or no wind. Thus, even if the electricity consumed at a customer premises is steady, the electricity demand placed upon the utility by the customer can vary dramatically as utility-provided power is needed to offset the varying amount of power from the additional source(s). In order to avoid potentially costly peaks in metered demand usage, what is needed is a way to actively manage electricity usage that takes the metered demand into account.
According to certain implementations, an electrical meter receives electricity from an electrical utility provider. Portions of the electricity are provided to one or more load devices. Each load device may be associated with a load managing device (e.g., a thermostat) that is capable of adjusting the electrical consumption of the load device. In some cases, a demand management module may determine a demand interval and a threshold amount of electricity that is associated with the demand interval. In addition, the demand management module may determine a forecasted consumption of electricity during the demand interval, based on the portions of electricity already received. Based on a comparison of the forecasted consumption with the threshold, the demand management module may issue commands to the load managing devices to adjust the electrical consumption of the associated load devices.
In some implementations, one or more of the demand interval, the threshold, or the forecasted consumption are based on information received from the electrical utility provider, from a user of the demand management module, from the load managing devices, from the load devices, or any combination of these. For example, the demand interval may be determined based on information received from a computer system associated with the electrical utility provider. In addition, the threshold may be determined based on configuration information received via a user interface associated with the demand management module. Furthermore, the forecasted consumption may be determined based on an electricity request from the load device or load managing device.
These illustrative aspects are mentioned not to limit or define the disclosure, but to provide examples to aid understanding thereof. Additional aspects are discussed in the Detailed Description, and further description is provided there.
Features, aspects, and advantages of the present disclosure are better understood when the following Detailed Description is read with reference to the accompanying drawings, where:
Embodiments of the present invention are generally directed to a meter that manages electricity usage for a utility customer based on the metered demand. In an exemplary embodiment, an electricity meter determines a value for a customer's electricity demand during defined demand intervals using a demand management module or other logic executing in the electricity meter (sometimes referred to as a “Demand Manager” module). In the event that that the demand exceeds a limit that the customer has set, the meter will start reducing (e.g., “shedding”) the electrical load by issuing corresponding commands to the customer's load managing devices, such as thermostats and load control switches. Once the meter has issued one or more load-reducing commands, it monitors the resulting electricity demand to determine if the demand has been reduced to a level to stay within the customer-configured limits for the demand interval. If the electricity demand still exceeds the limit (or is forecasted to exceed the limit), the meter issues additional load-reducing commands to further reduce the customer's electricity demand for utility-provided electric power. In some instances, a customer's demand for utility-provided electric power is determined not only by their amount of electricity consumption, but also by the amount of electricity supplied to their premises by additional power sources, such as photovoltaic solar cells, wind turbine generators, batteries, etc. In some embodiments, the meter measures demand and usage that is in excess of the electrical power supplied by the additional power sources (sometimes referred to as “net demand” and “net usage,” respectively).
With reference to
The metered environment 100 also includes various electrical load managing devices 105, such as a thermostat 105a and load control switches 105b and 105c, that are capable of adjusting (i.e., shedding and/or restoring) electricity usage of other on-premises devices that affect demand. For example, the thermostat 105a may manage temperature set points and other operating modes of a heat pump for a home, while a load control switch 105b-c may manage operation of a vehicle charger, clothes dryer, water heater, etc. The load managing devices 105 can receive commands from the meter 103 to shed and/or restore electrical load. The meter may communicate with the load managing devices 105 using Wi-Fi; radio frequency (RF) mesh networking, such as defined by ZigBee and/or IEEE 802.15.4; Z-Wave; Power-line Communication (PLC); and/or other communication technologies and protocols. In some embodiments, the metered environment 100 also includes additional power sources (not shown), such as photovoltaic solar cells, wind turbine generators, batteries, etc., that provide power for a customer premises, in addition to the utility-provided power that is metered by the meter 103. In still other embodiments, a metering device that implements a demand management module 104, such as the meter 103, may be placed at the transformer level of the utility provider, thereby enabling electricity demand management for one or more customers within a geographic area.
A utility customer may manage configuration of the electricity demand management functionality of the meter 103 using a computing device 107, such as a smartphone 107a, laptop computer 107b, or any other suitable computing device. The computing device 107 may communicate directly with the meter 103 via Wi-Fi and/or other communication protocols, or the customer may configure their meter 103 indirectly via a computing interface implemented via one or more additional computing systems, including remote computing systems (e.g., a cloud-based interface). An electric utility provider 120 may also communicate with the meter 103 to obtain and/or configure various data on the meter, such as data associated with electricity usage and demand. For example, the utility provider 120 may configure the length of demand intervals (e.g., 15 minutes, 30 minutes, or 60 minutes) during which electricity demand for a customer is evaluated, the various billing rates that correspond to when and/or how demand should be tracked, how demand is to be billed, or other suitable characteristics. For instance, a first billing rate may correspond to demand-based pricing and the utility provider 120 schedules the first rate to be in effect from 5 P.M. to 10 P.M. Monday-Friday, whereas the remainder of the time a second billing rate is in effect whereby electricity is billed based on usage and demand is not considered. When the utility provider 120 seeks to change schedules or other aspects associated with customer billing, this data is stored by the meter 103 where the data may be used to inform electricity demand/usage decisions according to the portion of the configuration made by the customer.
Shown in
In some implementations, a portion of the parameters shown in the user interface 200 may be configured by the utility provider 120. For example, the utility provider 120 may configure a radio identification for the meter 103, or information about a billing rate. Additionally or alternatively, some parameters shown in the user interface 200 may be configurable by the customer. For example, the customer may configure a radio identification of a load managing device 105. Table 1, presented below, further describes some possible parameters for a demand management module, such as metering parameters 210 presented in the user interface. The parameters, descriptions, and values included in Table 1 are exemplary, and should not be considered limiting.
In some cases, the user interface 200 may indicate a set of one or more load devices that are available for consumption management. For example, a device list 230 indicates multiple load managing devices, such as load managing devices 105, which may receive commands from the demand management module 104. In the example user interface 200, selection of an indicated load managing device in the device list 230 may allow configuration of parameters related to the selected device, such as the load management parameters 220. In addition, the device list 230 may list the present parameter values for additional load managing devices. For example, the device list 230 may list each load managing device according to a respective priority.
Table 2 below further describes possible parameters for load managing devices, such as load management parameters 220, that may be managed by the meter 103 to shed and/or restore electrical load. The parameters, descriptions, and values included in Table 2 are exemplary, and should not be considered limiting.
In some implementations, the meter 103 may store information associated with electricity usage and demand locally, such as in a memory component that is included in (or accessible by) the meter 103.
The locally stored information 310 may include data describing one or more local demand intervals 312, such as data indicating a start time, a duration, a billing rate, an indication of demand-based pricing, or any other suitable data describing a local demand interval 312. In some cases, the meter 103 modifies the locally stored information 310 based on information that is provided or configured by the utility provider 120. For example, the meter 103 may receive, such as via one or more networks, information describing a demand interval associated with the utility provider 120, such as provider demand interval 322. The meter 103 and the utility provider 120 may communicate via wireless or wired networks; hypertext transfer protocols (HTTP) or HTTP secure (HTTPS); radio frequency (RF) mesh networking, such as defined by ZigBee and/or IEEE 802.15.4; Z-Wave; Power-line Communication (PLC); or any other suitable communication technology or protocol.
Responsive to receiving the information describing the provider demand interval 322, the meter 103 may modify the locally stored information 310 describing the local demand interval 312. For example, the meter 103 may modify the duration, start time, billing rate, or other data for the local demand interval 312 based on, respectively, the duration, start time, billing rate, or other data for the provider demand interval 322. In some cases, the local duration, local start time, local billing rate, or other local data may match or equal, respectively, the provider duration, provider start time, provider billing rate, or other provider data. Using a local demand interval that matches or equals a provider demand interval may allow the meter 103 to correctly identify a billing rate or other data associated with the electricity measured by the meter 103. In addition, the correct identification of the data associated with the measured electricity may improve the accuracy of electricity usage decisions or electricity demand management decisions performed by one or more of the meter 103 or the demand management module 104.
In some implementations, the stored information 310 may be used to inform one or more of electricity usage decisions or electricity demand management decisions. For example, the meter 103, the demand management module 104, or both may perform demand management operations based on the stored information 310. In addition, the electricity usage decisions or the electricity demand management decisions may be informed based on a combination of the information received from the utility provider 120 and information describing configurations made by the customer, such as via the user interface 200. For example, the demand management operations may be performed based on information received from the utility provider 120, such as provider demand interval 322 data, combined with information describing parameters configured via the user interface 200, such as a Demand Target parameter (e.g., described in Table 1) or a Priority parameter (e.g., described in Table 2).
In some implementations, the meter 103 may determine an amount of energy that is received from the utility provider 120. Based on the local demand interval 312 (e.g., a start time, a duration), the meter 103 may determine that a portion of the received energy is received during the local demand interval 312. In addition, the meter 103 may determine that the portion is received during a present demand interval (e.g., the local demand interval 312 is occurring at the present time). In some cases, the portion of energy may be associated with a particular load device 306 that is associated with a respective one of load managing devices 105, such as load control switch 105b.
In addition, the demand management module 104 may determine a forecasted consumption 314 for a remainder of the present local demand interval. For example, the forecasted consumption 314 may be based on the portion of energy received during the local demand interval 312 and a quantity of time remaining in the duration of the local demand interval 312. The demand management module 104 may determine that the forecasted consumption 314 exceeds a demand threshold 316 (e.g., Demand Target, as described in Table 1), based on a comparison of the forecasted consumption 314 with the demand threshold 316. In environment 300, the forecasted consumption 314 and the demand threshold 316 are each included in the locally stored information 310, but other implementations are possible.
In some implementations, the meter 103 may issue one or more commands based on the determination that the forecasted consumption exceeds the demand threshold. For example, the meter 103 may provide command data 318 to one or more of the load managing devices 105. The command data 318 may include data describing an adjustment of electrical consumption of the load device associated with a respective one of load managing devices 105. For example, responsive to the determination that the forecasted consumption 314 exceeds the demand threshold 316, the meter 103 may provide the command data 318 to load managing device 105b, indicating a reduction in consumption of the load device 306. An example scenario in which the command data 318 indicates a reduction in consumption is described in the “Use Case: Load shed when Demand Forecast>Demand Target,” as described below, but other scenarios are possible.
In some implementations, the meter 103 may cease or adjust control of a load device's energy consumption. For example, the demand management module 104 may determine that the forecasted consumption 314 is within, or equals, the demand threshold 316, based on a comparison of the forecasted consumption 314 with the demand threshold 316. In addition, the demand management module 104 may determine that an amount of energy requested by a load device (e.g., Load kW, as described in Table 2) is equivalent or less than a difference between the demand threshold 316 and the forecasted consumption 314. For example, responsive to determining that the energy requested by the load device 306 is equivalent or less than a difference between the demand threshold 316 and the forecasted consumption 314, the meter 103, the demand management module 104, or both, may cease or adjust control of the consumption on the load device 306. In addition, at the end of a demand interval, the meter 103 or the demand management module 104 may cease or adjust consumption control. For example, the meter 103 may cease consumption control and determine a forecasted consumption 314 for the next demand interval based on the unadjusted consumption of the load device 306.
In some cases, responsive to the determination that the forecasted consumption 314 equals or is within the demand threshold 316, the meter 103, the demand management module 104, or both, may provide the command data 318 to load managing device 105b, indicating that an increase in consumption of the load device 306 is permitted. An example scenario in which the command data 318 indicates an increase in consumption is described in the “Use Case: Load restoration when Demand Forecast<Demand Target,” as described below, but other scenarios are possible.
Example Calculations to Determine Forecasted Demand
In some embodiments, when the meter 103 is appropriately configured, the demand management module 104 will make decisions to shed or restore electrical load based on the results of the calculated forecasted demand and the configured demand target. In some cases, inputs to this calculation may include the following metrics, which may be provided by a metrology module in the meter 103:
Equation 1 describes an example equation for determining a forecasted demand, such as DemandForecastKW.
In addition, Equation 1 may be simplified to a form described by Equation 2.
In Equation 2, the forecasted demand estimates the demand value for the present demand interval, taking into account the demand thus far for the interval and assuming the instantaneous demand will continue for the remainder of the interval. It should be noted that in some embodiments, the meter 103 can make decisions based on additional demand values, such as instantaneous demand.
Examples of Scenarios for Managing Electricity Demand
Below are exemplary scenarios and/or use cases for an electrical meter, such as the meter 103, that is configured for managing electricity demand, such as via the demand management module 104. The exemplary scenarios may calculate a forecasted demand based on one or more of Equation 1 or Equation 2. In addition, the exemplary scenarios describe techniques for managing electricity demand under the configuration described in Table 3. The parameter names included in Table 3 may be associated, for example, with graphical elements included in user interface 200, such as one or more of the metering parameters 210 or load management parameters 220. The parameters, names, and values included in Table 3 are exemplary, and should not be considered limiting.
In addition, the demand management module 104 may include one or more operations related to determining whether to actively manage demand (e.g., by shedding or restoring loads). For example, the demand management module 104 may determine whether or not to implement operations for one or more of calculating a forecasted consumption, shedding a load, or restoring a load, based on, for example, an input to the user interface 200. Additionally or alternatively, the demand management module 104 may determine whether to actively manage demand based on the following exemplary configurable values:
Use Case: No Load Shed During Disabled Rate Periods
Use Case: No Load Shed when Demand Forecast<Demand Target
Use Case: No Load Shed when Demand Forecast>Demand Target During Interval Guard Time
Use Case: Load Shed when Demand Forecast>Demand Target
Use Case: Load Restoration when Demand Forecast<Demand Target
To generalize the above use cases, an exemplary meter 103 may perform the various tasks of Demand Manager using programmed instructions included in a non-transitory medium, or other operations related to determining whether to actively manage demand. Table 4, presented below, further describes some possible operations for a demand management module. The operations, descriptions, and values included in Table 4 are exemplary, and should not be considered limiting.
When the meter 103 is configured to generate event messages, the messages may contain information. Table 5, presented below, describes some possible messages generated by a meter, or information included in such messages. The messages, descriptions, and values included in Table 5 are exemplary, and should not be considered limiting.
The foregoing is provided for purposes of illustrating, describing, and explaining aspects of the present invention and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Further modifications and adaptation of these embodiments will be apparent to those skilled in the art and may be made without departing from the scope and spirit of the invention. Different arrangements and combinations of the components and functionality described above, as well as those not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent.
The present disclosure claims priority to U.S. provisional application Ser. No. 62/450,190 for “Techniques for Managing Resource Consumption for Demand-Based Metering,” filed Jan. 25, 2017, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20090234511 | Ouchi et al. | Sep 2009 | A1 |
20130320776 | Cook | Dec 2013 | A1 |
20140148925 | Ahn et al. | May 2014 | A1 |
Entry |
---|
9312A Residential Demand Controller, 9312A Controller, Energy Sentry, Available on internet at http://energysentry.com/PP-9312.php, accessed on Jan. 25, 2017, 2 pages. |
Computerized Energy Management—Model 9312 Owner's/Installation Manual, Energy Sentry, Brayden Automation, 2009, 33 pages. |
International Application No. PCT/US2018/015166, International Search Report and Written Opinion dated Mar. 14, 2018, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20180212428 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62450190 | Jan 2017 | US |